
Neural Networks, Vol. 1, pp. 339-356, 1988 0893-6080/88 $3.00 + .00
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

Generalization of Backpropagation with Application
to a Recurrent Gas Market Model

PAUL J. WERBOS

U.S. Department of Energy

(Received August 1987: revised and accepted May 1988)

Abstract--Backpropagation is often viewed as a method for adapting artificial neural networks to classify patterns.
Based on parts of the book by Rumelhart and colleagues, many authors equate backpropagation with the generalized
delta rule applied to fully-connected feedforward networks. This paper will summarize a more general Jbrmulation
of backpropagation, developed in 1974, which does more justice to the roots of the method in numerical analysis
and statistics, and also does more justice to creative approaches expressed by neural modelers in the past year or
two. It will discuss applications of backpropagation to forecasting over time (where errors have been halved by using
methods other than least squares), to optimization, to sensitivity analysis, and to brain research.

This paper will go on to derive a generalization of backpropagation to recurrent systems (which input their own
output), such as hybrids of perceptron-style networks and Grossberg/HopfieM networks. Unlike the proposal of
Rumelhart, Hinton, and Williams, this generalization does not require the storage of intermediate iterations to deal
with continuous recurrence. This generalization was applied in 1981 to a model of natural gas markets, where it
located sources of forecast uncertainty related to the use o f least squares to estimate the model parameters in the
first place.

Keywords--Backpropagation, Recurrent, Continuous time, Reinforcement learning, Energy models, Prediction,
Modelling, Cerebral cortex.

1. I N T R O D U C T I O N

Backpropagation, as formulated by Rumelhart, Hinton,
and Williams (1986) with acknowledgement of the
prior work by David Parker (1985), may well be the
most widely-used method to adapt artificial neural net-
works, for use in pattern classification. Nevertheless,
the limitations of that formulation have been severely
criticized by neuropsychologists and by classical com-
puter scientists. The neuropsychologists have argued
that simple feedforward networks cannot do justice to
the structure and power of the brain. Neuropsycholo-
gists and computer scientists have argued that complex,
interesting problems tend to require iterative proce-
dures (or networks) for their solution. Many other crit-
icisms have been raised, which merit serious attention.

Section 2 of this paper will review a different for-
mulation of backpropagation, developed in the period

The views expressed in this paper are those of the author, and do
not necessarily reflect those of any component of the Federal govern-
meat.

Requests for reprints should be sent to Paul J. Werbos, Neuroen-
gineering Program, Room 1134, NSF, 1800 G Street N.W., Wash-
ington, DC 20550.

339

between 1968 and 1974, which can overcome many of
these difficulties. This formulation deals with the gen-
eral case of nonlinear systems of equations. It lacks the
concrete, specialized appeal of Rumelhart 's discussion,
but it can apply to neural networks, econometric mod-
els, and other systems as special cases. Applications to
prediction, optimization and sensitivity analysis become
possible; as an example, this paper will discuss an ap-
plication to the sensitivity analysis of a natural gas
market model developed by the Depar tment of Energy.
Werbos (1987a) discussed at length a research strategy
for brain research and factory automation based upon
this formulation.

Section 3 of this paper will show how derivatives
may also be propagated through recurrent networks
(such as those discussed by Grossberg, 1976 and Hop-
field and Tank, 1986) without the expensive storage of
information for each iteration (as required by the ap-
proach of Rumelhart et al., 1986). Our approach will
require storage, however, to handle true external time
lags; the significance of this will be discussed, along
with ways to implement this storage and issues related
to real-time adaptation. When external time lags are
totally absent, our method is closely related to the

340 1~ .l. 14"~,rbo;

method of Almeida (1987), though slightly more gen-
eral.

Finally, Section 4 will display a practical application
of the methods given m Section 3 an analysis of the
properties of a natural gas market model, actually used
by the Depar tment of Energy several years ago. The
conclusions of this analysis were double-checked by ex-
plicit numerical perturbations of the model. This anal-
ysis provided an insight into the limitations of the
model, which are related to certain limitations of mul-
tiple regression, the method used to estimate (adapt)
the model in the first place. Multiple regression is closely
related to the generalized delta rule for network ad-
aptation; however, alternative estimation (adaptation)
rules exist which have overcome these limitations m
simulation studies and in several practical examples
(Werbos, 1974. 1983a, 1988a; Werbos &Titus. t978).
Those alternative rules are consistent with the general
framework proposed here.

2. G E N E R A L F R A M E W O R K : BACKGROUND,
T E R M I N O L O G Y , AND APPLICATIONS

Rumelhart, Hinton, and Williams (RHW)

Debates about backpropagation have been confused.
in part, by different definitions of the word. The index
to Rumelhar t et al. (1986) defines the word backprop-
agation by pointing to three pages of text which discuss
the generalized delta rule. The generalized delta rule.
in turn, is defined as a set of three steps to be applied
to feedforward networks. (R H W also discuss recurrent
networks, but that extension will not be discussed until
Section 3. in order to simplify things here.) R H W spec-
ify feedforward networks as:

opj = f(netpj) ~1)

netpj = Z WjkOrk = ~. wjkj~(net,k). ~2~

where opi is the output of unit number j for pattern
(observation) number p, where j~ is some differentiable
function, where wjk is a weight to be adapted, and where
the processing units are assumed to be ordered in a
feedforward fashion. In a feedforward network, the
summation over k in Equation (2) can run from 1 to
j - 1. in principle. Some readers have interpreted this
to mean that the network must be fully connected:
however, even in the R H W formulation, most of the
wjk could be fixed to zero, in a practical application.
so that the physical connections and the required cal-
culations can both be sparse.

The first of the three steps in the generalized delta
rule (p. 327) is a calculation for the final outputs of
the network:

6vj = (l p j - opj)f'j(netp)), (3)

where tpj is the teaching or target value for the output
of unit number j and f ' j is just the derivative of./~. This

step is explained [p. 323) by noting that bpj isjust the
derivative of error, Ez,. with respect to net,,,, defined as:

[

The second step (p. 327) is a calculation for all other
units j which output to units k:

6p, = f~(net,~) Z h

= Z 6~,~L!"1(nett, j l ~ ° J5~

This step is explained (p. 326) as a way of calculating
the derivatives of Ep with respect to all o f the netvj, in
a single pass of calculations, based on an informal ap-
peal to the chain rule for differentiation. The third step
(p. 330) is a procedure to adapt the weights of the
network:

A~4 {r/ + l} : Ot(6rjOp,) - nAw,(n) (6;

Note that 6piOp, is simply the derivative of E , with re-
spect tO wj~.

A More General View of Backpropagation

Researchers in this field someumes use the term
backpropagation to refer to the second step above, or
to all three steps, with or without variations. Again,
Rumelhar t et at. (1986, Index) appear to refer to all
three steps. We would propose that the term backprop-
agation should include any three-step or three-com-
ponent procedure for adapting a network, in which the
three steps are:
• An output evaluation component (OEC), which

evaluates how successful the ultimate outputs o f the
network are in minimizing or maximizing something.
In other words, the OEC defines what the network
is supposed to minimize or maximize. More pre-
cisely, the OEC provides the derivatives of some eval-
uation function (such as error) with respect to the
ultimate outputs of the network. Equation (3) - - t h e
OEC of the generalized delta rule--calculates the de-
rivatives of square error, the error function which is
minimized in nonlinear regression;thus, from a star-
istician's point of view, the generalized delta rule is
basically one more numerical way to implement
nonlinear regression, a well-known, well-studied sta-
tistical method. (See Brode, Werbos, & Dunn, 1975:
Dennis & Schnabel, 1983; SAS Institute, 1986; Wer-
bos, 1988a.)

• Dynamic feedback, a method fbr calculating the de-
rivatives of error or loss with respect to the inter-
mediate outputs and weights within the network.
(Werbos, 1974, 1982.) Strictly speaking, this is the
only component which actually propagates infor-
mation backwards along a network. This paper will
use the term "dynamic feedback" to refer to this

Backpropagation with a Recurrent Gas Market Model 341

component, in part because this term was used in
the original papers on this concept, and in part be-
cause the term backpropagation usually refers to the
combination of all three components.

• A convergence method or solution algorithm, a
method for responding to the derivatives (and /o r
other local information) by adapting the parameters.
This may involve a simple proportionate response
(steepest descent), or conjugate gradient methods
(which include (6) as a special case, but which pro-
vide procedures for adjusting the sensitivity constants
a and 7/), or more complex methods like those which
have worked in complex practical applications (Wer-
bos, 1983a). Surprisingly, some of the classical
methods from statistics and numerical analysis
(Dennis & Schnabel, 1983) can be applied with O(n)
storage in exact or near-exact form (Werbos, 1988b).

Origin of the General View

Background. The intuitive notion ofbackpropagation--
of adaptation and optimization based on a flow of feed-
back backwards through a neural system, specifically
related to the issue of brain functioning and artificial
intelligence--was published in Werbos (1968), albeit
in a clumsy linear version. A nonlinear version, essen-
tially equivalent to the generalized delta rule, was pro-
posed in various documents circulated in 1971 and
1972. At that time, applications to artificial neural net-
works were not considered interesting or acceptable to
much of the scientific community. Therefore, the
method was generalized to permit applications to more
conventional forecasting applications (Werbos, 1974).

Werbos (1974) also cited related work in control
theory, which also used backwards flows of information
to identify systems, albeit in a different way. The for-
mulation to be given below could have been derived as
an extension of control theory, but I found it easier
simply to prove (9) directly. Likewise, I found it much
easier to apply (9) directly to neural-like problems than
to extend and generalize the more complex and indirect
methods of control theory. This is especially true with
stochastic optimization, where the notation can oth-
erwise get quite complex. Nevertheless, a reviewer has
suggested that Athans and Kalb (1966) came surpris-
ingly close to the kind of approach presented here; the
details are beyond the scope of this paper, in part be-
cause I have never seen the book. For an easy tutorial
on my 1974 formulation of backpropagation and var-
ious alternatives, see Werbos (1988a).

The generalized formulation of 1974 began by ob-
serving that the "training signal" (t m in Equation 3) is
really just a vector tp which the network tries to repro-
duce or predict. Any set of functional relations can be
represented as a network. Likewise, the problem of
"adapting weights" in a neural network is just a special
case of the problem of estimating the parameters of a

general functional model. The use of square error and
steepest descent in estimating a model had been estab-
lished decades before; therefore, the novel feature of
backpropagation in this formulation was the use of dy-
namic feedback in combination with those two com-
ponents.

(First order) dynamic feedback was defined as a
method for calculating the derivatives of some function,
L, of the inputs and outputs of a feedforward system,
in a single pass through the system.

FeedJorward Systems. A feedforward system is defined
as follows, in the most general formulation. First, there
are m input variables, x~ through Xm, which include
all of the parameters or weights of the system, as well
as those variables which are normally thought of as
inputs to the system. (By including the weights as vari-
ables, one simplifies some of the later calculations.)
These variables form an m-component vector, X. Then
let xl through XN denote all of the variables of the sys-
tem; these variables form an N-component vector x,
of which X is essentially a subset. Let fj, for j = m + 1,
. . . . N, be the differentiable functions which corre-
spond to the functions implemented by the network
components. This means that fo r j = m + 1 N:

xj = fax, xj_~). (7)

Finally, we denote the function which we wish to min-
imize (or simply to differentiate) as:

L = L(x j x~). (8)

Note that this paper will frequently use small letters
(like x) to refer to internal inputs or functions within

a system, and capital letters (like X) to refer to the
inputs or outputs of the system as a whole; this dis-
tinction is important, because both levels of analysis
will be discussed.

The network formulation in (7) and (8) is more
general than it might appear at first. As with (1) and
(2), for example, the functions fj may form a sparse
network, in practice, which simplifies the calculations.
To make this apparent, and to make the applications
to parallel computers more explicit, I have sometimes
spelled out (7) explicitly for the special case of a mul-
tilayer network (Werbos, 1987a, Appendix); however,
this paper will try to be more general and to avoid the
additional notation required to make that example ex-
plicit.

Notice that (7) and (8) make no reference to time
t or to pattern number p. As a result, there is a choice
between two (or more) different ways of using these
equations in practice to represent a network. When
there is no connection at all between variables at dif-
ferent times or for different patterns (as in Equations
1, 2, and 4), it is possible to identify the variables of
the system at any time with the variables xi of Equations
(7) and (8). For example, the RHW system can be

342 P J. Werbos

represented in our framework by identifying our series
Xl" ' • Xs with the following R H W variables, in order:

Wjk and other inputs, neb~, net p2, • • • neb,,

where n is the number of neurons and by identifying
our L with their Ep. (Note that the variables op~ for
neurons within the system are not necessary; Equations
(2) and (4) can represent the system without referring
to them.) We can then go on to calculate the derivatives
of L with respect to the weights for each pattern indi-
vidually, as R H W do, and then add up these derivatives
across different patterns. The details of this equivalence
are discussed in Werbos (1988a, 1988b). In brief, the
R H W feedforward networks are a special case of equa-
tions 7 and 8.

When studying dynamic systems, this kind of simple
formulation is not possible. For example, if nett~ uses
nett-L2 as one of its inputs, where " t " refers to t ime
and "t - l " is the previous observation or pattern, then
a more complex use of (7) is needed. Each variable x~
in Equation (7) would then refer to a specific neuron
at a specific time; the activation level of the same neuron
at a different time would have to be treated as a different
variable, for purposes of (7). In this case, (7) would
say that each neuron is allowed to input the outputs of
earlier neurons from the same time, as well as the out-
puts of all neurons from earlier times. Sections 3 and
4 will give more examples o f this sort. In some appli-
cations at the Depar tment of Energy, we have even
worked with systems where two t ime-dimensions were
necessary (Werbos, 1988a); even there, there was no
difficulty in using dynamic feedback, because there was
a definite sequence of calculation, which determined
which variables at which points would be calculated in
which order.

The Chain Rule. First-order dynamic feedback is de-
fined as the use of the chain rule for ordered derivatives,
in order to calculate the derivatives of L with respect
to the system inputs. The chain rule for ordered deriv-
atives (proven in Werbos, 1974) may he written:

O÷ L OJ} 0+____LL = 0_L.L + , (9)
OXk OXk j~k+l OXj OX k

where the plus signs indicate ordered derivatives, and
the derivatives without plus signs refer to conventional
partial derivatives of the functions L and J~. The con-
ventional partial derivatives are calculated by differ-
entiating the functions L and Jj as they would normally
be written, as functions of their direct arguments as
listed in (7) and (8) without any substitutions. Since
the functions j~ usually depend on only a small portion
of the earlier variables, Xk, in practice, the partial de-
rivative on the far right is usually zero for most com-
binations o f j and k; therefore, the summation on the
right is usually very sparse and simple. In formal terms,
the ordered derivative of L with respect to Xk refers to

the derivative of L expressed as a-function ofx~. • • ~z.
where the dependency of L on xk+~- • -x~- has been
eliminated by substituting in f rom the equations (7)
which equate their values to the functions fk+~ • • • J~v.
In intuitive terms, the conventional partial derivative
refers to the direct causal impact o f xk on L, while the
ordered derivative refers to the total causal impact, in-
cluding direct and indirect effects, both.

Equation (9) is usually simple to apply as a recursive
relation, in practice. One begins by calculating the or-
dered derivative with respect to xN, for which the sum-
mation on the right is null. One then proceeds back-
wards to XN-~, XN-2, on down to x~. For example, to
apply (9) to the R H W system (Equations 1.2, and 4),
one would normally begin by allocating an array to
hold the ordered derivatives; "del ta(k) "' could be used
to hold the ordered derivative of L with respect to .~.
Then, for each variable Xk in the system, one would
identify which other variables (x;) that variable may
have a direct impact on; one would differentiate the
functions]~ with respect to Xk, and substitute the result
into (9), which then becomes a concrete recursion
equation for the special case at hand~

In the R H W system, for example, (5) is the special
case of (9), where "delta" is used to hold the ordered
derivatives, and where Xk is one of the internal variables
netpj; this is particularly obvious when we compare the
rightmost side of (5) with the conventional derivatives
of the rightmost side of (2). (Note that our f j here
includes the whole right side, and not just R H W ' s
function "" fk".)

Note that { 9) also eliminates the artificial distinction
between neurons whose output goes outside the system
and neurons whose output is used internally. As with
(7). there is no reason to limit oneself to fully con-
nected, rigidly structured networks: if (7) has a sparse
structure, which allows for efficient implementation on
a parallel computer or circuit, then (9) will automat-
ically have this property as well, at least i f it can add
efficiently.

Ordered derivatives are important in many other
applications besides neural nets. As a result, a host of
informal names have been developed for this concept,
as used in different applications. For example, econo-
mists speak of impact multipliers, control theorists
speak of variational derivatives, and many people speak
of time-dependent Lagrange multipliers. The use of
mathematically oriented languagemay help reducethe
kind of fragmentation which encourages workers in dit=
ferent applications to continually reinvent the wheel.

Early Applications and Development. The first actual
application ofbackpropagation wasin estimating t ime-
series models used to predict nationalism and social
communications, developed by Prof. Karl Deutsch.
Ironically, backpropa~ t ion was not used to implement
ordinary least squares (regression), which had already

Backpropagation with a Recurrent Gas Market Model 343

been tested in this application by use of conventional
software. Instead, it was used to implement more ad-
vanced statistical methods, which would have been too
costly to use without backpropagation. The results were
documented in Werbos (1974), embedded (and doc-
umented) in user-oriented software in an MIT version
of the Time-Series Processor (Brode et al., 1975), and
discussed in Werbos (1977), which emphasized the po-
tential value of the same general mathematics for fore-
casting and for brain modeling. A general survey of
applications--to neural modeling, optimization, sen-
sitivity analysis, and estimation--was presented to the
International Federation for Information Processing
(IFIP) in 1981 (Werbos, 1982), along with diagrams
illustrating both Equation 9 and several generalizations
to calculate second-order derivatives economically.
These generalizations were quite different from David
Parker's second-order backpropagation, which is es-
sentially a new alternative to steepest descent as a con-
vergence method (Parker, 1987). The primary ideas
here were widely transmitted, both in writing and oth-
erwise.

Applications of Backpropagation in the General
View: Prediction

In the delta rule, the target vector tp is a vector to
be reproduced or predicted by the network. The dis-
tinction between reproduction and prediction is essen-
tially meaningless here, since in both cases we try to
match the target vector over previous observations and
we hope that the match will still be valid in future ob-
servations. Most of the current research on backpropa-
gation--like our own empirical work--has focused on
this problem of reproduction or prediction.

Using the notation of statistics, the delta rule is trying
to address the well-known problem of estimating b so
as to improve the predictions:

~(t) = F(X(t), b), (I0)

in the special case where F happens to be represented
as a network of elementary units, where the parameters
b happen to be interpreted as a collection of weights,
and where the observations (t) may be interpreted as
patterns presented to the system. Here, X (t) is the vec-
tor of inputs for observation or time number t, and

(t) is a prediction of the target vector y (t). As discussed
after (7), we use a capital letter (e.g., F) to refer to the
vector function which describes the system as a whole;
this is different from the ~ , the functions which rep-
resent individual components of the system. In a feed-
forward system, the components of ~ (t), fi~ (t) through
Pn(t), would correspond to the last n components of
the vector x as given in (7).

The use of backpropagation in some form is basically
necessary to solve this problem. One cannot find the
value of b which best fits the historical or training data

unless one has some definition of the word "best," some
measure of the quality of fit; thus an error measure or
loss function (such as Equation 4 or the many alter-
natives used by statisticians) is more or less unavoid-
able. Admittedly, this measure might not be an explicit
part of the adaptation procedure. More importantly,
however, one cannot expect to minimize such a measure
efficiently without exploiting the derivatives of that
measure with respect to the parameters. Long experi-
ence in numerical analysis has shown the central, un-
avoidable importance of knowing the derivatives when
minimizing or maximizing a complex function of many
variables (Dennis & Schnabel, 1983). This makes it
essential to use dynamic feedbackmto calculate the
derivatives at an acceptable cost-- to adapt any complex
network F, in thegeneral case, that in turn leads to the
backpropagation strategy.

To improve the power ofbackpropagation in coping
with the prediction problem, one needs to look more
closely at each of its three components, and at the for-
mulation of the prediction problem itself. The output
evaluation component (like Equation 3) or error func-
tion (Equation 4) define what a statistician would call
the estimation method. The other two components are
simply a numerical procedure for implementing or ap-
proximating the estimation method.

Unfortunately, (10) does not do full justice to the
kinds of prediction problems which occur in many ap-
plications. For example, in econometric forecasting
(Werbos, in press), the variables to be predicted are
often predicted as functions of their own values at a
previous times. In other words, the problem is to es-
timate b in:

X(t + 1) = F(X(t), u(t), b), (I 1)

where X is a vector of observed variables to be pre-
dicted, where b is a vector of weights or parameters,
and where n is a vector of auxiliary input variables.
This kind of prediction over time is also essential when
performing optimization over time (to be discussed in
the next section). Even Grossberg's explanations of
learning require the existence of circuits which some-
how learn to produce expectations or predictions of the
near-term future (Grossberg, Levine, & Schmajuk,
1987).

Superficially, (10) and (11) may appear to be special
cases of each other. For example, we can use a super-
vised learning system, based on Equation 10, to predict
X (t + 1), simply by defining y(t) as X(t + 1) and
defining the system input vector as X (t) combined with
u(t) . Unfortunately, this approach does not lead to the
best possible forecasts over time, especially if one is
concerned with predictions over more than one period
into the future. When ordinary regression (least
squares) is used to estimate a model which predicts
variables at time t + 1 as a function of time t, then the
forecasts for several months out will tend to deteriorate,

344 k3 J. Werbo~

due to cumulative error effects. (There are tricks to
avoid this, in some kinds of econometric models, which
would not work for neural networks.) Cumulative errors
of this sort would be impossible or unavoidable if reality
fit a simple model, perfectly, and if all errors were due
to random white noise; however, this is not generally
the case (Werbos, 1983a, in press). Section 4 will dis-
cuss an example of this problem, in detail, as it arises
in a real-world forecasting model based on least squares.
More to the point, better forecasts have been obtained,
in many empirical examples and in simulation studies,
by using estimation methods which explicitly represent
the notion of forecasting over time (Werbos, 1974,
1983a, in press; Werbos & Titus, 1978). The best results
have been obtained with methods which explicitly try
to minimize error in multiperiod forecasting.

These methods can be translated into recipes for
building neural networks by adopting the 3-net archi-
tecture shown in Figure 1. In mathematical terms, Fig-
ure 1 represents a 3-equation model used to predict
X(t):

R(t + 1) = FI(R(t) , bl) (12a)

R (t + 1) = F2(l~(t + l) , X (t + 1), b2) 112b)

X(t + 1) -- F3(R(t + 1), b3). (12c)

where all three functions are implemented as feedfor-
ward networks and where some additional arguments
would be allowable (Werbos, 1987b). The vector func-
tions F1 and F3 both represent networks to predict
something, while F2 calculates what FI tries to predict:
nevertheless, one can adapt all of the weights together--
b l , b2, and b3 - -by trying to minimize the sum of
squared error across all components of X and all com-
ponents of R, across time. Dynamic feedback can cal-
culate the derivatives needed in this minimization. See
Werbos (1988b) for the details of how to implement
this, using RHW-like networks.

This 3-net arrangement has close connections with
statistical methods associated with Box and Jenkins and
Kalman filtering; for example, in the simplest appli-
cations of Equations (12), the R vectors would be ill-

I

I x (t) ~- "1

FIGURE 1. Three-net architecture.

tered versions of the X variables. Werbos (1987b) elab-
orates on these connections, and explains how this kind
of procedure can lead to more accurate forecasts over
time than a direct use of (10) would; furthermore, it
explains why it is usually important to minimize a
weighted sum of squared errors, and to give different
weights to different variables. For example, when the
prediction networks are used as part of a larger opti-
mization system (to be described), there will auto-
matically be information available about the derivative
of long-term utility with respect to each variable Ri and
X,; if variables are weighted according to the variance
of these derivatives (plus the variance of error deriva-
tives as well), then the system will give greatest weight
to stable, persistent variables--which should lead to
better multiperiod forecasting. Note also that the vari-
ables R,, in Equations (12a) and (12bL depend on their
own past values, in such a way that the system may
"remember" a few periods back; Equation (11) does
not provide that capability.

Many researchers have criticized the use of back-
propagation even with (t 0), the problem of supervised
learning. Some have recommended the use ofcontent-
addressable memory instead. Content-addressable
memory systems may converge faster than backpropa-
gation, but this would be of little interest if they were
converging to the wrong answers (i.e.. inconsistent es-
timators of the weights). Under certain conditions.
however (Werbos. t987b, 1987c). we have found that
their estimates may be justified, statistically, if we ac-
count tbr the role of prior probabilities (discussed in
Werbos. in press). When these conditions can occur.
the ideal adaptation scheme would be a synthesis of
least squares and content-addressable memory. A syn-
thesis of this sort could be used instead of simple least
squares in adapting (12a) and (12c) in the 3-net ar-
chitecture (though (12b) is a different matter).

In general, these kinds of statistical methods offer a
hope of greater robustness, statistical efficiency, and
generalizability, based not on speculation but on de-
cades of experience with a huge variety of applications.
All of these hopes involve the ac~uracy of the predictions
which result when the network is used to predict new
situation~, not in the training set. This still leaves open
the questions of how to propagate the required deriv-
atives through a network, and of how to choose a con-
vergence method.

The choice of convergence method (like Equation
6) should not be confused with the choice of estimaUon
method. The convergence method basically determines
the number of iterations or cost of minimizing error
over the training set. Admittedly, there are some error
functions which place a greater stress on the conver-
gence method, because they are harder to minimize.
These are mainly "st iff" error functions, whichcontain
sharp hills and valleys when graphed as a function of
the parameters b. Smooth. fuzzy error functions are

Backpropagation with a Recurrent Gas Market Model 345

easier to minimize. Unfortunately, the error or fuzziness
in estimating parameters is directly related to the fuz-
ziness of the error function; therefore, those error mea-
sures which pinpoint the weights most accurately are
precisely those error measures which are hardest to
minimize. In summary, one should not expect superior
estimation methods (error functions) to reduce the
number of iterations required to analyze a fixed training
set with a fixed convergence method; one might even
expect the opposite. To reduce the number of iterations,
we should try instead to develop more powerful con-
vergence methods, which are capable of supporting
more sophisticated estimation methods. Fortunately,
there are many convergence procedures which have
worked on complex practical problems which steepest
descent (or its equivalents) could not handle (Dennis
& Schnabel, 1983; Werbos, 1983b, 1988b).

When there is no fixed training set (as in organic
intelligence, where experience accumulates steadily and
old events cannot be truly relived), there are additional
complexities; however, we cannot expect to understand
these complexities until we understand the simpler sit-
uation of adaptation with fixed training sets.

Applications of Backpropagation In the General
View: Optimization Over Time

There are many practical problems where a "target
vector" would not be available. For example, in ro-
botics, we may know what a robot is supposed to ac-
complish, but we may not know a priori what its sched-
ule of movements should be to accomplish its task at
minimum cost. Instead of a target vector, we may have
a notion of what we want the system to accomplish
over time, a notion which implies some kind of success
measure or utility function to be maximized over time.

If we cannot devise such a measure, then we cannot
discriminate between better performance and worse
performance, and we cannot say whether our design
was successful or not even after the fact. Also, there is
no assumption here that the system must have access
to an explicit representation of the utility measure as
a function (though such information can be exploited,
if available).

This problem of utility maximization over time may
also be a useful representation of adaptation problems
faced by organic systems (Werbos, 1986, 1987a). Hin-
ton (1987) has referred to this problem as the rein-
forcement learning paradigm. Unlike the paradigm of
totally unsupervised learning, it provides an explicit
basis for Unconditioned Stimuli or primary reinforce-
ment, which ensures that a system will not be essentially
indifferent to biological drives and social feedback.

Werbos (1987a) has shown how this optimization
problem can be solved (approximately) by tying to-
gether three distinct networks, each to be adapted by
backpropagation but each with a different output eval-
uation component. The basic idea is illustrated in Fig-
ure 2 (although there are further complexities required
to extend the idea to systems as complex as the human
brain).

The middle box in Figure 2 basically contains the
entire system shown in Figure 1. (Figure 2, like Figure
1, is taken from previous papers using slightly different
notation.)

The upper box-- the "strategic assessment" network
or " J network"--outputs something like an evaluation
of how well the system is doing, in making progress
towards its goals. More precisely, this network would
represent an approximation to the " J " function for the
optimization problem. The J function comes from dy-
namic programming, and is defined as follows: the
strategy of maximizing J in the short-term (i.e., picking
actions u(t) so as to maximize J (t + 1)) is equivalent
to maximizing the utility function U in the long term
(maximizing expected U(t') over all future times t ').
Intuitively, the J function corresponds to the notion of
conditioned reinforcement, to the static position eval-
uators sought in game-playing artificial intelligence, to
the measures of net present value used by economists,
and to other similar ideas (Werbos, 1986).

As with the problem of prediction; there are several
different methods which could be used to adapt the J
network. One of them--heurist ic dynamic program-
ming (HDP) (Werbos, 1977, 1987a)--is similar to
conventional backpropagation, with the network
adapted to make its output variable, J (R(t)) , do a
good job of predicting U(t) + J (R (t + 1) - U), where

basic, long-term j Strategic
goals (U) -I Assessment

current
informatior

..t l R(t)

Analysis of
Cause and Effect,

X(t) Dynamic Modeling

R(t)

U Tactical Operations, [u(t)
~[Optimization I

strategic
goals (J)

simulated reality
I~(t+l)=f(R(t),u(t),noise)

to maximize J(f(..u(t).))~
v

FIGURE 2. Three core components of an intelligent system (J, f, u).

346 P J l]2,rbo5

U is the utility measure and 0 is a constant used to
prevent drift in the range of the function. More real-
istically, U(t) may be physically represented as a
weighted sum U~x~(t), such that the final output of the
Jne twork can be a set of components, Ji, each adapted
to predict the corresponding Uixi(t) + J~(t + 1) U,.
Another m e t h o d ~ d u a l heuristic p rog ramming- - is
slightly more sophisticated, but can still be imple-
mented by use of first-order backpropagation. A third
method~global ized dual heuristic programming
(G D H P) ~ f u l I y exploits the cause-and-effect infor-
mation embedded in the middle box, but requires sec-
ond-order dynamic feedback for its implementation
(Werbos, 1987a, 1979, 1982, 1988b); the details are
too complex to present here. The required form of sec-
ond-order dynamic feedback, like first order dynamic
feedback, calculates all the required information at a
cost which is only proportional to the cost of one pass
through the original network.

Using the HDP method, at least, il is possible to
forego the middle box and use experience itself(without
any simulations) to adapt the J network. The resulting
J network would be quite similar to the adaptive po-
sition evaluator used in Samuels' checker playing pro-
gram, or to the adaptive critic used by Barto, Sutton,
and Anderson (1983). The work of those authors proves
that adaptive optimization is already a practical (or
superior) alternative to conventional methods. Sutton
has also noted the need for an adaptive model to predict
the environment when dealing with more complex
problems, like those of robotics in realistic factories.
Optimization through backpropagation could also be
implemented in more conventional software for use in
policy analysis, business decision-making, and the like
(Werbos. 1986).

The network in the bot tom box would simply de-
termine the actions, u (t). It would use the derivatives
of J (propagated back through the other networks) as
its output evaluation component.

3. PROPAGATING DERIVATIVES IN
RECURRENT SYSTEMS

Overview

This section will derive a procedure for calculating
the derivatives of any evaluation function L with respect
to the weights and intermediate variables in a recurrent
network. The function L could represent prediction
error, or a J function (as defined above), or simply a
function we are interested in studying for its own sake.
It can be any differentiable function of the network
variables (as in Equation 9).

The purpose of this section is simply to generalize
the dynamic feedback procedure, for use with networks
more general than (7) . This generalization could be
used with some of the complex architectures from Sec-

tion 2, but we will deliberately avoid limiting ourselves
to those special cases (just as we did in formulating
equation 9 itself). In order to visualize this generaliza-
tion. it may be easier to think in terms of simple su-
pervised learning problems (as in Equation 10) where
the function F can be represented as a recurrent net--
work (not a feedforward network). In other words, this
generalization allows one to adapt networks just like
(1) and (2), except that all neurons are allowed to input
the results of all other neurons, without regard to which
neuron is earlier and which neuron is later. As the critics
of backpropagation have pointed out. a single layer
network of this kind can represent very complex al.
gonthms which cannot be represented in simple feed-
forward networks: for example, it could learn to rep-
resent the specific, iterative calculations which are fhn-
damental to applications work in adaptive object
recognition and speech recognition.

Rumelhart et al. (1986) define recurrent networks
as networks in which a unit can take input from units
downstream from them. though with a t ime delay. In
describing their basic framework (Rumelhar t et al..
1986. Chap. 2), they stress that the time delay is in-
tended to be an approximation to a continuous-time
system, the kind of system which Grossberg (19761 and
Hopfield and Tank (19861 have written about. They
assume that a pattern (p) is presented to the system.
and that the experimenter can wait until the state of
the network settles down in response to that pattern.
Their general framework allows for some relation be-
tween a pattern p and earlier patterns, but they admit
that the existing work (like their Chap. 81 does not
really address that possibility.

Figure 3 illustrates the R H W approach to back-
propagation in recurrent networks. For each pattern.
the vector x is allowed to "settle down" for S cycles of
the iterative procedure used to approximate a self-con-
sistent state of the network. Backpropagation (Equation
9. in effect) is applied in its usual form by treating
variable values in later cycles as distinct variables,
downstream from earlier versions of the same variable.
(For example, xi~p, s + 11 is treated as a distinct vari-
able, different from and later than xAp , s).) To calculate
derivatives all the way back to the start (x (p , 0)) , ii is
necessary to work back through all the intermediate
values: that, in turn. requires that the intermediate val-
ues be stored. For further details. ~ e Rumelhar t et al.
(1986).

For our purposes, it is extremely important to allow
for the interaction between different patterns p, because
these patterns may refer to different states in the evo-
lution of the external environment across time. 1 will
use the letter " t " (instead of "p"~ to refer to t ime in
the external environment, not in the system per se.
Some critics have argued that the brain cannot possibly
track discrete time intervals or distinct patterns the way
a computer might; however, Purpura (in E O. Schmitt.

Backpropagation with a Recurrent Gas Market Model 347

x (p+l,S)

i "
X(p+l) -'I x (p+l~O)

j4-~y (p-l)

x(p)

x (p , S)
• •
! •

I x(p,l /

"J -i x (p,O)

FIGURE 3. RHW approach to recurrent networks.

1970, 197 l) has observed discrete clock pulses, of the
required sort, going from the nonspecific thalamus to
the giant pyramid cells of the cerebral cortex. Foote
and Morrison (1987) have observed similar pulses from
subthalamic centers.

In our framework (illustrated in Figure 4), there are
actually two kinds of recurrence to be considered:
• Time lags, in which the present system output is a

function of earlier signals from the previous external

time period (t - I).
• Grossberg/Hopfield recurrence, in which there is an

immediate response to other units.
Our approach still requires the storage of a complete
database, including at least X(t) and y(t - 1) for all
external time intervals (patterns) t. Such a database is
normally built up anyway in standard statistical analysis
programs, and we have handled this kind of recurrence
in our earliest work (Werbos, 1974). Such a database
is not built up in true real-time systems like the brain,
to be discussed at the end of this section.

For the second kind of recurrence, we will calculate
the required derivatives directly, without using knowl-

edge of intermediate approximations; this is the main
difference between the current paper and earlier forms
of backpropagation. As in conventional backpropaga-
tion through feedforward networks, the cost in time
and the cost in storage are both about the same as the
costs of running the network in the forwards direction.
Two versions of this method will be presented--a ver-
sion aimed at aggregate-level calculations (see Equa-
tions 30, and their application in Section 4), and a
version aimed at continuous-time neural networks
(Equations 31 and 32, and auxiliary equations).

When the second kind of recurrence is present, but
not the first, the need for storing earlier observations
disappears. In that special case, if the elementary func-
tions are all (nonhidden) model neurons, our method
reduces to something nearly equivalent to the work of
Almeida (1987). (Unfortunately, I have yet to obtain
Pineda (1987), which may also be related.)

This section will begin with a review of our earlier
approach, used when only the first kind of recurrence
was present. Then we will propose a method for dealing
with Grossberg/Hopfield recurrence. This method will

X(t)

X(t-1)

J
"1

+
J x(t-
-i

~I' I y(t)

x(t) ?

• t ~l- I~ L(t-1)

l y(t-1)

,. 1) ?

FIGURE 4. Proposed approach to recurrent networks.

348 /~ J. Werho~

be expressed in general form, allowing for both kinds
of recurrence. There will actually be two variants of
the method, one where the recurrence is "solved for'"
by an equation-solving system, and one where contin-
uous-time differential equations are assumed to ac-
complish the same result.

The methods discussed here were derived as a gen-
eralization of dynamic feedback, though the aggregate
form could have been derived as a generalization of the
"adjoint" method used by Alsmiller et al. (1981), which
I was aware of at the time. Section 4 will demonstrate
an application of the aggregate form of this method.

Review of Classical, External Time Lags

This subsection will present a formulation of dy-
namic feedback which is technically a special case of
(9). However, new notation will be introduced in order
to make the time dependencies in Figure 4 more ex-
plicit.

Let us assume the existence of a network which im-
plements a functional relationship F:

y (t) = F (y (t - 1) . x (t) , t) , t = l t o t ~131

where y has n components and X has m components.
The function F is still assumed to depend on the pa-
rameters b, but there is no need to display that depen-
dence explicitly here. We no longer need to put a caret
over the output vector, y, because the true target vectors
will be left implicit; in fact, the discussion here will
assume an arbitrary differentiable function L(y(t),t),
which may or may not have anything to do with forecast
error or matching error. Our goal will be to calculate
the derivatives of L', defined as the sum of L across all
times t. (Actually, the calculations will work even if we
only know the derivatives of the function, rather than
the function itself.)

The vector y in (13) would typically include both
the external outputs of the network and a set of auxiliary
variables which serve as a kind of memory from one
time period to the next. In some applications, such as
economic forecasting, the auxiliary variables will
sometimes be filtered representations of unknown, ex-
ternal variables. In applications like real-time control
systems, where the external time lag may be less than
a second, the auxiliary variables may represent a kind
of reverberating short-term memory as described by
Hebb (1949). In some applications, there is no need
for auxiliary variables at all.

In order to represent F as a network, we will assume

that:

x j (t) = J j (X l u) x j ~ - t (t)) , (t 4)

where the x~(t) are components of a vector x(t) which
represents the total set of variables available as inputs
or outputs to the network. Equation (14) looks like
(7), superficially, but the references to a common time.

t, make this a more specialized formulation: Equation
7 allowed for any variable x j (t) to receive inputs from
any variables at earlier times.

In parallel with (7), we will again assume that the
external inputs are in the front of this network:

. \ , (t) = X , (t) ~ = ~ t~ ; r (t 5)

but we will leave the parameters b implicit for now. We
will also assume that the components of y (t - 1) come
next in the x vector, followed by h hidden units, such
that:

x , , , 4 , (t) = 3 ' i (/ t) ~ : ' ~ ~ o n . ~16)

and j in (1 I) is assumed to run from m + n -r 1 to m
~- n ~- h - n. so that:

.Vi(l) = x,,,+.+/,+,{ l) ~ t 7

Strictly speaking, if we assume that it = 0, we would
arrive at a more general-looking structure, more like
(7) and (9); however, this formulation gives us the free-
dom to set h greater than zero. which will be useful
when dealing with continuous,time systems.

Next, in order to calculate all the derivatives of L'.
we have a choice of two approaches. Both approaches
force us to think of x i (t) across all t and all i as the
system of variables, with variables later in time always
having a higher implied index (when we apply Equation
9) in this greater system. (See Werbos. 1974, 1988a for
some simple examples.)

In the first approach-- the aggregate approach--we
treat (13) as the equation of the system, and treat the
components of the vector F as the elementary functions.
In this case. the application of (9) yields:

OL "
Zk(t) = ~ (t) + ~ Zj(t -~ t)F'~(t ~ 1). (18)

where Z k (t) will contain the ordered derivative of L '
with respect to Yk (t), where the equation is to be eval-
uated first for t = T (for all k), then T - 1, and so on.
where the rightmost (summation) term is to be treated
as zero for t + T. and where F~k is the derivative of Fj
(the j th component of F) with respect to Yk- The pa-
rameter derivatives--what we really need in most ap-
pl icat ions-also follow directly from (9):

OL ~_ " OFAt + 1)
2~ Ob~ ~ Z i (t + 1) Oh, (19)
z - I i=1

Superficially, (18) may appear as complex as (9) itself
(since the sum over the right-hand side includes the
ordered derivatives, Z j (t + 1), for all subsequent vari-
ables in the system at a/l times); however, there are
many applications (like Section 4) where eaehparam-
eter b~ will appear in only one or a few o f the functions
Fj, so that the summation over j may be very sparse.
(Note that we still assume that F depends on the pa-
rameters b, as discussed above, even though this de-

Backpropagation with a Recurrent Gas Market Model

pendency has been implicit until now.) The summation
over t ime can be carried out efficiently as a running
sum, backwards in time, in parallel with (18); we will
show how this can be done in (35c), of Section 4, after
we have derived a version of this equation for use with
recurrent systems. This method of calculating deriva-
tives is very similar to earlier methods from control
theory.

In the second approach (which is far more efficient
for true networks), we treat (14) through (17) as the
equations of the system, and we treat the ~ in these
equations as the elementary functions. This approach
(used in Werbos, 1974) is essentially the same as the
R H W approach for recurrent networks, except that we
feed the derivatives back to handle external time inter-
vals instead of internal cycle times in iteration.

Applying (9) to the set of all variables over space
and time yields the following set of equations to be
evaluated as a set, first for all variables at t = T, then
f o r t = T - 1 , a n d s o o n :

zm+~+h+~ (t)

OL ,,+~+h+n
= ay--~ It) + Z zAt) - -

j~m+n+h+k+ I

ofj
OXm+n+h+k

(t) + Zm+k(t + 1),

k = nto 1 (20)

where the rightmost term is assumed zero for t = T,
and

rn+n+h+n

zk(t)= ~ zj(t) (t) k = m + n + h t o 1. (21)
j=k+l

Here the variables zk(t) refer to the ordered derivative
of L ' (the sum of L over time) with respect to xk(t) .
AS with (9), these equations can be implemented ef-
ficiently on a parallel computer to the extent that the
original system (Equation 11) could be. In deriving
(20) from (9), I am accounting for the fact that yk(t)
can have a direct causal effect (in our assumed network)
only on some of the later var iab les - -L itself (which
yields the first term), y j (t) variables for J greater than
k (generating the second term), and Xm+k (t + 1) (which
by definition equals Yk (t) , so that the conventional par-
tial derivative of Xm+k(t + 1) with respect to yk(t) is
just 1). Likewise, (2 i) has only one term because these
components of x(t) can only have a direct effect on
later components of x(t) .

Finally, the derivatives with respect to parameters
or weights follow directly from (9), and may again be
read off as running sums:

OL' r h+, Ofj
Ob----~i = ~" E zj(t) -~i (t) (22)

/=1 d=i+I

The summations in (20) through (22) are generally
very trivial and sparse, so long as the functions ~ only
have a few inputs each.

These equations can be implemented most quickly
if a// components of x(t) have been stored for all t;

349

however, the time cost is increased by only a fixed per-
centage (circa one-third?) if only the lower-order com-
ponents are stored and the others regenerated at each
time t while going backwards. (At most, Xl through
Xm+n are needed, but less will be needed if some com-
ponents of y (t - 1) are for external use only; to exploit
this, it would help to locate such components in a block
with higher index numbers in the vector y.)

Networks Containing Both Types of Recurrence

Equation (13) may be generalized still further as:

F (y (t) , y (t - l), X(t), t) = 0. t = l t o T (23)

where F has the same dimensionality as y. As before,
the parameters h are still arguments of F, but are left
implicit. A system of this sort can yield forecasts only
if we have some method available to solve these equa-
tions for y(t) when we are given values for y(t - l)
and for X(t) and b. In econometric forecasting, this
system of equations (one equation for each component
of F) may be typed into a software package such as
Troll (MIT, 1980) or SAS (1986), which then generates
the forecasts. In neural nets, (23) may result from a
hybrid continuous/discrete system such as:

y,(t) = F,(y(t) , y(t - 1), X(t). l), (24)

where we count on the mechanisms described by Hop-
field and Tank (1986) to move y(t) quickly to a solution
which fits (23). (Hopfield's mechanism works only for
symmetric networks, but- -af ter establishing definitions
in Equations 2 6 - - I will cite an older, more general cri-
terion, which is useful here but often difficult to apply.)
In neurological terms, (24) would reflect the idea that
some cells have a totally continuous-time response while
others are partly controlled by some kind of clock pulse.

Before we can calculate the ordered derivatives of
L', using either (18) or (9) directly, we need to calculate
the direct causal impact of changing y(t - 1) on y(t) ,
when holding b constant; in other words, we need to
know what corresponds to the matrix F~ in this situ-
ation. To calculate this, we may begin by taking the
total differential of (23), which yields:

G(t)dy(t) + H(t)dy (t - 1) = 0 (25)

where

OFi(y(t), y(t - 1), X(t), t)
Gij(t) -- (26a)

Oyj(t)

OF,(y(t), y(t - 1), X(t), t)
Ho(t) = (26b)

a y j (t - i)

Likewise, to use (19), we will need to calculate the
causal effect on y(t) of changing b while holding y(t
- 1) constant; this will be based on an equation like
(25) but with H (t) d y (t - 1) replaced by J (t) d b , where
we define:

350 t~ .1 Werhos

OF~(y(t), y(t - 1), X(t), t)
Jjj(t) = (26c)

Ob~

Note that the matrix G will normally be nonsingular
if (as we must assume) the original system in (23) can
be solved for over a range of different values of y(t
- 1). In fact, for continuous-time systems, (24) can
only converge if the eigenvalues of G all have negative
(nonzero) real parts.

Equation (25) leads to:

dy(t) = - G - t (t) H (t) d y (t - 1). (27)

In formal terms, this is just a linear dynamic system
(albeit in infinitesimal quantities), which can be treated
as a special case o f (13) . In fact, if we had taken the
total differential of (13), we would have arrived at a
linearized dynamic equation exactly like (27), except
that the matrix Fjk used in (18) would have replaced
- G - 1H. Therefore, in this special case, F~k of (18) cor-
responds to the j k component of - (G - t H) . By sim-
ilar reasoning, the rightmost term of (19) corresponds
with - (G - ~ J) . With these two substitutions into (18)
and (19), and minor changes to express the results as
vector equations, we arrive at:

Z(t) = V y L (t) - Hr(t + I)(GT(t + l)) - !Z(t + 1) (28a)

VbL ' = ~ --JT(t + I)(GT(t + 1))-~Z(t + 1), (28b)
t

where V r represents the vector of derivatives with re-
spect to the components of y (t) , where the recursion
is from t = Tbackwards again, and where the rightmost
term in (28a) is treated as zero for t = T.

As a practical mat te r - -e i ther in neuron networks or
econometric m o d e l s ~ w e do not have the inverse
(G T(t)) -~ available. Therefore, (28) cannot be used
directly as a recursion rule to calculate the derivatives.
However, we can overcome this problem simply by de-
fining an auxiliary vector w (t):

w(t) = -GT(t) - IZ (t). (29)

When we solve for Z (t) in this equation, and substitute
the resulting expression for Z (t) into Equations (28)
(while uniformly shifting back the t ime index in Equa-
tions 28), we arrive at the following equations which
can be used to calculate the derivatives (i f we invoke
them in backwards time):

Z (t) = -GT(t)w(t) (30a)

Z(t - 1) = VyL(t - 1) + HT(t)w(t) (30b)

~TbL'= ~ JT(t)w(t). (30c)
t

Equation (30a) still must be solved for w; in other
words, Z (t) is the input to the required calculation and
w(t) is the output. However, this can be done by the
same mechanism used to solve (23) in the first place,
This leads to two versions of the method, depending
on the original solution method.

With econometric models, or other systems solved
on a computer by an equation-solving package, the
procedure is very straightforward. One can simply write
down Equations (30) explicitly, and insert them into
the same equation-solving package. Section 4 will pro-
vide an example of how one can do this. for a moder-
ately large model. With fully recurrem nets, unlike (18)
and (19), the aggregate formulation can be just as ef-
ficient as the network formulation, ! /we take care to
break down the equations of the model into elementary
relationships (whose sparsity will be accounted for in
a good equation-solving package); in other words, we
can expand the vector y to include the intermediate
variables, and to enforce the sparsity of the matrices
G. H. and J . In this manner, a singe-layer recurrent
network can represent anything that a multilayer feed-
forward network can. (Strictly speaking, however, we
did break down a few of the longer model equations in
our application, as will be discussed.) Notice that (30b~
and (30c) are really just a conventional derivative cal-
culation, as in conventional backpropagation (Equation
18), using w in place o f Z (t -~ I).

With true continuous-time neural networks, based
on (24), we need to formulate a network representation.
translate (30b) and (30c) into a network version, and
then use a continuous-time procedure to solve for the
vector w. To define the network itself, we may continue
to use (14) through (17) with the proviso that those
functions f k (t) which represent components of the
vector y (t) may also include a dependency on any other
component of the vector y (t), regardless of w hose index
is the greatest.

To translate Equations (30) into a network version.
we begin by finding a continuous-time version of (30a)
which, at any t ime t, is the first equation to be invoked
when calculating derivatives. We cannot deduce a con-
tmuous-t ime version from (30a), but we can deduce
that the following equation yields a solution for w which
is equivalent to that of (30a):

n

~,~t) = z (t - 1)z- ~ °.J~'~'~+h+J(t)wj(t) ¢31~

This equation reaches equilibrium when the time-de-
rivative on the left is zero, which requires that the right-
hand side be zero. However, the rightmost (summation)
term in this equation is really just G rw, because the
derivatives in that term correspond to our original def-
inition of G applied to this case; therefore, the right-
hand side of (31) will equal zero only when (30a) is
satisfied. We already know that the eigenvatues of G
must all have negative real parts, in order for (24) to
converge in the first place; therefore, we may be sure
that (31) - -which is linear in the feedback variables
will also converge.

Next, we can translate (30b) into a network version
quite easily if we exploit our understanding of causal
flows. We may begin by replacing (23) by:

Backpropagation with a Recurrent Gas Market Model

OL
zm+,.h+k(t) = wk(t) + ~Yk (1), k = 1 to n. (32)

Strictly speaking, this does not match (30b) exactly.
The L term matches, but the rightmost term in (30b)
would be zero in this case, and the wk(t) term requires
explanation. The point is, if we go on to use (21) and
(22) as they stand, after having invoked (32), we will
get the correct ordered derivatives for the inputs, be-
cause (30b) and (30c) both require that we add in
feedback from w. In fact, (30b) and (30c) do not show
feedback from the L-derivative through H T t o the lower-
order derivatives; however, this was due to the exclusion
of indirect impacts at time t in the aggregate version
of the net; Equations (20) through (22) should make
it clear that we do want to account for such effects
when the network specification permits them.

In summary, our continuous-time procedure would
go backwards in time, t, to calculate the derivatives.
At each time t, it would first invoke (31) through to
equilibrium, and then invoke (32), (21), and (22), in
that order, going backwards from later variables to ear-
lier variables. A hybrid approach would continue to
use an equation-solver to solve (30), and then proceed
to (32), (21), and (22).

Strictly speaking, we can generalize this arrangement
still further by allowing hidden units as well to depend
on components of the vector y(t) . In order to imple-
ment (30a), we then need to allocate another vector z'
of length h, to establish the convention that Z'h.k(t)
refers to Wk(t), to add the equation:

h+ n O fro+n+ j
z'k(t) = ~ z'j(t) (t), (33)

)= 1 0Xm+.+k

and to add the following term to the right-hand side of
(31):

dJL+,v z'j(t). (34)
Oyk(t)

This generalization will not be considered further, be-
cause its value is questionable in neural applications;
however, it is necessary to use this generalization, in
principle, to describe what we did in our application
in Section 4 (when "hidden variables" were defined in
order to break up a few big equations).

In both versions of the method--equation-based and
continuous--the difficulty of solving for w depends on
the eigenvalues and sparsity of the matrix G; since this
is also true for the forwards version of the system
(Equations 23 or 24), but the forwards version is non-
linear, the calculation of w(t) should never be more
expensive than the calculation of y(t) in the forwards
system. Likewise, the cost of running (3 I), (21), and
(23) should be comparable to the usual costs of running
conventional backpropagation through one iteration.
The storage costs (aside from the need to store one
additional vector, w) are the same as those of back-

351

propagation in a network without the continuous-time
recurrence. In the case where y(t - l) is not actually
used in (23) or (24), so that continuous-time recur-
rence is the only form of recurrence, there is no need
to store any information at all from earlier times t.

Issues Related to Real-Time Adaptation

Two different adaptation strategies are now used with
backpropagation, when adapting artificial neural net-
works. Both strategies involve iterating through the data
base or training set many times, until the estimated
values of the weights settle down or the level of error
is acceptably small.

Hinton (1987) calls one of these strategies "batch
learning." In batch learning, each iteration begins with
a calculation of the derivatives of error with respect to
the weights, summed up over all patterns exactly as
indicated in (19). The weights are then adapted in pro-
portion to these derivatives (or by use of more sophis-
ticated methods using the derivatives). Then a new it-
eration begins. Statisticians almost always use batch
learning, as I have myself when using three-net type
architectures. The best convergence rates I have seen
so far with artificial neural networks have involved
the use of batch learning and sophisticated numer-
ical methods, even when an O (n) storage constraint
is imposed and the higher cost per iteration is ac-
counted for.

The other strategy I usually call pattern learning. In
pattern learning, one does not wait to calculate the en-
tire sum in (19) before adapting the weights. One cal-
culates the component of (19) for pattern number t,
adapts the weights immediately, and then moves on to
the next pattern. This kind of approach can be used
with continuous-time or simultaneous-time recurrent
networks, exactly as it can with feedforward networks.
When external time-lags are present, however, pattern
learning leads to an inconsistency between the values
of y (t) currently available and those implied across all
time by the new set of weights, after the weights are
adapted for a given observation; as a result, big learning
rates could lead to a failure to converge in some cases.
However, there are similar problems which can lead to
divergence even when pattern learning is used to adapt
feedforward networks. (With external time-lags, the
problem might be reduced by adapting weights only
during the backwards pass, i.e., backwards through the
set of patterns.) Because of the current need for small
learning rates, convergence times have been very long
with pattern learning, even with feedforward networks;
however, this merely underlines the need for further
research, to adapt the methods of numerical analysis
and to combine the power of backpropagation and
content-addressable memory (Werbos, 1988b).

Natural systems, like the human brain, do not use

352 t" J. Werbos

batch learning or pattern learning. Instead, they use
real-time adaptation, in which each pattern is available
only once, and then lost (except for its impact on the
weights and on short-term memory) . The patterns are
experienced in forwards time only. For feedforward
networks, this is really the same as pattern learning,
except that only one pass through the database is al-
lowed. The same situation applies to networks with si-
multaneous/continuous recurrence only. However.
when external time-lags are present, our recurrence
formulas simply cannot be applied exactly in real-time
adaptation, because of the lack of a database to go back
through. A similar problem would apply to continuous-
time systems which implement a similar recurrent,
short-term memory and which therefore violate the
conditions on G given above. (This violation follows
from the fact that systems which obey our conditions
allow one to solve for the equilibrium system state as
a function of present inputs only.) In either case, true
real-time adaptation would require the use of some sort
of approximation.

The easiest and least accurate approximations would
simply cut off feedback to earlier than one or two ob-
servations into the past. The accuracy of such approx-
imations may depend on the loss functions actually
used, in a complex way. Far better, in theory, is to treat
the determination of Yi(t) as a long-term optimization
problem, as if y (t) were a vector of actions (like u(t)
in Figure 2) chosen to as to minimize the sum of pre-
diction errors over present and future time. To apply
the optimization methods mentioned in Section 2, note
that prediction error is normally represented as a sum
of distinct components (i.e., errors on individual vari-
ables). Also note that there is no need for an additional
predictive model; the equations of the existing network
specify exactly how y(t) affects y(t + 1), and so on.
Implementing the optimization methods of Section 2,
we would create something like an estimate Ji which
would serve as a direct, local source of feedback for
each component yi of the y vector. The details of this
possibility are beyond the scope of the present paper;
however, since the action variables, the dynamics of the
system, and the utility measures have all been specified,
it should be straightforward in principle to work out
these details. Furthermore, since these optimization
methods all impose costs on the order of O(N) - - l i ke
backpropagation itself--this should be a workable ap-
proach.

This approach should not be confused, again, with
the use of Figure 2 to optimize overt actions. This ap-
proach could be used with any recurrent net, emerging
from the architecture of Figure 1 or from other archi-
tectures. When this approach is used to help adapt the
nets shown in Figures 1 and 2, then the J network used
to give feedback to the y variables would be quite dis-
tinct from the J network used to adapt overt actions,

4. DESCRIPTION OF T H E APPLICKFION

Background and Goals

The work reported here was performed in 1982 for
the Energy Information Administration (EIA), prior
to the construction of a new natural gas supply model.
It has never been published, since the results were
mainly for internal use. To our knowledge, this was the
first successful, operational test of Equations 30 in cal-
culating the derivatives of a fully recurrent system.

The purpose of this project was to better understand
the properties of EIA's previous model of natural gas
markets, the Natural Gas Market Model (NGMM),
which had been used in a major study of natural gas
deregulation (McNicol, O'Neill, & Dickens, 1981). The
first stage of this project was simply to penetrate the
code of the model, and convert 1500 lines of FOR-
TRAN into an explicit, equivalent 73-equation system
in Troll. corresponding exactly to a 73-component vec-
tor F in (7). A concise, consolidated description of the
model was then published (Werbos. 1981). The model
was then updated to an 83-equation system to reflect
more recent information on natural gas availability by
regulatory category (O'Neill & Dickens, 1981) and
more recent demand forecasts (EIA, 1982).

The major goal of this project was to evaluate what
really drove the forecasts of the model. The model was
a highly interactive system, dependent on dozens of
uncertain parameters and initial values. To vary all of
these parameters and all of the variables of the model,
in all years, would have required hundreds of runs of
the model. It was easier and more accurate to create
an "'adjoint model"--replicating the feedback calcu-
lations implied by Equations (30) which would yield
the derivatives of a selected model result L with respect
to al l parameters and all variables in all years in only
one run. In other words, dynamic feedback was used
here simply to calculate derivatives, which were of in-
terest in their own right as a diagnostic tool in evaluating
the model. In principle, this kind of sensitivity analysis
could also be used to locate policy levers which are
especially important in changing future outcomes.

Implementation of Dynamic Feedback

The analysis here was carried out in Troll (MIT,
1980), a standard software package developed by the
MIT Center for Computational Economics and Man-
agement Science. An "adjoint model" was created in
Troll, representing exactly the calculations implied by
Equations 30.

Troll, like most dynamic modeling packages, only
allows calculations forwards in time. Therefore, Equa-
tions (30) had to be translated into an equivalent set
of equations running in reverse time. We defined t '

= 1990 - t, and re-expressed Equations (30) in terms

Backpropagation with a Recurrent Gas Market Model 353

of t'. For convenience, we assumed that L (t) = 0 for t
less than the terminal year, 1990. (However, a running
total was created to handle the one instance where we
were interested in what influenced the sum of a variable
over time, as opposed to its 1990 value.) Also, because
we had not yet considered what conventions would lead
to felicitous notation with continuous-time neural nets,
we defined w(t) as minus w(t + 1) (where the latter
copy of w is defined as in Equation 29). Substituting
these definitions for t' and w into Equations (30), we
arrive at the equations actually implemented in the ap-
plication:

Z ' (t ' - 1) = GT(t ' - l)w(t') (35a)

- Z ' (t ') = HT(t ' - 1)w(t') (35b)

a(t ') = a (t ' - 1) - j r (f _ l)w(t'), (35e)

where a (0) will contain the final vector of derivatives
of L with respect to the parameters.

In order to implement Equations (35), we followed
a straightforward procedure that could be implemented
quite easily in a package such as Troll. (This was verified
in 1981 when it was proposed to the developers of Troll,
in connection with an ongoing contract with the De-
partment of Energy; unfortunately, other priorities pre-
empted this option.) To understand this procedure, it
would help to consider an example, based on a sim-
plified version of a few of the model 's equations:

#25: exploration(t)

= bl *(exploration(t - 1))b2,(gas__price(t)/

dr i l lp r ice (t)) b3

#26: cumulativeexploration(t)

= cumulativeexploration (t - 1) + exploration (t)

#49: drill price(t)+ drill p r ice (t - 1)

+ b4 + bs*(rig__use(t)/(l - fig__use(t))

#67: indus t rydemand(t)

= b a s e d e m a n d (t) . (gas__price(t)/base price(t)) b6

*(industry demand(t - 1)/base demand(t)) b7

The Troll equation numbers (between 1 and 83) are
shown on the left. The first three equations describe
how the utilization of drill rigs affects changes in the
price of drilling, which in turn combines with the price
of gas to affect exploration for gas. The last equation
shows how interstate industrial gas demand will differ
from a previous baseline forecast, if the actual gas price
differs from the (base) price assumed in that forecast.
The model solves to find a price which matches supply
and demand. Notice how values of b2 and b7 near zero
would make the forecasts dependent on conditions in
the present time, while values near one would tend to
yield a kind of exponential growth process (because
outside factors then determine the rate o f growth of the
variables being projected, instead of their actual values.)

Our first step, in creating an adjoint model, was
simply to write out all the component equations implied
by (35a). To do this in a comprehensible way, we
adopted a naming convention in which, for example,
Fexploration (t) corresponded to Z25 (t). However, we
simply used W25(t) to represent W25(t). Following
this convention, we can calculate Fexploration (t' - l)
as implied by (35a) by looking through all the equations
and looking for occurrence of the variable "explora-
t ion(t)" ; if we find one in equation j , we calculate

T G25.j by simply differentiating the equation with respect
to exploration (t). I f exploration (t) appears on the left-
hand side of an equation, we treat that as an appearance
on the right-hand side with a minus sign. Applying this
procedure to the example above, we get:

Fexploration (t' - l)

= W25(t) , (-1) + W26(t) , (+ l) + • • •

Fdrill price (t' - 1)

= W 2 5 (t ') , (e x p l o r a t i o n (t ' - 1)*(-b3/

drill p r i c e (f - 1))+ W 4 9 , (- 1) + - - . .

In the first of these equations, the (- l) simply came
from differentiating Equation #25 after exploration (t)
is moved to the right-hand side. The (+ l) came from
differentiating the right-hand side of Equation #26 with
respect to exploration (t). The next equation came from
a similar calculation; however, note that all references
to variables convert t to t' - l and t - l to t', because
of the time reversal. The triple dots here refer to other
terms which involve the differentiation of other equa-
tions, not given in our example. Mechanically, it was
easier to do all this by writing " F n a m e (t ' - 1) = " for
each variable, on a separate line of a large sheet of
paper, and going through the list of equations in order,
looking for all unlagged variables and adding terms to
their equations.

Equation (35b) was handled essentially the same
way, except that we looked for lagged references (i.e.,
to variable (t - 1)), differentiated with respect to lagged
variables, and began the relevant equations with (for
example) "Fexplorat ion (t ') = ." Equation (35 c) was
likewise straightforward. After completing this exercise,
we simply typed the set of equations into Troll, and
asked Troll to solve the set of equations from t' = 1
through t ' = T. (This also required the use of a few
Troll instructions to create a database made up of the
original model variables, reversed in time.)

All of these tasks were completed in about two days.
However, because the approach was new, two weeks
were then used mainly to test, but also to debug the
results. Modified versions of the model and of its adjoint
were created in which the free market price of gas was
made exogenous, so that the flow of causation and cal-
culated feedback could be compared at all points in
the model. Checks against derivatives by brute force

354

TABLE 1
Parameterl with the Five Biggest Impacts on 1990 Average RelddentialGas Price (i.e., with L' = Gas Price)

|4/erbos

Total Parameter
Description of Parameter Impact Value

Elasticity of exploratory gas drilling to its previous value (i.e., b2 in
equation labelled "#25" above)

Elasticity of gas development drilling to its prev)ous value
Elasticity of oil development drilling to its previous value
Impact of oil production (t - 1) on oil production (t)
Impact of nonassociated gas production (t - 1) on itself (t)

$150 8
$25.1 .8
$18.8 .9
$15.6 9
$14.6 .9

parameter shifts and variable shifts were used: these
required trying several step sizes (at least plus and mi-
nus some amount), because of problems with rounding
error and nonlinear effects with the brute force method.
At this point, the adjoint method has passed very severe
tests of its accuracy. The adjoint, unlike brute force
methods, is also "well-conditioned" numerically; the
reason for this, technically, is that the transpose of G- l t t

has the same "condition number" as G-~H itself(For-
sythe & Moler, 1967), so that the adjoint is as well
conditioned as the original model itself.

Results of the AnaLysis

Tables ! through 3 below summarize the results of
greatest interest.

Table ! provides a rank-ordering of the five most
important "items" input to the model, where "items"
include both parameters and initial values in principle.
Importance is measured in terms of "Total Impact."
defined as the change in residential gas prices which
would result from setting the item to zero (assuming
no change in the derivative). From an economist's point
of view, the "Total Impact" as defined here is just the

elasticity of gas prices with respect to each item, mul-
tiplied by the base case residential gas price for t 990.
Out of the 35 most important items only two involved
the demand for natural gas, and two involved initial
values for 1979: thus the results of the model were
clearly driven by supply-side assumptions.

Six other 1990 outcome variables were also exam-
ined with the same adjoint model: (a) DEMAND, total
U.S. wellhead gas demand in quadrillion Btu; (b)
CUMEXTRA. cumulative supplemental gas (potential
shortages) over 1979-1990; (c) PSUPPLY, the unregu-
lated wellhead price of gas; (d) RN.NAGAS, proved
reserve balance of nonassociated gas; (e) SUSGASB.
free-market domestic gas production; and (f) SDEEE
U.S. production of gas from 15,000 feet or deeper. The
results with these other measures of outcome were sim-
ilar to those of Table [. but even more tilted towards
the supply-oriented items input to the model.

The adjoint model also printed out information
about the dynamics of the effect of each item, as shown
in Table 2. The 1979 row of Table 3. like all the numbers
in Table l, reports the impact of changing the item on
changing the outcome variable. This derivative essen-
tially answers the usual question: "'If you change this

TABLE 2
Ordered Derivatives of DEMAND with Respect to Three Items Over Time

Elasticity of Industrial
Gas Exploration Ratio for Gas Demand

to its Past to Oil in Lag Factor
(b2 in Equation #25) Oil Production (b7 in Equation #67)

Parameter Value .806

Ordered Derivatives (z~(t)) From Year
1990 0
1989 - . 5
1988 1.8
1987 9.0
1986 22.0

1985 40.0
1984 63.0
1983 89.0
1982 118.0
1981 150.0
1980 184.0
1979 222.0

.735

0
2.5
2.1
1.7
1.3
1.0
0.7
0.6
0.5
0.4
0.2
--.9

.69

0
" ,3
- - , 4

.6
- , 7

" -8
- - ,9

- . 9
" ' . 9
- - .9

- -°9
.9

Backpropagation with a Recurrent Gas Market Model 355

input to the model by one unit, while keeping all the
other inputs as they are, how much will the outcome
change?" The 1985 row, however, answers the question:
"If you changed this parameter by one unit in 1985,
and afterwards, but used the old value for it before
1985 (still holding the other items constant), how much
would the outcome change?" (Likewise, for variables,
the 1985 row reports the impact of an "autonomous
change" in 1985, such that the other variables in 1985
are unchanged.) The main purpose of this table is to
illustrate the diagnostic value of ordered derivatives in
understanding how any system behaves over time.

Table 2 shows clearly that the gas exploration elas-
ticity acquires its importance because of its cumulative
effect over time. Like the population growth rate in
population forecasting, this parameter has a greater
impact on the forecast as the forecast interval grows.
For the same reason, random errors in estimating this
parameter will lead to cumulative errors in forecasting
almost any of the outputs of the model.

The impact of the industrial demand lag term also
grows with time. This parameter, like the exploration
elasticity, is an "inertia" term; it indicates how much
industrial gas demand is affected by its own past value.
However, after a couple of years, the rate of growth of
its importance is greatly damped. This would appear
to mean that the "memory" on the demand side is
quickly overshadowed by the impact of current prices
on demand, so that the accumulation of impact is re-
duced. This pattern of a declining rate of growth in
impact applies to most parameters in the model; impact
grows with time, though at a decelerating rate, because
more time simply adds to the points where the param-
eter affects the system, usually pushing the system in
the same direction. The rate of growth declines for most
but not all parameters, because of systems dynamic
effects beyond the scope of this paper; if the system
under study were "stationary," however (always decay-
ing to the same equilibrium no matter what its initial
state), then the rate of growth would eventually decline
for all parameters.

Finally, Table 2 shows that the "ratio for gas to oil
in oil production" declines steadily in importance as
we go back to 1980. Steady decline is typical for the
impact of a variable, but it is very unusual for a pa-
rameter. In this case, the direction of the immediate
impact reverses between 1990 and the preceding years,
perhaps because the direct impact in 1990 depends on
the size of this parameter RELATIVE TO variables
increased by the parameter before 1990. This parameter
is odd in another way: in 1979, there is a sudden "blip"
in the impact of this item, and of a few other items.
This "blip" appears due to the equation which enforces
a fixed price of drilling in 1980, when all the rest of
the variables are treated as model predictions; changes
in a parameter can force changes in the 1980 values of
the variables which have nothing to do with the causal

TABLE 3
Results of Different Values for Elasticity Parameter (b7)

Elasticity
(Exponent)

1990 Average Residential
Gas Price in 1979 Dollars

. 8 0 6 $7.30(actualforecast)

.807 $7.13

.816 $6.18

.796 $8.23

impact of the parameter, because of the equation forcing
the 1980 drilling costs to not be changed accordingly.
Note that this kind of startup problem affects the sen-
sitivity of a model, regardless of what method is used
to test the sensitivity; it can be a serious problem in
interpreting the results of"what i f " analysis based on
changes in model assumptions, for many models.

All of these "sensitivity coefficients" theoretically
represent the effect of small changes from the base case
(continuation of the Natural Gas Policy Act). To verify
the large-scale importance of the most important pa-
rametermthe elasticity of exploratory gas drilling to its
own past valuemthe original model was rerun for four
different values of the elasticity. These results are shown
in Table 3.

According to the original model documentation, the
standard error of this exponent was .08, much larger
than the changes made here. This result did not nec-
essarily invalidate the model, for reasons beyond the
scope of this paper; however, it did lead to the conclu-
sion that attention should be redirected towards the use
of new statistical methods to estimate this kind of pa-
rameter more accurately, and towards possible respe-
cification of the equations they appear in. The new
methods cited in Section 2 exploit the phenomenon of
cumulative error, and use multiyear tests of forecast
error, in order to arrive at more accurate parameter
estimates which lead to less cumulative error in fore-
casting. Previous research on these methods (Werbos,
1974, 1983a; Werbos & Titus, 1978) suggests that this
model was far from unique in this weakness, but was
typical of a large class of econometric models.

Conclusion

A generalization of dynamic feedback (the central
component of "backpropagation") to deal with recur-
sive ("simultaneous") time-dependent networks has
been developed and tested, and has led to applications
of importance to practical econometric forecasting.
These applications in turn point to the importance of
using new loss functions instead of regression when
estimating many models; the use of these loss functions
tends to require dynamic feedback for efficient, reliable
implementation.

356 P ,) Werb~s

R E F E R E N C E S

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons
with feedback in a combinatorial environment. Proceedings of the
IEEE First International Conference on Neural Networks~ Vol. 11
(pp. 609-618). New York: IEEE.

Alsmiller, R. G. et at. (1981). Adjoint sensitivity analysis and its ap-
plication to LEAPMode122c. ORNL/TM-7789. Oak Ridge, TN:
Oak Ridge National Laboratory.

Athans, M., & Kalb, P. L. (1966). Optimal control theory. New York:
McGraw-Hill.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuron-like adaptive
elements that can solve dil~cult learning control problems. IEEE
Transactions on Systems, Man and Cybernetics, SMC-13, 834-
846.

Brode, J., Werbos, P., & Dunn, E. (1975). TSP in the Datatran lan-
guage. Cambridge, MA: MIT Cambridge Project. (Also distrib-
uted by the MIT Information Processing Services Department
and DOD/AFDSC as a contract product.)

Dennis, J., & Schnabel, R. (1983). Numerical methods .['or uncon-
strained optimization and nonlinear equations. Englewood Cliffs,
N J: Prentice-Hall.

Energy Information Administration. (1982). 1981 Annual report to
Congress, Volume 3. DOE/EIA-0173(81)/3. Washington, DC:
National Energy Information Center (NEIC, 202-586-8800).
Washington, DC: U.S. Department of Energy.

Foote, S., & Morrison, J. (1987). Extrathalamic modulation of cortical
function. Annual Review of Neuroscience, I0, 67-95.

Forsythe, G., & Moler, C. (1967). Computer solution of linear algebraic
systems. Englewood Cliffs, NJ: Prentice-Hall.

Grossberg, S. (19761. Adaptive pattern classification and universal
recording, I1: Feedback, expectation, olfaction and illusions: Bio-
logical Cybernetics, 23, 187-202.

Grossberg, S., Levine, D., & Schmajuk, N. (19871. Predictive regu-
lation of associative learning in neural networks by reinforcement
and attentive feedback. Proceedings ~. the 1987 IEEE International
Conference on Systems, Man and Cybernetics, Volume IlL (IEEE
Catalog No. 87CH2503-3). New York: IEEE.

Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
Hinton, G. (1987, June). Connectionist learning procedures (Tech.

Rep. No. CMU-CS-87-115). Pittsburgh: Carnegie-Mellon Uni-
versity, Computer Science Department.

Hopfield, J., & Tank, D. (1986). Computing with neural circuits: A
model. Science. 233, 625-633.

MIT Center for Computational Research In Economics and Man-
agement Science. (1980). Troll Users" Guide. Cambridge, MA.
IPS Technical Services, MIT Building 39-327.

McNicol, D., O'Neill, R., & Dickens, P. (1981). Analysis of the eco-
nomic effects of accelerated deregulation of natural gas prices
DOE/EIA-0303. Washington DC: NEIC (see E1A 19801.

O'Neill, R., & Dickens, P. (1981). An analysis of the natural gas
policy act and several alternatives: Part 1. DOE / EIA-0313. Wash-
ington DC: NEIC (see EIA 19801.

Parker, D. B. (1985). Learning-logic (Report TR-471. Cambridge,
MA: MIT Center for Research in Computational Economics and
Management Science.

Parker, D. B. (1987). Second-order backpropagation: Implementing
an optimal O(n) approximation to Newton's method in an artificial
neural network. Unpublished manuscript.

Pineda, E J. (1987). Generalization ofbackpropagation to recurrent
and higher order networks. Proceedings of the IEEE Conference
on Neural Information Processing Systems. New York: IEEE.

Rumelhart. D.. Hinton. G.. & Williams. R. (1986 t. Parallel distribated
processing (Chap. 8). Cambridge, MA: MIT Press.

SAS Institute. (19861. SAS users guide: Statistics. Cary. NC: SAS
Institute Inc.

Schmitt. F. O. (Ed.). l 1970-1971). Neurosciences (i st and 2rid study
programs l. New York: Rockefeller University Press.

Werbos. P. (1968). Elements of intelligence. £ybernetica. 3.
Werbos. P. (1974). Beyond regression: New t~,,d.s tbr prediction ana

analysts in the behavioral sciences Ph.D. thesis Harvard Univer-
sity. (Also printed as a report of the Harvard t MIT Cambridge
Project. 1975, under Dept. of Defense contract.}

Werbos. P. 11977 t. Advanced forecasting methods for global crisis
warning and models of intelligence. Genera/Systems Yearbook
22, 25-38.

Werbos. P.. & Titus, .I. (1978 I. An empirical test of new forecasting
methods derived from a theory of intelligence: the prediction of
conflict In Latin America. IEEE 7~ansactions on Systems. Man
and Cybernetics. SMC-8, 657-666.

Werbos. P. (1979). Changes in global policy analysis procedures sug-
gested by new methods of optimization. Policy Analys;s aria
InJbrmation Systems. 3. 27-5 I.

Werbos, P. (1981 ~. The .Natural Gas Market Mode1: Equattons and
data sources'. DOE/EIA-0355. Washington DC: NEIC (see EIA
1981)).

Werbos. P. ~ 1982). Applications of advances a~ nonlinear sens~tiv3%
analysis. In R. Drenick & F. Kozin (Eds.), ~vstems modeling and
optimtzatton: Proceedings of the lOth IFIP Conference New York
~pp. 762-777). New York: Springer-Verlag.

Werbos. P. 11983a1. A statistical analysi.s o/what drives industrial
energy demand (Chap. 4. Section on Dynamic Robust Estima-
tion). DOE/EIA-0420/3. Washington 13(7: NEIC (see EIA 19801.

Werbos. P. (1983b). Solving and optimizing complex systems: Lessons
from the EIA long-term model, In B. Lev. Ed. k Energy model,s-
and studies, New York: North Holland.

Werbos. P. ~ 19861. Generalized information requirements of intelligent
decision-making systems. In SUGI 11 Pr~ceedings. SAS Institute:
Car3'. NC (A revised version, available from the author, is easier
to read and contains more discussions of psychology.)

Werbos. P. (1987aL Building and understanding adaptive systems: A
statistical/numerical approach to factory automauon and brain
research. IEEE Transactions on Systems ~4an and Cyberneties~
SMC-17. 7-20.

Werbos, P. ~ 1987bL Learning how the worl¢~ works: Specifications
for predictive networks in robots and brains. In Proceedings (~[
the 1987 IEEE International Conferen(~ ~,n Systems. Man and
Cybernetics. Volume I (pp. 302-3101. ~IEEE Catalog No.
87CH2503-t ~ New York: tEEE.

Werbos. P. (1987cL Backpropagation versus content-addressable
memory: Applications, evaluation, and synthesis. Unpublished
manuscript.

Werbos. E (in press}. Econometric techniques: Theory ~ersus practice.
In J. Weyant & T. Kuczmowski (Eds.1, Planning tn a risky en-
vmmment." ,4 handbook of energy/economy modeling, New York:
Pergamon,

Werbos, E 11988a}. Maximizing long-term gas industry profits m
two minutes in Lotus using neural network methods. IEEE
Transactions on Systems. Man and Cybernetics.

Werbos. P. (1988b). Backpropagation: Past and future. Proceedings
~f the IEEE International Conference on Neural Networks, 1988.
l~bl, 1 (pp. 343-353). (IEEE Catalog No. 88CH2632-8]. New
York: IEEE.

