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Against tachyonic neutrinos 
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We argue that there is strong circumstantial evidence against the proposal that at least one neutrino is a tachyon. 

In 1985 Chodos, Hauser and Kostelecky observed 
[ 1 ] that experimental results on the muon neutrino 
mass appeared to prefer negative values of  the mass 
squared. Taking such results at face value, they raised 
the question o f  whether the muon neutrino might in- 
deed be a tachyon (faster-than-light particle). While 
this suggestion is counter-intuitive to most physi- 
cists, none the less, in this paper we pursue the kine- 
matical and dynamical implications of  this idea a lit- 
tle further and find that it is fraught with unphysical 
consequences. The possible existence of  faster-than- 
light particles was first raised in pre-relativity times 
by Sommerfeld [ 2 ], and the kinematical aspects were 
subsequently elaborated upon in a relativistic con- 
text by Bilaniuk, Deshpande, and Sudarshan [ 3 ]. The 
properties o f  tachyonic representations of  the 
Poincar6 group were studied by Wigner [4],  and 
Feinberg [5] investigated the possibility of  tach- 
yonic quantum field theory (see ref. [ 6 ] for a review). 

In special relativistic kinematics the energy, Po, and 
three-momentum, p, of  a particle are given in terms 
of  its speed, v, and rest mass, m, by 

mc 2 
Po= ( l _ v 2 / c  z) l/2 ' (1 )  

and 

ml; 
I P l -  ( l - v 2 / c  2) 1/2" (2) 
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Particle speeds v> c are then only consistent with 
real values for the four-momentum observables if the 
rest mass is imaginary, 

m 2 < 0 .  (3) 

The speed of  light is a lower bound for the particle 
speed, v, and corresponds to infinite four-momen- 
tum. Conversely, in the limit v ~  we find, 

p o ~ 0 ,  (4) 

and 

I P l + l m l c ,  (5) 

the min imum value of  three-momentum. 
An important  point is that, under the action of  a 

Lorentz transformation which is continuously con- 
nected to the identity, a positive energy tachyon may 
be transformed into a negative energy one, since p~' 

is space-like (we put c=  1, henceforth),  

p u p U = m 2  <O.  (6) 

This is quite different from the m 2 > 0 case for which 
the sign of  the time component  for pU is a Lorentz 
invariant. One is of  course free to re-interpret a neg- 
ative energy tachyon as a positive energy anti particle 
travelling along the reversed world-line [ 3 ], but this 
re-interpretation is frame-dependent, unlike the case 
of  negative energies with m 2 > 0 [ 7 ]. Therefore, when 
considering the kinematics of  a decay with a tachyon 
in the final state, one cannot forbid negative tachyon 
energies, because to do so would violate Lorentz in- 
variance. The possibility of  negative tachyon ener- 
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gies has a significant effect on a decay process. 
We start with the decay of  a particle of  rest mass M 

into two particles of  rest masses m~, m2. In the rest 
frame of  M the magnitude of  the three-momentum, 
p, of  either particle 1 or 2 is 

- 4 m j m 2  p2=  ( M 2 - r n Z - m 2 )  2 2 2 

4M 2 , ( 7 ) 

and the energies of  the decay products are 

M Z + m  2 _ m  2 

2M ' (8) E l 

and 

E2 = 
M2 + m 2 _rn  2 

2M 

When 1 and 2 are both normal particles (m2c2 > 0) 
there is a threshold for the decay at 

M = m l  + m 2 .  (9) 

For the case when 1 is a normal particle and 2 is a 
tachyon ( m 2 < 0) there is the mass shell requirement 

p Z < _ m ~ ,  (10) 

which is satisfied for any M 2 > 0 .  However, for 
M 2 < m I - m 2 2 we have E2 < 0. Therefore, if we ac- 
cept the interpretation of  ref. [ 1 ] for the decay [ 8 ] 
n+- ,~t+v,  in which M 2  <0,  we would also have to 
accept that kinematically the "decay"  g - - + n - v ~  is 
also allowed. 

The N-body Lorentz invariant phase space factor 

RN(P~'P,,)= f i  y d4p,~(P? - r a f t )  
j=l  

×6<4~ y ~ p f -  , ( l l )  
/ 1 = 

where p f  is the initial state four-momentum, will be 
different when tachyons are allowed. This is because, 
for normal particles, the integrals in eq. ( 11 ) are re- 
stricted by pO >~0, whereas for tachyons the analo- 
gous restriction would be IPjl 2>  - - m  2. For the two- 
body case, we have 

R2(M2) = n[ ( M 2 - m 2 - m 2 ) 2 - 4 m f m 2 ]  ~/2 
2M 2 , (12) 

for m22 > 0, with the threshold condition M>~ ml + 
m2, whereas when we allow m 22 < 0, we find instead 

t1,12 ~2".2 l--m2) (13) --~l lJ  iHt2J R2(M2) = n [ ( M  2_ A,~2~211/2 
M 2 + m 2 _ m  2 

with 0 < M 2 < o o .  Eq. (12) and (13) show that the 
phase space factors with tachyons are not obtained by 
the replacement m2--~- -m 2 in the phase space for 
normal particles. 

This result, that there is no threshold for the invar- 
iant mass of  a tachyon and a normal particle, has in- 
teresting consequences for three-body decays too. For 
instance, consider the decay of  a particle o f  rest mass 
M into three bodies of  rest masses ml, m2 and m3. 
When all three final state particles are normal, the 
three-body phase space factor is 

dR3 =7/.2/92 [ ( S 2 - m 2 - m 2 ) 2 - 4 m l m 2 ]  1/2 
dp3 E3S2 , (14) 

where 

p 3 = l P 3 l ,  E 3 =  ~ ,  (15) 

and 

82 = M 2 + m  2 - 2 E 3 M =  (p f  + p ~ ) 2 ,  (16) 

in the M rest frame. In the tritium beta-decay exper- 
iments [ 9 ] for the ve mass, we have 

m I = M - A M ,  m 2 = m v ,  m 3 = m e ,  (17) 

and we take the limit where the tritium mass goes to 
infinity, M-+m,  giving 

dR3 p2 2 
~-n [ ( k M - E e ) 2 - m 2 ]  1/2 

dpe ~ e - e ~  , ( 1 8 )  

which clearly shows the end point in the electron 
spectrum at 

E c = A M - m , ,  (19) 

from which my is determined. [ T h e M  -~ in eq. (18) 
is removed by the wavefunction normalization in the 
matrix element. ] However, when m 2 < 0 (tachyonic 
neutrino) the phase-space factor is quite different: 

dR3 _ x/2 g2p32 ( ($2  --lUll - m Z ) 2 - 4 m l m 2 " ]  '/2 

dp3 ~ \ ~ - m ~ ) 2 + m ~ - 2 m l p ~ 2 J  " 

(20) 

There is clearly no end point in energy for particle 3 
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in eq. (20) because the numerator is positive defi- 
nite, and there is a large amount of phase space for 
electrons of arbitrarily large energies. For instance, 
with the definitions of eq. (17) and the limit M ~  
for tritium beta decay, we find 

lim dR3 7c2p 2 (21) 
E ~  dp3 ~-- X//2 E~ 

So, kinematical arguments give results for the elec- 
tron energies in tritium beta decay which are in ob- 
vious contradiction with experience. 

Yet another kinematical phenomenon in the three- 
body decay can be seen from eq. ( 16 ), where for nor- 
mal particles we have 

(p~,+p~)2>~ (rnl +m2)  2 , (22) 

and, hence, 

M>~rnl +m2 +m3 • (23) 

However, if particle 2 is tachyonic, no such restric- 
tion can be made. Indeed, (p~ +p~)  can even be 
space-like, so that if the v~ in the decay 

la +--,e + v~9~, (24) 

is a tachyon, then the "decay" 

e -  ~tg~Ve (25) 

would be kinematically allowed, again in clear con- 
tradiction with experience. 

So far, we have focused on tachyon kinematics, but 
the difficulties which we have found could disappear 
if they were forbidden for some dynamical reason. 
One should therefore consider the possible proper- 
ties of  the matrix elements involving tachyonic neu- 
trinos. To do so, we would need to study the wave 
equation appropriate for a free tachyon, and we turn 
to this next. 

The authors of ref. [ 1 ] have suggested that 

(iy5 ~ -  m)~,=0 (26) 

is an appropriate wave equation for a tachyonic neu- 
trino (m real). This becomes clear when we intro- 
duce the new y matrices 

7u - i75 Yl, , (27) 

with 

~)5 ~"~'i~)0Yl Y2~)3 , (28) 

which satisfy the same Clifford algebra 

{Yu, Yu}=2~lu. , (29) 

have the same hermiticity properties, 

Y~*, = Yo Y,,Yo, (30) 

and Y5, 

Y5=75, Y~=75, ; ~ = 1 ,  (31) 

as the 7u- In terms of the new representation the wave 
equation (26) may be re-written as 

( i ~ - i m ) ~ u = 0 ,  (32) 

where now, 

~-- ~, 0 ~ , (33) 

and so for real m, the rest-mass of ~/is pure-imagi- 
nary (tachyonic). At first sight there appears to be a 
hermiticity problem with eq. (32), but this is com- 
pensated for formally in the conserved Dirac scalar 
product 

( ~'/1 1~¢2 ) ~ ~ d 3X q/~ Y5 q/2 (34) 

for two solutions ~1, ~u2 ofeq. (32). 
We turn now to the properties of such solutions un- 

der the Poincar6 group. The Poincar6 group has two 
Casimir invariants, 

P 2 = p u p u ,  (35) 

and 

W 2 =  W# W 'u , (36) 

where the Pauli-Lubanski vector is 

W u = - ½Eu.~,aJ~c'P p . (37) 

Here, Pu are the generators of  translations, 

Pu=-iOu, (38) 

and the J"~ are the generators of  rotations and 
Lorentz boosts, 

Ju.=½au~ + i ( x u O ~ - x ~ O u )  , (39) 

with 

tru, = ½i[y u, y~]. (40) 

From the Dirac equation (20) or (32), it is easy 
to prove that 
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p 2 = - r n 2 < 0 ,  (41) 

so that the representation is indeed tachyonic, and 
that, formally, 

W 2 = + 3 m  2 ' (42) 

which has the same magnitude, but opposite sign as 
for conventional Dirac particles. The value of W 2 is 
related to spin, so it would appear that eq. (26) could 
describe the quantum mechanics of a tachyonic, spin- 
½ particle. 

However, we must also look at the properties of the 
representation of the little group. Consider the set of 
zero energy characteristics states, q&, for which 

P , =  (0, 0, 0, m ) ,  (43) 

and 

tI.Io=e-imZ Zo . (44) 

The spinors Z0 transform amongst themselves un- 
der the action of the little group, which has three gen- 
erators, namely, rotations about the z-axis, generated 

by 

L3 =½o'12 , (45) 

and boosts along the x-axis, 

K~ = ½0"ol , (46) 

and along the y-axis, 

K2 = ½0"o2 . (47) 

These generators satisfy the non-compact SO(2, 1 ) 
algebra, 

[L3, K,]=+iK2, [L3,K2]=-iK, , 

[K,, K21 =iL3.  (48) 

The problems with this representation become ap- 
parent when we consider the hermiticity properties 
of the generators: 

L ~ = L 3 ,  K ~ , 2 = - K t , 2 ,  ( 4 9 )  

The representation is non-unitary which has cata- 
strophic consequences for the probability interpreta- 
tion of the theory. Indeed, the conserved current is, 

J ~ =  q/~ ~'~5 ~", ( 50 ) 

and for momentum eigenspinors 

qJp = exp (ipUx,) Zp, (51) 

the current becomes 

p" 
J~-qpYu~sq/p = -~ ~p~p- (52) 

The characteristic states ( 43 ) and (44) are therefore 
zero-norm, since 

J ° =  0 , (53) 

but even worse for these states is that 

qp~,p --- 0 ,  (54) 

which means that all four components of ju vanish. 
However, since any state can be reached by Lorentz 
transformation from the characteristic state, the re- 
sult (54) means that all states are zero norm, and so 
there is no probability interpretation for this theory. 
This serious problem arises with the non-unitary rep- 
resentation of the little group, so we must study in- 
stead the properties of a unitary representation which 
has the appropriate value of the invariant W 2 to de- 
scribe a spin-½ tachyon. 

The algebra (48) may be rewritten as 

[L3, K+_]= +_K+ , [K+,K_]=2L3, (55) 

where 

K+ -K~ +_iK2, (56) 

and we have 

W2=_m2[I (K+K +K_K+)-L~] .  (57) 

If we now introduce a set of normalized helicity ei- 
genstates with 

L3 I).5 = I,~) , <).1).5 = 1 , (58) 

we find from eqs. (54) and (56) 

( W2"~ '/2 
[ ( 2 1 K + 1 2 - 1 ) 1 =  2 ( 2 - 1 ) -  m2 j . (59) 

The eigenvalues ). must be either integers or half-odd 
integers, so if the Casimir invariant is chosen to be 
[4] 

l/V2= m2S(S - 1 ) ,  (60) 

with S> 0 integer or half-odd integer, the values of 2 
are either 2=s,  s + l ,  s+2,  ..., or 2 = - s ,  - s - l ,  
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- s - 2  . . . .  , and the representations are infinite-di- 
mensional [4,10]. For the tachyonic neutrino, we 
clearly would need the case s= ½, which raises the 
question of how the higher helicity states of the neu- 
trino would contribute to weak processes. For in- 
stance, in the classic experiment on parity violation 
[ 11 ], the final state electron is left-handed and the 
anti-neutrino right-handed with helicity + ½, so that 
the electron asymmetry arises from angular momen- 
tum conservation as shown in fig. la. However, if the 
antineutrino were tachyonic, it could be present with 
a right-handed helicity of +~, so that the electron 
could still be left-handed but moving in the opposite 
direction from the first case (see fig. lb). This would 
have spoiled the electron asymmetry, and unless there 
was some dynamical reason for this final state to be 
suppressed, we must regard the observed asymmetry 
as further evidence against the tachyonic neutrino 
hypothesis. 

"='l '=='1 
/~-decay 1 0 " 0  

r'°C° 6°Ni , e" 

(a) 

Jz=X=+l 6 

Jz = -~ = + 1/2 

0 
~Ni 

(b) 

Obviously there is very much more to constructing 
a tachyonic wave equation for a neutrino then the re- 
placement m ~ i m  in the Dirac equation [ 10]. How- 
ever, the requirements of Poincar6 symmetry which 
show that tachyonic neutrinos would occur with all 
half-odd integer helicities is another prediction which 
appears to not be borne out in practice. 

The problems of constructing weak currents out of 
an infinite-dimensional tachyonic neutrino wave 
function and a four-dimensional electron spinor are 
formidable. Furthermore, the second quantization of 
such a theory poses remarkable problems because of 
the absence of momentum components of the tach- 
yon below the modulus of the tachyon mass. This lack 
of completeness of the tachyon plane waves is a well- 
known, serious difficulty [ 5 ]. 

In conclusion, we believe that there is strong cir- 
cumstantial evidence of a kinematical and dynamical 
nature against the notion that the neutrino is a tach- 
yon (a result which is certainly not surprising). The 
analyses of experimental results in terms of conven- 
tional Lorentz invariant phase space which appear to 
indicate negative mass squared for the neutrino would 
have to be re-done to take account of the unusual 
phase space for tachyons which we have described 
here. The wave equation (26) proposed in ref. [1] 
does not describe a tachyonic helicity one-half parti- 
cle. Finally, we note that the best test of the neutrino 
speed Vv comes from SN1987A [12]. The transit 
times of photons and light from the Large Magellanic 
Cloud to the earth are ~ 1.6 X l0 s years, whereas the 
relative uncertainties is these times are of the order 
of + 3 hours [ 12 ], leading to the bound 

~ < 2 X  . (61) 10 -9  

For a 15 MeV re, this bound translates into 

- lkeVZ<m 2 < + lkeV 2, (62) 

so that this direct test does not rule out the tachyonic 
neutrino. 

It is a pleasure to thank H. Robertson and D. Wark 
for helpful conversations. 

Fig. 1. (a) Conventional arrangement of spins and helicities in 
the experiment ofWu et al. [ 11 ]. (b) A second final state when 
the antineutrino is tachyonic. 
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