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S u m m a r y - - A n  exact solution is presented for the long rod penetration equations first formulated 
by Alekseevski in 1966 and independently by Tate in 1967. This analytical solution allows a faster 
and easier solution of the penetration equations,  since stability considerations associated with any 
numerically integrated solutions are avoided. Additionally, an analytical solution provides greater 
insight into the penetration mechanism than a comparable numerically integrated solution. 
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P = depth of penetration 
R = target resistance 
t = time after impact 

U = speed of rear of penetrator 
u = normalized speed of rear of penetrator (U/Uo) 
V = penetration velocity 
v = normalized penetration velocity (V/Uo) 

f, '2 W = an integral function of five parameters, WIB, C, E, yt ,  ),2t= E explBy E - Cy -~) dy 
'1 

Y = penetrator yield stress 
y = dummy integration variable 

y~ = dummy integration lower limit 
Y2 = dummy integration upper limit 

z = transformation variable, ~ = ux/7 + ~ 1 1  - 7) 
z~ = terminal value of z 

7 = Pt /P,  
0 = transformation variable 
p = density of rod and target under special case of Pt = ,Or 

p~ = rod density 
pt = target density 
E = 2 ( R -  Y)/(p~U2o) 
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= resistive stress of rod and target  under  special case of R = Y 

¢h - t r anformat ion  varbiable  

A subscr ipt  '0 '  denotes  ini t ial  value 
A dot ted  quan t i ty  represents  the t ime der ivat ive  d/dt 
A double  dot ted  quan t i ty  represents  the second t ime der ivat ive  d2,,'dt 2 

I N T R O D U C T I O N  

The impact of a long, slender, eroding rod at high speed on a thick semi-infinite target 
was initially formulated by Alekseevski [11 and Tate [2,3]. The governing equations, using 
the notation of Wright and Frank [4], are: 

L = V - U ,  

L U  = - Y/p,, 

~pr(U - V) 2 + Y = ½Pt v2 + R, 

and 

( l )  

(2) 

(3) 

P = v, i4) 

where U is the speed of the rear of the penetrator, L is the instantaneous penetrator length, 
V is the penetration velocity, P is the depth of penetration, p, is the penetrator density, 
Y is the penetrator yield stress, p, is the target density, and R is the target resistance. In 
the equations, a dotted quantity represents the time derivative, d/dt.  

Wright and Frank [4] and Frank and Zook [5] discuss these equations in detail, 
including the assumptions made in the derivation and approximate solutions. Our intent 
is to analyse the mathematical, not the physical, aspects of Eqns (1)-(4). Basically, L, U, 
V and P are the unknown, dependent variables, t (the time) is the independent variable, 
and Pr, Y, Pt and R are known constants. These equations are commonly used to solve a 
multitude of rod/jet impact problems. 

T H E  S O L U T I O N  

An exact analytical solution of Eqns (1)-(4) for L, U, V and P is now obtained. From 
Eqn (3), 

v = , (5) 
1 - ?  

where, if U o is the initial (known) penetrator velocity, v = V/Uo, u = U/U o, V = Pt /Pr  and 
E = 2(R - Y)/(prUg). The minus sign is chosen for the radical in the solution of the quadratic 
Eqn (3), to guarantee that V and U remain real, with V <  U. Note that for the case 
R > Y (Y~ > 0), the minimum admissable value of v is zero, corresponding to the moment 

that penetration ceases, which occurs at u = x,/E. For  the case of R < Y (Y~ < 0), the minimal 

admissable value of u is - x / Z ~ ,  in order to keep the root real in (5). In this case v = u, 
corresponding to the situation where rod erosion ceases, and rigid body penetration 
commences. 

Next, from Eqn (2), with K = Y/(p, Ug), 

L6 = -- K Uo. (6) 

Differentiation gives 

Lfi + fiL = 0, 

and the solution for dL/d t ,  eliminating L, is 

L -  KU°i i  
fi2 
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Alternately, from Eqns (1) and (5), 

L -  Uo {uT-  , j~ .2  + Z(l - 7)}. 
(l - 7 )  

Combining these two expressions to eliminate d L / d t  gives 

fi _ 7ufi &x/Tu 2 + Y~(1 -- 7) (7) 

K 0  - 7)  K ( I  - 7)  

Straightforward integration yields 

ln(ti{uw/7 + x/Tu 2 + Z(1 - 7 ) }  ~'/2r,/7-) - 

where G is a constant  of integration which results from evaluation of the integral at the 
onset of penetrat ion,  when u = I and ~ = rio. Note  that rio, which equals (I /Uo) dU/d t lo ,  
and has dimensions of [ l / t ] ,  can be evaluated from Eqn (6) as t~ o = - K Uo/L o. The constant  
G may be expressed as 

G = N + I n M + I n ~ o ,  

where" 

7u 2 u \ / y u  2 + Y41 - 7) + G, (8) 
2 K ( 1 - 7 )  2 K ( 1 - 7 )  

and 

where 

1 
B =  

8Kx/~ (x/~ + 1)' 

E 2 ( 1 -  7)(V/y + 1) 
C -  

8Kx/T 

The use of the t ransformat ion (10) produces a differential equat ion (11), in which the 
variables z and t are now separable. If integrated from time 0 to some finite time t in the 
penetra t ion process, the limits on z will vary from its initial value, when u = 1, of 

Zo = (x/~ + x/7 + E(1 - y)) 2, 

to some intermediate value z. For  the case of R > Y, the terminal value of time at which 

M = { G  + G + ~:(1 - 7))~/~'~,/.  

N = "/~ + ~:(1 - ~) 
2K(1 - 7) 2K(1 - ~)' 

By substituting the constant  A for the exponent ,  E/(2Kx/7) ,  Eqn (8) may be expressed in 
the following length nondimensionalized form: 

lnF.~ {u,fi + N/yu2 + E ( 1 -  ?)}a]  ?u 2 u ~,fTu2 + E ( 1 -  7 ) +  N. (9) 
LUo M " - 2 K O - 7 )  2 K ( 1 - 7 )  

By introducing the following transformation variable z ,  

x//z = ux//7 + x//Tu 2 + E(1 - 7), (10) 

Eqn (9), under the t ransformation (10), yields 

(zla- 1)/2 + E(1 - 7)z (A- 3)/2) exp(Bz - C/z)  dz  =- F dt ,  (11) 
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the governing equations are applicable occurs when penetration ceases at ~, = 0, in which 

case u = x//Z and the terminal value of z, expressed as z X, is given by 

zx = E(\/ ; ,  + 1) 2. 

For the case of R < Y, the long rod penetration equations are only valid (without 
modification) to the time at which the penetrator begins rigid body penetration, in which 

case u = v = , , / -  E/y, and the terminal value of z becomes 

z . =  + 1) 2 

Note that z is always positive, since Z is positive for R > 1I, and ( - Z )  is also positive for 
R < Y .  

Equation (11) may be further simplified by letting 

~) = 2 ( A +  11/2 

in the first integral over z and 

0 = Z (A - 1) /2  

in the second integral over z. Under these transformations, and letting E 1 = 2/(A + 1) and 
E 2 = 2 / ( A -  1), the integration of Eqn (11) reduces to 

f: fo E1 exp(B¢ ~' - CO-E') dq~ + 5!(1 - } , ) E  2 exp(B0 E2 - CO -e2) dO = F dt. (12) 
0 O 

The solution is now reduced to a straightforward integration, though it requires evaluation 
of an exponential integral which, in theory, is a tabulated function of five input parameters. 
Defining the function W as 

W(B, C, E, y~, y2) = E exp(By E - Cy -e) dy (13) 

the solution for t becomes simply 

t = [W(B, C, E~, 4)0, c~) + Y~(1 - ?)W(B, C, E2, 0o, O)]/F. 

In practice, our function is evaluated by expanding the exponential function in Eqn (13) 
in a power series and integrating term by term to the desired degree of precision. The 
result is z as an implicit function of time variable t. 

The number of power series terms required for convergence of our W function varies a 
great deal with the input conditions to the problem. In particular, the evaluation of our 
W function by way of power series can be exacerbated for problems where the penetrator 
velocity overwhelms the strengths of the rod and target materials. Fortunately, problems 
in this velocity range are generally beyond the range of interest for typical long rod 
penetrator impacts. 

Because B is always positive, the first part of the exponential term grows with z. As B 
is made parabolically larger by increasing the penetrator striking velocity U 0, more terms 
are required to make the power series converge. Because it is a binomial that needs to be 
exponentiated, use of n terms in the exponential expansion requires that n ( n - 1 ) / 2  
monomials be evaluated, Similarly, the coefficient for each of the n highest order monomials 
requires (2n) operations to evaluate. Thus, the computational effort required to evaluate 
our W function varies greatly with initial conditions to the problem. 

Typical penetration problems involving significant, but not total, penetrator erosion 
require that 10 to 20 exponential terms be evaluated in order to keep the relative error of 
the time variable in the fifth decimal place. Such calculations require mere seconds of 
computation on a PC. As hypervelocity conditions are approached, the number of 
exponential terms required for the same convergence epsilon may exceed 200 (recall that 
200 exponential terms implies 200 x 199/2 = 19 900 monomials), requiring several minutes 
on a PC. Fortunately, this solution technique need not be pursued for problems in 
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hypervelocity since, under these conditions, the long rod penetration equations approach 
the standard Bernoulli flow conditions, which may be readily solved by hand. 

Having t as a function of z, the normalized rod speed u follows from Eqn (10) as 

z - Y(1 - ~) 
u - (14) 

Equation (5) may then be employed to obtain the normalized penetration velocity v. The 
rate of rod erosion comes from Eqn (1) in the form 

L = Uo(v  - u). 

The penetrator length L may be obtained in the following fashion. From Eqns (1) and 
(2), one obtains 

L _ (u - v)~ 

L K 

Substituting for v and u gives the following: 

L K ( 1 - y )  K(I - y )  

Note the identical form of this relation and Eqn (7), As a result, the solution looks 
nearly identical to Eqn (9), including the definition of constants A, M and N: 

- ln(L/L°)= -ln[{mv/Y + x/~u2 + Z ( 1 -  Y~)}A 

+ ~u 2 u x / ~  + z(1  - ~) + u .  
2 K ( 1 - y )  2 K ( 1 - y )  

Finally, the penetration P is obtained as follows: 

;o fo P = V dt = U o v(dt/dz) dz. 0 5 )  

The quantity dt/dz has been previously obtained in Eqn (11) as 

dt 

dz 

(z(A-1)/2 .q_ ~ ( 1  - -  ~)g (A- 3)/2) exp(Bz  - C/z) 

F 

We may express v in terms of z, using Eqns (5) and (14), as follows: 

These substitutions into (15) produce an expression for P in terms of the W function 
defined in Eqn (13), and the solution for penetration P proceeds in a fashion analogous 
to Eqn (12). 

SPECIAL CASE SOLUTIONS 

Two special cases are considered: 

(a) P r = P , = p ,  and Y = R =  
(b) p,  = p, = p. 
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Special case 

Equation (3) reduces to 

(IA - -  U) 2 = U 2 ,  

with the non-trivial solution u = 2v. Differentiating Eqn (2), and combining the result with 
Eqn (1), as before, yields: 

fi 2ufi 

fi - H '  

where 

4o" 
H -  pug 

Integrating this equation, and evaluating the constant of integration at time equal 0, where 
= rio, which has the value Uo = ( - H U o ) / ( 4 L o ) ,  results in 

1-1 - u 2 7  
a = a o  e x p [ ~ - j .  

Integrating again for u gives the result in terms of our W function as 

e x p ( -  1/H) 
t=  W(1/H,  O, 2, 1, u), 

2rio 

which gives u implicitly as a function of time t. As mentioned above, u = 2v applies, and 
thus determines penetration rate v. Also 

L - - U o u  

2 

and 

- H U  o 
L -  

4~ 

follow directly. To determine penetration P, employ the tactic of Eqn (15), namely 

fu 
P = V dt = U o v(dt/du) du. 

1 

Penetration rate v is known directly in terms of u, equal to (u/2), and dt/du is simply 1/~, 
given by 

dt I [-u 2 - lq 

du-  ao exp[~- - - J  • 

Thus, making use of the term rio = ( -HUo) / (4Lo) ,  the penetration may be computed as 

e=Lo{1- I-u2- exPt --JI 
Special case 

Equation (3), which is no longer quadratic, as in the general case, yields 

1 
v = ~ (u - Z / u ) .  

Differentiating Eqn (2), and combining the result with Eqn (1), and the expression for v 
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above, yields 

Direct integration results in 

ii uf~ Xf~ 
K - 

f~ 2 2u 

[-1 -u2-1 
u = fi°u-a exp L 4K- - J '  

where the exponent A has the value, analogous to the general case derivation, of Z/(2K). 
The variables are separable, and 

u A exp du = t~ o dt. 
1 

This integral is evaluated using the same procedure used for Eqn (11). By letting 

~D ~ u(A + 1) 

the integral reduces to 

l f C F C P 2 / ( A + I ) - - l l d c ~ = ~ O t  ' 
(A + 1) exPL 

1 

the evaluation of which may be expressed in terms of our W function as 

t = 2~1 e x p [ ~ - J W [ ( 4 K )  -1, 0, 2/(A + 1),1 u(A + i)]• 

The evaluation of the remaining variables v, d L / d t ,  L and P follows an analogous approach 
as in the  general case• 

CONCLUSIONS 

An analytical solution to the long rod penetration equations for long rod penetration 
is offered. The general case is solved, as well as two special cases in which some of the 
target and penetrator parameters (e.g. density and/or strength) are equal. This analytical 
solution allows a faster and easier solution of the penetration equations, since stability 
considerations associated with any numerically integrated solution are avoided. 
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