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Abstract--Backpropagation is often viewed as a method for adapting artificial neural networks to classify patterns. 
Based on parts of  the book by Rumelhart and colleagues, many authors equate backpropagation with the generalized 
delta rule applied to fully-connected feedforward networks. This paper will summarize a more general Jbrmulation 
of  backpropagation, developed in 1974, which does more justice to the roots of  the method in numerical analysis 
and statistics, and also does more justice to creative approaches expressed by neural modelers in the past year or 
two. It will discuss applications of  backpropagation to forecasting over time (where errors have been halved by using 
methods other than least squares), to optimization, to sensitivity analysis, and to brain research. 

This paper will go on to derive a generalization of  backpropagation to recurrent systems (which input their own 
output), such as hybrids of  perceptron-style networks and Grossberg/HopfieM networks. Unlike the proposal of  
Rumelhart, Hinton, and Williams, this generalization does not require the storage of  intermediate iterations to deal 
with continuous recurrence. This generalization was applied in 1981 to a model of  natural gas markets, where it 
located sources of  forecast uncertainty related to the use o f  least squares to estimate the model parameters in the 
first place. 
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1. I N T R O D U C T I O N  

Backpropagation, as formulated by Rumelhart, Hinton, 
and Williams (1986) with acknowledgement of  the 
prior work by David Parker (1985), may well be the 
most widely-used method to adapt artificial neural net- 
works, for use in pattern classification. Nevertheless, 
the limitations of  that formulation have been severely 
criticized by neuropsychologists and by classical com- 
puter scientists. The neuropsychologists have argued 
that simple feedforward networks cannot do justice to 
the structure and power of  the brain. Neuropsycholo- 
gists and computer scientists have argued that complex, 
interesting problems tend to require iterative proce- 
dures ( or networks) for their solution. Many other crit- 
icisms have been raised, which merit serious attention. 

Section 2 of  this paper will review a different for- 
mulation of backpropagation, developed in the period 
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between 1968 and 1974, which can overcome many of 
these difficulties. This formulation deals with the gen- 
eral case of nonlinear systems of equations. It lacks the 
concrete, specialized appeal of Rumelhart 's  discussion, 
but it can apply to neural networks, econometric mod- 
els, and other systems as special cases. Applications to 
prediction, optimization and sensitivity analysis become 
possible; as an example, this paper will discuss an ap- 
plication to the sensitivity analysis of a natural gas 
market model developed by the Depar tment  of  Energy. 
Werbos (1987a) discussed at length a research strategy 
for brain research and factory automation based upon 
this formulation. 

Section 3 of this paper will show how derivatives 
may also be propagated through recurrent networks 
(such as those discussed by Grossberg, 1976 and Hop- 
field and Tank, 1986) without the expensive storage of 
information for each iteration (as required by the ap- 
proach of Rumelhart  et al., 1986). Our approach will 
require storage, however, to handle true external time 
lags; the significance of this will be discussed, along 
with ways to implement this storage and issues related 
to real-time adaptation. When external time lags are 
totally absent, our method is closely related to the 
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method of Almeida (1987), though slightly more gen- 
eral. 

Finally, Section 4 will display a practical application 
of the methods given m Section 3 an analysis of  the 
properties of  a natural gas market  model, actually used 
by the Depar tment  of  Energy several years ago. The 
conclusions of  this analysis were double-checked by ex- 
plicit numerical perturbations of  the model. This anal- 
ysis provided an insight into the limitations of  the 
model, which are related to certain limitations of mul- 
tiple regression, the method used to estimate (adapt)  
the model in the first place. Multiple regression is closely 
related to the generalized delta rule for network ad- 
aptation; however, alternative estimation (adaptation) 
rules exist which have overcome these limitations m 
simulation studies and in several practical examples 
(Werbos, 1974. 1983a, 1988a; Werbos &Titus.  t978). 
Those alternative rules are consistent with the general 
framework proposed here. 

2. G E N E R A L  F R A M E W O R K :  BACKGROUND, 
T E R M I N O L O G Y ,  AND APPLICATIONS 

Rumelhart, Hinton, and Williams (RHW) 

Debates about backpropagation have been confused. 
in part, by different definitions of  the word. The index 
to Rumelhar t  et al. (1986) defines the word backprop- 
agation by pointing to three pages of  text which discuss 
the generalized delta rule. The generalized delta rule. 
in turn, is defined as a set of  three steps to be applied 
to feedforward networks. ( R H W  also discuss recurrent 
networks, but that extension will not be discussed until 
Section 3. in order to simplify things here.) R H W  spec- 
ify feedforward networks as: 

opj = f(netpj) ~1) 

netpj = Z WjkOrk = ~. wjkj~(net,k). ~2~ 

where opi is the output of  unit number  j for pattern 
(observation) number  p,  where j~ is some differentiable 
function, where wjk is a weight to be adapted, and where 
the processing units are assumed to be ordered in a 
feedforward fashion. In a feedforward network, the 
summation over k in Equation (2) can run from 1 to 
j - 1. in principle. Some readers have interpreted this 
to mean that the network must be fully connected: 
however, even in the R H W  formulation, most of  the 
wjk could be fixed to zero, in a practical application. 
so that the physical connections and the required cal- 
culations can both be sparse. 

The first of the three steps in the generalized delta 
rule (p. 327) is a calculation for the final outputs of  
the network: 

6vj = ( l p j -  opj)f'j(netp)), (3) 

where tpj is the teaching or target value for the output 
of  unit number  j and f ' j  is just the derivative of./~. This 

step is explained [p. 323) by noting that bpj isjust  the 
derivative of  error, Ez,. with respect to net,,,, defined as: 

[ 

The second step (p. 327 ) is a calculation for all other 
units j which output to units k: 

6p, = f~(net,~) Z h ...... 

= Z 6~,~L!"1(nett, j l ~ °  J5~ 

This step is explained (p. 326 ) as a way of calculating 
the derivatives of Ep with respect to all o f  the netvj, in 
a single pass of  calculations, based on an informal ap- 
peal to the chain rule for differentiation. The third step 
(p. 330) is a procedure to adapt the weights of  the 
network: 

A~4 {r/ + l}  : Ot(6rjOp, ) - nAw,(n) (6; 

Note that 6piOp, is simply the derivative of  E ,  with re- 
spect tO wj~. 

A More General View of Backpropagation 

Researchers in this field someumes use the term 
backpropagation to refer to the second step above, or  
to all three steps, with or without variations. Again, 
Rumelhar t  et at. (1986, Index) appear to refer to all 
three steps. We would propose that the term backprop- 
agation should include any three-step or three-com- 
ponent procedure for adapting a network, in which the 
three steps are: 
• An output evaluation component  (OEC),  which 

evaluates how successful the ultimate outputs o f  the 
network are in minimizing or maximizing something. 
In other words, the OEC defines what the network 
is supposed to minimize or maximize. More pre- 
cisely, the OEC provides the derivatives of  some eval- 
uation function (such as error) with respect to the 
ultimate outputs of  the network. Equation ( 3 ) - - t h e  
OEC of the generalized delta rule--calculates the de- 
rivatives of square error, the error function which is 
minimized in nonlinear regression;thus, from a star- 
istician's point of view, the generalized delta rule is 
basically one more numerical way to implement  
nonlinear regression, a well-known, well-studied sta- 
tistical method. (See Brode, Werbos, & Dunn,  1975: 
Dennis & Schnabel, 1983; SAS Institute, 1986; Wer- 
bos, 1988a.) 

• Dynamic feedback, a method fbr calculating the de- 
rivatives of error or loss with respect to the inter- 
mediate outputs and weights within the network. 
(Werbos, 1974, 1982.) Strictly speaking, this is the 
only component  which actually propagates infor- 
mation backwards along a network. This paper will 
use the term "dynamic  feedback" to refer to this 
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component, in part because this term was used in 
the original papers on this concept, and in part be- 
cause the term backpropagation usually refers to the 
combination of all three components. 

• A convergence method or solution algorithm, a 
method for responding to the derivatives (and /o r  
other local information) by adapting the parameters. 
This may involve a simple proportionate response 
(steepest descent), or conjugate gradient methods 
(which include (6) as a special case, but which pro- 
vide procedures for adjusting the sensitivity constants 
a and 7/), or more complex methods like those which 
have worked in complex practical applications (Wer- 
bos, 1983a). Surprisingly, some of the classical 
methods from statistics and numerical analysis 
(Dennis & Schnabel, 1983) can be applied with O(n) 
storage in exact or near-exact form (Werbos, 1988b). 

Origin of the General View 

Background. The intuitive notion ofbackpropagation-- 
of adaptation and optimization based on a flow of feed- 
back backwards through a neural system, specifically 
related to the issue of brain functioning and artificial 
intelligence--was published in Werbos (1968), albeit 
in a clumsy linear version. A nonlinear version, essen- 
tially equivalent to the generalized delta rule, was pro- 
posed in various documents circulated in 1971 and 
1972. At that time, applications to artificial neural net- 
works were not considered interesting or acceptable to 
much of the scientific community. Therefore, the 
method was generalized to permit applications to more 
conventional forecasting applications (Werbos, 1974). 

Werbos (1974) also cited related work in control 
theory, which also used backwards flows of information 
to identify systems, albeit in a different way. The for- 
mulation to be given below could have been derived as 
an extension of control theory, but I found it easier 
simply to prove (9) directly. Likewise, I found it much 
easier to apply (9) directly to neural-like problems than 
to extend and generalize the more complex and indirect 
methods of control theory. This is especially true with 
stochastic optimization, where the notation can oth- 
erwise get quite complex. Nevertheless, a reviewer has 
suggested that Athans and Kalb (1966) came surpris- 
ingly close to the kind of approach presented here; the 
details are beyond the scope of this paper, in part be- 
cause I have never seen the book. For an easy tutorial 
on my 1974 formulation of backpropagation and var- 
ious alternatives, see Werbos (1988a). 

The generalized formulation of 1974 began by ob- 
serving that the "training signal" (t m in Equation 3) is 
really just a vector tp which the network tries to repro- 
duce or predict. Any set of functional relations can be 
represented as a network. Likewise, the problem of 
"adapting weights" in a neural network is just a special 
case of the problem of estimating the parameters of a 

general functional model. The use of square error and 
steepest descent in estimating a model had been estab- 
lished decades before; therefore, the novel feature of 
backpropagation in this formulation was the use of dy- 
namic feedback in combination with those two com- 
ponents. 

(First order) dynamic feedback was defined as a 
method for calculating the derivatives of some function, 
L, of the inputs and outputs of a feedforward system, 
in a single pass through the system. 

FeedJorward Systems.  A feedforward system is defined 
as follows, in the most general formulation. First, there 
are m input variables, x~ through Xm, which include 
all of the parameters or weights of the system, as well 
as those variables which are normally thought of as 
inputs to the system. (By including the weights as vari- 
ables, one simplifies some of the later calculations.) 
These variables form an m-component vector, X. Then 
let xl through XN denote all of the variables of the sys- 
tem; these variables form an N-component vector x, 
of which X is essentially a subset. Let fj,  for j  = m + 1, 
. . . .  N, be the differentiable functions which corre- 
spond to the functions implemented by the network 
components. This means that fo r j  = m + 1 . . . . .  N: 

xj = fax,  . . . . .  xj_~). (7) 

Finally, we denote the function which we wish to min- 
imize (or simply to differentiate) as: 

L = L(x j  . . . . .  x~). (8) 

Note that this paper will frequently use small letters 
(like x) to refer to internal inputs or functions within 

a system, and capital letters (like X ) to refer to the 
inputs or outputs of the system as a whole; this dis- 
tinction is important, because both levels of analysis 
will be discussed. 

The network formulation in (7) and (8) is more 
general than it might appear at first. As with (1) and 
(2),  for example, the functions fj may form a sparse 
network, in practice, which simplifies the calculations. 
To make this apparent, and to make the applications 
to parallel computers more explicit, I have sometimes 
spelled out (7) explicitly for the special case of a mul- 
tilayer network (Werbos, 1987a, Appendix); however, 
this paper will try to be more general and to avoid the 
additional notation required to make that example ex- 
plicit. 

Notice that (7) and (8) make no reference to time 
t or to pattern number p. As a result, there is a choice 
between two (or more) different ways of using these 
equations in practice to represent a network. When 
there is no connection at all between variables at dif- 
ferent times or for different patterns (as in Equations 
1, 2, and 4), it is possible to identify the variables of 
the system at any time with the variables xi of Equations 
(7) and (8).  For example, the RHW system can be 
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represented in our framework by identifying our series 
Xl" ' • Xs with the following R H W  variables, in order: 

Wjk and other inputs, neb~, net p2, • • • neb,, 

where n is the number  of  neurons and by identifying 
our L with their Ep. (Note that the variables op~ for 
neurons within the system are not necessary; Equations 
( 2 ) and (4) can represent the system without referring 
to them.) We can then go on to calculate the derivatives 
of L with respect to the weights for each pattern indi- 
vidually, as R H W  do, and then add up these derivatives 
across different patterns. The details of  this equivalence 
are discussed in Werbos (1988a, 1988b). In brief, the 
R H W  feedforward networks are a special case of  equa- 
tions 7 and 8. 

When studying dynamic systems, this kind of simple 
formulation is not possible. For example, if nett~ uses 
nett-L2 as one of its inputs, where " t "  refers to t ime 
and "t  - l "  is the previous observation or pattern, then 
a more complex use of  (7) is needed. Each variable x~ 
in Equation (7) would then refer to a specific neuron 
at a specific time; the activation level of  the same neuron 
at a different time would have to be treated as a different 
variable, for purposes of  (7).  In this case, (7) would 
say that each neuron is allowed to input the outputs of 
earlier neurons from the same time, as well as the out- 
puts of all neurons from earlier times. Sections 3 and 
4 will give more examples o f  this sort. In some appli- 
cations at the Depar tment  of  Energy, we have even 
worked with systems where two t ime-dimensions were 
necessary (Werbos, 1988a); even there, there was no 
difficulty in using dynamic feedback, because there was 
a definite sequence of calculation, which determined 
which variables at which points would be calculated in 
which order. 

The Chain Rule. First-order dynamic feedback is de- 
fined as the use of  the chain rule for ordered derivatives, 
in order to calculate the derivatives of  L with respect 
to the system inputs. The chain rule for ordered deriv- 
atives (proven in Werbos, 1974) may he written: 

O÷ L OJ} 0+____LL = 0_L.L + , (9) 
OXk OXk j~k+l OXj OX k 

where the plus signs indicate ordered derivatives, and 
the derivatives without plus signs refer to conventional 
partial derivatives of  the functions L and J~. The con- 
ventional partial derivatives are calculated by differ- 
entiating the functions L and Jj as they would normally 
be written, as functions of  their direct arguments as 
listed in (7) and (8)  without any substitutions. Since 
the functions j~ usually depend on only a small portion 
of the earlier variables, Xk, in practice, the partial de- 
rivative on the far right is usually zero for most com- 
binations o f j  and k; therefore, the summation on the 
right is usually very sparse and simple. In formal terms, 
the ordered derivative of  L with respect to Xk refers to 

the derivative of  L expressed as a-function ofx~. • • ~z. 
where the dependency of L on xk+~- • -x~- has been 
eliminated by substituting in f rom the equations (7) 
which equate their values to the functions fk+~ • • • J~v. 
In intuitive terms, the conventional partial derivative 
refers to the direct causal impact  o f  xk on L,  while the 
ordered derivative refers to the total causal impact, in- 
cluding direct and indirect effects, both. 

Equation (9) is usually simple to apply as a recursive 
relation, in practice. One begins by calculating the or- 
dered derivative with respect to xN, for which the sum- 
mation on the right is null. One then proceeds back- 
wards to XN-~, XN-2, on down to x~. For example, to 
apply (9) to the R H W  system (Equations 1.2, and 4), 
one would normally begin by allocating an array to 
hold the ordered derivatives; "del ta(k)  "' could be used 
to hold the ordered derivative of L with respect to .~. 
Then, for each variable Xk in the system, one would 
identify which other variables (x;)  that variable may 
have a direct impact  on; one would differentiate the 
functions ]~ with respect to Xk, and substitute the result 
into (9),  which then becomes a concrete recursion 
equation for the special case at hand~ 

In the R H W  system, for example, (5) is the special 
case of  (9),  where "delta" is used to hold the ordered 
derivatives, and where Xk is one of the internal variables 
netpj; this is particularly obvious when we compare the 
rightmost side of ( 5 ) with the conventional derivatives 
of  the rightmost side of (2).  (Note that our f j  here 
includes the whole right side, and not just R H W ' s  
function "" fk".) 

Note that { 9 ) also eliminates the artificial distinction 
between neurons whose output goes outside the system 
and neurons whose output is used internally. As with 
(7).  there is no reason to limit oneself to fully con- 
nected, rigidly structured networks: if (7)  has a sparse 
structure, which allows for efficient implementation on 
a parallel computer  or circuit, then (9)  will automat- 
ically have this property as well, at least i f  it can add 
efficiently. 

Ordered derivatives are important  in many other 
applications besides neural nets. As a result, a host of  
informal names have been developed for this concept, 
as used in different applications. For example, econo- 
mists speak of impact  multipliers, control theorists 
speak of variational derivatives, and many people speak 
of time-dependent Lagrange multipliers. The use of  
mathematically oriented languagemay help reducethe  
kind of  fragmentation which encourages workers in dit= 
ferent applications to continually reinvent the wheel. 

Early Applications and Development. The first actual 
application ofbackpropagation wasin  estimating t ime- 
series models used to predict nationalism and social 
communications, developed by Prof. Karl Deutsch. 
Ironically, backpropa~ t ion  was not used to implement  
ordinary least squares (regression), which had already 



Backpropagation with a Recurrent Gas Market Model 343 

been tested in this application by use of conventional 
software. Instead, it was used to implement more ad- 
vanced statistical methods, which would have been too 
costly to use without backpropagation. The results were 
documented in Werbos (1974), embedded (and doc- 
umented) in user-oriented software in an MIT version 
of the Time-Series Processor (Brode et al., 1975 ), and 
discussed in Werbos (1977), which emphasized the po- 
tential value of the same general mathematics for fore- 
casting and for brain modeling. A general survey of 
applications--to neural modeling, optimization, sen- 
sitivity analysis, and estimation--was presented to the 
International Federation for Information Processing 
(IFIP) in 1981 (Werbos, 1982), along with diagrams 
illustrating both Equation 9 and several generalizations 
to calculate second-order derivatives economically. 
These generalizations were quite different from David 
Parker's second-order backpropagation, which is es- 
sentially a new alternative to steepest descent as a con- 
vergence method (Parker, 1987). The primary ideas 
here were widely transmitted, both in writing and oth- 
erwise. 

Applications of Backpropagation in the General 
View: Prediction 

In the delta rule, the target vector tp is a vector to 
be reproduced or predicted by the network. The dis- 
tinction between reproduction and prediction is essen- 
tially meaningless here, since in both cases we try to 
match the target vector over previous observations and 
we hope that the match will still be valid in future ob- 
servations. Most of the current research on backpropa- 
gation--like our own empirical work--has focused on 
this problem of reproduction or prediction. 

Using the notation of statistics, the delta rule is trying 
to address the well-known problem of estimating b so 
as to improve the predictions: 

~(t) = F(X(t), b), (I0) 

in the special case where F happens to be represented 
as a network of elementary units, where the parameters 
b happen to be interpreted as a collection of weights, 
and where the observations (t) may be interpreted as 
patterns presented to the system. Here, X (t)  is the vec- 
tor of inputs for observation or time number t, and 

(t) is a prediction of the target vector y (t). As discussed 
after (7),  we use a capital letter (e.g., F) to refer to the 
vector function which describes the system as a whole; 
this is different from the ~ ,  the functions which rep- 
resent individual components of the  system. In a feed- 
forward system, the components of ~ (t),  fi~ ( t ) through 
Pn(t), would correspond to the last n components of 
the vector x as given in (7).  

The use of backpropagation in some form is basically 
necessary to solve this problem. One cannot find the 
value of b which best fits the historical or training data 

unless one has some definition of the word "best," some 
measure of the quality of fit; thus an error measure or 
loss function (such as Equation 4 or the many alter- 
natives used by statisticians) is more or less unavoid- 
able. Admittedly, this measure might not be an explicit 
part of the adaptation procedure. More importantly, 
however, one cannot expect to minimize such a measure 
efficiently without exploiting the derivatives of that 
measure with respect to the parameters. Long experi- 
ence in numerical analysis has shown the central, un- 
avoidable importance of knowing the derivatives when 
minimizing or maximizing a complex function of many 
variables (Dennis & Schnabel, 1983). This makes it 
essential to use dynamic feedbackmto calculate the 
derivatives at an acceptable cost-- to adapt any complex 
network F, in thegeneral case, that in turn leads to the 
backpropagation strategy. 

To improve the power ofbackpropagation in coping 
with the prediction problem, one needs to look more 
closely at each of its three components, and at the for- 
mulation of the prediction problem itself. The output 
evaluation component (like Equation 3 ) or error func- 
tion (Equation 4) define what a statistician would call 
the estimation method. The other two components are 
simply a numerical procedure for implementing or ap- 
proximating the estimation method. 

Unfortunately, (10) does not do full justice to the 
kinds of prediction problems which occur in many ap- 
plications. For example, in econometric forecasting 
(Werbos, in press), the variables to be predicted are 
often predicted as functions of their own values at a 
previous times. In other words, the problem is to es- 
timate b in: 

X(t + 1) = F(X(t), u(t), b), (I 1) 

where X is a vector of observed variables to be pre- 
dicted, where b is a vector of weights or parameters, 
and where n is a vector of auxiliary input variables. 
This kind of prediction over time is also essential when 
performing optimization over time (to be discussed in 
the next section). Even Grossberg's explanations of 
learning require the existence of circuits which some- 
how learn to produce expectations or predictions of the 
near-term future (Grossberg, Levine, & Schmajuk, 
1987). 

Superficially, (10) and (11) may appear to be special 
cases of each other. For example, we can use a super- 
vised learning system, based on Equation 10, to predict 
X ( t  + 1), simply by defining y( t )  as X( t  + 1) and 
defining the system input vector as X (t) combined with 
u(t) .  Unfortunately, this approach does not lead to the 
best possible forecasts over time, especially if one is 
concerned with predictions over more than one period 
into the future. When ordinary regression (least 
squares) is used to estimate a model which predicts 
variables at time t + 1 as a function of time t, then the 
forecasts for several months out will tend to deteriorate, 
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due to cumulative error effects. (There are tricks to 
avoid this, in some kinds of econometric models, which 
would not work for neural networks.) Cumulative errors 
of this sort would be impossible or unavoidable if reality 
fit a simple model, perfectly, and if all errors were due 
to random white noise; however, this is not generally 
the case (Werbos, 1983a, in press). Section 4 will dis- 
cuss an example of this problem, in detail, as it arises 
in a real-world forecasting model based on least squares. 
More to the point, better forecasts have been obtained, 
in many empirical examples and in simulation studies, 
by using estimation methods which explicitly represent 
the notion of forecasting over time (Werbos, 1974, 
1983a, in press; Werbos & Titus, 1978). The best results 
have been obtained with methods which explicitly try 
to minimize error in multiperiod forecasting. 

These methods can be translated into recipes for 
building neural networks by adopting the 3-net archi- 
tecture shown in Figure 1. In mathematical terms, Fig- 
ure 1 represents a 3-equation model used to predict 
X(t): 

R(t + 1) = FI(R(t) ,  bl) (12a) 

R ( t +  1) = F2(l~(t + l ) , X ( t +  1), b2) 112b) 

X(t + 1) -- F3(R(t + 1), b3). (12c) 

where all three functions are implemented as feedfor- 
ward networks and where some additional arguments 
would be allowable (Werbos, 1987b). The vector func- 
tions F1 and F3 both represent networks to predict 
something, while F2 calculates what FI  tries to predict: 
nevertheless, one can adapt all of  the weights together-- 
b l ,  b2, and b3 - -by  trying to minimize the sum of 
squared error across all components of X and all com- 
ponents of R, across time. Dynamic feedback can cal- 
culate the derivatives needed in this minimization. See 
Werbos (1988b) for the details of how to implement 
this, using RHW-like networks. 

This 3-net arrangement has close connections with 
statistical methods associated with Box and Jenkins and 
Kalman filtering; for example, in the simplest appli- 
cations of Equations (12), the R vectors would be ill- 

I 

I x ( t )  ~- "1 

FIGURE 1. Three-net architecture. 

tered versions of the X variables. Werbos (1987b) elab- 
orates on these connections, and explains how this kind 
of procedure can lead to more accurate forecasts over 
time than a direct use of (10) would; furthermore, it 
explains why it is usually important to minimize a 
weighted sum of squared errors, and to give different 
weights to different variables. For example, when the 
prediction networks are used as part of a larger opti- 
mization system (to be described), there will auto- 
matically be information available about the derivative 
of long-term utility with respect to each variable Ri and 
X,; if variables are weighted according to the variance 
of these derivatives (plus the variance of error deriva- 
tives as well), then the system will give greatest weight 
to stable, persistent variables--which should lead to 
better multiperiod forecasting. Note also that the vari- 
ables R,, in Equations (12a) and (12bL depend on their 
own past values, in such a way that the system may 
"remember"  a few periods back; Equation (11) does 
not provide that capability. 

Many researchers have criticized the use of back- 
propagation even with (t 0), the problem of supervised 
learning. Some have recommended the use ofcontent-  
addressable memory instead. Content-addressable 
memory systems may converge faster than backpropa- 
gation, but this would be of little interest if they were 
converging to the wrong answers ( i.e.. inconsistent es- 
timators of the weights). Under certain conditions. 
however (Werbos. t987b, 1987c). we have found that 
their estimates may be justified, statistically, if we ac- 
count tbr the role of prior probabilities (discussed in 
Werbos. in press). When these conditions can occur. 
the ideal adaptation scheme would be a synthesis of  
least squares and content-addressable memory. A syn- 
thesis of this sort could be used instead of simple least 
squares in adapting (12a) and (12c) in the 3-net ar- 
chitecture (though (12b) is a different matter ). 

In general, these kinds of statistical methods offer a 
hope of greater robustness, statistical efficiency, and 
generalizability, based not on speculation but on de- 
cades of experience with a huge variety of applications. 
All of these hopes involve the ac~uracy of the predictions 
which result when the network is used to predict new 
situation~, not in the training set. This still leaves open 
the questions of how to propagate the required deriv- 
atives through a network, and of how to choose a con- 
vergence method. 

The choice of convergence method (like Equation 
6) should not be confused with the choice of estimaUon 
method. The convergence method basically determines 
the number of  iterations or cost of minimizing error 
over the training set. Admittedly, there are some error 
functions which place a greater stress on the conver- 
gence method, because they are harder to minimize. 
These are mainly "st iff"  error functions, whichcontain 
sharp hills and valleys when graphed as a function of 
the parameters b. Smooth. fuzzy error functions are 
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easier to minimize. Unfortunately, the error or fuzziness 
in estimating parameters is directly related to the fuz- 
ziness of the error function; therefore, those error mea- 
sures which pinpoint the weights most accurately are 
precisely those error measures which are hardest to 
minimize. In summary, one should not expect superior 
estimation methods (error functions) to reduce the 
number of iterations required to analyze a fixed training 
set with a fixed convergence method; one might even 
expect the opposite. To reduce the number of iterations, 
we should try instead to develop more powerful con- 
vergence methods, which are capable of supporting 
more sophisticated estimation methods. Fortunately, 
there are many convergence procedures which have 
worked on complex practical problems which steepest 
descent (or its equivalents) could not handle (Dennis 
& Schnabel, 1983; Werbos, 1983b, 1988b). 

When there is no fixed training set (as in organic 
intelligence, where experience accumulates steadily and 
old events cannot be truly relived), there are additional 
complexities; however, we cannot expect to understand 
these complexities until we understand the simpler sit- 
uation of adaptation with fixed training sets. 

Applications of Backpropagation In the General 
View: Optimization Over Time 

There are many practical problems where a "target 
vector" would not be available. For example, in ro- 
botics, we may know what a robot is supposed to ac- 
complish, but we may not know a priori what its sched- 
ule of movements should be to accomplish its task at 
minimum cost. Instead of a target vector, we may have 
a notion of what we want the system to accomplish 
over time, a notion which implies some kind of success 
measure or utility function to be maximized over time. 

If we cannot devise such a measure, then we cannot 
discriminate between better performance and worse 
performance, and we cannot say whether our design 
was successful or not even after the fact. Also, there is 
no assumption here that the system must have access 
to an explicit representation of the utility measure as 
a function (though such information can be exploited, 
if available). 

This problem of utility maximization over time may 
also be a useful representation of adaptation problems 
faced by organic systems (Werbos, 1986, 1987a). Hin- 
ton (1987) has referred to this problem as the rein- 
forcement learning paradigm. Unlike the paradigm of 
totally unsupervised learning, it provides an explicit 
basis for Unconditioned Stimuli or primary reinforce- 
ment, which ensures that a system will not be essentially 
indifferent to biological drives and social feedback. 

Werbos (1987a) has shown how this optimization 
problem can be solved (approximately) by tying to- 
gether three distinct networks, each to be adapted by 
backpropagation but each with a different output eval- 
uation component. The basic idea is illustrated in Fig- 
ure 2 (although there are further complexities required 
to extend the idea to systems as complex as the human 
brain). 

The middle box in Figure 2 basically contains the 
entire system shown in Figure 1. (Figure 2, like Figure 
1, is taken from previous papers using slightly different 
notation.) 

The upper box-- the "strategic assessment" network 
or " J  network"--outputs  something like an evaluation 
of how well the system is doing, in making progress 
towards its goals. More precisely, this network would 
represent an approximation to the " J "  function for the 
optimization problem. The J function comes from dy- 
namic programming, and is defined as follows: the 
strategy of maximizing J in the short-term (i.e., picking 
actions u(t)  so as to maximize J ( t  + 1)) is equivalent 
to maximizing the utility function U in the long term 
(maximizing expected U(t') over all future times t '). 
Intuitively, the J function corresponds to the notion of 
conditioned reinforcement, to the static position eval- 
uators sought in game-playing artificial intelligence, to 
the measures of net present value used by economists, 
and to other similar ideas (Werbos, 1986). 

As with the problem of prediction; there are several 
different methods which could be used to adapt the J 
network. One of them--heurist ic dynamic program- 
ming (HDP)  (Werbos, 1977, 1987a)--is similar to 
conventional backpropagation, with the network 
adapted to make its output variable, J (R( t ) ) ,  do a 
good job of predicting U(t) + J ( R ( t  + 1) - U), where 

basic, long-term j Strategic 
goals (U) -I Assessment 

current 
informatior 

..t l R(t) 

Analysis of 
Cause and Effect, 

X(t) Dynamic Modeling 

R(t) 

U Tactical Operations, [u(t) 
~[ Optimization I 

strategic 
goals (J) 

simulated reality 
I~(t+l)=f(R(t),u(t),noise) 

to maximize J(f(..u(t).))~ 
v 

FIGURE 2. Three core components of an intelligent system (J, f, u). 
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U is the utility measure and 0 is a constant used to 
prevent drift in the range of  the function. More real- 
istically, U(t)  may be physically represented as a 
weighted sum U~x~(t), such that the final output of  the 
Jne twork  can be a set of  components,  Ji, each adapted 
to predict the corresponding Uixi( t ) + J~( t + 1 ) U,. 
Another m e t h o d ~ d u a l  heuristic p rog ramming- -  is 
slightly more sophisticated, but can still be imple- 
mented by use of  first-order backpropagation. A third 
method~global ized dual heuristic programming 
( G D H P ) ~ f u l I y  exploits the cause-and-effect infor- 
mation embedded in the middle box, but requires sec- 
ond-order dynamic feedback for its implementation 
(Werbos, 1987a, 1979, 1982, 1988b); the details are 
too complex to present here. The required form of sec- 
ond-order dynamic feedback, like first order dynamic 
feedback, calculates all the required information at a 
cost which is only proportional to the cost of  one pass 
through the original network. 

Using the HDP method, at least, il is possible to 
forego the middle box and use experience itself( without 
any simulations) to adapt the J network. The resulting 
J network would be quite similar to the adaptive po- 
sition evaluator used in Samuels' checker playing pro- 
gram, or to the adaptive critic used by Barto, Sutton, 
and Anderson (1983). The work of those authors proves 
that adaptive optimization is already a practical (or 
superior) alternative to conventional methods. Sutton 
has also noted the need for an adaptive model to predict 
the environment when dealing with more complex 
problems, like those of  robotics in realistic factories. 
Optimization through backpropagation could also be 
implemented in more conventional software for use in 
policy analysis, business decision-making, and the like 
( Werbos. 1986 ). 

The network in the bot tom box would simply de- 
termine the actions, u (t). It would use the derivatives 
of J (propagated back through the other networks ) as 
its output evaluation component.  

3. PROPAGATING DERIVATIVES IN 
RECURRENT SYSTEMS 

Overview 

This section will derive a procedure for calculating 
the derivatives of  any evaluation function L with respect 
to the weights and intermediate variables in a recurrent 
network. The function L could represent prediction 
error, or a J function (as defined above),  or simply a 
function we are interested in studying for its own sake. 
It can be any differentiable function of the network 
variables (as in Equation 9 ). 

The purpose of this section is simply to generalize 
the dynamic feedback procedure, for use with networks 
more general than (7) .  This generalization could be 
used with some of the complex architectures from Sec- 

tion 2, but we will deliberately avoid limiting ourselves 
to those special cases (just  as we did in formulating 
equation 9 itself). In order to visualize this generaliza- 
tion. it may be easier to think in terms of simple su- 
pervised learning problems (as in Equation 10) where 
the function F can be represented as a recurrent net-- 
work ( not a feedforward network). In other words, this 
generalization allows one to adapt networks just like 
(1) and (2), except that all neurons are allowed to input 
the results of all other neurons, without regard to which 
neuron is earlier and which neuron is later. As the critics 
of backpropagation have pointed out. a single layer 
network of this kind can represent very complex al. 
gonthms which cannot be represented in simple feed- 
forward networks: for example, it could learn to rep- 
resent the specific, iterative calculations which are fhn- 
damental to applications work in adaptive object 
recognition and speech recognition. 

Rumelhart  et al. (1986) define recurrent networks 
as networks in which a unit can take input from units 
downstream from them. though with a t ime delay. In 
describing their basic framework (Rumelhar t  et al.. 
1986. Chap. 2), they stress that the time delay is in- 
tended to be an approximation to a continuous-time 
system, the kind of  system which Grossberg (19761 and 
Hopfield and Tank (19861 have written about. They 
assume that a pattern (p) is presented to the system. 
and that the experimenter can wait until the state of 
the network settles down in response to that pattern. 
Their general framework allows for some relation be- 
tween a pattern p and earlier patterns, but they admit  
that the existing work (like their Chap. 81 does not 
really address that possibility. 

Figure 3 illustrates the R H W  approach to back- 
propagation in recurrent networks. For each pattern. 
the vector x is allowed to "settle down" for S cycles of  
the iterative procedure used to approximate  a self-con- 
sistent state of the network. Backpropagation (Equation 
9. in effect) is applied in its usual form by treating 
variable values in later cycles as distinct variables, 
downstream from earlier versions of the same variable. 
(For example, xi~p, s + 11 is treated as a distinct vari- 
able, different from and later than xAp ,  s).) To calculate 
derivatives all the way back to the start (x (p ,  0)) ,  ii is 
necessary to work back through all the intermediate 
values: that, in turn. requires that the intermediate val- 
ues be stored. For further details. ~ e  Rumelhar t  et al. 
(1986). 

For our purposes, it is extremely important  to allow 
for the interaction between different patterns p, because 
these patterns may refer to different states in the evo- 
lution of the external environment across time. 1 will 
use the letter " t "  (instead of "p"~  to refer to t ime in 
the external environment,  not in the system per se. 
Some critics have argued that the brain cannot possibly 
track discrete time intervals or distinct patterns the way 
a computer  might; however, Purpura (in E O. Schmitt. 
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FIGURE 3. RHW approach to recurrent networks. 

1970, 197 l) has observed discrete clock pulses, of the 
required sort, going from the nonspecific thalamus to 
the giant pyramid cells of the cerebral cortex. Foote 
and Morrison (1987) have observed similar pulses from 
subthalamic centers. 

In our framework (illustrated in Figure 4 ), there are 
actually two kinds of recurrence to be considered: 
• Time lags, in which the present system output is a 

function of earlier signals from the previous external 

time period (t - I). 
• Grossberg/Hopfield recurrence, in which there is an 

immediate response to other units. 
Our approach still requires the storage of a complete 
database, including at least X( t )  and y( t  - 1) for all 
external time intervals (patterns) t. Such a database is 
normally built up anyway in standard statistical analysis 
programs, and we have handled this kind of recurrence 
in our earliest work (Werbos, 1974). Such a database 
is not built up in true real-time systems like the brain, 
to be discussed at the end of this section. 

For the second kind of recurrence, we will calculate 
the required derivatives directly, without using knowl- 

edge of intermediate approximations; this is the main 
difference between the current paper and earlier forms 
of backpropagation. As in conventional backpropaga- 
tion through feedforward networks, the cost in time 
and the cost in storage are both about the same as the 
costs of running the network in the forwards direction. 
Two versions of this method will be presented--a ver- 
sion aimed at aggregate-level calculations (see Equa- 
tions 30, and their application in Section 4), and a 
version aimed at continuous-time neural networks 
(Equations 31 and 32, and auxiliary equations). 

When the second kind of recurrence is present, but 
not the first, the need for storing earlier observations 
disappears. In that special case, if the elementary func- 
tions are all (nonhidden) model neurons, our method 
reduces to something nearly equivalent to the work of 
Almeida (1987 ). (Unfortunately, I have yet to obtain 
Pineda (1987), which may also be related.) 

This section will begin with a review of our earlier 
approach, used when only the first kind of recurrence 
was present. Then we will propose a method for dealing 
with Grossberg/Hopfield recurrence. This method will 

X(t) 

X(t-1 ) 

J 
"1 

+ 
J x(t- 
-i 

~I' I y(t) 

x(t) ? 

• t ~l- ....... I~ L(t-1) 

l y(t-1) 

,. 1) ? 

FIGURE 4. Proposed approach to recurrent networks. 
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be expressed in general form, allowing for both kinds 
of  recurrence. There will actually be two variants of  
the method, one where the recurrence is "solved for'" 
by an equation-solving system, and one where contin- 
uous-time differential equations are assumed to ac- 
complish the same result. 

The methods discussed here were derived as a gen- 
eralization of  dynamic feedback, though the aggregate 
form could have been derived as a generalization of the 
"adjoint" method used by Alsmiller et al. ( 1981), which 
I was aware of at the time. Section 4 will demonstrate 
an application of  the aggregate form of this method. 

Review of Classical, External Time Lags 

This subsection will present a formulation of dy- 
namic feedback which is technically a special case of 
(9). However, new notation will be introduced in order 
to make the time dependencies in Figure 4 more ex- 
plicit. 

Let us assume the existence of a network which im- 
plements a functional relationship F: 

y ( t ) = F ( y ( t  - 1 ) . x ( t ) , t ) ,  t = l t o t  ~131 

where y has n components and X has m components. 
The function F is still assumed to depend on the pa- 
rameters b, but there is no need to display that depen- 
dence explicitly here. We no longer need to put a caret 
over the output vector, y, because the true target vectors 
will be left implicit; in fact, the discussion here will 
assume an arbitrary differentiable function L(y(  t ),t ), 
which may or may not have anything to do with forecast 
error or matching error. Our goal will be to calculate 
the derivatives of L', defined as the sum of L across all 
times t. (Actually, the calculations will work even if we 
only know the derivatives of the function, rather than 
the function itself.) 

The vector y in (13) would typically include both 
the external outputs of the network and a set of auxiliary 
variables which serve as a kind of memory from one 
time period to the next. In some applications, such as 
economic forecasting, the auxiliary variables will 
sometimes be filtered representations of unknown, ex- 
ternal variables. In applications like real-time control 
systems, where the external time lag may be less than 
a second, the auxiliary variables may represent a kind 
of reverberating short-term memory as described by 
Hebb (1949). In some applications, there is no need 
for auxiliary variables at all. 

In order to represent F as a network, we will assume 

that: 

x j ( t )  = J j ( X l u )  . . . .  x j ~ - t ( t ) ) ,  ( t 4 )  

where the x~(t) are components of a vector x( t )  which 
represents the total set of variables available as inputs 
or outputs to the network. Equation (14) looks like 
(7),  superficially, but the references to a common time. 

t, make this a more specialized formulation: Equation 
7 allowed for any variable x j ( t )  to receive inputs from 
any variables at earlier times. 

In parallel with (7),  we will again assume that the 
external inputs are in the front of this network: 

. \ , ( t )  = X , ( t )  ~ = ~ t~  ; r  ( t 5 )  

but we will leave the parameters b implicit for now. We 
will also assume that the components of y ( t - 1 ) come 
next in the x vector, followed by h hidden units, such 
that: 

x , , , 4 , ( t )  = 3 ' i ( /  t )  ~ : '  ~ ~ o n .  ~16)  

and j in ( 1 I) is assumed to run from m + n -r 1 to m 
~- n ~- h - n. so that: 

.Vi( l ) = x,,,+.+/,+,{ l ) ~ t 7 

Strictly speaking, if we assume that it = 0, we would 
arrive at a more general-looking structure, more like 
( 7 ) and (9); however, this formulation gives us the free- 
dom to set h greater than zero. which will be useful 
when dealing with continuous,time systems. 

Next, in order to calculate all the derivatives of L'. 
we have a choice of  two approaches. Both approaches 
force us to think of x i ( t )  across all t and all i as the 
system of variables, with variables later in time always 
having a higher implied index (when we apply Equation 
9) in this greater system. (See Werbos. 1974, 1988a for 
some simple examples.) 

In the first approach-- the  aggregate approach--we 
treat (13) as the equation of the system, and treat the 
components of the vector F as the elementary functions. 
In this case. the application of (9) yields: 

OL " 
Zk(t) = ~ (t) + ~ Zj(t -~ t)F'~(t ~ 1). (18) 

where Z k ( t )  will contain the ordered derivative of L '  
with respect to Yk (t), where the equation is to be eval- 
uated first for t = T (for all k), then T - 1, and so on. 
where the rightmost (summation) term is to be treated 
as zero for t + T. and where F~k is the derivative of Fj 
(the j th  component of F) with respect to Yk- The pa- 
rameter derivatives--what we really need in most ap- 
pl icat ions-also follow directly from (9):  

OL ~_ " OFAt + 1) 
2~ Ob~ ~ Z i ( t  + 1) . . . .  Oh, (19) 
z - I  i=1 

Superficially, (18 ) may appear as complex as (9) itself 
(since the sum over the right-hand side includes the 
ordered derivatives, Z j ( t  + 1), for all subsequent vari- 
ables in the system at a/l times); however, there are 
many applications (like Section 4) where eaehparam- 
eter b~ will appear in only one or a few o f  the functions 
Fj, so that the summation over j may be very sparse. 
(Note that we still assume that F depends on the pa- 
rameters b, as discussed above, even though this de- 
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pendency has been implicit until now.) The summation 
over t ime can be carried out efficiently as a running 
sum, backwards in time, in parallel with (18); we will 
show how this can be done in (35c), of  Section 4, after 
we have derived a version of this equation for use with 
recurrent systems. This method of calculating deriva- 
tives is very similar to earlier methods from control 
theory. 

In the second approach (which is far more efficient 
for true networks), we treat (14) through (17) as the 
equations of  the system, and we treat the ~ in these 
equations as the elementary functions. This approach 
(used in Werbos, 1974) is essentially the same as the 
R H W  approach for recurrent networks, except that we 
feed the derivatives back to handle external time inter- 
vals instead of internal cycle times in iteration. 

Applying (9) to the set of all variables over space 
and time yields the following set of equations to be 
evaluated as a set, first for all variables at t = T, then 
f o r t =  T -  1 , a n d s o o n :  

zm+~+h+~ (t) 

OL ,,+~+h+n 
= ay--~ It) + Z zAt)  - -  

j~m+n+h+k+ I 

ofj 
OXm+n+h+k 

(t) + Zm+k(t + 1), 

k =  nto 1 (20) 

where the rightmost term is assumed zero for t = T, 
and 

rn+n+h+n 

zk( t )= ~ zj(t) (t) k = m + n + h t o  1. (21) 
j=k+l  

Here the variables zk( t )  refer to the ordered derivative 
of L '  (the sum of L over time) with respect to xk( t ) .  
AS with (9),  these equations can be implemented ef- 
ficiently on a parallel computer  to the extent that the 
original system (Equation 11) could be. In deriving 
(20) from (9),  I am accounting for the fact that yk( t )  
can have a direct causal effect (in our assumed network) 
only on some of the later var iab les - -L  itself (which 
yields the first term),  y j ( t )  variables for J greater than 
k (generating the second term ), and Xm+k (t + 1) (which 
by definition equals Yk ( t ) ,  so that the conventional par- 
tial derivative of Xm+k(t + 1) with respect to yk( t )  is 
just 1 ). Likewise, (2 i) has only one term because these 
components of  x( t )  can only have a direct effect on 
later components of x( t) .  

Finally, the derivatives with respect to parameters 
or weights follow directly from (9),  and may again be 
read off as running sums: 

OL' r . . . . .  h+, Ofj 
Ob----~i = ~" E zj(t) -~i (t) (22) 

/=1 d=i+I 

The summations in (20) through (22) are generally 
very trivial and sparse, so long as the functions ~ only 
have a few inputs each. 

These equations can be implemented most quickly 
if a// components of  x( t )  have been stored for all t; 
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however, the time cost is increased by only a fixed per- 
centage (circa one-third?) if only the lower-order com- 
ponents are stored and the others regenerated at each 
time t while going backwards. (At most, Xl through 
Xm+n are needed, but less will be needed if some com- 
ponents of  y (t - 1 ) are for external use only; to exploit 
this, it would help to locate such components in a block 
with higher index numbers in the vector y.) 

Networks Containing Both Types of Recurrence 

Equation (13 ) may be generalized still further as: 

F ( y ( t ) , y ( t -  l), X(t), t) = 0. t = l t o T  (23) 

where F has the same dimensionality as y. As before, 
the parameters h are still arguments of  F, but are left 
implicit. A system of this sort can yield forecasts only 
if we have some method available to solve these equa- 
tions for y( t )  when we are given values for y( t  - l) 
and for X( t )  and b. In econometric forecasting, this 
system of equations (one equation for each component  
of F) may be typed into a software package such as 
Troll (MIT, 1980) or SAS (1986), which then generates 
the forecasts. In neural nets, (23) may result from a 
hybrid continuous/discrete system such as: 

y,(t) = F,(y(t) ,  y(t - 1), X(t). l), (24) 

where we count on the mechanisms described by Hop- 
field and Tank (1986) to move y(t)  quickly to a solution 
which fits (23). (Hopfield's mechanism works only for 
symmetric networks, but- -af ter  establishing definitions 
in Equations 2 6 - - I  will cite an older, more general cri- 
terion, which is useful here but often difficult to apply.) 
In neurological terms, (24) would reflect the idea that 
some cells have a totally continuous-time response while 
others are partly controlled by some kind of clock pulse. 

Before we can calculate the ordered derivatives of  
L', using either (18 ) or (9) directly, we need to calculate 
the direct causal impact of  changing y(t  - 1) on y(t) ,  
when holding b constant; in other words, we need to 
know what corresponds to the matrix F~ in this situ- 
ation. To calculate this, we may begin by taking the 
total differential of (23), which yields: 

G(t)dy( t )  + H( t )dy ( t  - 1) = 0 (25) 

where 

OFi(y(t), y(t - 1), X(t), t) 
Gij(t) -- (26a) 

Oyj(t) 

OF,(y(t), y(t - 1), X(t), t) 
Ho(t) = (26b) 

a y j ( t -  i) 

Likewise, to use (19), we will need to calculate the 
causal effect on y( t )  of  changing b while holding y(t  
- 1) constant; this will be based on an equation like 
(25) but with H ( t ) d y ( t  - 1 ) replaced by J ( t ) d b ,  where 
we define: 
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OF~(y(t), y(t - 1), X(t),  t) 
Jjj(t) = (26c) 

Ob~ 

Note that the matrix G will normally be nonsingular 
if (as we must assume) the original system in (23) can 
be solved for over a range of  different values of  y( t  
- 1). In fact, for continuous-time systems, (24) can 
only converge if  the eigenvalues of  G all have negative 
(nonzero)  real parts. 

Equation (25) leads to: 

dy(t) = - G - t ( t ) H ( t ) d y ( t -  1). (27) 

In formal terms, this is just a linear dynamic system 
(albeit in infinitesimal quantities), which can be treated 
as a special case o f (13) .  In fact, if we had taken the 
total differential of (13), we would have arrived at a 
linearized dynamic equation exactly like (27),  except 
that the matrix Fjk used in (18) would have replaced 
- G -  1H. Therefore, in this special case, F~k of ( 18 ) cor- 
responds to the j k  component  of  - ( G - t H ) .  By sim- 
ilar reasoning, the rightmost term of  (19) corresponds 
with - ( G - ~ J ) .  With these two substitutions into (18) 
and (19), and minor  changes to express the results as 
vector equations, we arrive at: 

Z(t)  = V y L ( t ) -  Hr(t + I)(GT(t + l ) ) - !Z( t  + 1) (28a) 

VbL ' =  ~ --JT(t + I)(GT(t + 1))-~Z(t + 1), (28b) 
t 

where V r represents the vector of derivatives with re- 
spect to the components of  y ( t ) ,  where the recursion 
is from t = Tbackwards again, and where the rightmost 
term in (28a) is treated as zero for t = T. 

As a practical mat te r - -e i ther  in neuron networks or 
econometric m o d e l s ~ w e  do not have the inverse 
( G T(t)) -~ available. Therefore, (28) cannot be used 
directly as a recursion rule to calculate the derivatives. 
However, we can overcome this problem simply by de- 
fining an auxiliary vector w (t): 

w(t) = -GT( t ) - IZ  (t). (29) 

When we solve for Z (t)  in this equation, and substitute 
the resulting expression for Z (t)  into Equations (28) 
(while uniformly shifting back the t ime index in Equa- 
tions 28), we arrive at the following equations which 
can be used to calculate the derivatives ( i f  we invoke 
them in backwards time): 

Z (t) = -GT(t)w(t)  (30a) 

Z( t  - 1) = VyL(t - 1) + HT(t)w(t) (30b) 

~TbL'= ~ JT(t)w(t). (30c) 
t 

Equation (30a) still must be solved for w;  in other 
words, Z (t)  is the input to the required calculation and 
w(t)  is the output. However, this can be done by the 
same mechanism used to solve (23) in the first place, 
This leads to two versions of  the method,  depending 
on the original solution method. 

With econometric models, or other systems solved 
on a computer  by an equation-solving package, the 
procedure is very straightforward. One can simply write 
down Equations (30) explicitly, and insert them into 
the same equation-solving package. Section 4 will pro- 
vide an example of  how one can do this. for a moder- 
ately large model. With fully recurrem nets, unlike (18) 
and (19), the aggregate formulation can be just as ef- 
ficient as the network formulation, ! /we take care to 
break down the equations of the model into elementary 
relationships (whose sparsity will be accounted for in 
a good equation-solving package); in other words, we 
can expand the vector y to include the intermediate 
variables, and to enforce the sparsity of  the matrices 
G. H.  and J .  In this manner, a singe-layer recurrent 
network can represent anything that a multilayer feed- 
forward network can. (Strictly speaking, however, we 
did break down a few of  the longer model equations in 
our application, as will be discussed.) Notice that (30b~ 
and (30c) are really just a conventional derivative cal- 
culation, as in conventional backpropagation (Equation 
18), using w in place o f Z ( t  -~ I). 

With true continuous-time neural networks, based 
on (24), we need to formulate a network representation. 
translate (30b) and (30c) into a network version, and 
then use a continuous-time procedure to solve for the 
vector w. To define the network itself, we may continue 
to use (14) through (17) with the proviso that those 
functions f k ( t )  which represent components of  the 
vector y (t) may also include a dependency on any other 
component of  the vector y (t), regardless of  w hose index 
is the greatest. 

To translate Equations (30) into a network version. 
we begin by finding a continuous-time version of (30a) 
which, at any t ime t, is the first equation to be invoked 
when calculating derivatives. We cannot deduce a con- 
tmuous-t ime version from (30a),  but we can deduce 
that the following equation yields a solution for w which 
is equivalent to that of (30a): 

n 

~,~t) = z .... (t - 1)z- ~ °.J~'~'~+h+J(t)wj(t) ¢31~ 

This equation reaches equilibrium when the time-de- 
rivative on the left is zero, which requires that the right- 
hand side be zero. However, the rightmost (summation)  
term in this equation is really just G rw, because the 
derivatives in that term correspond to our original def- 
inition of G applied to this case; therefore, the right- 
hand side of  (31) will equal zero only when (30a) is 
satisfied. We already know that the eigenvatues of  G 
must all have negative real parts, in order for (24) to 
converge in the first place; therefore, we may be sure 
that ( 31 ) - -which  is linear in the feedback variables 
will also converge. 

Next, we can translate (30b) into a network version 
quite easily if we exploit our understanding of causal 
flows. We may begin by replacing (23) by: 
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OL 
zm+,.h+k(t) = wk(t) + ~Yk (1), k = 1 to n. (32) 

Strictly speaking, this does not match (30b) exactly. 
The L term matches, but the rightmost term in (30b) 
would be zero in this case, and the wk(t)  term requires 
explanation. The point is, if we go on to use (21) and 
(22) as they stand, after having invoked (32),  we will 
get the correct ordered derivatives for the inputs, be- 
cause (30b) and (30c) both require that we add in 
feedback from w. In fact, (30b) and (30c) do not show 
feedback from the L-derivative through H T t o  the lower- 
order derivatives; however, this was due to the exclusion 
of indirect impacts at time t in the aggregate version 
of the net; Equations (20) through (22) should make 
it clear that we do want to account for such effects 
when the network specification permits them. 

In summary, our continuous-time procedure would 
go backwards in time, t, to calculate the derivatives. 
At each time t, it would first invoke (31) through to 
equilibrium, and then invoke (32),  (21 ), and (22), in 
that order, going backwards from later variables to ear- 
lier variables. A hybrid approach would continue to 
use an equation-solver to solve (30), and then proceed 
to (32),  (21), and (22). 

Strictly speaking, we can generalize this arrangement 
still further by allowing hidden units as well to depend 
on components of the vector y(t) .  In order to imple- 
ment (30a), we then need to allocate another vector z' 
of length h, to establish the convention that Z'h.k(t) 
refers to Wk(t), to add the equation: 

h+ n O fro+n+ j 
z'k(t) = ~ z'j(t) (t), (33) 

)= 1 0Xm+.+k 

and to add the following term to the right-hand side of 
(31): 

dJL+,v z'j( t). (34) 
Oyk(t) 

This generalization will not be considered further, be- 
cause its value is questionable in neural applications; 
however, it is necessary to use this generalization, in 
principle, to describe what we did in our application 
in Section 4 (when "hidden variables" were defined in 
order to break up a few big equations). 

In both versions of the method--equation-based and 
continuous--the difficulty of solving for w depends on 
the eigenvalues and sparsity of the matrix G; since this 
is also true for the forwards version of the system 
(Equations 23 or 24), but the forwards version is non- 
linear, the calculation of w(t) should never be more 
expensive than the calculation of y( t )  in the forwards 
system. Likewise, the cost of running (3 I), (21 ), and 
(23 ) should be comparable to the usual costs of running 
conventional backpropagation through one iteration. 
The storage costs (aside from the need to store one 
additional vector, w) are the same as those of back- 
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propagation in a network without the continuous-time 
recurrence. In the case where y( t  - l) is not actually 
used in (23) or (24), so that continuous-time recur- 
rence is the only form of recurrence, there is no need 
to store any information at all from earlier times t. 

Issues Related to Real-Time Adaptation 

Two different adaptation strategies are now used with 
backpropagation, when adapting artificial neural net- 
works. Both strategies involve iterating through the data 
base or training set many times, until the estimated 
values of the weights settle down or the level of error 
is acceptably small. 

Hinton (1987) calls one of these strategies "batch 
learning." In batch learning, each iteration begins with 
a calculation of the derivatives of error with respect to 
the weights, summed up over all patterns exactly as 
indicated in (19). The weights are then adapted in pro- 
portion to these derivatives (or by use of more sophis- 
ticated methods using the derivatives). Then a new it- 
eration begins. Statisticians almost always use batch 
learning, as I have myself when using three-net type 
architectures. The best convergence rates I have seen 
so far with artificial neural networks have involved 
the use of batch learning and sophisticated numer- 
ical methods, even when an O ( n )  storage constraint 
is imposed and the higher cost per iteration is ac- 
counted for. 

The other strategy I usually call pattern learning. In 
pattern learning, one does not wait to calculate the en- 
tire sum in (19 ) before adapting the weights. One cal- 
culates the component of (19) for pattern number t, 
adapts the weights immediately, and then moves on to 
the next pattern. This kind of approach can be used 
with continuous-time or simultaneous-time recurrent 
networks, exactly as it can with feedforward networks. 
When external time-lags are present, however, pattern 
learning leads to an inconsistency between the values 
of y (t) currently available and those implied across all 
time by the new set of weights, after the weights are 
adapted for a given observation; as a result, big learning 
rates could lead to a failure to converge in some cases. 
However, there are similar problems which can lead to 
divergence even when pattern learning is used to adapt 
feedforward networks. (With external time-lags, the 
problem might be reduced by adapting weights only 
during the backwards pass, i.e., backwards through the 
set of patterns.) Because of the current need for small 
learning rates, convergence times have been very long 
with pattern learning, even with feedforward networks; 
however, this merely underlines the need for further 
research, to adapt the methods of numerical analysis 
and to combine the power of backpropagation and 
content-addressable memory (Werbos, 1988b). 

Natural systems, like the human brain, do not use 
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batch learning or  pattern learning. Instead, they use 
real-time adaptation, in which each pattern is available 
only once, and then lost (except for its impact on the 
weights and on short-term memory) .  The patterns are 
experienced in forwards time only. For feedforward 
networks, this is really the same as pattern learning, 
except that only one pass through the database is al- 
lowed. The same situation applies to networks with si- 
multaneous/continuous recurrence only. However. 
when external time-lags are present, our recurrence 
formulas simply cannot be applied exactly in real-time 
adaptation, because of the lack of  a database to go back 
through. A similar problem would apply to continuous- 
time systems which implement a similar recurrent, 
short-term memory and which therefore violate the 
conditions on G given above. (This violation follows 
from the fact that systems which obey our conditions 
allow one to solve for the equilibrium system state as 
a function of present inputs only.) In either case, true 
real-time adaptation would require the use of some sort 
of approximation. 

The easiest and least accurate approximations would 
simply cut off feedback to earlier than one or two ob- 
servations into the past. The accuracy of such approx- 
imations may depend on the loss functions actually 
used, in a complex way. Far better, in theory, is to treat 
the determination of Yi(t) as a long-term optimization 
problem, as if y ( t )  were a vector of actions (like u( t )  
in Figure 2) chosen to as to minimize the sum of pre- 
diction errors over present and future time. To apply 
the optimization methods mentioned in Section 2, note 
that prediction error is normally represented as a sum 
of distinct components (i.e., errors on individual vari- 
ables). Also note that there is no need for an additional 
predictive model; the equations of the existing network 
specify exactly how y( t )  affects y( t  + 1), and so on. 
Implementing the optimization methods of Section 2, 
we would create something like an estimate Ji which 
would serve as a direct, local source of feedback for 
each component yi of the y vector. The details of this 
possibility are beyond the scope of the present paper; 
however, since the action variables, the dynamics of  the 
system, and the utility measures have all been specified, 
it should be straightforward in principle to work out 
these details. Furthermore, since these optimization 
methods all impose costs on the order of O(N) - - l i ke  
backpropagation itself--this should be a workable ap- 
proach. 

This approach should not be confused, again, with 
the use of Figure 2 to optimize overt actions. This ap- 
proach could be used with any recurrent net, emerging 
from the architecture of  Figure 1 or from other archi- 
tectures. When this approach is used to help adapt the 
nets shown in Figures 1 and 2, then the J network used 
to give feedback to the y variables would be quite dis- 
tinct from the J network used to adapt overt actions, 

4. DESCRIPTION OF T H E  APPLICKFION 

Background and Goals 

The work reported here was performed in 1982 for 
the Energy Information Administration (EIA), prior 
to the construction of  a new natural gas supply model. 
It has never been published, since the results were 
mainly for internal use. To our knowledge, this was the 
first successful, operational test of Equations 30 in cal- 
culating the derivatives of a fully recurrent system. 

The purpose of this project was to better understand 
the properties of EIA's previous model of natural gas 
markets, the Natural Gas Market Model (NGMM),  
which had been used in a major study of natural gas 
deregulation (McNicol, O'Neill, & Dickens, 1981 ). The 
first stage of this project was simply to penetrate the 
code of the model, and convert 1500 lines of  FOR- 
TRAN into an explicit, equivalent 73-equation system 
in Troll. corresponding exactly to a 73-component vec- 
tor F in (7).  A concise, consolidated description of the 
model was then published (Werbos. 1981 ). The model 
was then updated to an 83-equation system to reflect 
more recent information on natural gas availability by 
regulatory category (O'Neill & Dickens, 1981) and 
more recent demand forecasts (EIA, 1982). 

The major goal of this project was to evaluate what 
really drove the forecasts of  the model. The model was 
a highly interactive system, dependent on  dozens of 
uncertain parameters and initial values. To vary all of 
these parameters and all of  the variables of the model, 
in all years, would have required hundreds of runs of  
the model. It was easier and more accurate to create 
an "'adjoint model"--replicating the feedback calcu- 
lations implied by Equations (30) which would yield 
the derivatives of a selected model result L with respect 
to al l  parameters and all variables in all years in only 
one run. In other words, dynamic feedback was used 
here simply to calculate derivatives, which were of in- 
terest in their own right as a diagnostic tool in evaluating 
the model. In principle, this kind of sensitivity analysis 
could also be used to locate policy levers which are 
especially important in changing future outcomes. 

Implementation of Dynamic Feedback 

The analysis here was carried out in Troll (MIT, 
1980), a standard software package developed by the 
MIT Center for Computational Economics and Man- 
agement Science. An "adjoint model" was created in 
Troll, representing exactly the calculations implied by 
Equations 30. 

Troll, like most dynamic modeling packages, only 
allows calculations forwards in time. Therefore, Equa- 
tions (30) had to be translated into an equivalent set 
of equations running in reverse time. We defined t '  

= 1990 - t, and re-expressed Equations (30) in terms 
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of t'. For convenience, we assumed that L ( t )  = 0 for t 
less than the terminal year, 1990. (However, a running 
total was created to handle the one instance where we 
were interested in what influenced the sum of a variable 
over time, as opposed to its 1990 value.) Also, because 
we had not yet considered what conventions would lead 
to felicitous notation with continuous-time neural nets, 
we defined w(t)  as minus w(t  + 1) (where the latter 
copy of w is defined as in Equation 29). Substituting 
these definitions for t' and w into Equations (30), we 
arrive at the equations actually implemented in the ap- 
plication: 

Z ' ( t ' -  1) = GT(t ' -  l)w(t') (35a) 

- Z ' ( t ' )  = HT(t  ' -  1)w(t') (35b) 

a(t ') = a ( t ' -  1) - j r ( f _  l)w(t'), (35e) 

where a (0)  will contain the final vector of derivatives 
of L with respect to the parameters. 

In order to implement  Equations (35), we followed 
a straightforward procedure that could be implemented 
quite easily in a package such as Troll. (This was verified 
in 1981 when it was proposed to the developers of  Troll, 
in connection with an ongoing contract with the De- 
partment of Energy; unfortunately, other priorities pre- 
empted this option.) To understand this procedure, it 
would help to consider an example, based on a sim- 
plified version of a few of the model 's  equations: 

#25: exploration(t) 

= bl *(exploration(t - 1))b2,(gas__price(t)/ 

dr i l lp r ice  (t)) b3 

#26: cumulativeexploration(t) 

= cumulativeexploration (t - 1) + exploration (t) 

#49: drill price(t)+ drill p r ice ( t -  1) 

+ b4 + bs*(rig__use(t)/( l  - fig__use(t)) 

#67: indus t rydemand( t )  

= b a s e d e m a n d ( t ) .  (gas__price(t)/base price(t)) b6 

*(industry demand( t -  1)/base demand(t)) b7 

The Troll equation numbers (between 1 and 83) are 
shown on the left. The first three equations describe 
how the utilization of drill rigs affects changes in the 
price of  drilling, which in turn combines with the price 
of  gas to affect exploration for gas. The last equation 
shows how interstate industrial gas demand will differ 
from a previous baseline forecast, if  the actual gas price 
differs from the (base) price assumed in that forecast. 
The model solves to find a price which matches supply 
and demand. Notice how values of  b2 and b7 near zero 
would make the forecasts dependent on conditions in 
the present time, while values near one would tend to 
yield a kind of exponential growth process (because 
outside factors then determine the rate o f  growth  of the 
variables being projected, instead of their actual values.) 

Our first step, in creating an adjoint model, was 
simply to write out all the component equations implied 
by (35a).  To do this in a comprehensible way, we 
adopted a naming convention in which, for example, 
Fexploration (t) corresponded to Z25 (t).  However, we 
simply used W25( t )  to represent W25(t). Following 
this convention, we can calculate Fexploration ( t' - l) 
as implied by (35a) by looking through all the equations 
and looking for occurrence of the variable "explora- 
t ion( t )" ;  if we find one in equation j ,  we calculate 

T G25.j by simply differentiating the equation with respect 
to exploration (t). I f exploration ( t ) appears on the left- 
hand side of an equation, we treat that as an appearance 
on the right-hand side with a minus sign. Applying this 
procedure to the example above, we get: 

Fexploration (t' - l) 

= W25( t ) , ( -1 )  + W26( t ) , (+ l )  + • • • 

Fdrill price (t' - 1) 

= W 2 5 ( t ' ) , ( e x p l o r a t i o n ( t ' -  1)*(-b3/ 

drill p r i c e ( f -  1))+ W 4 9 , ( - 1 ) +  - - . .  

In the first of these equations, the ( -  l) simply came 
from differentiating Equation #25 after exploration (t) 
is moved to the right-hand side. The (+  l) came from 
differentiating the right-hand side of Equation #26 with 
respect to exploration (t). The next equation came from 
a similar calculation; however, note that all references 
to variables convert t to t' - l and t - l to t', because 
of the time reversal. The triple dots here refer to other 
terms which involve the differentiation of other equa- 
tions, not given in our example. Mechanically, it was 
easier to do all this by writing " F n a m e ( t '  - 1) = "  for 
each variable, on a separate line of a large sheet of 
paper, and going through the list of equations in order, 
looking for all unlagged variables and adding terms to 
their equations. 

Equation (35b) was handled essentially the same 
way, except that we looked for lagged references (i.e., 
to variable (t - 1)), differentiated with respect to lagged 
variables, and began the relevant equations with (for 
example ) "Fexplorat ion (t ' )  = ." Equation ( 35 c ) was 
likewise straightforward. After completing this exercise, 
we simply typed the set of equations into Troll, and 
asked Troll to solve the set of equations from t' = 1 
through t '  = T. (This also required the use of  a few 
Troll instructions to create a database made up of the 
original model variables, reversed in time.) 

All of  these tasks were completed in about two days. 
However, because the approach was new, two weeks 
were then used mainly to test, but also to debug the 
results. Modified versions of the model and of its adjoint 
were created in which the free market price of  gas was 
made exogenous, so that the flow of causation and cal- 
culated feedback could be compared at all points in 
the model. Checks against derivatives by brute force 
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TABLE 1 
Parameterl with the Five Biggest Impacts on 1990 Average RelddentialGas Price (i.e., with L' = Gas Price) 

|4/erbos 

Total Parameter 
Description of Parameter Impact Value 

Elasticity of exploratory gas drilling to its previous value (i.e., b2 in 
equation labelled "#25"  above) 

Elasticity of gas development drilling to its prev)ous value 
Elasticity of oil development drilling to its previous value 
Impact of oil production (t - 1) on oil production (t) 
Impact of nonassociated gas production (t - 1) on itself (t) 

$150 8 
$25.1 .8 
$18.8 .9 
$15.6 9 
$14.6 .9 

parameter shifts and variable shifts were used: these 
required trying several step sizes (at least plus and mi- 
nus some amount),  because of problems with rounding 
error and nonlinear effects with the brute force method. 
At this point, the adjoint method has passed very severe 
tests of its accuracy. The adjoint, unlike brute force 
methods, is also "well-conditioned" numerically; the 
reason for this, technically, is that the transpose of G-  l t t  

has the same "condition number"  as G-~H itself(For- 
sythe & Moler, 1967), so that the adjoint is as well 
conditioned as the original model itself. 

Results of  the AnaLysis 

Tables ! through 3 below summarize the results of 
greatest interest. 

Table ! provides a rank-ordering of the five most 
important "items" input to the model, where "items" 
include both parameters and initial values in principle. 
Importance is measured in terms of "Total Impact." 
defined as the change in residential gas prices which 
would result from setting the item to zero (assuming 
no change in the derivative). From an economist's point 
of view, the "Total Impact" as defined here is just the 

elasticity of gas prices with respect to each item, mul- 
tiplied by the base case residential gas price for t 990. 
Out of the 35 most important items only two involved 
the demand for natural gas, and two involved initial 
values for 1979: thus the results of the model were 
clearly driven by supply-side assumptions. 

Six other 1990 outcome variables were also exam- 
ined with the same adjoint model: (a) DEMAND, total 
U.S. wellhead gas demand in quadrillion Btu; (b) 
CUMEXTRA. cumulative supplemental gas (potential 
shortages) over 1979-1990; (c) PSUPPLY, the unregu- 
lated wellhead price of gas; (d)  RN.NAGAS, proved 
reserve balance of nonassociated gas; (e) SUSGASB. 
free-market domestic gas production; and ( f ) SDEEE 
U.S. production of gas from 15,000 feet or deeper. The 
results with these other measures of  outcome were sim- 
ilar to those of Table [. but even more tilted towards 
the supply-oriented items input to the model. 

The adjoint model also printed out  information 
about the dynamics of the effect of each item, as shown 
in Table 2. The 1979 row of Table 3. like all the numbers 
in Table l, reports the impact of  changing the item on 
changing the outcome variable. This derivative essen- 
tially answers the usual question: "'If you change this 

TABLE 2 
Ordered Derivatives of DEMAND with Respect to Three Items Over Time 

Elasticity of Industrial 
Gas Exploration Ratio for Gas Demand 

to its Past to Oil in Lag Factor 
(b2 in Equation #25) Oil Production (b7 in Equation #67) 

Parameter Value .806 

Ordered Derivatives (z~(t)) From Year 
1990 0 
1989 - . 5  
1988 1.8 
1987 9.0 
1986 22.0 

1985 40.0 
1984 63.0 
1983 89.0 
1982 118.0 
1981 150.0 
1980 184.0 
1979 222.0 

.735 

0 
2.5 
2.1 
1.7 
1.3 
1.0 
0.7 
0.6 
0.5 
0.4 
0.2 
--.9 

.69 

0 
" ,3 
- - , 4  

.6 
- , 7  

" -8 
- - ,9  

- . 9  
" ' . 9  
- - .9  

- -°9  
.9 
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input to the model by one unit, while keeping all the 
other inputs as they are, how much will the outcome 
change?" The 1985 row, however, answers the question: 
"If  you changed this parameter by one unit in 1985, 
and afterwards, but used the old value for it before 
1985 (still holding the other items constant), how much 
would the outcome change?" (Likewise, for variables, 
the 1985 row reports the impact of an "autonomous 
change" in 1985, such that the other variables in 1985 
are unchanged.) The main purpose of this table is to 
illustrate the diagnostic value of ordered derivatives in 
understanding how any system behaves over time. 

Table 2 shows clearly that the gas exploration elas- 
ticity acquires its importance because of its cumulative 
effect over time. Like the population growth rate in 
population forecasting, this parameter has a greater 
impact on the forecast as the forecast interval grows. 
For the same reason, random errors in estimating this 
parameter will lead to cumulative errors in forecasting 
almost any of the outputs of the model. 

The impact of the industrial demand lag term also 
grows with time. This parameter, like the exploration 
elasticity, is an "inertia" term; it indicates how much 
industrial gas demand is affected by its own past value. 
However, after a couple of years, the rate of growth of 
its importance is greatly damped. This would appear 
to mean that the "memory"  on the demand side is 
quickly overshadowed by the impact of current prices 
on demand, so that the accumulation of impact is re- 
duced. This pattern of a declining rate of growth in 
impact applies to most parameters in the model; impact 
grows with time, though at a decelerating rate, because 
more time simply adds to the points where the param- 
eter affects the system, usually pushing the system in 
the same direction. The rate of growth declines for most 
but not all parameters, because of systems dynamic 
effects beyond the scope of this paper; if the system 
under study were "stationary," however (always decay- 
ing to the same equilibrium no matter what its initial 
state), then the rate of growth would eventually decline 
for all parameters. 

Finally, Table 2 shows that the "ratio for gas to oil 
in oil production" declines steadily in importance as 
we go back to 1980. Steady decline is typical for the 
impact of a variable, but it is very unusual for a pa- 
rameter. In this case, the direction of the immediate 
impact reverses between 1990 and the preceding years, 
perhaps because the direct impact in 1990 depends on 
the size of this parameter RELATIVE TO variables 
increased by the parameter before 1990. This parameter 
is odd in another way: in 1979, there is a sudden "blip" 
in the impact of this item, and of a few other items. 
This "blip" appears due to the equation which enforces 
a fixed price of drilling in 1980, when all the rest of 
the variables are treated as model predictions; changes 
in a parameter can force changes in the 1980 values of 
the variables which have nothing to do with the causal 

TABLE 3 
Results of Different Values for Elasticity Parameter (b7) 

Elasticity 
(Exponent) 

1990 Average Residential 
Gas Price in 1979 Dollars 

. 8 0 6  $7.30(actualforecast) 

.807 $7.13 

.816 $6.18 

.796 $8.23 

impact of the parameter, because of the equation forcing 
the 1980 drilling costs to not be changed accordingly. 
Note that this kind of startup problem affects the sen- 
sitivity of a model, regardless of what method is used 
to test the sensitivity; it can be a serious problem in 
interpreting the results of"what  i f "  analysis based on 
changes in model assumptions, for many models. 

All of these "sensitivity coefficients" theoretically 
represent the effect of small changes from the base case 
(continuation of the Natural Gas Policy Act). To verify 
the large-scale importance of the most important pa- 
rametermthe elasticity of exploratory gas drilling to its 
own past valuemthe original model was rerun for four 
different values of the elasticity. These results are shown 
in Table 3. 

According to the original model documentation, the 
standard error of this exponent was .08, much larger 
than the changes made here. This result did not nec- 
essarily invalidate the model, for reasons beyond the 
scope of this paper; however, it did lead to the conclu- 
sion that attention should be redirected towards the use 
of new statistical methods to estimate this kind of pa- 
rameter more accurately, and towards possible respe- 
cification of the equations they appear in. The new 
methods cited in Section 2 exploit the phenomenon of 
cumulative error, and use multiyear tests of forecast 
error, in order to arrive at more accurate parameter 
estimates which lead to less cumulative error in fore- 
casting. Previous research on these methods (Werbos, 
1974, 1983a; Werbos & Titus, 1978) suggests that this 
model was far from unique in this weakness, but was 
typical of a large class of econometric models. 

Conclusion 

A generalization of dynamic feedback (the central 
component of "backpropagation") to deal with recur- 
sive ("simultaneous") time-dependent networks has 
been developed and tested, and has led to applications 
of importance to practical econometric forecasting. 
These applications in turn point to the importance of 
using new loss functions instead of regression when 
estimating many models; the use of these loss functions 
tends to require dynamic feedback for efficient, reliable 
implementation. 
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