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SUMMARY

We have determined the sequence of the human interphotoreceptor retinoid-binding protein mRNA from
three separately isolated cDNAs. The sequence is 4.28 kb long and encodes a protein of 1247 amino acids (da)
including a putative signal peptide and propeptide. The sequence is shorter (by about 1.67 kb) than the bovine
mRNA with the major difference in the lengths located in the 3'-untranslated region. We suggest that this
resulted from an insertion in the bovine gene or a large deletion from the human gene. The insertion/deletion
is flanked on either side by sequences that are similar in the bovine and human sequences. Like the bovine
polypeptide, the deduced protein sequence from the human cDNA contains a fourfold repeat, with each repeat
containing about 300 aa. Among the four repeats, the identity is about 30-40%,. The identity between the
complete bovine and human polypeptide sequences is 84%,. The identity between the nucleotide sequences is
83% (excluding the major insertion/deletion). Comparison with the bovine gene indicates that the human
sequence may lack about 5-10 bp at the 5’ end of the cDNA; it, however, includes a poly(A) tail at the 3’
end. Thus, the human sequence is virtually full length, is similar to the bovine sequence, and contains a striking
fourfold repeat.

INTRODUCTION

Interphotoreceptor  retinoid-binding  protein
(IRBP) is a large glycolipoprotein {(Wiggert et al,,
1977; 1979) found in the IPM of the retina

Correspondence to: Dr. .M. Nickerson, Laboratory of Retinal
Cell and Molecular Biology, National Eye Institute, National
Institutes of Health, Bldg. 6, Room 224, Bethesda, MD 20892
(U.S.A.) Tel. (301)496-2669; Fax (301)496-1759.

(Bunt-Milam and Saari, 1983) and to a lesser extent
in the pineal (Rodrigues et al., 1986). The IPM fills
an extracellular space bounded by photoreceptor
neurons, Muller glial cells, and the retinal pigment
epithelium. IRBP is synthesized and secreted by

Abbreviations: aa, amino acid(s); bp, base pair(s); IPM, inter-
photoreceptor matrix; IRBP, interphotoreceptor retinoid-bind-
ing protein; kb, kilobase(s) or 1000 bp; nt, nucleotide(s); oligo,
oligodeoxyribonucleotide; UTR, untranslated region.
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photoreceptor cells and pinealocytes (Van Veen
et al,, 1986) as indicated by the accumulation of
mRNA for IRBP in these cells. IRBP binds retinoids
(Wiggert et al., 1977) and fatty acids (Bazan et al.,
1985) and its physiological role is thought to involve
mediating or facilitating the transport of these ligands
across the IPM (Chader et al., 1983). IRBP is a
single large polypeptide of about 140 kDa (Bridges
et al,, 1986; 1987; Wiggert et al., 1986) and is the
principal soluble protein of the IPM (Pfeffer et al.,
1983). The gene (Borst and Nickerson, 1988) and
¢DNA (Barrett etal, 1985; Liou etal, 1986;
Redmond et al.,, 1989) for bovine IRBP have been
cloned and the sequences of these clones have been
determined. The deduced polypeptide sequence of
bovine IRBP contains 1264 aa and five putative
glycosylation sites, totaling about 147 kDa. The
bovine amino acid sequence consists of four repeats
of about 300 aa and a 55-aa C-terminal extension.
The repeats are 30-40°% identical to each other. The
bovine gene structure implies a mechanism by which
the ancestral gene underwent quadruplication (Borst
et al., 1989).

To study those parts of the IRBP molecule that are
conserved and that may reflect structurally or
functionally important sequences, it is necessary to
determine the sequences of IRBP from several
species. Here we report the isolation of several
human c¢DNA clones and determination of the
human IRBP ¢cDNA sequence. Moreover, we com-
pare the bovine and human ¢cDNA and protein
sequences in depth.

MATERIALS AND METHODS

J. Nathans kindly supplied the human retina
¢DNA library (Nathans etal., 1986) that we
screened. A 900-bp Sa/l fragment from the coding
portion of the bovine cDNA clone pIRBP10-1800
{(Redmond et al., 1989) served as the probe. It was
labeled to about 5 x 10% cpm/ug by random priming
(Feinberg and Vogelstein, 1983; 1984). The library
was screened by minor modification of the method
of Fritsch (Maniatis et al., 1982). The clones were
plaque-purified by four serial rounds of screening.
Three overlapping nonidentical cDNA clones were
subcloned in both orientations into the EcoRI site of
pVZ1 [a vector similar to the pBluescript KS{+)

vector (Stratagene), and kindly provided by S.
Henikoff]. Single-stranded DNA was produced in
E. coli strain BSJ72 (S. Henikoff) using the helper
phage MI13K07. Nucleotide sequences were
obtained using the chain-terminator method (Sanger
et al.,, 1977), [**S]dATP, and buffer-gradient gels
(Biggin et al., 1983). Oligo primers were synthesized
based on prior sequencing runs and a 2.2-kb se-
quence of a human ¢cDNA (Liou et al., 1987). The
sequences were assembled and analyzed using
GELIN, DBAUTO, DBUTIL, ANALYSEQ, and
DIAGON (Staden, 1984a—e; Staden and McLach-
lan, 1982) and the IDEAS program package
{Kanehisa, 1986).

RESULTS AND DISCUSSION
(a) ¢<DNA clones and sequence determination

Roughly one clone in 800 in the human retina
cDNA library contained sequences hybridizing
specifically with the bovine IRBP ¢cDNA probe, a
900-bp fragment from pIRBP10-1800 (Redmond
et al., 1989). This suggests that the IRBP mRNA has
an abundance of roughly 0.1% in the retina, assum-
ing that the production and amplification of the
library has not distorted its proportion. After plaque
purification and subcloning of EcoRlI fragments into
the phagemid vector pVZ1, we determined the nucle-
otide sequences of three clones (pIRBP18-3500,
pIRBP19-1000, and pIRBP20-700). The three
cDNAs are 3500, 1000, and 700 bp long, respec-
tively. The first clone is located centrally beginning
about 577 nt from the 5’ end, the second clone begins
at the 5' end, and the third clone makes up the last
700 nt of the mRNA including some of the poly(A)
tail. The sequences represent an accumulation of
about 15500 nt from 62 gel readings. The sequences
are continuous on each strand of each of the three
clones. There is more than a 3.5-fold redundancy on
average at each position of the sequence.

(b) Nucleotide and amino acid sequences: start
codons and signal peptides

The nucleotide sequence and the deduced amino
acid sequence are shown in Fig. 1. The nucleotide



sequence is 4275 bp long, and includes 23 bp that
were inverted in the cDNA clone pIRBP19-1000 at
the 5’ end, where such inversions commonly occur.
This inversion was corrected by comparison with the
bovine gene sequence and the corrected sequence is
shown in Fig. 1. The protein is 1247 aa long and
includes a putative signal peptide of 17 aa and a
putative propeptide of 5 aa. The sequence begins
with two successive Met codons. These are the first
Met codons encountered in the nucleotide sequence.
In accordance with Kozak’s rules, the first Met
codon bears resemblance to the consensus sequence
found just upstream and downstream from the start
codon (Kozak, 1984; 1986; 1987a,b). The optimal
consensus sequence is CCACCATGG, while the
first Met codon sequence is TCCCCATGA. The
human sequence is very similar to the bovine
sequence of TCCCCATGG.If the second Met were
used, it would have an A in the critical -3 position,
closer to the optimal consensus, but this violates the
notion that the first encountered Met codon is the
start codon. The single bovine start codon aligns
with the first of the two human Met codons, also
suggesting that this first Met codon is the start codon
in the human sequence. Comparing the amino acid
sequences of the bovine and human signal and pro-
peptides, 14 out of 22 aa are identical. Of the remain-
ing differing residues, several appear to be conserva-
tive changes. As in the bovine signal sequence, there
are charged residues near the beginning of the human
sequence followed by hydrophobic residues in the
middle. The human sequence contains a putative
propeptide (GPTHL) similar but not identical to the
bovine sequence (GPAHL). The differences in the
residues of the propeptide may account for the
observed heterogeneity at the N terminus seen
among different species (Redmond et al.,, 1986;
Fong et al., 1986). It may affect the proportion of
shorter and longer forms of human IRBP found in
the IPM (Borst and Nickerson, 1988).

(c) Comparisons of the cDNA sequence

An almost complete cDNA sequence recently
reported (Fong and Bridges, 1988) and a previously
reported sequence (Liou et al., 1987) corresponding
to about one-half of the human mRNA differ in
several important aspects from the one reported
here. The differences between our sequence and the
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longer (Fong and Bridges, 1988) of these sequences
are tabulated in Table 1. These differences include
several base substitutions and two significant read-
ing-frame changes. One of these changes is at the
C-terminal end of the protein and results in a tail that
is 31 aa longer than in our sequence. This tail is not
similar to the bovine polypeptide tail (Borst et al.,
1989). This was determined by use of the SEQDP
program in the IDEAS package (Kanehisa, 1986).
This program assigned a score of -20 to the best
match of the two tails. The average distance (score)
of 20 shuffled sequences was —23 + 6.2 (standard
deviation). In this program, lower scores indicate
better matches. The other reading frame change in
the Fong and Bridges (1988) sequence resuits in 24
aa in the fourth repeat (in our sequence aa residues
978-1001) that are not similar either to the cor-
responding bovine fourth repeat sequence or to
repeat 1, 2, or 3 of the human sequence. In the
shorter sequence (Liou et al., 1987), there is appar-
ently an inversion of about 325 bp at the 5’ end of
their clone. There is no open reading frame in this
orientation, but there is almost complete sequence
identity when inverted and compared to our
sequence and also substantial homology when com-
pared to the bovine gene sequence (Borst etal,
1989). Table I also lists several changes that may
represent normal sequence variations, and not
sequencing errors. These may serve as useful poly-
morphisms in linkage studies; some presently are
being verified as restriction-fragment-length poly-
morphisms in our laboratory.

{(d) Sizes of cDNA and mRNA

Besides these sequence differences, our cDNA
clones extend farther than the Fong and Bridges
(1988) sequence at both the 5’ and 3’ ends. Qur
sequence extends 25 nt beyond their sequence at the
5’ end. At the 3’ end, the Fong and Bridges (1988)
sequence is missing 33 nt which in our sequence
contain the poly(A) signals at nt positions 4241 and
4255. A sequence of at least 40 A residues begins 24
nt downstream from the latter. This indicates that
this clone (pIRBP20-700) was primed in its poly(A)
tail. The molecular size of the human IRBP mRNA
determined by Northern blotting has been reported
to be 5.2 kb in human retinas (Liou et al., 1987). In
our laboratory, we have obtained values of 4.6 kb in
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TABLE 1

Differences between two human IRBP ¢cDNA sequences *

Present work®

Fong and Bridges (1988)

nt position® nt Corresponding nt
nt position®
5'-UTR
60 CT 35 T

110 GT 84 T
Coding region

749 ACC 722 CAA
1508 T 1481 C
2769 GC 2742 CA
3082 GC 3055 CG
3113 G 3086 GG
3123 T 3097 TG
3134 G 3109 AGC
3141 A 3118 AGGAG
3185 G 3166 GA
3549 G 3531 C
3837 C 3819 CcC
3854 C 3837 CG
3'-UTR
4078 T 4062 C
4129 GGGTGGTATTTTT 4113 TGCACCCC
4167 TTTTC 4146 CTTTC
4242 A 4222 C

= This table shows the differences between the two existing human IRBP ¢cDNA sequences.

b The nt positions and nt listed above are taken from the sequence given in Fig. 1.

¢ The numbers in this column correspond to the first nt shown in the immediately adjacent column.

d The numbers in this column are for the first nt in the column on the right and the numbering is from Fong and Bridges (1988). These
columns show the differences in nt at the corresponding positions in the sequence shown in Fig. 1.

normal human retinas and 4.4 kb in cultured human
retinoblastoma (Y-79) cells (Inouye et al., 1989).
From our cDNA sequence, we predict that the
mRNA size should be 4.3 kb excluding the poly(A)
tail. Also, Liou et al. (1989) report a value of the
molecular size of the mRNA of at least 4285 nt,
excluding the poly(A) tail, based on nucleotide
sequence analysis. They did not report a cDNA and,
thus, could not state definitively that the poly(A)
signal they encountered is functional. The first
encountered poly(A) signal in their sequence is the
same as the latter we report here. Our work shows
that this signal is functional. Thus, it seems likely that
the size of the principal species of human IRBP
mRNA is 4.3 kb excluding the poly(A) tail.

(e) Comparison of bovine and hurnan 3’ -untranslated
regions

The 3’-UTR of the human IRBP mRNA is much
shorter than the corresponding sequence from bovine
mRNA. Borst etal. (1989) and Redmond et al.
(1989) report the sequences of the bovine gene and
cDNAs, respectively. In the cow, the 3'-UTR is
1988 nt long. In contrast, the human 3'-UTR is only
416 nt in size. Homology is still evident in the UTRs
and is shown in Fig. 2 by dot matrix analysis of the
two cDNAs. The pattern in the homology suggests
that either there was a large insertion into the
ancestor to the bovine sequence or a large deletion
from the ancestor to the human sequence. There is
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Fig. 2. Dot matrix comparison (Maizel and Lenk, 1981) of the
human and bovine cDNA sequences of IRBP. The bovine
sequence is on the abscissa and the human sequence on the
ordinate. The DIAGON program (Staden, 1984d) was used with
a SPAN of 13 and a score of 11 using the identity algorithm. The
analysis shows a major insertion into the bovine sequence or a
major deletion in the human sequence in the 3'-UTRs. The
diagonal line in the lower right corner of the matrix indicates that
the two cDNAGs retain sequence similarity with each other in the
last 270 nt of their cDNAs. Weak and badly broken lines of
homology parallel to major diagonal can be detected by tilting the
figure and looking along the major axis. These weak lines indicate
the repeat structure which is much more obvious at the protein
level.

sequence similarity in the 3’ portions of the two
c¢DNA sequences; in the final 266 nt there is 75%,
identity. Because of the highly variable size of the
IRBP mRNAs among different mammalian species
(Inouye et al., 1989), it will be interesting to discrimi-
nate between these two possibilities (insertion vs.
deletion) in the evolutionary history of the bovine
and human IRBP genes.

(f) Quadruplication within the protein

As is the case with bovine protein, human IRBP
contains a fourfold repeat structure. Each repeat is
about 300 aa long. This suggests that the ancestral
gene encoded a polypeptide of approx. 300 aa that
underwent a quadruplication. Each human repeat is
about 30-409, identical with the other repeats
(Table II). The evenness in sequence similarity
among the four repeats suggests that they began to
diverge from each other at about the same time. This
suggests that the evolutionary quadruplication may
have occurred within a short period of time, perhaps
near the time of radiation of the vertebrates. It is
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TABLE 11

Similarities among the four repeats of human IRBP

1 2 3 4

Homology score?

1 — -420 -503 -541
2 31.9Y% — -477 —469
3 34.0%, 36.5% — —622
4 358% 345% 37.0% —

% identity®

2 The homology score is based on the empirical weight matrix
(Dayhoff et al., 1979), which is based on substitutions observed
among members within a protein family. The score was calcu-
lated using the SEQHP program in the IDEAS program package
developed by Kanehisa (1986). The lower the score, the greater
the similarity of the two sequences.

b The %, identity is the percentage of identical aa between the
pair of repeats aligned by the SEQHP program.

interesting, however, that repeats 3 and 4 are the
most similar (Table II) among the four human
repeats, and 3 and 4 are also the most tightly con-
served between the bovine and human species
(Table ITI). The closer conservation of these two
repeats, both intraspecies and interspecies, suggests
common evolutionary pressures, and may suggest
common functions of the two repeats somewhat dif-
ferent from the functions of repeats 1 and 2. This
may be important in the determination of the struc-

TABLE III

Similarities between homologous repeats of bovine and human
IRBPs

Number of bovine vs. Identity® Homology
human repeats * (%) score®
1vs. 1 82.0 -1237
2vs.2 80.1 —-1246
3vs. 3 90.8 -1332
4vs. 4 86.2 -1312

2 Repeats 1 through 4 of human IRBP are aa residues 1-300,
301-612, 613-912, and 913-1212, respectively. In bovine,
repeats 1 through 4 are aa residues 1~301, 302-609, 610-910,
and 911-1209, respectively.

b The identity is the % of identical residues found using the
alignments obtained from the SEQHP program of Kanehisa
(1986).

¢ The homology score is from the SEQHP program of Kanehisa
(1986); the lower scores reflect closer sequence similarity.
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Fig. 3. Alignment of the four repeats in the human IRBP sequence. Asterisks indicate that the residues are identical in all four repeats.
The putative carbohydrate sites are underlined. The numbering of the amino acid sequence is the same as in Fig. 1. The numbers on

the right side correspond to the rightmost aa on any line.

ture and location of the ligand-binding sites in several
repeats. The repeat structure of the human sequences
is shown in Fig. 3. There are several residues that are
common among the four human repeats as indicated
in the figure. We presume that these residues are
important for either the function of IRBP or for the
maintenance of the protein structure, although some
of these residues are among those that are abundant
in proteins in general. Other analyses of the human
polypeptide sequence such as secondary structure

and hydrophobicity have been performed (not
shown). These analyses in general show similar
values among corresponding parts of the four repeats
as in the bovine sequence (Borst et al., 1989).

{(g) Conservation of glycosylation sites
IRBP is known to be glycosylated. The bovine

IRBP sequence has five putative sites for Asn-linked
glycosylation at least three of which are glycosylated



(Borst et al., 1989). Previously, we have shown that
at least one of the bovine carbohydrate sites has been
lost from the human sequences (Nickerson et al.,
1988), based on the nucleotide sequence of a human
genomic clone for IRBP. Here we show that the
human sequence contains only two of the putative
glycosylation sites on Asn-183 and Asn-493 in the
first and second protein repeats. Both are in posi-
tions homologous to the bovine glycosylation sites.
The two glycosylation sites are in identical positions
in the human repeats (Fig. 3). They also align in
identical positions with three bovine carbohydrate
sites in repeats 1, 2, and 4 (Borst et al., 1989).

(h) Conclusions

We have cloned and sequenced cDNA clones cor-
responding to the human IRBP mRNA. These
sequences clearly establish the size of the IRBP
mRNA as 4.3 kb excluding the poly(A) tail. The
major evolutionary difference between the bovine
and human IRBP mRNAs is a 1.58 kb insertion/
deletion in the 3'-UTR. As in the bovine case, the
human gene appears to have undergone a quadrupli-
cation of the ancestral gene. Both in human and
bovine, repeats 3 and 4 are the most similar, implying
that their functions may be the most related. In
addition to providing sequence information for
evolutionary comparisons, these clones will help to
define possible polymorphisms. Also, these clones
will be useful in expression systems for the produc-
tion of human IRBP protein or fragments necessary
to study its biochemical properties (e.g., retinoid
binding). Moreover, these clones will be critical in
determining potential epitopes in human IRBP that
might be involved in experimental autoimmune
uveitis (Gery et al., 1986).
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