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Any nonlinear gate, with linear gates, suffices for computation 

Seth Lloyd 
Complex Systems Group (T-13) and Center for Nonlinear Studies, Los Alamos National Laboratory, 
Los Alamos, NM87545, USA 

Received 25 February 1992; revised manuscript received 20 May 1992; accepted for publication 22 May 1992 
Communicated by A.R. Bishop 

Devices that process signals in a linear fashion alone cannot be assembled into a general-purpose computer. But if a set of 
devices capable of realizing linear operations on continuous or discrete signals is supplemented by any device whose output is a 
nonlinear function of its input, the resulting set forms a basis for digital computation. 

1. Introduction 

Any combination of linear functions is itself a linear function: the set of  linear functions is closed under 
composition. As a result, linear effects such as the interference of light or quantum-mechanical superposition 
of states cannot on their own produce even so simple a nonlinear device as a switch. Unless supplemented by 
devices whose output is a nonlinear function of  their inputs, devices that process signals in a linear fashion 
cannot induce signals to interact, and do not allow the construction of a general-purpose computer. Mechanical 
switches, electro-mechanical relays, vacuum tubes and transistors have supplied the required nonlinearity for 
past and present computers. Many other nonlinear effects have been proposed as a physical basis for com- 
putation, including parametric excitation [ 1,2 ], tunnel diodes [ 3 ], the Josephson effect [4,5 ] optical bista- 
bility [6-8] ,  the Kerr effect [9,10], the Aharonov-Bohm effect [ 11-13], etc. (for a review of different pro- 
posals for devices for the basis of  computation, see refs. [ 14,15 ] ). The question then arises, exactly what 
nonlinear effects suffice for computation? 

The answer is that any will do in principle. I f  a set of  devices realizing linear operations on continuous or 
discrete signals is supplemented by any device whose output is a nonlinear function of its inputs, the resulting 
set allows the construction of  AND, OR and NOT gates and suffices for digital computation. So, for example, 
since an interferometer can add amplitudes coherently, in a regime in which coherent linear amplification and 
attenuation of light signals can be accomplished, virtually any nonlinear optical effect in principle allows the 
construction of an optical computer. 

In practice, of  course, not all nonlinear devices are good candidates for actually constructing a digital com- 
puter. In particular, some devices may generate large amounts of noise, or may amplify small deviations from 
the correct signal values, leading to poor signal stability. Nevertheless, a device whose output is a sufficiently 
well-behaved (i.e., continuous and three times differentiable) nonlinear function of its input can in theory be 
combined with linear devices to insure signal stability for small amounts of  noise. 

2. Constructing AND, OR and NOT gates 

Suppose that we have at our disposal three different types of  linear logic gates: (1) gates that produce a 
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constant output, (2) gates that multiply their inputs by constants, and (3) gates that add their inputs together 
(fig. 1 ). By taking these gates with different constants (which for discrete signals must be confined to discrete 
values), and connecting them using wires and fan-outs (gates that provide multiple copies of their inputs), 
we can produce a circuit that realizes any linear function, l(x, y, ..., z)=otx+py+...+?z+J. (Here, the term 
"linear" will be used to refer to any function that can be built up from the composition of linear functions. 
Strictly speaking, such functions should be termed "affine". ) Linear functions are the only sort of functions 
that these gates can produce. 

To give rise to computation, the set of linear operations must be supplemented by nonlinear operations. Sup- 
pose that we have available a logic gate with n inputs (x~, x2 ..... x , ) - x ,  where n>_, 1, and output f (x ) .  Then 
f(x) is linear if and only if the finite-difference expression for the second derivative of f vanishes everywhere. 
That is, f(x) is linear if and only if 

f(x+J,i+~jj) -f(x+J,i)  - f (x+Jj j )  +f(x)=0 (1) 

for all inputs x, for all unit vectors i, j in the space of inputs (a unit vector i is a set of inputs (i~, i2, ..., i,) 
whose length i . i - i  2 +i  2 +.. .+i~ = 1 ) and for all Ji, Jj~0. Equation ( 1 ) states simply that f (x )  is linear if and 
only if the points (x+Jji+Jjj, f(x+Jii+Jjj) ) all lie in a plane (or for n=  1, on a line), for all x, i, j ,  ci~, Jj. 

If our logic gate is nonlinear, then there exist some Xo, some i, j and some J;, J j# 0 such that the expression 
in eq. ( 1 ) fails to vanish when evaluated at Xo. Combining our nonlinear gate with linear gates, we can realize 
a circuit whose inputs are x, y and whose output is A(x, y), where 

f(xo + xJii+ yJyj) -f(xo) - Lf(xo +J; i )  -f(xo) ]x-  [f(xo + J j j )  -f(xo) ]y (2) 
A (x, y) --- f(xo + J~i+Jjj) -f(xo +J~i) - f ( x o  + J j )  +f(xo) 

A diagram for this circuit in the case n = 1 appears in fig. 2. Note that the nonlinear gate is used only once 
in this circuit, to effect the operation that corresponds to the first term in the numerator of  eq. (2). The re- 
mainder of the gates in the circuit are linear, either adding together inputs, supplying constant outputs, or mul- 
tiplying inputs by constants whose values are determined by the parameters of the nonlinear gate. 

Input Output 

(a) ~ p 

O[X 

(c) 

x+y 
Fig. 1. Linear logic gates: (a) a gate that gives the constant output 
p, (b) a gate that multiplies its input by a constant c~, (c) a gate 
that adds its inputs together. 
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~ (f(~0 + ~ + 6~) 
- f (zo + 6~) - f(xo + 
+f(~o)) -~ / 

A(x,y) 

._..]-f(zo + 

Fig. 2. A circuit that realizes an AND gate out of linear logic gates together with a single nonlinear gate. 

Now, combining linear logic gates with the circuit that embodies the function A (x), we can construct a gate 
with inputs x, y and output 

O ( x , y ) = l - A ( ( l - x ) ,  ( l - y ) ) .  (3) 

It is easy to see that when the inputs x, y are restricted to the values 0, 1, the gate with output A(x,  y) is 
an AND gate and the gate with output O(x, y)  is an OR gate. Linear gates alone suffice to construct the one- 
input gate with output N ( x ) =  1 - x ,  which for x = 0 ,  1 realizes a NOT gate. 

The only restriction on f ( x )  was that it be nonlinear. (Of  course, f shou ld  also be bounded at the point of  
nonlinearity: it cannot be a quasi-function like the Dirac ~-function. ) We can combine any physically realizable 
nonlinear gate with linear gates to construct AND and OR gates in principle, and use linear gates to construct 
a NOT gate. Since AND, OR and NOT, together with connecting wires and fan-outs, suffice to construct a 
digital computer, any nonlinearity suffices for computation. 

3. Signal stability and noise 

Any nonlinear device can be combined with linear devices to realize AND, OR and NOT gates: therefore 
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any nonlinearity suffices for computation in principle. Of course, not every nonlinear effect is a good candidate 
for actually constructing computers. In particular, the above discussion assumes perfect signal stability and zero 
noise, conditions that are unlikely to be met with in real devices [ 14,15 ]. Von Neumann [ 16 ] showed how 
noisy components can be assembled into a reliable computer by multiplexing - circuitry is set up to perform 
all operations in parallel, and to "vote" for the correct result. Signal stability, however, can be a problem for 
the given scheme for constructing logic gates, even in the absence of noise. The scheme works by restricting 
attention to two particular signal amplitudes, 0 and 1, and performing discrete binary logic using those am- 
plitudes. If the actions of the nonlinear logic gates A(x, y) and O(x, y) of eqs. (2) and (3) amplify small 
deviations away from the values 0, 1 for x and y, then a circuit constructed of many such gates will not function. 

For nonlinear devices whose output is a sufficiently well-behaved function of their input, however, the con- 
vexity properties of the function can be exploited to provide stable signals. We now turn to a method for con- 
structing logic gates from an arbitrary nonlinear device, that automatically guarantees the stability of signals. 

To give rise to computation, the set of linear operations must be supplemented by nonlinear operations. A 
simple step function suffices [ 17 ]. Suppose that we have a gate that takes the input x to or(x) = - 1 if x <  0 ,  

0 if x =0 ,  and 1 if x>  0 (fig. 3). Taken together with the linear operations above, this gate allows the con- 
struction of AND, OR and NOT gates as follows: 

Let 1 correspond to True, - 1 to False. Negation is then equivalent to the linear operation of multiplying 
by - 1. Addition taken together with the step function can be combined to give the nonlinear AND and OR 
gates, since 

xANDy=cr(-l+x+y),  xORy=tr(l+x+y).  (4) 

Since the gates AND, OR and NOT taken together form a basis for universal computation, the linear op- 
erations taken together with the step function tr also make up a basis for universal computation. 

The step function effects computation by turning continuous, linear dynamics into binary, nonlinear dy- 
namics. It has the advantage of aiding signal stability, since all input signals except for the single unstable point 
x =  0 are transformed into only two possible output signals. Although an arbitrary nonlinear function need not 
resemble the step function anywhere on its domain, any operation whose output is a well-behaved (i.e., three 
times differentiable) nonlinear function of its input may be combined with itself and with linear operations 
to give a new operation that approximates the step function well enough over a finite domain to allow 

computation. 
Consider an operation whose output is an arbitrary three times differentiable nonlinear function f (x)  of its 

input over some interval. Consider first the case in which f "  (x o )~  0 for some Xo in the interval. Since f (x)  

(a) 
Input Output 

x @ ~(x) 

(b) 

Fig. 3. A nonlinear gate (a)  that realizes the step function a ( b ). 

f(x) 

f(Xo) 

I I I \ 
Xo--A X o Xo +A \ 

Fig. 4. A nonlinear functionf(x).f"(x) is negative in the neigh- 
bourhood of x0, and f(x) grows increasingly concave down in 
that neighbourhood. 
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is C (4), there exists a finite region [Xo-'4, Xo+J]  about :Co such that f " # 0  and f " ( x )  is the same sign as 
f"(Xo) for all xe  [Xo-'4, Xo+'4] (fig. 4). E i t h e r f "  (xo) or - f"(Xo) is negative: let us assume t h a t f " ( x o )  <0. 

Using linear operations, the function g(x )=f (xo+x) - f ( xo -x )  can be constructed. We have g ( 0 ) =  
g"(O) =0,  g ' ( 0 )  = 2 f ' (xo) ,  g " ( 0 )  = 2 f ' ( X o ) ,  and g(x) is concave up in the region [ - '4 ,  0) and concave down 
in the region (0, '4] (fig. 5). 

From g(x) we can construct, once more using linear operations, a function h (x) that has the same convexity 
properties as g(x), but for which h(A) ='4, and h'('4) = 0  (fig. 6a): 

h(x) = {g(x) - [g('4)/A]x} [g(A)/A--g'('4) ] -~ +x. (5) 

Now look at the operation obtained by applying h to i tsel fNtimes (fig. 6b). The points '4 and - .4  are stable 
fixed points of  h, and 0 is an unstable fixed point. By taking N large enough, we can make 
h (~) (x) = h (h (... (h (x ) )  ) ) as close to a step function as we like over a finite range. The resulting step function 
normalizes signals within some small, but finite range of.4, - .4  to the values .4, - .4.  By putting N gates that 
effect h(x) together in series we get a single gate that effects h (m (x),  which we can put together with linear 
gates to construct AND and OR gates, which together with the linear NOT and fan-out gates can be used to 
construct a computer whose signals are stable in the absence of noise. Von Neumann's  multiplexing technique 
can be used in principle to make such a computer reliable in the face of  noise whose average signal height is 
much less than .4. In practice, threshold logic schemes of this sort are difficult to make function in a reliable 
manner even in the presence of moderate noise [ 14,15 ]. 

g(x) 
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Fig. 5. Graph ofg(x) =f(xo+x) -f(xo-x). 
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Fig. 6. (a) Graph of h(x)={g(x)-[g(A)/Alx}[g(A)/A- 
g'(A) ] - ' +x .  (b)  Graph ofh iterated N times. By taking Nlarge, 
h (#) can be made arbitrarily close to a step function. 
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If  the th i rd  der iva t ive  o f  f van ishes  everywhere  (i.e., f ( x )  is a pa rabo la ) ,  t hen  a func t ion  ft  (x )  with non -  
van i sh ing  th i rd  der iva t ive  can  be ob t a ined  easily by i tera t ing  f." fl (x) =f ( f (x )  ), a n d  the resul t ing func t ion  used 
to cons t ruc t  a step func t ion .  

4. Discussion 

Together  with l inear  devices,  any  device whose ou tpu t  is a n o n l i n e a r  func t ion  o f  its inpu ts  suffices as a basis  
for computa t ion .  Whi le  no t  every n o n l i n e a r  effect is sui table  for actual ly cons t ruc t ing  a work ing  computer ,  no  
such effect is ru led  ou t  a priori .  In  add i t ion ,  the  convexi ty  proper t ies  of  a wel l -behaved n o n l i n e a r  func t ion  can 

in  theory be exploi ted to i mp ro v e  signal stability. 
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