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1. Introduction

In field theorieswith an appropriateamountof nonlinearity, stable bound statescan exist on a
classical,as well as a quantummechanical,level. Thesebound statesare calledsolitons. Unlike wave
packetsformedby superpositionsof planewaves, the soliton solutionsarenondispersive.Theyhavea
finite stableshape in space,and can travel with a constantvelocity. Such solutions exist in hydro-
dynamics,a phenomenonfirst observedby Russell [lj in the eighteenforties, and later explainedin
terms of soliton solutionsof the nonlinearhydrodynamicalequation:the Korteweg—deVries equation
[21.Sincethen otherequationshavebeenfound which also permitsoliton-typesolutions.Most of these
are in one space-dimension,due to a theoremby Derrick [31which imposessevererestrictionson the
types of soliton solutionsthat can exist for space-dimensionsgreaterthan one. In order to havesoliton
solutionsin two or morespace-dimensions,onemusteither includeappropriategaugefields of nonzero
spin, or consider time-dependentbut nondispersivesolutions. In the past few decades,significant
progresshasbeenmadein the field of solitons,especiallythosein two or threespace-dimensions.If we
restrict ourselvesto relativistic local field theories,then all soliton solutionscan be classifiedinto two
generaltypes.

(1) Topological solitons. It is necessarythat the boundarycondition at infinity for a soliton state
should be topologically different from that of the physical vacuum state. In turn, this requires
degeneratevacuumstates.An exampleof the topologicalsoliton is the magneticmonopolesolutionof
‘t Hooft [4] and Polyakov [51.

(2) Nontopologicalsolitons.The boundarycondition at infinity for a non-topologicalsoliton is the
sameas that for the vacuumstate.Thus thereis no needfor degeneratevacuumstates.The necessary
condition for the existenceof nontopologicalsolitons is that thereshould be an additive conservation
law.

It is the latter, thenontopologicalsoliton, that wewill discussin this review. Earlier examplesof this
type of solution havebeenstudiedby Rosen [61,Kaup [71,Ruffini andBonazzola[81,Vinciarelli [91,
and Lee and Wick [10]. The latter work is alsorelatedto the bag modelsof Chodoset al. [111and
Bardeenet al. [12].Systematicstudiesof the subjecthavebeencarriedout by Friedberg,Lee andSirlin
[13—15]andby others[161.Solitonsolutionscontainingscalarfields, fermion fields andgaugefields are
constructed.Of these,the most thoroughly studiedis the Friedberg—Lee[17—191soliton model for
hadrons[20,211.

Thereis a largeamountof literatureon nontopologicalsoliton solutions. Most of it involvesone or
two scalarfields. To introducenontopologicalsolitons, we shall begin with scalarfields and startour
discussionwith classicalsolutions.Section 2.1 studiesin detail the one-dimensionalcase.Despite its
simplicity, the one-dimensionalsoliton sharesmany featureswith solitons in higher dimensions.
Scalar-field solitonsin higher dimensionsaregiven in sections2.2 and 2.3.

As we shall see, for every classical soliton solution, there is a quantummechanicalcounterpart
[22,231. In the limit when the nonlinearcoupling constantg approacheszero, the quantumsoliton
solution (timesg) goes to the correspondingclassicalsolution. The quantizationof a soliton solution
dependson the stability of the classicalsoliton solution, and can be carriedout by using the small
perturbationexpansionaround it. Section 3 deals with the stability analysis and the quantization
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process.Some generaldiscussionsare given in section3. 1, stability undersmall perturbationsis shown
in section3.2, and quantizationin section3.3.

It is generallybelievedthat QCD is the correct theory for the stronginteractionandthat eventually
the detailedhadronic structurewill he calculatedfrom QCD. In the high energyregion, becauseof
asymptotic freedom,perturbationexpansionis valid. This enablesus to deducemany parametersfor
the quarksfrom high energyexperiments.But in the low energyregion.where it is of importanceto the
hadronicstructure,the theory cannotbe solvedperturbatively.and nonperturhativeeffects dominate.
The origin of quark confinementremains a major theoretical difficulty. For practical calculations.
phenomenologicalmodelshavebeenbuilt to take into accountsomeof the nonperturbativeeffects.SO

that the restof the theory can be solvedby a perturbativemethod.As an applicationof nontopological
solitons,section5 discussesthe Friedberg—Leemodel. Thereare two very good reviewson this model
and its variations. One is the volume “Nontopological Solitons” by Wilets [20], the otheris a review
article by Birse 1211. Herewe will give a summaryof major results.

Another application of nontopological solitons is in exotic stellar structures,called soliton stars
[24—27]to be discussedin section6. Stablecold stellarconfigurationshavebeenfoundwhich can have
massesup to that of a galaxy. Solitonstarscan he madeeither of bosonfields or fermion fields. Their
characteristicsdependsensitivelyon nonlinearcouplings. Thesestellarconfigurationsall haveenergies
lower than the correspondingfree particle (plane wave) solution for any given particle number;
consequently.soliton starsare preventedfrom decayinginto free particles..Whena solitonstarexceeds
a certain critical mass, it collapsesinto a black hole. Becausethe mechanismfor stability is quite
different betweensoliton stars and ordinary stars, the soliton stars can have very different critical
masses[7, 8, 24,28] from the usual Oppenheimer—Volkov[29] type limit.

Recently, the nontopologicalsoliton has beenextendedto the study of the Bose liquid [30]. The
liquid—gas phasetransition can be formulated in terms of the spontaneoussymmetry breaking of
translational invariancein the canonical ensemble,while the Bose—Einsteintransition is due to the
breakingof the phasesymmetryof the complex scalarfield in its grandcanonicalaverage.The former
can describethe liquid—gasphasetransitionof helium, andthe latter the A transitionbetweenHel and
Hell. These will be discussedin section4 (becauseits methodologyparallels that given in section 3).

Throughoutthe paperwe adopt the natural units Ii = = 1.

2. Examples of classical nontipological soliton solutions

2.1. Scalarfield in onespace-dimension]31. ~2]

The simplest system which has nontopological soliton solutions is a complex scalar field in one

space-dimension(plus the time-dimension).For a flat space-timex°= (t, x) with ~ti = 0 or I.

(g0,)=(~ ~), (g°”)=(g~) H (2.1)

The requirementof an additive conservationlaw can he met by having the gaugeinvarianceunderan
arbitraryconstantphasetransformation,

(2.2)
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The Lagrangian density is assumed to be

~ — U(~t~), (2.3)

where 4~is the Hermitianconjugateof 4,

= 0q/0x~, = a~~/i3xL, qYL = g~45~, = g~4~. (2.4)

The equationof motion is

a~’I~x~— 4 dU(414)Id(45~)= 0. (2.5)

Hence the currentj’~,definedby

= —i(~t4~— ~ (2.6)

is conserved:

0j~Iax~= 0. (2.7)

The particle density is j°. Its spaceintegral is the particle numberN,

N=Jj°dx. (2.8)

Becauseof currentconservation (2.7),N is conserved,i.e. the time derivative

N=0.

In the following, the volume of the systemis takento be infinite, so that x varies from —~to ~.

The potentialfunction U(~tc~)is assumed to have a single absolute minimum at ~ = 0; the minimum
value can alwaysbe chosento be zero. Thus, as c~—÷0,we have

U—*m2qYçb, (2.9)

with the massparameterm > 0. Later, in the quantumtheory, this implies a nondegeneratevacuum
state; therefore,the gaugesymmetry (2.2) is not brokenspontaneouslyby the physicalvacuumstate.
(However, for macroscopicstateswith a nonzerodensity N/fl, when N—p spontaneoussymmetry
breakingmayappear,as we shall discussin section4.3.)

From(2.6)—(2.8)it follows that for N� 0, ~ mustvary with time. As we shall see,ata fixed particle
numberN the time dependenceof 4’ for the lowest energysolutionmust be of the form

4’ e~’°~

To establishthis, write
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4’ = (4’~+ i4’~)/V2. (2.10)

where4’R and 4’ are both real. Denote

~R~4’R~~’ 4’=~4’/~1. (2.11)

Substitutingthe above into the equationsfor N, (2.6) and (2.8). we have

NJ(4’
1~t~4’1 )dx. (2.12)

The energyof the systemis

E = f {~[~+ + (d4’~/dx)+ (d4’1/dx)
2] + U]~(4’~+ 4’~)]}dx. (2.13)

At anygiven time t. assumingthat4’~.4’ andN aregiven, we wish to find the 4’~and 4’ which makeE
minimal. Consideran infinitesimal variation,

~R~~t~4’R’ ~ +~t, (2.14)

keeping4’R and 4’~fixed. The minimum energysolution is determinedby

~(E—wN) 0, (2.15)

wherew is the Lagrangemultiplier. This leads to

= ~4’ = -w4’~, (2.16)

and therefore

4’ = u(x)e’~’. (2.17)

where ~(x) can be set to be real. The procedureabove can easily he generalizedto higher
space-dimensionsand to more sophisticatedsystems (like scalar soliton star solutions in general
relativity).

In terms of a-, the equationof motion (2.5) becomes

da-/dx + w2o — a- dU(u)/do-~=0, (2.18)

which, after being multiplied by do-/dx, can be integrated.The result is

— V(a-) = constant, (2.19)

where

V(a-) = U(a-2)— ~wa-. (2.20)
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In accordancewith (2.9), the absoluteminimum of U(o’2) is at a’ = 0, with

U—÷~ as a’—~0.

In order to havenontopologicalsolitons,thefunction V definedby (2.20)must be of the form given by

fig. 1. More specifically, the condition
U(a’2) — ~2o.2 = 0 (2.21)

hasa’ ~ 0 solutionsfor some w2 less than m2. The sameconditionmay alsobe statedalternativelyin
terms of the difference

v(o’2) U(a’2) — m2a’2

which denotes the nonlinear interaction. If for any rangeof a’ howeversmall, v is attractive (i.e. v<0)
howeverweakly, thensolitonsexist. To seethe equivalence,we note that the latter condition, together
with (2.9) and the positivity of U, implies that there exists a parabola v2a’2 tangent to U(a’2) at
a’ = ±a’

0, with ~,2 <m
2, as shownin figs. 2a and2b. Hence,for

(2.22)

the parabolaw2a’2 must interceptU(a’2), i.e. V(a’) = 0 has a’ � 0 solutions.
To derive the solitonsolution in onespace-dimension,considerasimple mechanicalanalog,in which

a point particle is moving in apotential —V(o-),with a’ as its “position” andx its “time”, as shownin
fig. 3. Then (2.19) becomessimply the energyconservationlaw in the analogproblem.At the “time”
x= —~, set the particle at the “position” a’ = 0. We maystartthe motion by anextremelygentlepush
towardsthe right. As x increases,a- movesto A andthenreturnsto 0 at x= +co. The general solution is
given by

(2.23)

where ~is the integration constant. The problem of finding any one-space-dimensional soliton solution

(U -w2a’2)

~

Fig. 1. The function 1(U — w2o’2) versus o~for w2 < m2.
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U(a’
2) 2 UCO-2) U /

1m a’2 / ~

II I
U) // I.”

/ I/I
I / Ii

1/ /a2a’2 /i

)// // / ~1~

I/I / ,// ~f

I/I / /1 /
II / ‘1

/ / / /
/ / ~/ /

/ a,,’ /
//

—~ ~ I (b)
0 a’

0 a’ 0 a’0 a’

Fig. 2. U(~)versus a. For a small and >1). (a) Li’ <m’u’ amid (h) U am’o~The parabola r’a’ is tangent tim U at a = a,, in both cases.

is reducedto quadrature.A schematicdrawing of the solution is given in fig. 4. Whenx = ~. a- = A. At

both infinities, x—÷+~ or —~, a- satisfies the sameboundarycondition:

a’—s0. (2.24)

Therefore,it representsa nontopologicalsoliton solution.
When a’—~0, the function V becomes

V—~4(m
2 — w2)a-+ O(a-~), (2.25)

which, for w2 <m2, makesV(a’) concaveupwardat theorigin a’ = 0. Also, when x~is large.a- is small;
from (2.19) we see that a’ must decayexponentially.as

a’~exp(_Vm2— w x~). (2.26)

-v

Fig. 3. — V versus a for w~K Fig. 4. The soliton solution (2.23).
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Condition (2.21) can be most easily satisfiedif the O(a’4) term in V is negative. (Of course, some
higher power terms must be positive to make the potential U always positive.) In this case,when
w --+ m—, the position of the zero a’ = A of V(a’) = 0 must be near the origin; it is determined by the
quadratic and quartic terms in V, which leads to A2 (m2 — w2)—+ 0. Consequently,we can improvethe
asymptoticform (2.26), and write

2 21/2 / 2 2—w ) exp(—vm —w x]). (2.27)

(Under the sameassumptionof V, this behaviorcan be generalizedto any space-dimension,aswill be
given by (2.58).)

The simplestpolynomial form of U which permitsa nontopologicalsolitonsolution is cubic in
4’t4’:

U = [m
24’t4’/(1+ 2)][(1 — g24’t4’)2 + r21 (2.28)

The solution is

4’ = g’[a/(l + VfT~coshy)~t/2et, (2.29)

where

a = (1 + r2)(m2 — w2)1m2, (2.30)

y=2Vm2—w2(x—~). (2.31)

Because the parameter ~ is a constant,the solutions(2.23) and(2.29)—(2.31) representsolitonsat
rest. The relativistic invarianceof the theory ensuresthe generalizationto solitons with an arbitrary
momentumP. The parameterg is a measureof the nonlinearity of the system. When g = 0, the
potentialenergyU is quadraticin 4’, and the equationof motion becomeslinear; only plane wave
solutionsexist. Wheng is nonzero,one hassoliton solutions(2.23) and (2.29). As g—÷0, the soliton
amplitudegrowsas 1 /g. As we shall show,this is an importantandgeneralfeatureof solitonsolutions
(both topologicalandnontopological):the existenceof solitonsdoesnot dependon the strengthof the
nonlinearcouplingg, solong as g ~ 0; all soliton solutions are singular as the nonlinear coupling g—~0.
Consequently,

weak coupling � weak amplitude. (2.32)

In classical theory this singularityis always a simple pole: for any function U of 4’~4’,we can introduce
U by writing

U(4’t4’) g2U(g24’t4’).

Define 4’ by

(2.33)
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Then g can be factored out of our Lagrangian density (2.3)

(2.34)

where

(2.35)

is g-independent.Thus the solution ~ is also g-independent.
It is obviousthat (for any finite N), when the volume (2 that enclosesthe wholesystemapproaches

infinity, the equationof motion (2.5) admits the usual plane-wavesolution

4’ = VN!2wfl e sI), (2.36)

where

w=Vk2+m2. (2.37)

This follows from the fact that, as f2—*x, the amplitude 4’ is infinitesimal, so the equationof motion
becomeslinear in 4’.

The soliton solution differs from the plane wave solution, since its amplitude does not become
infinitesimal as (2—*x. Furthermore,whenx--+ ±~. the solitonamplitudeapproacheszeroexponential-
ly. with w <m2. We may regard thesetwo typesof solution as analyticalcontinuationsof eachother:

w> m’ for the planewave solution. w’ < mn for the soliton solution . (2.38)

If we plot the energyE versusthe particlenumberN (taken to be positive, for simplicity), asin fig.
5, we see a straight line for the plane wave solutionsof zeromomentum,with a slopem, anda convex
curve for the soliton solutions,with its slope at every point given by

dE!dN= w. (2.39)

This is actually just one of the Hamiltonian equations for the system. Since N and the phaseangle

/
/Nm

/
/

/
/

/

0 ~ SOLITON

l’mg. 5. E versus N in one space dimension.
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0 = wt are conjugatevariables,we have

N=—0HI8O, O=aHIaN,

where H is the Hamiltonian. Becauseof the invarianceunder,the phasetransformation(2.2), the
Hamiltonian is independent of 0. Therefore, the first equation is N = 0, i.e. the conservationof N. The
secondequationgives (2.39).

As w2—+m2—,from (2.27),

N=J2wa’2dx~Vm2_w2~0. (2.40)

Since the nontopologicalsolitonsolution is the analyticcontinuationof the plane-wavesolutionto the
region w2 < m2, the curve E(soliton) versus N should be connectedto the straight line E(plane
wave)= N]m, wherew2--+ m2—.From (2.40) we seethat this connectionoccursat N= 0.

In fig. 3, as we reduce w2, the maximum of —Vbecomessmaller. When w2—~v2+, in accordance
with (2.21)—(2.22), the —V>0 peak is just infinitesimally above zero, as shown in fig. 6. We can
re-examineour previous mechanicalanalog: the “particle” leavespoint 0 at “time” near —oc with a
“velocity” close to zero. When it reachesA, which is almost nearthe peak,at somefinite “time”,
insteadof turningbackimmediatelyit can stayneara’ = a’

0 for a very long “time”, sayL. As in figs. 2a
and 2b, the value a’0 denotesthe point when the tangentparabola t’~a’

2touchesU(a’2); hence, at
= r’2, —V= — U + v2a’2 is tangentto the abscissaat a’ = a’

0. The correspondingsolitonhas a very
large N; its shapeis illustratedin fig. 7. Choosev to be positive, as w —~±v,

N—~±2va’~L,

where L, the size of the soliton solution, may approach~. From (2.39), we see that for N~~ 1,
neglecting0(1), the soliton energyE is

E v]N~. (2.41)

In one space-dimension,becauseE—÷m~N~whenN--+ 0, the integrationof (2.39) gives the soliton

-‘V

Fig. 6. —V versus ir when w
2—s v2+
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a

a

Fig. 7. As w f . time soliton size becomes larger and larger.

energyE for any N +0. We find

0<EJwdN<m~NL (2.42)

Hence,if the theoryadmitsa nontopologicalsoliton solution, thensolitonsolutionsexist for all particle
numbersN. Furthermore,the solitons always have lower energythan the planewave solutionsof the
sameN. (However,this statementhasto be modified in higher space-dimensions,as weshall seein the
next section.)

2.2. Scalarfield in anyspace-dimensionD

in this section,we extendthe classicalnontopologicalsoliton solutionsfor a complexscalarfield to
any space-dimensionD. The Lagrangiandensityremainsgiven by (2.3):

~ - U(4’14’). (2.43)

but the index p. now varies from 0, 1,... to D, with x°= t. Equations(2.2)—(2.l7) are all valid,
provided one replacesthe one-dimensionalspace-coordinatex by a D-dimensionalspace-vectorr, the
differential dx by dDr. andthe gradient8/Ox by V. Thus,as in (2.17), at a given particlenumberN the
lowest energysolution must be of the form

4’ = a-(r) e (2.44)

where a’(r) can be set to be real.
In terms of a’, the particle numberN is given by

N2wfa’2dDr (2.45)

and the energyby

E = [wa-2 + (Va’) + U(a-2)] d°r. (2.46)
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The equation of motion is

2 2 2 2Va’+wa’—a’dU(a’)Ida’ 0, (2.47)

which can alsobe derivedby keepingN fixed andsettingthe variationalderivative(~EI~a’)N= 0. As
before,the absoluteminimumof U is at a’ = 0,

U—÷m2a’2 as a’—*0, (2.48)

and

v—U—m2a’2 (2.49)

representsthe nonlinearinteraction.The volume (1 of the systemis set to be ~.

Theorem. In any space-dimensionD, if thereexists a rangeof a’ howeversmall, and the potential
function U(a’2) contains any attractive interaction (i.e. v<0) however weak, then nontopological
solitonsolutionsexist for

~ <m2, (2.50)

where, as in figs. 2a and 2b, when plottedversusa’ the parabolav2a’2 is tangentto U(a’2) at

(2.51)

For N sufficiently large,neglecting0(1), the lowestenergysoliton solution has an energy

E= ]~.‘N] <m~N], (2.52)

which ensuresits stability against decayinginto planewave solutions.Furthermore,except nearits
surface,the amplitudea’ is essentiallya constant

a’~ a’
0 (2.53)

inside and a’ 0 outside.

Proof [30]. We first establishthat the lowest energysolution a’ has no node. Since the solution a’ of
(2.47) has no singularity, for any a’ with nodes, the (D — 1) dimensionalnodal surface5°,definedby
a’ = 0, must form (at least)oneclosedsurface(or onethat extendsto infinity), with a’ of oppositesigns
across5°.Changea’—+ + a’ on oneside of 9°and a’—~— a’ on the other; this leavesthe integrals(2.45)
and (2.46) for N andE unaltered.The new a’ hasa cusp on .9°;therefore,its energyE can be reduced
by smoothingthe cusp,which makesthe original a’ (with a nodalsurface) not of the lowestenergy.In
the following, we considerthe sphericallysymmetricsoliton solution with no radial node. (Using the
discussiongiven by Coleman[16], one can give a generalproof that, for largeN, such a zero-node
sphericallysymmetricsoliton solution is indeedthe absoluteminimumof the Hamiltonian.)
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By using the phasetransformation(2.2), we choosea-(r) to be positive (where r = Jr~).Equation
(2.47) becomes

da- .~ dU(a’) D—l da-
dr~ da’ r dr

i.e.

~ [~( V(a-)1_D 1 (2.54)

dr [2 \dr! ] r dr

where, as in (2.20).

V(u) = ~U(a”) - ~wa’. (2.55)

Becauseunderw~—w, N—* —N but E is unchanged.we needonly examinethe region wherewandN
are both positive.

It is useful to considerthe samemechanicalanalogproblemdiscussedin the previoussection,with a-
and r beingthe “position” andthe “time” of apoint particle,which movesin a “potential” —V(R).The
right-handside of (2.54) is zeroforD = I. but alwaysnegativeforD >1. Therefore.forD = 1 the total
particle “energy” ~(da-/dr)2— V(a’) is conserved,but for D> 1 we have a dissipative system in the
analogproblem.

Choosev positive. In the limit w—* e+, —V is given by fig. 6. For D>l, we set the particle at
a’ = a-

0— at r = 0. Because,when w = i., —V is tangent to the abscissaat a- = a~.the particle can be
nearlystationaryat its initial “position” a~for a very long “time”, r = R. By then, the dissipationcan
be madeextremelysmall, becauseit is proportional to r’. Hence,one can always find a solution:
a- — a’1 for 0 ~ r ~ R then decreasesto a- = 0 at r = x, For R sufficiently large. the transition is
approximatelygiven by

rR+fy~~. (2.56)

Becauseof (2.39), dE/dN= w, for this typeof very large N solutions(with w = i’—)

E = vN + remainder.

For a macroscopicN, thevolume of the soliton is —‘-N/2pa’~.Inside the volume the matterdensitya- is

nearlya constant,a’~.Nearthe solitonradiusR, a’ changesrapidly from a- a-~to a- 0 in accordance
with (2.56), giving rise to a surfaceenergy0(N~tLiDj which is the remainder.We maywrite, as
wv—, N—~x,

E—* vN+sN
tT~ (2.57)

with the constants > 0. Equation(2.52) of the theoremis then established.



T.D. Lee and Y. Pang,Nontopologicalsolitons 265

As we increasew from v+ (but lessthanm), the —V >0 peakin fig. 3 risessteadily.If we set a’ near
the peakat the initial “time” r = 0, a’ can againbe almost stationaryuntil a very long “time” r = R,
whereuponby neglectingthe dissipationin (2.54) we see that a’ would reacha’ = 0 at a finite r> R.
Consequently,by movingthe initial “position” a’ at r = 0 towardsthe origin, theremustexist a solution
of (2.54) that reachesa’ = 0 at r = ~, which provesthe theorem.

As alreadymentionedin the previoussection,in any space-dimensionD the nontopologicalsoliton
solution is the analyticcontinuationof the planewave solution to the region w < m. Again, consider
only the caseN>0 (therefore,w >0). On an E versusN diagram,the curverepresentingthe soliton
solution should be connectedto the straight line E = Nm of the planewave solution whenw —pm—.

The connectingpoint dependssensitivelyon D, as we shall see.Assumingthat the quarticterm in U is
negative, thenat large randfor w—*m—, (2.27), or its generalization

2 21/2 / 2 2
a’ (m — w ) exp(— v m — w r), (2.58)

holds. By using (2.45), we seethat as w—~m—

0, forD=1,
N~2mfa’2dDr= 0(1), for D=2, (2.59)

~, forD�3

because$ a’2 dDr (m2 — w2) x (m2 — w2)’~2.The typical E(soliton) versusN curvesfor thesethree
casesare given in figs. 5, 8 and9.

The D � 3 casehas a moreintriguing shape.It is not difficult to show that when w = m —‘ N—~~,

E — Nm but the differenceE(soliton) — Nm is infinitesimally positive.As w decreasesfrom m —‘ N and
Ebothdecreasein accordancewith dEIdN= w (still with E(soliton)> Nm)until N = N~,asshown in
fig. 9. When w is decreasedfurther, thenN and E both startto increaseuntil the E(soliton) versusN
curve crossesthe straight line Nm at N = N~.For N> N~,E(soliton) is <Nm. As w—~t.’ +, N again
—~o,but with E(soliton)-’-~Nv <Nm.

Thereexists besidesa critical point S (denotingstability) alsoa cuspC, with N~> N~.For N < N~,
thereis no solitonsolution.ForN~< N < N~,the lowest-energysolution is the planewave; for N> N~,

E E
Aiim /Nm

/ /

/ ___________________ /

Fig. 8. E versus N in two space dimensions. Fig. 9. E versus N in three space dimensions. On the lower branch,
for N~K N K N,, the soliton solution is classically stable against small
perturbations, but quantum mechanically metastable. For N> N,, the
soliton solution is stable classically as well as quantum mechanically.
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the lowest-energysolution is always the soliton. In fig. 9, alongthe lower branchof the solitoncurve,
for N> N~,the soliton solution is absolutelystable,being the lowest-energysolution~it cannotdecay
into planewave solutions;becauseof the curvature82E/8N2= 3w/ON<0, it is also stable against
fission. For N~> N> N~,it can be shown [13] that the soliton solution is stable against infinitesimal
perturbations,eventhough it is not of the lowestenergy.Along the upperbranch,the solitonsolution
is always unstable.The numericalvalues of N

5 andN~dependon the parametersin the theory.
As mentionedin the previoussection,if thereis only one complexscalarfield 4’. in order to have

both U positive and also someattraction, U(4”4’) must contain either (4’ ‘4’)~or other higher power
terms in 4”4’. For D � 3, such a quantumtheory is unrenormalizable;to haverenormalizability,there
must exist other fields besides4’. This will be illustrated by the following D = 3 example. As will be
discussed,its E(soliton) versusN curve alsoexhibits the sametypical shapein fig. 9.

2.3. An examplein D = 3

Considera system consistingof two spin-U fields, a complexfield 4’ and a Hermitian field x. The
Lagrangiandensity~9°is assumedto be

.~ —4’°4’~— ~ —fY4’ 4’ u(x). (2.60)

where 4’°and are definedby the four-dimensionalgeneralizationof (2.4). Similarly.

x0 =8~/3x°~x°=gTh~, (2.61)

with g°°= —1, g
11 = g2 = g’3 = 1 andotherg””= 0. The potentialu(x) is a fourth-orderpolynomial of

x satisfyingu(x) = ~, so that the theory is stable andrenormalizable.This examplegives the simplest
renormalizablemodel in D = 3 which permits nontopologicalsoliton solutions.Becauseof the U(1)
symmetry,

(2.62)

thereis the currentconservation(2.7) and. consequently,the particle numberN definedby (2.8) is a
constantof the motion. Assumeu(x) has an absoluteminimum at x= ~ its vacuumexpectation
value. For convenience,we choose~ = 0. and therefore

(2.63)

The mass of the 4’ mesonis

111 Z~fXvac (2.64)

which will be assumedto be nonzero.Thus.J, + 0 and

x~,
5~�O. (2.65)
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To simplify further, take

12 2 2 2

u(x) ~g(x Xvac) , (2.66)

so that in addition to the U(1) symmetry,thereis a discretesymmetry

x—~—x. (2.67)

The details of this model and its generalizationare given in ref. [13].
Introduce

~(r, t) nsXvac~
4(P),

(2.68)
4’(r, t) (11’~’~)XvacB(P)e’~’,

whereA and B are both dimensionlessand real,

pnsp.r, p. =gx~,, (2.69)

wherep. is the massof the neutralx meson.FromtheLagrangiandensity (2.60)and the definitionsfor
A and B, the equationsof motion follow:

V2A—K2B2A—~(A2—1)A0, V2B—K2A2B+v2B0, (2.70)

where V is the gradientoperatorwith respectto the dimensionlessparameterp,

vnswlp., K—m1p.. (2.71)

The parameters w, m andp. can all be takento be positive. The particle numberN is relatedto the
frequencyw, or v, by

N=~fB2d3p. (2.72)

The energyof the systemis

E=~~J~d3p, (2.73)

with the energy density ~‘ given by

= ~(VA)2+ ~(VB)2+ ~(v2 + K2A2)B2+ ~(A2 — 1)2. (2.74)

From (2.71) to (2.74), v may be regardedas a function of N and a functional of B(p). Upon
substituting v = v(N, B) into (2.74),we mayexpressE as afunction of N and a functional of A(p) and
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B(p). Equations(2.70) can also be derived by keepingN fixed and settingthe functional derivatives

~E/~A(p) = ~E/~B(p) = 0. (2.75)

The soliton solutionsare analytical continuationsof the planewave solutionsto w <m, i.e. v < K.
The lowest-energysoliton solutionsare sphericallysymmetric.The boundaryconditions are

dA/dp=dB/dp=0, atp=0. (2.76)

A=l, B=0, atp=x. (2.77)

Since (2.70) aresecond-orderequations,with (2.76) therearestill two morefree parameters,which can
be A(0) and B(0). For given v and K with V < K. adjustingA(0) and B(0) so that boundaryconditions
at infinity (2.77) are satisfied,oneobtainsa solitonsolution. Figure 10 gives E versusN andN versus
for K = 1.

In this example, the lowest w for the soliton solution is zero, as we shall prove. Considera trial
function in which A =0 and B = Brt sin wr inside a very large sphereof radius R, with

wR~r. (2.78)

Outsidethe sphere.A = 1 ~_(rR)i( with 1< R and B = 0. Becauseof (2.72) and (278). the constant

B~1is ~ From (2.73) and (2.74), the correspondingenergyis given by
E = irN/R + (7rp.16g)R

3+ 0(R).

Setting OE/8R=0, we find, for large N, R~~N’4and

E~N34 < mN. (2.79)

Since the correct lowestenergyEn,j,m at the sameN mustbe smallerthan this trial function calculation,

we derive, as N—*~.

W~ Em n/N~ O(N4)~0. (2.80)

As w variesfrom 0 to m. the E(soliton) versusN curve behavesin the samecharacteristicway as that
shown in fig. 9.

One can showthat on the lower branchof the E versusN curve in fig. 9. for N betweenNe.. and ~‘

(the correspondingw variesbetweenw~>0 and0), the soliton solution is classicallystableagainstsmall
perturbations.As we shall discussin the nextsection,quantumsolitonsalongthe samebranchbetween
C and S areonly metastable.but their lifetimes could be quite long; thosebetweenS and are stable
classically as well as quantummechanically.Solitonson the upper branchin fig. 9 are not stableeven
classically. It is very common to have cusps on the E versus N curve for solitons in three space-
dimensions.In section3 we shall prove that whenevera cusp arises,a new mode of smallperturbation
acquires a zero frequency; thus on one side of the cusp the mode carries real frequency (stable
vibration), but on the other side the frequencybecomescomplex,signifying instability.

Besidesthe examplesdiscussedin this section,thereare manynontopologicalsoliton solutionsthat
havebeen studiedin the literature [22.33—55].
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/
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(a)

0,85 0.87 0.89 0.91 0.93 0.95 0.97 0.99

( b)

Fig. 10. E versus /~Tand !~‘versus v curves for K = ml~s= I in the neighborhood of the critical points, where F = (8iim) Eg’, N = (8~r) Ng
2, and

p = w4s. The dashed line in (a) is E = N, or E = Nm.

3. Stability and quantization

3.1. General discussion

In this section,we shall first examine the classicalstability of nontopological soliton solutions. Let 4’
be a sphericalsymmetricequilibrium solution from the previoussection,written in termsof a real a’(r)
function

(3.1)
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and ~4’be the small perturbationaround 4’. For classicalstability, one needsonly to examine the
characteristicfrequencyv of the linearizedperturbativeequationin ~i4’.Becauseof the invarianceunder
time reversal,only ii’ appears.When all v are real andgreaterthanzero,solution4’ is classicallystable
under small perturbation.For any complex p~,or real V~<0, ~4’grows exponentially; for v~= 0, ~4’
increaseslinearly in t. Thereare two spuriouse~= 0 solutionsof ~4’which are not relatedto instability
(andshould be excludedfrom the beginning).Oneis dueto the phaseinvariance(2.2),andthe otheris
related to the invarianceunder a spacetranslation. By keeping the particle number N fixed in the
perturbation,we can eliminatethe first spurious~ = 0 solution. The otherone is removedby keeping
the total momentumfixed.

As w decreasesfrom m to its minimumvalue (for D � 3) nontopologicalsolitonsgenerallyencounter
one or morecuspson the M versusN curve. (See.e.g.figs. 9 and 10.) At the cusp.sayw = w~,one has

dN/dwO, dM/dwO. (3.2)

When w changesinfinitesimally from w~ F to w + F, one moves acrossa cusp along the M versusN
curve. The variation ~4’of the correspondingequilibrium solution can be readily seen to be O(E).
whereasthe variations~Nand~M areboth0(r’), becauseof eqs. (3.2). Consequently,~4’alsosatisfies
the linearized perturbationequationwith characteristicfrequency i = 0, and vice versa.This follows
since?iN = O(r~)is consistentwith N beingconstantin the perturbation,~M = O(E) implies v = 0, and
the centerof mass is obviouslyunchangedby ~4’(sincee.g., the entire M versusN curve in figs. 9 and
10 refersto solutionswhosecentersare atr = 0). Thus,the appearanceofa cusp indicatesthe onsetofa
newmodeof instability [17,561.

In section3.2, we introduce a set of collectivecoordinateswhich separatesthe degreesof freedom
associatedwith the phaseand the spacetranslationsfrom other degreesof freedom. The resulting
equationfor the small perturbation~4’is free of the two spurious V = 0 solutions.The canonical
quantizationprocedure[22,57,58] is discussedin section3.3: aswe shall see,it is closely relatedto the
formulation of classicalstability.

3.2. Stability of the classicalsoliton solution

The Lagrangiandensityis given by (2.43), with D = 3. We introducefour collectivecoordinates,the
threecomponentsRh(t) of the centerof masspositionvector (k = 1.2,3) andan over-all phasevariable
0(t). Let us write

4’ = (1 /V~)et~m)[u(r— R) + ~(r — R, t)]. (3.3)

— R, t) XR(r — R, t) + i~1(r— R, t), (3.4)

with ~ x1 and 0 all real. Because4’ is invariant under the infinitesimal variations 0—~0 + ~0and
Xt + a’ ~0.we imposethe constraint

fa’xid~r=o. (3.5)

which removes the spurious V = 0 perturbative solution connectedwith the phase invariance. To
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eliminate the three degrees of freedom related to the space translation, we further require

f ~a’d~rO. (3.6)

Expand

XR(r, t) = Re q~(t)f~(r), (3.7)

Xi(T, t) = Im q~(t)f~(r), (3.8)

where {f~(r)}with n = 1, 2,. . . , 5, 6,. . . denotesa completeset of orthonormalcomplex functions
which satisfy

f ff5d
3r6~~., (39)

with fk ~ 8a’I3rk (k = 1, 2, 3) and f
4 ~ a’. Otherwise the functions f~(n = 5, 6,. . .) are arbitrary.

The collectivecoordinatesR, 0 andthe vibrationalcoordinatesq~can be put togetheras onesingle
column matrix:

q = (R1, R2,R3, 9 q q6 )T (3.10)

with the superscriptT denoting the transposeof the correspondingrow matrix. The Lagrangian
L = $ 5°d

3r can thenbe written as

L = — ‘Y(q), (3.11)

where4 = dq/dt, and

~(q) = f d~r[V4’t V4’ + U(4’t4’)]. (3.12)

Substituting(3.3)—(3.7) in the Lagrangiandensity(2.43), we find

~kk’ = Jd3r (~(Va’)26kk,+ 2 ~ + + ~ -~-~-), (3.13)

where(and throughoutthe restof this section),the subscripts

k,k’=1,2,3. (3.14)

Denote from now on

n,n’=5,6 (3.15)

The other matrix elements are
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~I44 = fd~r(a-2 + 2a’XR + x~+ x~). (3.16)

is 3a’ Ox
= ./11g4 =J d’r(_2 ~ x ~XR ~ x

1 —a). (3.17)

= ~ = -~ J d~r((f, +f~)~ - i(f~-f,~)~). (3.18)

= ~n4 = ~ J d
3r [i(f -f)XR + (f, +f~)x

11. (3.19)

= ~ (3.20)

Regarding the Lagrangianas a function L( q. 4)’ the conjugatemomentumof q is p = 3L/84. i.e.

p=~t14~(P1,PThP/,N.p~,pa,., )t , (3.21)

wherep is a column matrix and the superscriptT denotesthe transpose;the particlenumber is

N = OL/80 (3.22)

and the total momentumcan be set to zero, i.e.

P~= 8L/3R~= 0. (3.23)

In terms of these conjugate variables q and p. the (classical) Hamiltonian becomes

H = ~ p~14-
tp + 1’( q). (3.24)

The advantageof the canonicaltransformation,changingour original variables4’ and ~ to q and p. lies
in making explicit the conservationof both the particle numberN and the total momentumP. Since
both 11(q) and the matrix ~ (3.12) and (3.13)—(3.20),are independentof 0 andR, we have

N = dN/dt = —3H/8O= 0. = dPg/dt = 3H/8Rg = 0. (3.25)

In the following discussionof the perturbationaroundthe soliton. we shall regardx
1~.x1 and their

conjugatemomenta

PR = 3L/3~R, p1 = 8L/3~ (3.26)

as 0(r), where r is an infinitesimal. Regardinga’ andN as the zeroth order,we expandtheHamiltonian
H in powersof r:

H=H~+H+H2+~~~ (3.27)
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with H~= 0(~~). Likewise, define ~iU~ to be the zeroth order k-matrix. Write

(3.28)

where~ contains0(r) as well as higher orders.The inverseof At is

(3.29)

From (3.13)—(3.20), we see

M0 0
M0

M0

j , (3.30)
1

0 1

where

M0 = ~ J d~r(Va’)
2, I = J d~ra’2. (3.31)

In the expansion, a’ is regardedas a given function of r that satisfies the time-independent equation
of motion (2.47), with w appearing as a parameter. (So far, logically w is independentof N.) It is
straightforwardto verify that

H
0 = ~(N

2I~ + w21) + M
0, H1 = (w

2 — N212)f d~ra’XR’ (3.32)

Because w and N are independent parameters, we have the liberty to set

N1w. (3.33)

In that case

H
0—M0+1w

2, H
10. (3.34)

In the next sectionwe shall see that, for a sufficiently smallnonlinearcouplingg, the relation (3.33)
ensures a power seriesexpansionin g.

Setting N = 1w, we find the second order Hamiltonian H2 in (3.27) to be

H2=X+ ~ ~i’ (3.35)

in which
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~ p0 — wAI4,j
2, (3.36)

= ~ frx~~~x~+ 2
1w2

2 (Jd~rXRu)~. (3.37)

~ f~rxi~ix
1+~- (Jd~rxiVa’). (3.38)

where hR and h1 are definedby

hR = —V
2 + ~ d2U/da’ — w, h~= —V2 + (1!2a’) dU/da-— w. (3.39)

Let i~1Rjand be the eigenstatesof hR andh
1:

= ARi
4’RI (3.40)

h
1i1i11 = A11i/111. (3.41)

Without any loss of generalitywe may chooseall the lItRE to be real. For any given particle numberN,
we shall consider the lowest energy classical soliton solution. That is the lower branch in fig. 9. In
accordancewith (2.47), we have

h1a’=0. (3.42)

Because of translational invariance,a’(r + e) must also satisfy the sameformal equation(3.42). For an
infinitesimal ~, its deviation from the original soliton solution a’(r) is r Va’(r) which leads to three
p-stateeigenfunctionsof hR all with zeroeigenvalues,i.e. by differentiating(3.42),

hR4’k = 0, (3.43)

where

~ 8a’I8r~.. (3.44)

Since the lowest s-stateeigenvalueof hR must be lower than the lowest p-stateeigenvalue,hR has at
leastone negatives-stateeigenvalue(later we shall show that thereis actuallyonly one suchnegative
eigenvalue). From (3.42), we see that h1 hasone zeroeigenvalues-stateeigenfunctionera’; sincea’ has
no node, all othereigenvaluesof h1 arepositivedefinite (ascan be derivedby usingthe argumentgiven
in the paragraph following (2.53)).

Consider the eigenvalue equationsgeneratedby

= /tRXR~ ~j’~V1I~,y1= AIXI . (3.45)

Labelling the respective c number eigenfunctions1JJR and IIIJJ andtheir associatedeigenvaluesAR, and
we have
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hR ~Ri + ~ (J d~a’ ~1’R!)a’ = ARI ~‘Ri’ (3.46)

and

h1~Iç1+~_(Jd3Va’~P~1).Va’=A11~1c1. (3.47)

Wemay again choose these eigenfunctions ~‘~Ri and 1It~,to be real.
Next, we shallestablishthe positivity of AR, and A11, i.e.

AR,�0, A1l�0. (3.48)

Furthermore, there are three ARk = 0 and one A11 = 0 (the corresponding ~‘~Rk Vka’ and c a’); all
other ARE and A11 are positivedefinite.

Proof. Multiplying (3.47) by ~ and integrating over all space, we see that the positivity of h1 implies

� 0. Define the functional

E(f) J [~w
2f2 + ~(Vf)2+ U(~f2)]d3r, (3.49)

where f(r) is a real function of r and w = w( f) is regardedas another functional of f given by

J f2d~r= N = a fixed number. Take N> N~(i.e. along the lower branch in fig. 9), so that the soliton
solution a’ exists. Since a’(r) e ~ is the lowest energysoliton solutionfor a given N, the minimum of
E(f) must be at f= the samea’. Hence, any infinitesimal variation f= a’ + S~I’iTk~hasto introducea
positive change E2ARE, which leadsto AR,� 0, and proves the positivity (3.48). Next, we examine the
number of zero eigenvalues among AR, and A~

1.
For lI’~ a’, (3.47) reducesto (3.41); the correspondingA11= 0. All other A11 are positive definite

(since the same holds for A~1).For ~
1~RE ~a’, the corresponding AR, = 0, because (3.46) likewise reduces

to (3.40). The spherical symmetry of a’ ensuresthat the samereductionoccursfor othereigenfunctions,
except when ~‘~REis s-wave.Thus,for nonsphericaleigenstates,thereareonly threep-waveAR, = 0; all
other ARE are positive definite (since the same holds for all other eigenvalues AR, of nonspherical
solutions of hR). To establishthe positivedefinitenessof all s-waveARE, let lI’

1, lI’2~.. . denote the set of
all s-wave eigenfunctions of hR:

= ~ (3.50)

The i/is. are chosento be real and orthonormal, with

~ d
3r = ~ (3.51)

and their eigenvaluesarranged so that

A
1<A2<A3<. (3.52)
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(For convenience,we may enclosethe systemin a large but finite sphere,so that, in accordancewith
the Sturm—Liouvjlle theorem, these s-wave eigenvaluesbecome discrete and non-degenerate.)As
shownbefore,A1 <0.

Similarly, let {~I’~}be the set of all s-wave 1JIR, and A, their correspondingeigenvaluesAR,. The
positivity of AR, establishedbefore implies A, � 0. It can be readily verified that by using (3.46) and
expanding~I1in terms of the set {t~}. the correspondingeigenvaluez = A, is the root of

det~A—z+bb~=0, (3.53)

where A is a diagonal matrix with A, as its diagonal matrix elements,b is a column matrix, whose
componentsare

b1 = ~ Ja’4’~d
3r. (3.54)

and b its transpose.Introducing

a (A — zr2b. (3.55)

we have

A—z+bb=(A—z)12(1+a~)(A—z)~. (3.56)

Hence,if z~ A. for any A,, (3.53) is satisfiedif det~1 + aä] is zero, i.e.

A—z =0. (3.57)

From (3.31) and (3.33), we have

~N=Iaw+2wfu~a’d3r, (3.58)

where, on account of (3.42),

hR~a’—2wa’~wAJ. (3.59)

Therefore,at z = 0, ~(z) is given by

= I~ dN/dw <0. (3.60)

In accordancewith (3.57), the derivatived~(z)/dzis alwayspositive. Whenz movesfrom —~ to At—.
~(z) increases from 1 to +~. Then ~(z) jumps from +~ to —x as z crossesA

1. When z increasesfrom
A~+to A2—, ~(z) changesfrom —x to +0’s. Because~(0)<0, we have for the lowest eigenvalueA1,

0<A<A2. (3.61)
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BecauseA1 <0, At is also betweenA1 and A2. Likewise, each successiveA~lies betweenA~and A5~1
(which confirms the assertion made before (3.57), i.e. for z being the root of (3.53), z ~ A, for any A,).
Thus, all A. arepositive definite. This completesthe proof of the statementfollowing (3.48).

Construct two sets of functions,

{lJI} , {~P.}, (3.62)

where the former contains all the eigenstatesof (3.46)exceptthethree~Pkcc V~,a’, and the latter contains
all the eigenstates of (3.47) except a’. The expansions

XR = ~R, ~ Xi q~1~ (3.63)

clearly satisfy the constraints(3.5) and (3.6). We can express(3.37) and (3.38) as

= ~

(3.64)

‘l/ = ~, A~1q~

in which all ARE and A~1are >0. It is convenient to define

PR1 Pu ~Rt ~ii

PR = (~2)~ pi = qR = (~),qi = (qi2), (3.65)

From (3.35)—(3.38) and (3.64), (3.65), we have

H2 = ~(J~RPR ~PIPI) + R(AR + FF)q~+ ~(A1+ IT)q~+J~~Fq1—~1Fq~, (3.66)

where AR and A~are diagonal matriceswhosediagonalmatrix elementsareAR, and A11and the matrix
elements of F are

(3.67)

We may castthe aboveexpression(3.66) into a more compactform by introducing

(3.68)

where

~~(Pi~) 22ns(~qi~). (3.69)
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Equation (3.66) for H2 can then be written

H2 = ~ ~, (3.70)

where

— ~ tO F~ /AR+IJ 0

~ o)’ ~ ~ ‘ (3.71)

The Hamilton equation for H2 is

8~(E _~) . (3.72)
at \i ~

Examining its normal modesolution ~ = i~, where

~N(t)ere. (373)

we find

(E ‘~N = 0. (3.74)

Thus, ‘

12N is the root of the quadratic equation

—c
1 +c2Q~+Q~=0. (3.75)

where

c1 = ~ ~ c2 = ~ _2iF)~ (3.76)

and
22N is the coordinatecolumn vector part of 71N’ chosento satisfy the normalization condition

~N~N1, (3.77)

The solution of (3.75) is

~N ~[—c
1±(c~+4c1)’~

2]. (3.78)

Since c
1 is real and positive, and c2 is real, hence

all ~ are real. (3.79)

Thus the entire lower branchin fig. 9 is classicallystable.From the argumentgiven in section3.1. we
conclude that the upper branch solutionsare all unstable.
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3.3. Quantization

From the classicalHamiltonian (3.24), by following the standardcanonicalprocedure,we havethe
quantum operator

H ~ ‘lI(q), (3.80)

where the components of p, given by (3.21), now denote the differential operators

Pk=—i~/3Rk, N=—ialao, p~=—ic3It3q~, (3.81)

and ~(q) is the Jacobian given by

= ~det At(q). (3.82)

Since ~(q), At( q) and ‘V( q) are all independent of the collective coordinates R and 0, we have

[P,H]=0, [N,H]=0. (3.83)

The Schrödinger equation for the state vector ) can be written as

HI )=EI ~. (3.84)

Let g be the nonlinear coupling. Following the analysis (2.33)—(2.35)of section2, we seethat in the
expansion (3.27) H

0 is proportional to g
2 and H

1 is proportional to g_i, For g sufficiently small, in
order for H0 to give the correct energy to O(g

2), we must haveHj ) = 0. (Otherwise, q~would be
0(g_i) which inducesan 0(g2) energyfrom H~+ H

2 + . ‘ ~.)Thus, we require

Nj )Iwj ). (3.85)

Because0 is cyclic with a period of 2’rr, the eigenvalueof its conjugatemomentumN must be an
integer. Hence only the classicalsolution with 1w being integer can be quantized.

We may expandthe energyin a power seriesin g
2,

E=E
0+E2+E4+~~, (3.86)

where E0 -~0(g~’
2),E

2 -~O(g
2E

0)‘-~ 0(g°),E4 -~0(g
2), etc. From the previous section, we can write

H
2, given by (3.66), in terms of positive eigenvalues

12N~

H
2=E(~+XN)flN+Evac, (3.87)

where Evac is the vacuumenergywithout the soliton and XN is the occupation number of the Nth
normal mode. By treating the higher order H~(with n > 2) as perturbation, we derive a systematic
expansion for the quantum solution.
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The canonical quantizationprocedurein this section follows closely that of Christ and Lee [22].
Similar methods have been used in quantizing topological and nontopological soliton solutions
[57.58,591. The quantumsoliton solutionscan also be obtainedthrough various forms of’ functional
integration techniques[60—65],the Green’sfunction approaches[23,66], and the variational methods
[67—69].Someof thesetechniqueswill be describedin section 5.

4. Bose liquid

4. 1. General discussion

In this section, we give a descriptionof Bose liquid, basedon nontopologicalsoliton solutions.Much
of the fundamentalapproachis alreadycontainedin the well-known work of London [70], Landau [71]
and many otherson liquid He. Nevertheless,as will he discussedin sections 4.2 and 4.3. the basic
theoremon the formation of the Bose liquid is relatively recent.

In the usualtreatmentof Bose—Einstein(BE) condensation,onebeginswith an ideal bosonsystem
as the zerothapproximation;the interaction is treatedas a perturbation.Since solitonsare bound-state
solutions,such a perturbationseriesnaturally missestheir existence.In this chapter,we representthe
bosonsystemby a nonrelativisticnonlinearquantizedlocal field 4’, anduse the lowest-energyc number
solution 4’ = a’ (instead of free particles) as the zeroth-order approximation. In this way. the
nonlinearity of the problemis recognizedat the outset. In the caseof solitons, as discussedin the
previoussections,the interactionmust be partially attractive,and a- is typically O(g~)with g the
appropriatelydefinednonlinearcoupling. A systematicperturbationseriesin g can be developed.By
having the new seriesstartwith O(g2), one takesinto accountthe soliton solution, which forms the
Bose liquid.

The same method is also applicablewhen the interaction is purely repulsive. (In that case,the
condensate is a gas, not a liquid.) As will be shown in section4.4, when applied to a dilute system of
nonrelativistic Bose hard spheres of numberdensity p. diametera and massm in threedimensions
(D = 3), it gives the well-known ground stateenergyper particle [72.73] (/1 = I).

Ego/N = 2ir(ap/m)[1 + ~(pa3/ir)1 2 + O(pa’5 In a)]

as well as the excited level formula.
The characterizationof a Boseliquid is interesting,sinceit possessesboththe liquid natureas well as

the usual BE phase coherence. In section 4.5. we discuss the spontaneoussymmetry breaking
mechanism.Our original Hamiltonian has two symmetries: the space-translationalinvarianceand a
U(1) phaseinvariance.The breaking of the formergives the “soliton” condensationin the liquid—gas
transition (as that betweenliquid HeI and the helium gas) and of the latter the BE transition (as the
A-transitionbetweenHel andHell). At very low temperatures,both can be broken.A precisecriterion
for these two phase transitions can be obtained. Since the stability of the nontopologicalsoliton
dependson the phaseinvariance,its symmetrybreakinghasto be handledwith care. As we shall see.
this subtlety is, in turn, connectedwith the essentialdifference between the canonical and grand
canonicalaverages.
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4.2. Nonrelativisticsolitons [30, 74, 75]

Consider a nonrelativistic local (zero-spin) field theory in which the bosonoperatorq5(x, t) satisfies
the commutation relation

[th(x, t), 4’T(x’, t)1 =

8D(x — x’) , (4.1)

where,as before, adaggerdenotesthe hermitianconjugate,x is the D-dimensionalspace-vector,andt
the time. The Hamiltonian H(4’) and the particle number N(4’) are given by (in the unit ti = 1)

H=f(~~~V4’t.V4’+U(cbtcb))d’~x, (4.2)

N=J4’t4’dDx, (4.3)

wherem is the bosonmass.
As in the relativistic theory, becauseH is invariant under the phase transformation

(4.4)

N is conserved. For stability, U is boundedfrom below; in addition,

U—cc when 4’j—*cc, (45)

as would be the casefor any matterat an infinite density(without gravity). For physicalapplications,4’
would be a phenomenologicalboson field representing a composite of an evennumberof fermions (in
the caseof helium, 4’ represents the He atom); hence, there is

an ultraviolet cutoff A (4.6)

to ensure the finiteness of the theory for any U. We may take U to be a polynomial of 4’~4’,with

U—~fx(4’
t4’)2, when 4’j—~0. (4.7)

(A quadratic term, constant x 4’~4’,in U gives an energylinear in N, which can always be dropped.)
The theorem proved in section2.2 can be readily extended to the nonrelativistic case:
If there existsa range in 4’] howeversmall, in which U is attractive (i.e. U <0) howeverweakly,then

in anyspace-dimensionD when Nis sufficientlylarge,thegroundstateis a soliton(i.e. a boundstateor a
Boseliquid) with a fixeddensityp~and a nonzerobinding energy

(4.8)

per particle.
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The nonrelativistic version differs from the relativistic case in some technical aspects,e.g., N
depends on 4’ in a relativistic theory, but not for a nonrelativisticsystem.For clarity, a proof is given
below. We discussin this sectiononly the c numberpart; the quantumtheory will be treatedin the next
section.

By minimizing H at a fixed N with respect to 4’ and labeling the resulting(lowest energy)solution

(4.9)

we find that a’ satisfies

—(112m)V2a’+ ~ dU/da’ = ta’, (4.10)

wherep is the Lagrangianmultiplier anda’ can be chosento be real. This equationis of the sameform
as (2.47),with only the differences that (i) as a’—~0, U—~fa’4here,whereasU—* m2a’2 in the relativistic
case(in accordancewith (2.48)), and (ii) an attractionmeansU <0 here; hut in a relativistic case,
U <m~a’2.

In our case,let —o-2LI bethe parabolatangentto U at a’ = a’s, as illustratedin fig. 11 for (i)f <0 and
(ii) f > 0. By following the same argument given in section2.2, we see that in anyspace-dimensionD.
when N is sufficiently large, a soliton solution exists, with V negativebut greaterthan —LI. As N—~x.
V—~— LI and the soliton energyE(N) becomes

E = —NLI + O(N~~), (4.11)

as in (2.57). This establishes(4.8). Because(4.10) is generatedby 8[H(a’) — VN(a’)] = 0, we have

dE!dN= V. (4.12)

Before leaving the c numbertheory, it is useful to have some of the expressionsfor perturbations
aroundthe soliton solution. Write

4’ = e’5[a’(x — x~)+ XR + ix~I, (4.13)

U(cr2) IJG,2)

f<0 f>0

~-cr2~

(i ) (ii)

Fig. ii. U(o~)is the self-interaction energy density of the boson field a. As o—~O.U—.fd’. The assumption that his pariially attractive means Li
must be negative in some region of a. (i) gives an example off <1) and (ii) is for f >0. The parabola — ai is tangent to U at ,j = (i.
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where 0 and 10 are constants,XR and x1 are real functions which will be regarded as being small, 0(r).
Because N(4’) and the total momentum

P(çb) _iJ4’t Vçb d°x (4.14)

are conserved, we may imposethe constraints

N(4’) = N(a’) = J a’
2 dDx, (4.15)

P(4’)=P(a’)=O. (4.16)

Consequently,

f XRa’ dDx = — ~ J (x~+ x~)dDx = 0(r2), (4.17)

J x
1 Va’d’~x=~J(xRVxI_xiVxR)dDxO(e2). (4.18)

By using (4.10) and (4.17), we find the Hamiltonian (4.2) to be given by

H(4’) = E(N) + J (XRhRXR + X1h1X1)dDx + 0(r
3), (4.19)

where E(N) = H(a’) is the zeroth-order energy

hR = —(112m)V2+ ~ d2UIda’2— ii, (4.20)

= —(112m)V2+ (1 /2a’) dUlda’ — p. (4.21)

Hence,

hRVa’=0, (4.22)

h
1a’=0. (4.23)

As in section 3.2, we can readily establish the following properties:
(1) From (4.22), we see that hR hasD p-wave eigenfunctions ccaa’Iax~(where n = 1, 2,. . . , D) all

with zero eigenvalues. Consequently, hR has ones-wave eigenfunctionwith a negativeeigenvalue.All
other eigenvalues of hR are positivedefinite.

(2) From (4.23), it follows that h1 has one s-wave eigenfunction era’ with a zero eigenvalue;all its
other eigenvaluesare positive definite.

(3) Because4’ = a’ gives the lowestH(4’) at a fixed N(4’), we have, from (4.15), (4.17) and (4.19), if

$ XRO’ d’~x = 0,
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f XRhRXR d’5x �0. (4.24)

Likewise, for any x

f ~
1h1~1d

11x�0. (4.25)

The equality signs occur only when XR is xOo-/Ox,, andx a- (which are in turn connectedto the
translationalinvariancex

11 —* x11 + constantand the phaseinvariance0—~0 + constantof the theory).
Hence,by requiring

f XRa’ d~x= J x1~Va’ d’~x= (1 (4.26)

we derive

f XRhRXR~>O (4.27)

Likewise,

f ~h1x~d°x>() ifJxia’d’~x0. (4.28)

(4) As in (2.33)—(2.35), the r-expansionin (4.l3) and (4.17)—(4.19)can also he expressedin an
alternativeway. Define an overall nonlinearcoupling g by requiring, for a gu,

U(a’) = g u(à) (4.29)

with 11(à) not explicitly dependenton g. Thus.e.g.. the couplingfin (4.7) can he written as

f= ±g. (4.30)

Equation(4.10) becomes

du/dà= Va- (4.31)

which is g-independent. Hence, a = 0(1). a- = O( g I) and E(N) and N(a-) are both O( g 2) Regard

XR andXi as 0(1). The expansion (4.19) can be viewed as an expansion in g, with O(~’) replacedby
0(g).

4.3. Quantumtheory

Write (4.13) as

4’ = e~‘°[a-(x— 1)) + xl (4.32)
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where

XXR~~XI (4.33)

and 8, X0 are constants,as before.In quantumtheory,XR and Xi are Hermitian operators.On account
of (4.1), the commutator between x(x, t) and ~

T(x’, t) is ~‘3(x— x’). We have

[x
1(x, t), XR(X, t)] = — ~i~D(x —

(4.34)

[XR(X, t), XR(X’, t)] = [x1(x, t), x1(x’, t)1 = 0.

The operators P(lI’) and N(4’), definedby (4.14) and (4.3) are both conserved (i.e. commute with H).
Let P(a’) = 0 and N(a’) be thecorrespondingc number,given by $ a’

2 dDx. Equations(4.15) and(4.16)
becomeconditionson the statevectors:

N(4’)j ) = N(a-)I ) P(4’)j ~= 0. (4.35)

—l —lAs in (4.29)—(4.31),we regarda’ = O(g ) and x = 0(1). To O(g ), (4.35) gives

J XRa’~l ~=fxiVa’dDxI )=0. (4.36)

Likewise, to 0(1), (4.19) becomesthe expansion

= (E(N) + f (xRhRxR + ~
1h1~1)d’~x + O(g))j ), (4.37)

where E(N) = H(a’) is O(g
2).

Becauseof (4.34), we may regard \/~ XR as the generalizedcoordinateand ‘V~~ as its conjugate
momentum.(This is a typical nonrelativisticrelation, quite different from the relativistic case.)Let
{ f,(x)} be a set of real completeorthonormalfunctions, with

f
0cca’, f~eraa’/ax~,.. . , f~cc~a’/8x~, (4.38)

otherwise,fD+ fD+2’’ . . can be arbitrary. Expand

XR = ~ q0f0 + ~ Q0fD+O’ ~ Xi = ~ PJ~+ ~ HflfD+fl. (4.39)
a1) n=i a() nt

From (4.36) and (4.38), we have, to 0(1),

q0j )=O, p~j)=0, where 13=1,2,...,D. (4.40)

In the representation that p0, q1,. . . , q~and Q~are diagonal, we may set q0 = i
318p

0,Pp = —i
andTt~= —ia/aQ~.Equation (4.40) implies that the statevectorshould be independentof p1~and q~•
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Therefore,it is only a function of Q1, Q2, . . . Hence,the Schrodingerwave function can be written as

Q!
KQI ) , where Q= Q: - (4.41)

Let

~ O/8Q. , (4.42)

By using (4.22), (4.23) and (4.40), we can rewrite (4.37) in the Q-representation. The corresponding
time-dependentSchrödingerequation

H(cb)j ) = -i(aIat)j (4.43)

becomes

H(Q, H)(Qj = -i(aIat)(Qj ~. (4.44)

where

H(Q, H) = E(N) + H2(Q, [I) + 0(g), H2(Q, Ii) = 1QAQ+ ‘,IIBIJ (4.45)

with the tilde denotingthe transposeas before, and the matrix elementsof A and B being given by

A,1 =f ff~,hRfJ)2/d’
1x , B

11 =f Jf),)h1Jf) d’~x (4.46)

andi,j=1,2,3,... Intermsof

~ Q0f~i,,. g ~ ii,,j~.,,, (4.47)

H. becomes

H. = ~ J(~hR~+ ~h1~) d°x. (4.48)

Since by construction

f ~a’dDx=f~Va’d13x=0, f~a-d11x=j~Va-d1)x=o, (4.49)

it follows from (4.26)—(4.28) that H, > 0 for any ~ and ~. Hence, the matricesA and B are both
positive definite, besidesbeing also real and symmetric.
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Wemay switch from the Schrödinger picture to the Heisenberg picture by regarding the operators Q

and H as t-dependent and the state vector t-independent. From (4.44) and (4.45), we find, neglecting

Q=BH, H=—AQ. (4.50)

Define

Q=B~2Q, TI=A~2H.

Hence,

Q = _But2AB~2Q, H = _A~~2BAu/2H. (4.51)

The positive definiteness of A and B ensures that all eigenvaluesof A112BA”2 (which are the same as
those of BU2ABV2)

~ . .>0. (4.52)

A systematicexpansionof g is then possible.
To O(g2), the ground state energy is given by E(N), the classical soliton expression. When g is

small, the character of the ground state remainsdeterminedby the zeroth-ordertermin the expansion.
Hence, the theorem (see (4.8)) stated in the previous section holds in the quantum theory, provided
that the g-expansion is valid.

As an example, consider the specialcasewhen the lowest-energysoliton solution a’ fills the entire
volume Ii, with a’ = a’

5, N(a’) = a’~12and

E(N)= —Ni. (4.53)

When a’ = a’5 and ~= —LI, we have, as shownin fig. 11, (i) and (ii),

~a’
2— U(a’2)=0. (4.54)

Because Va’ = 0, (4.39) can be written as

XR = ~ (qo + ~ Qk elk1), v~x,= ~ (po + Hk e~), (4.55)

with

Qk=Q~k, Hk=H~k. (4.56)

The corresponding ~ is

H
2 =! ~ [(k

2/2m+ 2mv~)Q~Qk+ (k2/2m)H~TIk], (4.57)
k~’0



288 1. D. Lee and V. l’ang. Nontopologicalsoliton,s

wherev~is the soundvelocity given by

v = [(1/2m)(LI+ d2U/da’)]’~ at a- = (r. (4.58)

The frequency (4.52) is

w~—[kv~+(k/2m)l 2 (459)

Correspondingly, the spectrum for the low-lying excitationsis

H—NLI+~n
5w5+~E. (4.60)

where~k = 0, 1, 2. . . . and ~E denotesthe shift of the zero-point energy. (An illustration of how to
calculate~E will be given in the next section.)

When N a’-!)> a-TN. then a-> a-s: its value is determinedby

v(1/2a-)dUIda-. (4.61)

in accordancewith (4.12) and

E=U(a’)Q. (4.62)

The numberdensityp is a’

2 and the pressure p is

p = —(aE!aQ)~= —U + ~a’dU!da-. (4.63)

The compressibility is

1 dp 1 / 1 dU 1 d2U’~ a-2 d2U
~ ~ (4.64)
m dp 2m \ 2a- da’ 2 da’’ m d(u~y

At a- = o-~and i.’ = —LI. by using (4.54) and (4.58), we find, as expected.

v~=(m’dp!dp)12 at p=p~. (4.65)

The samefrequencyspectrum(4.59)alsoholds for a-> o~,providedv~is replacedby v = [dp/d(mp)]’ 2

at p = o~.

4.4. Bosehardspheres

In the local field-theoretic approximation, a Bose system of hard spheres of diameter a andmassm
(in D = 3) can be representedby

U = g2(4’~4’), with g2 = 2~ra/m. (4.66)
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In this case, there is no soliton solution. At a given N, the lowest-energy c number solution is
a’ = constant in the entire volume Ii, determined by (4.61):

= (1 /2a’) dU/da’. (4.67)

Hence, for the repulsivecase

2 2
p = 2g p >0, where p = a’ = N/Il. (4.68)

The classicalenergyis

E~”g2a’4fl~”2’rrNpa/rn. (4.69)

By going through the same steps as from (4.55) to (4.65), but with v~and a’
5 replacedby v and a’, we

find the spectrum

(4.70)
k�0

wherenkO,1,
2,...,and

wk = [k2v2+ (k2/2rn)2J~2. (4.71)

The parameter v is the sound velocity determined by

= (1/2rn)(—v+ ~d2U/da’2)= 4’rrap/m2, (4.72)

and~iEis the shift in the zero-point energy, which is the same as the sum of all one-loopdiagrams in the
presenceof an external field (4’t4’)ext = a’2,

= ~ [k2v2+ (k2I2m)2l~2— ~ k2/2m+ c(
1) + c(1~), (4.73)

where c() and c(1) are counter terms due to the renormalizations of the inertia (giving a subtraction

term er(4’~4’)ext)and the coupling constant g
2 (giving a subtractionterm cc(

4’t4’)~xt) in a “renormaliz-
able” g

2(4’t4’)2 field theory, as illustrated by the diagrams (i) and (ii) in fig. 12.
Since c(

1) is 0(g
2)= 0(a) andc~

111is 0(g
4)= 0(a2), the inclusionof the countertermsc() and c(

11)

in (4.73) is identicalto subtractingthe 0(g
2) and0(g4)termsin the one-loopsummation(regardingp

(i ) (ii)

Fig. 12. Diagrams for (i) the 0(g2) mass renormaiization and (ii) the O( g4) coupling-constant renormahzation of Bose hard spheres.
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as g-independent). We may formally expand [k2v2+ (k2/2rn)2]t2 as a power series in v2 = 0(g2).and
simply drop its first three terms; this procedure corresponds exactly to the inclusion of the last three
terms in (4.73). The result is

= ~ {[k2v2 + (k2/2m)2]’2 — k2/2m — my2 + rn3v4/k2}. (4.74)

As the volume fl—*x, ~k(2~)~~ fd3k. and

~iE= (8Nm4v1/15’rr2)p

Thus, we rederive the well-known result [72,73] for the low-lying spectrum of a dilute system of Bose
hard spheres:

H = 2lTNpam’[1 + ~(pa3/1T)~2] + ~ nk(k/2m)(16~rap+ k2)t2. (4.75)

Using this level formula, one can calculate the partition function nearzero temperature,T= 0. For
T >0 (but less than the critical temperature). higher excitations have to be included; those will he
discussed in (4.lOO)—(4. 105) below.

One may also verify directly that c
111 and~ are indeed the last two terms in the sum (4.74). Recall

that the nonrelativistic boson propagatoris

D(k~,k) = i[k11 — (k
2/2m)+ ir]’ , wherer = 0+ . (4.76)

In fig. 12(i) the external line is a-; hence,its contribution to ~E is

= —Qg(cb~cb)~~,J D(k
1~,k) ~ = —a’gQf (~)3~

Since a’
2g2 =

C
111 = —~ ~mv

2. (4.77)

Likewise to 0(g4), ~g2 (unrenormalizedcoupling)2— g2 at the zero-momentumtransferis

= _2(_i)g4f (~4 fdk() D(k
0, k)D(—k11,—k) = 2mg

4f (2~3k2

Note that 2mg4a’4 = 81Ta2p2/m= ~m3v4.We obtain from fig. 12(u),

cUE) = fl(~g2)(4’14’)~~,= ~ ~-~--. (4.78)

Equations(4.77) and (4.78) confirm the validity of (4.74).
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4.5. Spontaneoussymmetrybreaking

Returnto the casewhenthe interaction U(4’ t
4’) is partially attractive.The ground state(in a very

large volume Il and for sufficiently large N) is a soliton; atvery low temperatureT, the system is a Bose
liquid. The Hamiltonian H has two symmetries: the translational invariance and the phasesymmetry
(4.4).The purposeof this sectionis to show that the symmetry breaking of the translational invariance
is connectedwith the liquid—gastransition, whereasthe breakingof the phasesymmetry is relatedto
the Bose—Einsteincondensation.As we shall see,in orderto give apreciseformulation,it is convenient
to adopt the canonical ensembleaveragefor the former, but the grand canonicalensembleaveragefor
the latter.

Theunderlying physical reason for this difference is that in the canonical ensemble the total particle
numberN is fixed: in a two-phasegas—liquid region, if the averagedensityN/Il is lessthanthe liquid
density, thenthe lowestenergystateconsistsof agas—liquid separationwhich breaksthe translational
symmetry.On the otherhand,N is not fixed in the grand canonicalensemble:becauseof the surface
energy associated with the gas—liquid separation, in an average over N, at the critical Gibbs chemical
potential ~ = ~ for the phase transition, the average density N/Il jumpssuddenlyfrom the gas density
(at j.~= ~ —) to the liquid density (~= ~ +), bypassingthe gas—liquid separatedconfigurationand
without a spontaneoustranslationalsymmetry breaking. Similarly, since N is conjugate to the overall
phase-variable0, it is difficult to haveaphase-symmetrybreakingin the canonicalensemble.In order to
describethe BE transitionas a spontaneousbreakingin the 0-invariance,it is moreconvenient to use
the grandcanonicalensemble.The detailsare given below.

Let H0~,A/0~andP0~bethe quantumoperatorsof the sameforms given by (4.2), (4.3) and (4.14).
Define

~ —~N~+ H0~, (4.79)

wherepi is the Gibbs thermodynamicalenergyper particle. Enclosethe systemin a large,but finite,
cube of volume Il with periodic boundary conditions. Denote the averageof any operator0 in the
canonicalensembleby anglebrackets,

Q_i trace(e’~’0), (4.80)

where f3 = (kBT)’ with kB the Boltzmannconstant,and Q is the partition function

Q tracee~” (4.81)

with the trace taken over all statevectors ~ satisfying N0~I) = Nj ~.Denote the corresponding
average in the grand canonicalensembleby squarebrackets,

[0] = ~ Trace(e~’~O),where ~ =Tracee’~ (4.82)

andthe (capitalized)Trace is takenover the entire Hilbert spaceconsistingof statesof all possibleN.
BecauseH and ~‘ are invariant under the phasetransformation4’ —~4’ e’°, we have

(4.83)
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Both H and ~ are also invariant under the space-translation4’(x)—* cb(x + c), with c arbitrary for an
infinite volume (butparallel to the edgesof the cube for a finite (2). Hence, in the infinite volume limit.
keepingthe averagenumberdensityp fixed,

= [qYq5]= constant= p. (4.84)

4.5.1. Translationalsymmetrybreaking

In order to show the liquid gas difference in a Bose system, we may replaceH and ~ by

= H + f ~(x— x)))4’ (X)4’(x) d’1x. (4.85)

= ~+ f ~(x - x~)4’~(x)4’(x)d’5x, (4.86)

where ~(x — x~)is a small negative bounded c number function of x with a finite range and having a
minimumat x

0. For a system of ideal bosons, or bosons with only repulsive interaction U. thereare
only differentgasphases. Taking first the limit f) —~cc at a fixed averagenumberdensityp, andthenthe
limit E—~O,we derive again(4.84), which can alsobe obtainedby taking the limit ~—*Ofirst andthen
I) —~cc,

ForbosonswhoseinteractionU is partially attractive,at sufficiently low temperatureT the systemis
a Bose liquid, in accordancewith our basic theorem. (However, the gas—liquid critical temperature

= 0 if D = 1.) Consider first the canonical ensemble with H replaced by H~.Take T = 0 and
p N/Il < a’~.Since the Bose liquid has a densitya-~,N < o-~(2meansthat the liquid does not fill the

entire volume Il. (We assumethe validity of the g-expansion,so that the a--termin (4.32) dominates.)
Keeping p fixed and letting £2 —÷cc (the volume occupiedby the liquid also approachesinfinity, with its
center of mass at x0). arrange X~~—*cc in such a way that a part of the liquid surface remains at a finite
position. Hence, in contrast to (4.84), when theoverall averagedensityp is less than the liquid density.
we have

lim lim K4”4’~�constant. (4.87)
E—.)) f1=x

This doublelimit can be convertedinto a single one if we set

J ~dDx=O(IY~~), with0<a<(D+2)/D. (4.88)

so that $ ~‘d°x—~Oas Il—~cc,and yet the infrared degeneracyis broken (i.e. the macro-liquid would
still be centered at x0, since without ~the first excited state of such a macro-liquid moving as a whole in
a volume Il = L’

3 hasa kinetic energy--L2N1 o fl 13+2)/IS) As we shall see,the same limit of the
grand canonicalaverage[4”4’] behavesquite differently.

Let E
11(N) be the lowest-energy solution in the c number theory when ~ = 0 and (2 is large but finite

(with E~,(N)= E(N) given by (4.11)). The general shape of E11(N) is illustratedin fig. 13. Let U(a’) be
of the form given by fig. 11(i); —U has one maximumat a’ = a’~. It can be readily verified that the
solution of (4.10), for ii = 0, is a constant a- = a’~ throughoutthe entire volume Il. Since aE11(N)/

= V = 0. this corresponds to the minimumM of E11(N)with N~,= (2o~.As V increasesfrom zero,
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E~(N)

N

N E = - NA

Fig. 13. The total energy E,,(N) of a Bose liquid versus N (at a given volume 11). The point I is the point of inflection. The dashed line E = —N~1is
tangent to E,,(N) at iI.

let a’ = a’~denotethe point whenu(a’)ns ~‘a’2— U reaches its maximum, i.e. [au(a’)/aa’]~= 0 ata’ = a’~.
The solution of (4.10) remainsa constanta’, given by a’ = a’s, with the correspondingN = Ila”~> NM.

When ii is negative,a more complicatedpatternof solutionsemerges.Considerfirst ~‘ = 0—; u(a’)
becomes negative for a’ near0. Thereare now two solutionsof (4.10), both satisfying the periodic
boundaryconditions:one is a constantsolution a’ = a’

0— (at the maximum of u), and the other is a
soliton solution oscillating near a’ = 0. On the E~(N) curve, the former is representedby a point at
N= NAI—, but the latter by a point at N=0+. At both points,their slopesaE0(N)/3N= p=0— are
the same.As ii decreasesfrom zero, on the E0(N) curve, these two solutionsmovetowardseachother.
We notethatthe correspondingcurveu(a’) now has two maxima, at a’ = 0 and a’ = a’r; in betweenthere
is a minimumat, say,a’ = a’~,.The constantsolution is a’ = a’~and the other, soliton-like solution (since
Il is finite), oscillatesarounda’~between the two maxima. Decrease v steadily until the maximuma’~
coalesceswith a”~at v = i.’~<0; the curve u(a’) now has a point of inflection at a’ = a’~= a”~.There is
thenonly one single solution.Because8E0(N)/aN= v, this solutionis representedby N= N1 which is
also the point of inflection I of the curveE0(N), shown in fig. 13.

The soliton-like solutionhasa surfaceenergy,andit determinesE0(N) only betweenN = 0 and N1.
Beyond N1, the lowest-energy solution is a’ = constant(which hasno surfaceenergy), determinedby
du/da’=0. In fig. 13, we draw the dashedstraight line E= —Ni tangent to E~(N)at the point II.
Because N11 > N1, the correspondinglowest-energysolution is a constant a’ a’5, and therefore
N11 = a’~Il.

Next, consider the grand partition function (still with Il finite, T = 0, ~= 0 and assuming the
dominanceof the c numbersolution). The Gibbs thermodynamicalenergyp. is determinedby requiring

[N0~]~”N=pIl�0. (4.89)

By construction, the function

—p.N+ E0(N) (4.90)

when p. = —LI hastwo degenerateminima: ~~(N~1)= ~~(0). Hence ~(N) hasits minimumat N = 0 if
p. < —LI, but at N � N11 if p. � —LI. Therefore,at T= 0, [N0~]versusp. has the same behavior, i.e.
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[N0~]= 0 if p. < —LI but jumpsto N � N11 if p. � —LI. (Note that the gasdensityis zeroat T = 0.) Since
the surfaceenergyof the soliton solution is O(Il

113’1°),the sameconclusionholdsafter we introduce
a small symmetry-breakingterm ~. (The f-dependentenergyremainsfinite as 12 —~cc, andit becomes
zeroas ~ 0.) Thus, in thegrand canonicalensemblethe boundstatenatureof the macroscopicsolitons
doesnot play anyessentialrole. Thegrandcanonicalaverageof 4’~4’is alwaysa constant,just as in the
purely repulsive case;its two-phaseregion consistsof the probability distribution of the two pure
phases,each filling the entire volume uniformly. In contrast,in accordancewith (4.87), the canonical
averageof the Bose liquid can be quite different: in the two-phaseregion,becauseof the spontaneous
symmetry breakingof the translationalinvariance,at T = 0 the systemconsistsof a single macroscopic
soliton which occupiesonly part of the volume, leaving the remaining part vacant. In the infinite
volume limit, both ensemblesgive the same intensive thermodynamicfunctions. All the above
considerationscan,of course,be generalizedto T ~ 0. (For D = 1, the gas—liquidcritical temperatureis
0.)

4.5.2. U(1) symmetrybreaking
In order to breakthe phasesymmetry4’—* 4’ e’5, it is best to use the grandcanonicalensemble,as

we shall see.Considerthe three-dimensionalcase, D = 3. The operator4’ satisfies the commutation
relation

[4’(x, t), 4’1(x’, t)l = ~3(x— x’). (4.91)

In order to havea spontaneoussymmetrybreakingin the phasesymmetry,we write

4’(x, t) = O~)+ X, X = a~e’~/\[Il, (4.92)

where a’)) is a constant,a,, andits hermitian conjugatea~areannihilationand creationoperators,with

[ak, a~]= 6kk’ (4.93)

As in (4.79), let

~{ns H,,~— p.N,,~. (4.94)

V(çb~4’)aaU(4’tcb) — p.4’T4’. (4,95)

where U is the interaction that appearsin H,,~.
ExpandV(Øc4’) around

4’t4’ =

= V0 + V)’~(4’
t4’- Ja-()j2)+ ~V~(4’14’- J~J)+.... (4.96)

where 1’~= V(j~)j),V~= dV(jo-
0j

2)Idjo~~j2and V~= d2V(I~)I2)/(dja-Oj)2.At a given p., O~)j is
determinedby requiring V to be a minimumat 4’4’ = ja’))j2. Hence,V) = 0, i.e.
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p. = dU(ja’0j
2)/d(]a’

0j
2), (4.97)

V’~ mv2/ja’
0j

2 >0, (4.98)

which also defines the parameterv.
So far, the minimum of V only determinesthe magnitudeof a’

0j
2. Introduceaninfinitesimal constant

j and define

(4.99)

This makes the minimum of V occur at a definite a’~whose phase =‘rr+ phaseof j; thereby, the
symmetry breaking is achieved.For j real and —p0, a’

0 is real and ~ ~‘. Neglecting the cubic
(4’f4’ — a’~)

3 and higher order terms, we have (in normal productsand retaining only up to the
quadraticpart of a,~anda~)

~‘ns V
0 + ~ [(k

2/2m+ 2mv2)a~ak+ mv2(aka_k+ a~ka~)], (4.100)

whoseeigenvaluesare

= V
0 + ~ ~k[’~ + (k

4/4m2)f’12, (4.101)

where n,, are positiveintegers,all 0(1), relatedto N (the expectationvalue of N
0~)by

>~nk+a’OIl=N. (4.102)

(In (4.92), the sumover a,~includesk = 0; to determinea’0 to the accuracyIl - 1/2 we require the grand
canonicalensembleaverage[akO] = 0.) From the excitationspectrum,we seethat the parameterv is
the soundvelocity.

Let

a’~= yN/Il, (4.103)

wherey is the fraction of the total numberof particles that are in the zero-momentumstate. The
parametery characterizes the long-rangeorder of the Bose condensate.Its temperaturedependence
can be determined by

Il~ f d
3x [4’(x)] = (yp)i/2

For the Bosehardspheresat a low but non-zerotemperature,by using(4.66)and(4.97),we find the
chemicalpotential to be

p. •= 2g2a’~= 4’rrayp/m (4.104)
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and the soundvelocity v (at 0 ~ T < T~)given by

= 2g2a-~/m= 4~rayp/m2 (4.105)

in agreementwith the well-known results[76J.[WhenT = 0. we have = 1; (4.105) reducesto (4.72).1
In general, for an interacting boson system, it is clear that, becausethe condensatedensity a-

0j
varieswith T, the solution of (4.97) requiresa T-dependentp. � 0. This approachfails in the canonical
ensemblefor 0< T < T, since instead of p., there is only the total density (which is different from
a-1t) as the independentparameter:without the correctzeroth order a-,, the expansion(4.92) cannot
evenbegin.

Therefore,we should stay with the grand canonicalensemblein order to have the average

(4.106)

at 0< T < T~(for D = 1 and 2. T~= 0). Note that [4’(x)Jis independentof x. andtherefore[4’j = a-0.
To conclude, we can use the canonical averagestatement (4.87) as a criterion for the soliton

liquid—gascondensation(phasetransitiondueto the translationalsymmetrybreakingof 4’ 4’). andthe
grand canonicalaveragecondition (4.106) for the BE condensation(phasetransition due to the U( 1)
symmetry breaking of 4’). In the caseof helium, the former is the transition between Hel and the
helium gas,and the latter is the A-transition betweenHel and Hell. The critical temperatureof the
soliton condensationcan be nonzero if D � 2. whereas the BE transition has a nonzerocritical
temperatureonly for D > 3.

5. Friedberg—Leemodel for hadrons

5. 1. General discussion

QCD is believedto be the theory for the strong interaction. It describesthe interactionsbetween
quarksand gluons (the building blocksof all hadrons),and is highly nonlinear. At very high energies.
the effective couplingconstantis smalldueto a propertysharedby all such non-Abeliangaugetheories,
called asymptoticfreedom. Comparisonwith experimentand perturbationexpansionat high energies
hasverified many aspectsof the theory. But at low energy, the effective coupling is not small, and
nonperturbativeeffectsdominate.As yet oneis still not able to derive the structureof hadronsin terms
of QCD. FriedbergandLee useda phenomenologicalscalarfield to model the nonperturbativepart of
the theory at low energies;it is often called the Friedberg—Leemodel [17—20].In this model. hadrons
appearas nontopological solitons.

Let us first write down the Lagrangiandensityof QCD (in units /i = c= I),

= ~i(iy°D0 — m)~— F0,,F~. (5.1)

wherefor each flavor (for simplicity, we suppressthe flavor index)

i/i’

~ 11,2 , (5.2)
4’S
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with 4” a four-componentDirac spinor (i = 1,2,3),

= a~A~— a~A’~+ ~ a~= ä/8x~, D,L = a~— ig ~~ (5.3)

The A~arethe color Gell-MannSU(3)matrices.The subscriptsandsuperscriptsa, b, c run from 1 to 8.
It is customaryto write

/0 1 0\ 0 —i 0 1 0 0 0 0 1
0 oJ, A2= 0 0 , A3= 0 1 0 )14= 0 0 0

\000! 000 0 00 100

(5.4)
/00—i 000 000 1100

0 0 , A6—. 0 0 1 , A7— 0 0 —i , A8=—7= 0 1 0
\iOO 010 OiO v300_2

They satisfy the relationships

[Aa, A6] = 2~fa6eAe, {A,,, Ah} = + 2da6cAc , Tr AaAh =

2~ab (5.5)

The nonzeroelementsof fabe andda
6 arelisted in table 1.

The Lagrangiandensityof the Friedberg—Leemodel is given by

(5.6)

where

= 11’(iy’~D~— m)4’ (5.7)

Table I

Nonzero elements of f,,,,, and d,,,,,.

lmn f,,,, Imn d,,,,

123 1 118 iiV~
147 4 146 4
156 —1 157 4
246 228 i/’/~
257 247
345 1 256
367 —1 338 i/V~

458 1V~ 344 1
678 4V~ 355

366 —~

377
448 —1/2V’~

558
668 —i/2V’~
778 —1/2V’~
888
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is the Dirac term for the quarks,the scalarfield a--part is

= ~(a~a’)(a~a’)- U(a’), (5.8)

the third term is the quark—a’ coupling

(5.9)

and the last term

= ~K(a-)F~F,,,, (5.10)

is the gluon part of the Lagrangian.In the absenceof ~ and~ andwhen K(a-) = 1, the Lagrangian
density(5.6) reducesto that of the standardQCD expression(5.1).

The nonlinearself-interactionof the a- field U(a’) is usually chosento have the quartic form

U(a’)= ~ aa’ + ba’3 + ~ ca’4 +p, (5.11)

with its coefficientschosensuch that it has the shapeof the dashedcurves(p >0 andp = 0) in fig. 14.
There are two minima: an absoluteminimum at a large value a-, and anotherat a- = 0. The former
correspondsto the physicalvacuum,with a’ = a-

5 representingsomecondensate.The otherrepresentsa
metastablevacuum (perturbativevacuum)in which the condensatevanishes,with an energydensityp
relative to the physical vacuum(i.e. p is adjustedto make U(a’,) = 0).

ft~:’t7—-. p>O. a0

-~ 12 -

~I0- -
o

\ p>O, ay1O’~-~8\r \ -

4\

/

2- / -

0 0.2 0.4 06 08 1.0 .2
0~/o-~

Fig. 14. Three typical forms for the poteniial U(rr) in the so!iton hag model.
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The Friedberg—Leemodel hassolitonsolutionsevenwithout thegluon part of the Lagrangian.The
couplingbetweenthe scalarfield andthe fermion field acts like a massterm for the quarks.Hence
(for m = 0) in the physical vacuum, a’ = a’~,all quarks have a large mass fa’5 which makes it
energeticallyunfavourablefor them to existthere.In contrast,in a regionof the metastablevacuumthe
quarkshavezero restmassandso only kinetic energies.However,the situationis alteredwhen thereis
a nonvanishingquark density. In that case,the coupling~ providesan additional linear driving term
in the potentialfor the a’ field. This tendsto increasethe energyof the physicalvacuumrelativeto the
metastableone. If the densityis high enoughit can raise the energyof the physicalvacuumsufficiently
to make the perturbativevacuumstable, at least locally. Hence we havethe possibility of trapping
quarksin a finite region of the metastablevacuum,wherethe quark densityprovidesa force keeping
the a’ field closeto zero. The conservedquantityhereis the fermionnumber.Justlike the scalarsoliton
in threedimensions,whenthe fermion numberN is sufficiently large,the soliton solutionexists,and is
stable.A classicalsolution is presentedin section5.2.

The dielectric function K(a’) satisfies the following conditions in order to guaranteecolor con-
finement:

K(O) = 1, K(a’~)= 0, K’(a’~)= 0, (5.12)

whereK’ = dK/da’. Becausethe velocity of light c = 1 (in vacuumandin our units), the productof the
color dielectric constantK and the color magneticsusceptibility p. must be 1. As K—~’O, the physical
vacuumbecomesa perfectcolor dia-electric; since p. = K

1 —~ cc, the physicalvacuumis also a perfect
color “anti-diamagnet”.

In the immediatevicinity of quarks,antiquarksand gluonstheremust be a color electric field. The
perfectcolor dia-electricproperty of the QCD vacuumforcesthe color electric field back towardsits
source,making it form clustersof color singlets(hadrons).This is analogousto the Meissnereffect
exhibitedby a superconductorin QED. The superconductoris a perfect diamagnet,which expelsthe
magneticfield outward.The QCD vacuumis a perfectcolor dia-electric, and leadsto color confine-
ment. In a superconductor,magneticfields can neverthelesspenetrateits surface(on the scaleof the
London length) or, when the field strengthis sufficiently high, enterthe superconductoras vortex
filaments.Similar behaviouris also expectedfor the QCD vacuum.

To exhibit more explicitly the color confinementphenomenonconsider Gauss’ law (neglecting
nonlinearterms)

ÔDC =pC (5.13)

wherethe D-field is relatedto the color electric field by

DC = KE. (5.14)

An isolatedcavity containinga non-zerocolorchargewill lead to a D-field whichfalls off as r2 when
r—~oc. The energyof the color electric field,

J d~rDcDd/~, (5.15)

will divergesince K(r) —~0 exponentiallyasthe a’ field returnsto the physicalvacuum.Thus an isolated
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color object would havean infinite energy.The dia-electricstill allows the color E and B fields to
penetratethe vacuum.However, vanishingK in the vacuumis sufficient to guaranteethat thereare no
long range van der Waal forces between isolated solitons. The color D-field between two widely
separatedcolor objects forms a flux tube. This producesa linearly rising, confining potentialbetween
them. The particular form of K(a-) is not crucial so long as the abovepropertiesare satisfied.The U(a-)
of (5.11) gives renormalizabletheory, except for the presenceof K(a’). However, to have color
confinement,one is concernedwith distance >, or about, a few tenthsof a femtometer.The modified
gluon , given by (5.10), is only a phenomenologicalrepresentation,not expectedto hold in the
ultraviolet limit; its unrenormalizabilitydoesnot presentany real difficulty.

In a superconductor.the Meissnereffect is the result of the spontaneouselectromagneticgauge-
symmetry breaking. similar to the Higgs mechanism in the standard model of the electroweak
interaction,with theZ°andW~massesreplacedby the inverseof the London lengthA~.On the other
hand, in QCD the color-gaugeinvarianceis thought to be an exactsymmetry; the color-confinementIS
not connectedwith any spontaneoussymmetry breakingmechanism.Yet in the Friedberg—Leemodel.
the color-confinementis achievedphenomenologicallyby representingthe physicalvacuumas aperfect
color dia-electric, similar to the superconductorbeing a perfectdiamagnet.Does that then meanthe
color symmetry is alsobroken spontaneously?

In the Friedberg—Lee model, for states that are not color-singlets. the color-gaugesymmetry IS

indeedbrokenspontaneously.However,sincethesestatesare of infinite energy.thereis no contradic-
tion with QCD. This can he seenmostdirectly by introducingan infinitesimalmassr to thecolor vector
field V~,making its longitudinal mode physical. Taking the limit K(a’,)—*() first (and r—~0last), the
stateof a singlegluon doesacquireaninfinite mass,consistentwith the spontaneoussymmetrybreaking
mechanism.For color singlet (bag/soliton)states,since a’ approachesa-~only asymptoticallyat infinity.
color gluons can propagateoverfinite distances;within any finite domain,the Lagrangiandensity(5.6)
is color-gaugeinvariant.

Another interestinglimit is to set m = 0 in (5.7) andalsothe quark—a-couplingf= 0 in (5.9). In that
case,the Lagrangiandensity~of the Friedberg—Leemodel is invariant underthe chiral transformation
[77, 78]

4’—~)~4’. (5.16)

Again, the stateof a single (color) quark should havean infinite mass; in this case,the spontaneous
color-gaugesymmetry breakihgalsogives rise to aspontaneouschiral symmetrybreaking. But for color
singlet states,within any finite domain, J~is chirally invariant (provided in =f=0).

Besidesthe possibleform of K(a-). the Friedberg—Leemodelhasfive parameters:the threeconstants
a, b, c in the U(a-), the quark—a’ couplingconstantf and

a~g2/41T. (5.17)

the strongcouplingconstant.Theseconstantsare currentlychosento fit andpredictthe following data:
— the nucleon mass mN = 939MeV,
— the proton root-mean-squarechargeradius (r~)I 2 = 0.83 frn,
— the nucleon gyromagneticratios, p.

1~= 2.7928 andp.5 = —1.9130.
— the ratio of the axial to vector coupling constantsgA’g~ 1.26.
— the light mesonmasses,m~= 138 MeV, rn, — rn,, -~-780MeV.
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— the delta—nucleonmasssplitting m,~— m~= 279MeV,
— the coefficient of the linear term in the heavy quark—antiquarkpotential,or the string tension,
— the glueball mass.

5.2. Classicalsolutions

We shall first introducethe classicalsolution of the Friedberg—Leemodel without the gluon fields.

The equationsof motion derivedfrom the Lagrangiandensity (5.6) are (for m = 0)
(i~’—fa’)4’=0, (5.18)

fla’+dU/da’+f4’4’=0, (5.19)

where

= l~, LI = g)L~~0,, 0, . (5.20)

For a sphericallysymmetrica’(r), the c numberDirac function can be written as

u(r)

~ =e”~(iff.~(r))~m, (5.21)
whereo are 2 x 2 Pauli matrices,~‘Amis the standardtwo-componentPauli spinor harmonic,

sm” ~ Kim1 ~mj jm)Yj~~~,, (5.22)

mfm,

= r/r and A is the Dirac quantumnumber,

A=(j+ ~)(_1)1+1/2, (5.23)

Equations(5.18)—(5.22)become

(~+~)u~+(fa’+e~)v~=0,(~—~)va+(fa’—ra)u~0, (524)

1 d(~da’~ dU f 2 2

~- l,~r-j--)+~--+~—>~(u~—v~)=0,

with the normalizationcondition

Jr2dr(u~+y~)=1. (5.25)

In the last equationof (5.24) the sum is over all valencequarks.Thereare threeunknownsin (5.24),
the energye~,a’(0) anduA(0). (Note that v~(0)= 0.) They arefixed by the boundaryconditionsat cc,

At r = cc,
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Fig. 15. The quark wave functions u. u and Ihe scalar field r for a ground state harvon with three valence quarks.

a’=0, u4=v4=0. (5.26)

Equations(5.24) can be solved numerically [79—82].
For a ground statebaryonwith threevalences-statequarks(A = —1). the solution is shown in fig.

15. The total energyof this system is

E=3r1 +4~Jdrr2[~(da’/dr)2+ U(a-)]. (5.27)

The mean-squarecharge radiusof the proton is given by

(r~)=fdrr4(u~ + y~). (5.28)

and its gyromagneticratio by

p.15 3fdrru1v~i - (5.29)

In this simplemodel,the neutronmagneticmoment is —2/3 that of the proton, andits chargeradiusis
zero. The nucleonaxial coupling, measuredin neutrondecay,is given by

= ~ Jdrr2(u~i- 1y2) (5.30)

The wave function of a baryon is constructedby antisymmetrizingthe quark wavefunctions.The
result must be a color singlet. Details are given by Wilets [20].
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When gluons areincluded in the full Lagrangian(5.7), the equationsof motion are

[iy~D,, —fa’]4’=0, fla’+ ~ + dK(a’) ~ F~,F+f11i4”0,
(5.31)

= gl/J ~y,Ac4’— gK(a’)f~~(A”)”F~,,,where Ac = A~, f~6= fa6c~

In the one-gluonexchangeapproximationthe non-Abeliantermsareneglected.The gluonpropaga-
tion is thensimilar to QED in the presenceof an inhomogeneousdielectricmedium.The calculationof
the gluon Green’sfunction for arbitrary spatial dependenceof the dielectric can be carriedout. It is
usually convenientto work in the transversegauge

a•KA=0. (5.32)

The scalarGreen’sfunction then satisfiesthe time-independentequation

8 K(r) 8G°°(r,r’) = —~(r— r’). (5.33)

The space-tensorGreen’sfunction hasto be transversedueto thegaugecondition,andits time-Fourier
transformsatisfies

(w
2 + 82)K(r)G”(r, r’; w) — CikI ~ Id simnK(r)Gm1(r, r’; w) 0,, ln K(r)1 = —~‘4.(r,r’) , (5.34)

where Ejik = +1 (or —1) if ijk is an even(or odd) permutationof 1, 2, 3 and zerootherwise,

(5.35)

is the transverses-function.TheseGreen’sfunctionsaregiven by Lee [83]andby TangandWilets [84].

5.3. Mean field approximation

Without the gluonfield, the solutionof the Friedberg—Leemodel is very similar to that of the MIT
bag model [11]. In the MIT bag model the quarks are confined in an infinite square-wellscalar
potential.With asoliton model,the quarksareconfineddynamicallyby their interactionswith another
field. The advantageof this approachis that the theory can be quantizedin a straightforwardmanner;
also, the relativistic invarianceis manifest.The Hamiltonian andits densityare

H=Jd3r~, (5.36)

X= 4’0[—i~.ô+g13a’]4’+~2 + ~(ôa’)2 + U(a’), (5.37)

where IT is the conjugatemomentumof the a’ field,

~=aoa’. (5.38)
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We can separatethe sigmafield accordingto

a’ = a’~1(r)+ a’1 . = 3r1(r) + IT1 , (5.39)

where a-11 is the time-independentc number a--function obtainedin the previous section, a- is the
quantumfluctuation and IT11 = 0. Theseoperatorssatisfythe usualequal time commutationrelationsfor
bosons

[IT(r, t), a’(r’. t)J = [7r~(r,t), (r1(r’. t)] = —i~
3(r—r’). (5.40)

Similarly, we can representthe quark operatorby

(5.41)

where ch satisfy the equal time anti-commutationrelation for fermions

(5.42)

and the 4’k are anycompleteandorthonormalset of spinor—color—flavorfunctions.For a fixed number
of valencequarks, the Hamiltoniandensitycan be expandedin terms of a-~

= ~ + ~ra-, + ~ ~ra-~ + ~x”a-~t+ S4(lt~a-j.

where ~‘ and its derivatives /~“, ~1{”,- . - are evaluatedat a-~
1.Varying the expectationvalue of H with

respectto
4’k and a’

1, andneglectingtermsof ordera’~and higher in H, we havethe classicalequations
of motion (5.18) and (5.19).

In termsof the quark stateobtainedfrom classical equations.we can rewrite the Hamiltonian,

H = E11 + Ekckck+fdr (~(IT~+ 0a-~I+ U”a-~)+ ~U”a’~+

+f~~k(r)a-I4’/(r)c~c/). (5.43)

where E0 is the energyof the classical field O~)only. The quantumpart of the soliton field can be
expandedin termsof any orthonormalset {s,,(r)}:

a-1 = ~ (2w,,)~
2(a~s + a,,s,,) , IT

1 = ~ i(w,/2)’
2(a,s — a,,s,,) . (5.44)

The Hamiltonian simplifies if we chooses, and w,, to be the solution of

(_82 + U~— w~)s,,(r)= 0. (5.45)

We have

~ (5.46)
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where

— 3 —1/2 tH1 f
4’k~n4’I d r (2w,,) ckc,a,,+ he.

kIn (5.47)

H
3= ~ J(b+ca’o)a’~d3r,H4= ~cJa’~d3r.

The diagramsrepresentingH1, H3 and H4 are shown in fig. 16, where the solid lines are quark
propagatorsandthe wavylines are a’1 propagators.The lowestnormalmodesof s,, can be shownto be
surfacemodes.They can be interpretedas mesoncloudssurroundinga baryon.

In the meanfield approximation,since the soliton is localizedin space,it doesnot havea definite
momentum.It can be shownthat, for a solitonsolution, the expectationvalueof the total momentum
operator(P) =0, while (P

2) ~0, whereP is given by

P = —~ f d3r (i8(4’t4’) + {ir, ôa’}). (5.48)

This gives rise to spuriouscenter-of-massenergiesand center-of-massfluctuationalmotions. Onecan
correctthis problemwithin the meanfield approximationby defining [851

m=~(H)2-(P2) (5.49)

and identifying m with the massof a soliton, referredto as the “recoil-correctedmass”. The quark
distribution radiussquaredof a soliton is defined as

Kr2) = K l(~ rj)21) (5.50)

where r, is the position operatorfor the ith quark, N is the total number of quarksand ) is the
quantumstate. If we approximatethe expectationvalue of an operatorC by

K C) = ~ J d3r K C(r)H(r)I), whereE = J d3r K H(r)]), (5.51)

then the quark distribution radiussquared,(5.50), for a baryon(with threevalencequarks)is

Kr2) = (1 — 2E/E + 3s2IE2)Kr~)+ 3r2l2E2 , (5.52)

Fig. 16. Interaction terms H,, H, and H,, where the solid lines are quark propagators and the wavy lines are u, propagators.
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Table 2
Parameter sets which yield the same recoil-corrected proton rms
radius of 0.83 fm and recoil-corrected proton mass of 939 MeV 1851.

a (fm ~) —6 (fm 1) c f p (MeV/fm)

0.0)10 4.66 1)8) 10.531 11)25

7.671 107.27 5(8) 13.1)88 0.0))
1.602 69.33 5)8) 9.572 16.85
(1.00)) 58.52 5)))) 9.158 20.83

12.849 196.34 1(8)0 13.064 0.0))
2.589 124.64 1.000 9.361 22.01
0.1)0)) 105.14 .1)00 9.1)37 27.12

4(1.88)) 783 ((8 5,00)) 14.1)14 (1.00
7.51)) 474.66 5.000 10.092 37.03
0.00)) 399.1)) 5.18)0 (0.01)) 45.1)6

66.422 .411.60 1)1.00)) 14.832 ((.0))
11.605 834.44 1)1.00)) 1)1,957 44.21
11.000 7)81.43 1)1388) 1)1.977 53.43

321.750 9824.8 00,00)) 19.77)) (1.0))
45.214 5208.5 101)00)) 16.379 (i7.lI
0.000 4,356.9 0)0.0)8) 16.715 81)1)7

where Kr~)can refer to any one of the quarksin the soliton, and r is the eigenenergyfor the s-wave
quark state.

Sincethe strongcouplingconstanta~,= 0 in the meanfield approximation,we have four parameters.
We may choosetwo constraintson theseparametersso that the proton mass(computedwith (5.49))
and the proton rms charge radius (computedwith (5.52)) fit the experimentalvalues exactly. The
variationsof the four parametersa, b, c andf under thesetwo constraintsare shown in table 2.

5.4. Beyondmeanfield approximation

In order for the eigenstateof energy to be the eigenstateof total momentum,we must isolate the
collective motion. The quantizationproceduredescribedin section 3.3 can be used to quantize the
Friedberg—Leesoliton. Since the Hamiltonian andmomentumoperatorscommute,an eigenstateof the
energy is automatically an eigenstateof the total momentum.Any quantization procedurethat
explicitly separatesthe degreesof freedom associatedwith collective motions from the vibrational
degreesof freedom will not have the spurious centerof mass motion shown in the last section.
However, thesequantizationmethodsare usually very complicatedto carry out exactly. In practice,
some approximateschemesare often used.The methodswidely used in solving the Friedberg—Lee
model are the Peierls—Yoccozprojection [861and the closely relatedgeneratorcoordinatesmethod
[87,88, 89]. The latter is appliedto soliton—solitoncollisions [90,91].

For a given statevectorof a soliton, Jx). localizedat a spatialpoint X. we can parallelly transportit
to anotherpoint X’.

Ix’) =exp[—i(X’—X).P]IX) - (5.53)
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An eigenstateof the momentumcan be constructedfrom a linear superpositionof theselocalized
solitonstates,

~)=Jd3Xe~]X). (5.54)

This is called the Peierls—Yoccozprojection. A zero momentumprojectedstateis simply

p =0) =Jd3X]X). (5.55)

An expectationvalue of an operatorC in the projectedstateis

fd3Xd3X’ KxICIx’)

KU) = S d3Xd3X’ KxIx’) (5.56)

If the operatorC is translationallyinvariant,wecan introduceZ = X — X’. Thenthe expectationvalue
of C can be written as

j’d3Z K—~zICI~z)
jd3ZK—~ZI~Z). (5.57)

The massof a soliton in this approximation(called the “projected”soliton mass) is then

$d3zK—~zIHI~z)

m=KH)= fd3zK—~zI~z). (5.58)
In fig. 17, we comparethe baryonmassof a “projected” soliton, as a function of the model parameter
c, with the “recoil-corrected”mass (5.49) and that calculatedfrom the meanfield approximation.

M FA
6- -

—S

E

~ezZ. - ..,/H>~-<p2>
-

C

-

projected \

c-1 .1 .1
C 0~ l0~

Fig. 17. Mass of a bag for one family of parameters (b2lac) and varying c. The solid line is from the mean field approximation, the short dashed line
is the mean field approximation with recoil correction, and the long dashed curve is calculated after a projection.
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In principle, Ix) can be a solutionunderthe meanfield approximation,(5.39), wherethe a--field is
separatedinto a c numberpart a’

1 anda quantumfluctuationa’~.Becausethe operatora-1 is definedwith
respectto a-11, the matrix elementsconnectingstatesof differenta’~are not easilycalculable.To avoid
the use of the spatiallydependentmeanfield, we can constructthe a’ part of the Ix) to be a coherent
state[92—95].We follow Lubeck et al. [95] andexpanda’ and IT in somecompleteset of orthonormal
functions,

a’ = a-~+ ~ (2w,,)’ “
2[a~s(r) + a,,s,,(r)1, IT = ~ i(w,,!2)1 ‘2[a,s(r) — a,,s,,(r)1.

where w,, are as yet undeterminedand s, can be chosento be planewaves, a- and IT satisfythe usual
equal time commutationrelationsif

[a,,(t),a,,(t~]= s,,,., [a,(t). a,,(t)j = [a,,(t)’, a,,.(t)’j = 0. (5.59)

A coherent state in one mode, say n = 0, is obtainedby the construction

IA) exp(Aa~)I0). (5.60)

Such a wave function was first usedby Lee and Pines[96] and by Lee. Low and Pines[97] in studying
polarons.It was furtherstudiedby Klauder [98] andGlauber[99], andused in quantumrepresentations
of solitonsolutionsby others[67,68, 100. 101]. It is straightforwardto verify that IA) is an eigenstateof
the annihilationoperatora

1,

a11IA) = AlA) - (5.61)

For any normal orderedoperatorof C(a1~1,a))).

KAI: U(a~,afl). IA’) = e~’AU(A*.A’). (5.62)

A more complex coherentstate vector can be constructedby taking a product of exponentiated
operators:

I~)=exp(~ (wp!2)l2fpa~)l0)exp(-~ ~ w~IJ;I2), (5.63)

wheref is the Fouriercoefficient of u~1(r),andw~,is to be determined.The expectationvaluesof a- and
IT are

(~Ia’I~)= a-~+ 2~.2 ~ (f~,e’~”+f e’fl ~,(r), (5.64)

and

K~IITIØ)= 2Q’ ~ ~ e~”-f efl~ ~)(r). (5.65)
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The total statevector, with the valencequarks, is

lip) =JJc) , (5.66)

andthe expectationvalue of (normal ordered)H is

K~I~H~~’)= H(a’0). (5.67)

Variationsof K~~H~P)give us the same equations as in the meanfield approximation.
The expectationvalue of H after the projection depends on w~andthe functionsu(r), v(r) anda’0(r),

whereu and v are the upper andlower componentsof the quark field. The massof a solitonshouldbe
obtainedby minimizing the expectationvalue of H after the momentumprojection. This is called the
variationafter projection. The variationswith respectto all thosefunctionsappearto be prohibitively
complicatedat present.Instead,we can carry out variationsin a limited numberof variablesbasedon
the forms obtainedfrom solving the meanfield equations.Denotethe meanfield solutionwith a tilde,
and introducevariationalparameters~, A, ~ and y,

a’0(r) — a-v = ~[~0(r/A)— a’,,] , (5.68)

u(r)=u1(r/6), v(r)=yvT(r/~). (5.69)

We now discussthe comparisonbetweenexperimentaldataand thesethreeapproximations,(i) the
simple mean field approximation,(ii) the mean field approximationplus the momentumprojection
correction(5.58) and (iii) with the additional variationswith respectto ~, A, ô and y (aftercompleting
(ii)). Therearefive parametersa, b, c,f and a~in the Lagrangian(5.6)—(5.11),of which oneis chosen
to yield the exact proton rms chargeradiusr~.This leavesfour free parameters.Table 3 lists the

Table 3
Nucleon and meson properties for the least-squares fit parameters with a, = 2.25, f= 5.694 and
b

2lac=5.438 1951.
(i) MFA (ii) Proj. (iii) Proj. + Var. Expt.mp (MeV) 1218 1031 930 939

(r~~’(fm) 0.83 0.83 0.83 0.83
is,, 2.06 2.96 2.67 2.76

—2/3 —2/3 —2/3 —0.685
m

5 (MeV) 1384 1177 l083’~ 1232
(r~,)°

2(fm) 0.83 — 1.20 —

— — 3.21 —

m~(MeV) 950 704 177 140
(r~,)’’ (fm) 0.71 0.70 — 0.66
f,,/m, — — 0.83 0.66
m, or m, (MeV) 1103 840 723 770
(r,2)’2 (fm) — — 1.40 0.66

g~Ig~ 1.21 1.35 1.27 1.26

string tension (MeV/fm) — — 910~~ 925°
°Additional ~—Nsplitting can be accounted for by explicit coupling of pions 11021.
b) Ref. 11021.
0 Determined from the quarkonium calculations 1103—1061.
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optimal valuesof (i), (ii) and(iii) for the “key” experimentaldatamentionedin section5.1. The result
[95] is reasonablysatisfactory.

Therearemanyapplicationsof soliton modelsin the studyof hadronicstructureandhadron—hadron
interactions.Many of thesesolitonsarevariationsof the Friedberg—Leemodeldescribedin this section
[107—113].A nontopologicalsolitonmodel basedon the linear sigmamodelwas developedby Kahana,
Ripka and Soni [114]. It containsa pion field in addition to the scalarfield a-. Subsequentstudy by
KahanaandRipka [1151demonstratedthe importanceof the pion degreesof freedom.A similar model
hasalsobeenstudiedby Birse andBanerjee[1161andby CelenzaandShakin[117].Amongtopological
solitons,the Skyrme model [118,1191 is the mostwidely used.

6. Soliton stars

6.1. Generaldiscussion

So far, our analysis does not include gravity. Since the existenceof soliton solutions depends
sensitivelyon the nonlinearity of the field theory and since general relativity is highly nonlinear, it is
natural to inquire whetherthe introductionof the gravitationalinteractionmay alter significantly the
previouslydiscussedsolutions,especiallywhentheir massesbecomeastronomicallylarge.This problem
is also of interestfrom anotherpoint of view: any(cold) stablestar is, by definition, a nontopological
soliton. Its equilibrium configuration has been calculatedbasedon the equationof state of normal
matterand the gravitational attraction.On the other hand,a major fraction of the total mass of the
universe is believed to be in the form of “dark matter”, of which very little is known except its
existence.Now, nontopologicalsolutionsalreadycan exist without gravity and (in that case)with no
upperboundon their masses;therefore,theymay be of astronomicalsizes. It is reasonableto explore
whether such solutionswith gravity may accountfor structuresoutsideour usual conceptof normal
stars.As we shall see,the interplay betweenthe gravitationalfield andothernonlinearmatterfields can
leadto several novel typesof stellar configurations,suchas bosonstars,mini-bosonstarsand fermion
soliton stars.Thesesolutionswill be discussedin this chapter.

We begin with a brief reviewof the equilibrium configurationsof (cold) normalstars: the solutions
for white dwarfsby Chandrasekhar[120]andneutron starsby OppenheimerandVolkoff [291.

6. 1.1. Chandrasekharlimit (review)
Considera white dwarf, or a neutron star, of radius R, mass M and fermion number N. The

gravitationalforce is balancedby the Fermi pressure.Fromthe equipartitionof energywe expect,for
the equilibrium state,the magnitudeof the gravitationalenergyto be comparableto that of the kinetic
energy.For ultrarelativisticfermions, we have

GM2/R—N4”3/R. (6.1)

where G is Newton’s constant. Let m be the effective mass,definedby

N=M/m. (6.2)

For a neutronstar,the fermionsare neutronsandm is the neutronmassmN; for a whitedwarf, they are
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the electronsandm = 2m~,sincetherearetwo nucleonsperelectron.Combining(6.1) and (6.2),one

seesthata critical massM~exists,
1/G3~2m2. (6.3)

Relating (in units /1 = c = 1) G = l~,where l~,is the Plancklength, given by l~. i0~cm, we find
(becausem~t-~i0’4 cm)

m/l~m3— 1057m~-~-M®, (6.4)

whereM® is the solarmass.For the white dwarf, this is the well-known Chandrasekharlimit, which is
about 1.4M®. For M largerthan 1.4M® but less thanM~of the neutronstar, white dwarfs ceaseto
exist: instead,one has a neutronstar. For the neutronstar, becauseof general relativity and nuclear
forces,M~is somewhatsmallerthanfour timesthe white dwarf limit (aswouldbe indicatedby (6.4)); it
is commonly acceptedas <SM

0, dependingon the physical assumptions.
For M largerthanM~of the neutron star, the solution becomes singular (R = 0). The starcollapses

into a black hole. This relatively low critical mass M~~ SM® has been used as a criterion for the
observationof blackholes.

This critical massM~for stellar collapse is ratherinsensitiveto the assumptionof the equationof
state.For any normal cold matter (temperatureT = 0) and in the usual thermodynamicallimit, the
pressurep is a function of the density—M/R

3. Take, for example,

pcc(M/R3)~’.

By balancingthe gravitationalforce with the force exertedby the pressure,we have in placeof (6.1),

GM2/R2 -= pR2~c(M/R3)~R2,

i.e.,

GM2~ R~3~. (6.5)

To estimategravitationalcollapse,we may set R to be the Schwarzschildradius2GM. Substitutingthat

in (6.5),we find
G 3~3~

and therefore the critical mass M~is always proportional to G -3/2 which leads again to (6.4),
independentof y. (For a relativistic Fermi gas, y =

6.1.2. Critical massesof soliton stars [24]
By using the nontopologicalsolitonsolutions,we can have(at leasttheoretically)a new typeof cold

stable stellar configuration, the boson or fermion soliton stars.Dependingon the theory, its critical
massM~mayvary from M® to as large as —10’2—10’5M®. Or, in the caseof mini-bosonstars,M~may
be as small as —40’°kg, with a density—40~’times that of a neutronstar.
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To illustrate the extremeexampleof a very largecritical mass,considerthe following exampleof a
nontopologicalsoliton, first without gravity. The theory containsan additive quantumnumberN (like
the baryonnumber)carried by eithera spin-i field ~J,or spin-0complexfield ~. with its elementaryfield
quantumhavingN= ±1.In addition, there is a scalarfield a-. Take the self-interactionof a- to be the
typical degeneratevacuumform:

U(a’) = ~ma-( 1 — a-/a-)))2. (6.6)

We may assign a- = 0 to the normal vacuum state,and a- = a-I) to the (abnormal)degeneratevacuum
state.The soliton containsan interior in which a- a-

1, a shell of width --rn , over which a- changes
from o’~~to 0, and an exterior that is essentiallythe normal vacuum.The N-carrying field t~i,or ~.is
confinedto the interior; this producesa kinetic energyEk (assumingfor simplicity that the massof ~i, or
~, is zero when a- = a-0, but nonzerowhen a- = 0):

( 1/3 4’3

E -- (

3IT) (~N) /R for ~‘. 67)k[~N/R for~.

The shell containsa surfaceenergy

E,=4IT5R, (6.8)

wheres is the surfacetension relatedto a-)) and tii by

s=~ma-~. (6.9)

The radius R can be calculatedby minimizing the total energyE = Ek + E,,. Setting3E/OR= 0, we have
the equipartition

E~=2E,. (6.10)

Hence, the soliton massM (which is the minimum of E) can be written as

M3E,12i’rsR, (6.11)

the total conservedquantumnumberis

( is 14 34 Y~4

N=~®-(2/3IT) s R for ~. (6 1”)
[8sR3 for~, .

and therefore,for large N,

M~-~/ for ~, (6 13)
~N’ for~. .

Becausethe exponentof N is <1, when N is large the solitonmassis always less thanthat of the free
particle solution, and that ensuresits stability.
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Next, we include the gravitational field. For configurations with R much greater than the
Schwarzschildradius 2GM, the effects of gravity can be treatedas a perturbation.Gravity becomes
importantwhenR becomesof the sameorderas 2GM. Thus,the critical massM,, maybe estimatedby
simply equatingR with the Schwarzschildradius,

R—.-2GM~,

which, because of (6.11), leads to

M~--(48’TrG2s)~. (6.14)

Set G = l~and assume,as a typical Higgs-typefield, a’~— m about, or higher than 30 GeV (but much
lessthan the Planckmass),we estimate

M~-~-(l~m)’4m (6.15)

which is of the orderof a galaxy.For example,if m —-30 GeV, we haveM~‘— 1015M® and R -~12m3

102 lightyear; if m is —300GeV, thenM~— 10’2M® and R —- 10_I lightyear.
At present,very little is knownconcerningthe natureof Higgs-typebosons,exceptthat they should

be massive, spin 0, and that their expectation values modify the masses of other fields. Thus M~for the
soliton star could also be quite different from the above estimate, dependingon the theory. For
example,by removing the degeneracyof the abnormaland normal vacuaand adjustingtheir energy
difference,M,, can vary from the order of a galactic mass to that of a solar mass,as we shall see.

If we take, insteadof (6.6), an MIT-bag-like potential which gives the abnormalvacuuma higher
potentialenergydensityp than the real vacuum,in the absenceof gravity the soliton masswould be
given, insteadof (6.11), by

M = 4ITsR2+ 4IrpR3 + Ek, (6.16)

where Ek is the kinetic energydensity(6.7). BecauseOM/OR = 0, we have

8IT5R2+4’rrpR3Ek,

and therefore

M= 12’TrsR2 + ~7rpR.

Next, we turn on the gravitational field. The critical mass M~can again be estimatedby setting

R —2GMC. This gives (neglectingthe factor 2)
1-- 12ITsG2M~+ ‘~pG3M~,

or

1 ‘~ ,‘)/ \l/2
An ____ ___ s. I ~JVic 2 2 ‘ w~~ere ç — I .

12ITSG i+~i+~ 3s \3ITG
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Hence,whenp =0 and s~0we have ~=0 and M~-—-(Gs) as given before by (6.14). Ifs 0 but
p~O,then M~—(G3p)’,which has the same power of G as the Chandrasekharlimit (6.3).
Consequently,thereis an enormouslatitude of M~for a soliton star, which can vary from a galactic
massto a solar mass.

What happens when p ands are both zero? This, as we shall see, leads to the the mini-boson stars.
Consider the simple theory consisting of only a “free” spin 0 complex field ~ of mass m ~ 0, plus
gravity. Becauseof the Bose—Einsteinstatistics,all bosonscan be in the samemicroscopicstateof wave
length —— m ~‘; so is then the radiusR (even though N> 1):

R—m’. (6.18)

SettingR —- 2GM, one can estimateits critical mass,

M~~(l~rn)2m. (6.19)

In the exampleof rn —30GeV, M~— lOb kg, the radius is —6x 10 ‘~, cm, andthe correspondingdensity
is extremelyhigh, —i~~timesthat of aneutronstar. Becauseof the smallnessof its size, we call sucha
configurationa mini-bosonstar.

The detailsof theseexotic stellarconfigurationswill be studiedin the following. We startin section
6.2 with the actionof the gravitationalfield from the theory of generalrelativity, followed by the action
of the scalarfield in section 6.3. The equationsof motion and various massformulas are given in
sections6.4 and6.5. In section 6.6, we examinethe solutionsof the bosonstars.The mini-bosonstars
and their stability are analyzed in section6.7. The fermion soliton starsare discussedin section 6.8.

6.2. Action of gravitationalfield

We restrict our investigationto sphericallysymmetricsolutions. The squaredlength differential can
be written in terms of the sphericalcoordinates(t, p. a, /3) as

ds = —e” dt + e2U dp2 + p2(da + sin2 a d/32). (6.20)

or, in terms of the isotropiccoordinates(t, r, a, /3), as

ds2= _e2udt2 + ev(dr2 + r2 da + r2 sin2 a d/32) , (6.21)

where a and /3 are the polar and azimuthal angles, and p is (2’n-) ‘ times the circumferenceof a
two-sphere,relatedto r by

p~”re” - (6.22)

The functionsu, v, and Jdependon p andt, or equivalently,on r andt. Clearly. ds is invariant under
the gaugetransformation

t~ t’(t), e” dt~e” dt’, (6.23)
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by keepingp, a, /3 and e” fixed. Both of thesecoordinatesare useful in understandingsoliton star
solutions.We will derive most of the formulae in sphericalcoordinates.

To write down the gravitationalactionA(g), it is convenientto considerfirst a largetwo-sphereof
radiusp0. Let S be the three-dimensionalsurfaceformed by the direct productof the two-sphere

(6.24)

times the time-axis,boundedby

t=±T (6.25)

(both p0 and T will —~ccin the end), andci be the four-dimensionalvolume within S. We have

A(g) = (16ITGY’( j ~ dT + S°dS), (6.26)

where G is Newton’s gravitationalconstantand, accordingto Einstein’s general relativity, ~ is the
scalarcurvature

-2 —2 Iä
2u 3v ~9u (av\2~=2p +2e UL+~)

_2v1 aU /av\2 3u öu _
1/8v 3u\ —21+2e l——----~—l—J +——+2p l———l—p I. (6.27)

L ap \8p/ ap ap \ap api i

The derivation of PA~ in sphericalcoordinatescan be found in most standardtextbooks on general
relativity. dr is the volume element

1/2 . 1/2 u+u 2 -
dT = I gl dt dp da d/3, with I gl = e p sin a. (6.28)

In (6.26), the volume integralpart is the usual Hilbert action; the surfaceterm is given by [121]

92 = 2n.~+ constant, (6.29)

where n~is the covariantdivergenceof the (four-dimensional)unit vector ne~normal to 5, and dS is
the surfaceelementon S, so that at points on S

nIL dxIL dS= dr. (6.30)

By construction, the invariant characterof A(g) under an arbitrary coordinate transformationis
manifest.On p = p1), choosethe constantin (6.29) to be —4/p11 since n,, = e~we have

f ,97 dS 8’ir J~ eu[e~(~+ — dt. (6.31)ap p p
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On t = T, choosethe constantin (6.29) to be zero; sincen, = e” we have

J ~ dS = —SIT f (p~e’4~~ dp (6.32)

(likewise, on t = — T). Therefore,after letting p
11 and T—+ ~. (6.26) can he written as

A(g)=fdtL(g), (6.33)

L(g) = (2G)
1 f (e”°~+ e”~’(2p~ — i) + ~ [2p(e’~’ — e”)]) dp. (6.34)

The inclusion of the surfaceintegrationin (6.26) convertsHilbert’s action into one that containsonly
the first derivativeof the metric,so that the usualLagrangianmechanicsformulationcan be applicable.

6.3. Action of scalar field

For a complexspin-0 field ~ (with no direct meson—mesoncoupling) the matter action is

A(m)= f(~.1IL~+ m2~t~)dT (6.35)

wherethe daggerdenotesthe Hermitian conjugate.

= a~/af, = a~t/ax°, = g0”~, = g0~~,- (6.36)

Both çl~,and arebona fide four-vectors.Writing

A(m)= JL(m) dt, (6.37)

we have

L(m) = 4IT f eu~p2(~ U — V + W) dp. (6.38)

where

U= U(~~), V= e2~~- ~ W= e2” ~- ~ (6.39)

The Lagrangianof the entire system is

L = L(g) + L(rn). (6.40)
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6.4. Equationsof motionfor bosonstars

Considera variation ~g~Vin the metric; the correspondingvariationsof the actionsare

~A(g) = —(16ITG)~JG~~ dT, ~A(m)= — J T~~ dr, (6.41)

with

GIL,, = R,,,.,, — ~ , T,1,,, = — + g~,,[4
t~/4~+ U(q504)1, (6.42)

whereRIL,, is the Ricci tensor.Since the total action of the systemis the sum of A( g) andA(m), we

havethe Einstein equation

GIL,, = 8ITGTIL,,

For sphericallysymmetricsolutions,the nontrivial equations(in sphericalcoordinates)are

= p2(e2~— 1 —2 e2~pav/ap)= —8ITG(U + V + W), (6.43)

= p2(e2~— 1 + 2 e2~pau/ap)= 8irG(— U+ V + W), (6.44)

_2u1 av av ‘au 8v’\l —2 1 a2u (au 1\/au avGa=GP=e I—-—~-+—t———Jl+e ~I +1+11
a L at at ~at at/i Lap \ap p/\ap ap

8’TTG(—U—V+W), (6.45)

e2”G~= ~e2’~G~= 2p’ ~ = 8irG(~- ~ + ~ ~), (6.46)

where

V=e2~~-~— ~ W=e2u~ ~ (6.47)
ap ap at at

The variation of /‘ yields the field equationof the spin-0 field

e2~~[_~_~+ (9-~— ~-~) ~—~]+ e2v[~ + (9~~— + 2) ~ — ~ dU = 0. (6.48)at at at at ap ap ap ~ ap d(
4t~)

Equations(6.43) and(6.44)can be derivedby settingthevariationalderivativesof L with respectto
u andv to bezero. The resultof the equations,(6.45)and(6.46),can be obtainedby usingthe identity

G~’;IL=0. (6.49)

When i’ = a, (6.49) gives G = G. When ~‘= t (and for çb regular at p = 0), it gives (6.46); when
= p, it yields (6.45).
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The mattercurrentJ0, definedby

JO —i(~~M— ~tiL~) (6.50)

is conserved:Je’
0 = 0 and therefore

(~/ax0)(~g~
2j0)=O. (6.51)

This leadsto the conservationof the particle number,

Nf j(Ig~1/2d3x=4ITifeU~2(~t~ — ~ ~)dp. (6.52)

In section2.1, we show that at any given particle numberN, the minimumenergysolution 1 hasa
harmonicdependenceon t:

- (6.53)

The samederivationcan be generalizedto includegravity. For sphericallysymmetricsolutionswe may
write

= (1 /1/~)a’(p)e”~’- (6.54)

The functions V. Wand the particle numberN become

V= ~e~’(da’/dp)2, W= 4w2e2”a-2, N = 4ITw f e°”p2a’2dp - (6.55)

The energymomentumtensorT
0,, is now time independent,so is the metric g0,,. Hencethe functionsu,

v and 1J are functionsof p only (or of r only). We can relate v to t
3 by

e~’dlnp/dlnr=l+rdiJ/dr. (6.56)

Equations(6.43)—(6.45) give

p2(e2’ — 1 — 2etp dv/dp) = —8ITG(U+ V + W). (6.57)

p2(e2~— 1 + 2 e2~pdu/dp)= 8ITG(— U + V + W), (6.58)

e2v[~~~~+ (~+ !)(~- ~-~)] =8ITG(-U- V + W) - (6.59)
dp dp p dp dp

Equation(6.46) is now G~= G~,= 0 and (6.48) becomes
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e2,,E~/2 du dv) do’] 2 -2u+w e a’———=0. (6.60)+ ~- + —dp p dp dpdp do’

In termsof isotropic coordinates,we have

d2~ /d~~24 dV~=_8ITGe2~(W+V+U)
2~—~+~--)+-~---

du d~ ‘d~~22 Idu d~= 8ITG e2v(W+ V— U), (6.61)
2—+(~--) +-~-~---+~---~

d2u d2 2v /du\ 1 /du ~ =+l—~ +-(—+ 8irGe\drl r \dr dr)

‘d2 ~2 du d6’) do’] 2 —2u dU
+w e a’———=0. (6.62)e2V ~ + I - + — + —L dr \r dr dr dr da’

It is useful to introduce

xnse~pdu/dp=rdu/dr, ynse~=1+rd~37dr,
(6.63)

xnse”pdx/dp, ynse~pdy/dp.

We can write (6.61)

2). +y2—1=—8ITGp2(W+V+U), (6.64)

2xy+y2—1=8’rrGp2(W+V+U), (6.65)

k~+ ~ + x2 = 8irGp2(W—V— U). (6.66)

Thesethreeequationsareparticularly useful in the regionswhereoneof W, V, or U dominates.

6.5. Hamiltonianand massformulae

Write the Lagrangian(6.40) as the differencebetweenthe kineticenergyrand the potentialenergy

L=X—7~, (6.67)

where

u+u 2 ~ a4U+U 2X=4ITJe p Wdp=4ITfe p ~ ~dp, (6.68)
0 0



320 T. D. Leeand V. Pang. Nontopologicalso//tons

and 1V is the sum of a mattercomponentV(m) anda gravitational ‘V( g) component

1/= ~“(m)+ ‘11(g). (6.69)

On account of (6.38),

~V(m)= 4IT f e”~’p2(U+ V) dp, (6.70)

and from (6.34)

~(g) = —L(g)= (2G)~f e’5[—e~+ 2(1 + p aulap) — e~(1+ 2p av/ap)]dp. (6.71)

Our sphericallysymmetricconfigurationeliminatesthe kinetic energycarriedby the gravitationalfield.
Throughoutthe paper. we assumethat u and v areregular at p = 0. As we shall see,whenp—* ~, the
matterdensitygoesto zeroexponentially;hencefrom (6.57) it follows that v is O(p~‘) at p = oc• Define

lim pv GM. (6.72)

From(6.58) we find the samelimit for —u, i.e.

~L~pu=GM (6.73)

with the sameconstantM, in agreementwith the Schwarzschildsolution.
The usual canonicalformalism can be readily carriedout. The conjugatemomentaof 4 and ~ are

H = 4ITp2e~ a~/at. H3 = 4ITp2e’~’ a4!at. (6.74)

The Hamiltonian H(u, v, ~, ~, H, JJ7) is

H=~{+V. (6.75)

wherethe sameX (6.68) is now expressedas

x=J(4ITp2)’ e14~HtHdp. (6.76)

Hamilton’s equationsfor cb, ~, H andH’ are

~ ~_~i__~~--~ ~!!i=~~. (677)

at ~H ‘ at — ~ ‘ at — ‘ at ‘

theygive the matter equation(6.60). BecauseL doesnot contain any time-derivativesof u andv, the
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conjugatemomentaof u and v are both zero.Thus, Hamilton’s equationsfor u and v are simply

~=0, ~ (6.78)

Since u is regular at p = 0 andO(p~)at p = co, the sameholds for ~u. From (6.69), we find

~g) = (2g)’ j eu+0{[_1 + e2°(1— 2p av/ap)] ~u

+ [—1+ e2~’(1+ 2p aulap)] ~v} dp, (6.79)

which makesHamilton’s equations(6.78) the sameas Lagrange’sequations(6.43)—(6.45).
Substitutingthe solutionof ~H/~u = 0 into the Hamiltonian (6.75),we obtain

H=!im G~p(e’~~e~”)=M, (6.80)

in agreementwith the ADM [122]definition of mass.Noting that the left-handside of (6.57) is

p2 d[p(e2” — 1)]/dp, (6.81)

the sameM is alsogiven by the positive expression

M=4ITJ(U+V+W)p2dp. (6.82)

By taking the combinationG + ~(G~— G~),we have

d (~2 ~ ~-~)= 8irGp2eu~(2W_U), (6.83)

which leadsto still anotherformula for M,

M=8ITJ (2W—U)eu+Up2dp. (6.84)

6.6. Bosonstars

The simplestbosonstar solution [26] is for U given by

U = m24~[1— (2~t~/o~)2]2, (6.85)

as before,where4~is the Hermitian conjugateof ~, and a’
0 and m are constants.There are two

degenerateminima of U. We call I I = 0 the normalvacuum, which is maintainedat infinity. In the
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normal vacuumm is the massof the plane-wavesolution. From (6.54) we have

U = 4m2a’2[1 — (a’/a-)))212. (6.86)

For a very large particle numberN, we know from section2.2 that nontopologicalsolitonsolutions
exist in the absenceof gravity. To the first approximation,the soliton is a sphereof radiusR: Insidethe
sphere,I~I is a constantequalto a’

0. At the surfaceof the sphereI~Isharply drops to zero within a
rangeof order of 1/rn. Outside the sphere~ = 0. Onemay take a trial function

~), p<R+O(m
1),

a-= (6.87)
0. p>R+O(m1).

and, when p = R + O(m’),

2m(p—R) 1/2

a’~a’
11/(1+e ) - (6.88)

The aboveexpression(6.88) is chosenbecauseit satisfies

d
2a’/dp2 — dU/da-= 0 (6.89)

and the boundarycondition a- = 0 at infinity. Using this trial function, one finds that the energyof the
soliton is given approximatelyby

E=Ek+ES, (6.90)

whereEk is the kinetic energydue to the interior p < R,

4 31 22

Ek~(3’rrR )~W a-
11, (6.91)

andE~is the surfaceenergydue to the transition region p = R + O(rn ‘),

2 1 2E~ 4’i-rsR , where s = 4ma’ . (6.92)

The frequencyw is relatedto the particle numberN by

Nz~4’rrR
3wa’~. (6.93)

Keeping N fixed, and setting aE/aR= 0 andM = Ek = we see that

Ek = 4E,, (6.94)

M = ~E,,= 5 x 4IT5R2. (6.95)

Hence

Mx N4~5, R N20 oc M12, wN15 M14. (6.96)
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As the solitonmassM increases,it is clear that the gravity becomesimportantonly if R is of theorder

of the Schwarzschjldradius2GM. From(6.95), we obtainan estimateof the critical mass,as in (6.14)
M~-~(G2s)~‘-- (l~ma’

0)~. (6.97)

Using equations(6.87) and (6.88) and treatinga’0——m<<l~,M—-M,,, we can estimatethe relative
importanceof U, V and W introducedin (6.39). BecauseV and W areproportionalto (do’/dp)

2 and
w2a’2, in the interior p <R + O(m~)we expect

V/W—-1Iw2R2—(m/M)”2<<1. (6.98)

Neglectingdo’/dp in the field equationof a’ (6.60), we find

2 __ 1 2 2 —2u

1 — (a-/a’
0) — — ~(w Im ) e , (6.99)

andtherefore

U/W—— w
2/m2‘-~ (m/M)”2 “~ 1. (6.100)

For a’
0 = 0(m), the parameter

A~(8’rrG)
t12a’

0 (6.101)

is very small, e.g.,for a’0—- 100GeV, A—1016. It is straightforwardto verify that

R—-GM---(A
2m)1, w/m—-A. (6.102)

If we define

~5nsA2mp, e~ns(w/Am)e5, v=v (6.103)

then~ — 1. Keepingonly the lowestorder in A, the equationfor a’ (6.60), in the interior region becomes

~2 e2ua’ — dU/da’= 0(A4). (6.104)

This leadsto

= 1 + ~A2e_2ü+ 0(A4). (6.105)

The Einstein equations(6.57)—(6.60)yield a set of two equationsindependentof matter field,

2j~dt57dj~=(~e_2~ö2_1)e2u+1, (6.106)

2j~dü/d~= (~e~’~2+ 1) e2°— 1, (6.107)
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because

W± V± U = W[1 + 0(A2)], (6.108)

where Jns u. When ~ó—~O,theseequationsdetermine

ü~ü(O) + ~ e2~°1,ó2+ 0(~~), (6.109)

J~e2°t0~ó°+ O(j~4). (6.110)

So the interior solution can be obtainedby first assigningat
1E = 0 an initial value

e~°
1= (w/Am)e40~, (6.111)

and then integrating(6.106) and (6.107) numerically from p = 0 to R, i.e. from ~ = 0 to ~ = A2mR.
Actually oneonly needsto integratethesecoupledequations(6.106) and(6.107) once for an arbitrary
valueof ü~(0),sayr~(0)= 0, from ~ii= 0 to jii = ~ thesolutionsfor otherinitial valuescan be obtainedby
a simple transformation

K eu, p~p/K, v~v - (6.112)

Equations(6.106) and (6.107) are invariant under the transformation(6.113).One way of observing
this invarianceis to look at the equationsfor x andy, (6.64)—(6.66).The quantitiesx,y, I andy areall
invariantunderthe transformation.So arethen theleft-handsidesof (6.64)—(6.66).On the right-hand
sides becauseof (6.108), only the W term survives.Eliminating W from eqs. (6.64)—(6.66),we have

~=1—xy—y2, 1= —2—x2+3xy+2y2. (6.113)

Therefore,

dy 1—xy—y2 (6.114)
dx —2—x2+3xy+2y

It is convenientto introducer as a fictitious “time”, where

d/dr = e~pd/dp. (6.115)

As r varies,eachsolution describesa trajectoryin the (x, y) plane. On accountof (6.105) and(6.111),

when j~—*O(thereforer—.*~),
x = ~ e2~°~ó2+ O(~~),y = 1 — ~ e2~°~2+ O(~~). (6.116)

Thereare two critical points of (6.114),definedby x = = 0:

(i) x=O, y=l ; (ii) x=y=1/’s/~. (6.117)
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From (6.116),we see that at p = 0 the trajectory beginsat (i) with an initial slope

[dy/dx]0=—~ . (6.118)

When p increasesfrom 0 to R, the interior solution movesalong a universaltrajectory,called I (the
interior), in the (x, y) plane; trajectory I is completely determinedby the first-order differential
equation(6.114) with the initial condition (6.118), andis shown by the solid curve in fig. 18.

At p = R, the solution is at a point, called “in” (denotingthe inner faceof the surface)on I, with

x=xin, y=yin.

As shownin fig. 19 (andas we shall alsoprove),in the surfaceregionwhenp decreasesfrom R. to R÷,

0.2 0.4 0.6 ‘ 0.8 ‘

X See~)

(0)

c-s
N —. .~

a

U,

c’

0.69 0.7 0.71 0.72
x

(b)

Fig. 18. The solid curve is the universal (W.dominated) trajectory. The dashed curve is the Schwarzschild hyperbola
2xy + y2 — 1 = 0.
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0 0.2 0.4 0.6 0 ‘ O’2 04 ‘ 0.6 0.8

o’T2o~o’6~e ~O6O~2O~AO,6:OI1

Fig. 19. Four examples of the (x. y) trajectory of the soliton sIar solution. (a) e “~ = e ~.zero node: (h) e ‘~ = 2.02904. n = 1. zero node. (c)
= 16,5784, n’ = 2, zero node: (d) e ,(0) = —96.9098, n’ = 3, zero node.

the solution leavesI abruptly; it movesalong the straight line

x—x~=y—y~, (6.119)

and endsat a point, called

A: (xA, YA) (6.120)

on the Schwarzschildhyperbola

2xy+y2—1=0, (6.121)

with xA and YA both >0. Afterwards,we are in the exterior region p > R, which is describedby the
Schwarzschildsolution. The trajectorythen movesalongthe hyperbola(6.121) from A whenp = R~.
backto the point (i) when p = ~.Different solutionsarecharacterizedonly by differentpoints(x

15, y,~)
when the transition occurs; neither the trajectory I nor the Schwarzschildhyperboladependson
different featuresof each individual solution.

In the surfaceregion it is moreconvenientto use the isotropiccoordinates,given by (6.21). When
p = R, denote

r=r~=Re~, uu5, ~‘zr~7~, (6.122)

Within the surface,da’!dr is O(ma’0), but becausex = r du/dr and y = 1 + r dv~/drare —1, du/dr and
d1’Idr are both O(r~

1),i.e. A2O(m). Hence, neglecting0(A2), we can regardu = u~and ~= ~ as
constantsacrossthe surface; in addition, since w2/m2 is also 0(A2), (6.42) reducesto

e2~~’d2a’/dr2 — dU/dcr= 0. (6.123)
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This gives the solution,valid for r = r5 + 0(m’),

a’ a’0/(1 + eIL _rs))112 , where j’~= 2m e~. (6.124)

From (6.47) and (6.123), to the sameaccuracy,we havewithin the surface

U = V= 0(m
2a’~), (6.125)

but

W 0(w2a’~)= A2O(U). (6.126)

By usingsolution (6.124),we find the integralsof Uand V acrossthe surfaceto be

J Udr= f Vdr=~mo’~e~’. (6.127)
surface surface

Hence,in the approximationA2 = 0, we may write

U= V= ~mo~e~’~(r— r
5), W= 0. (6.128)

Theseleadto, in the surfaceregion,

dx/dr = dy/dr = —ITGr5 e~mo~ô(r— r5). (6.129)

In the exterior region r> r5, the sameapproximation A
2 = 0 leads to zero matter density, and

therefore

U=V=W=0. (6.130)

The solutionhasto lie on the Schwarzschildhyperbola(6.121). Integrating(6.64) and(6.66)acrossthe
surface,we see that the discontinuitiesin x andy from “in” to A are

X~— XA = y~— YA = ~. (6.131)

Becausex,~,andYA are on the Schwarzschildhyperbola,it follows that

2x~y~+y~—1=0. (6.132)

ExpressingXA andy~in terms of x
15, y~5,,and~,, we have

1— 1 2 1/2

= ~ {x~+ 2y~5,— [(x~5— y1~)+ 3] } ~(x15,y5~). (6.133)
Define ü(~5),and i3(j5) to be the solutionsof

2~5d6/d15= (~e
2~32— 1) e2v + 1, 25 dâ/d

15= (~e
2’~

1ô
2+ 1) e2v — 1 , (6.134)
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with the boundarycondition

i~(0)=ó(O)=O at ~=O. (6.135)

Any solution of (6. 1O4)—(6.107) with boundarycondition t~(O)~ 0 and iJ(O) � 0 can then be derived
from t~(15)and i3(13) through

= e~°~ , e~°~= e~°~, where ~Ei= ~5e~°
1. (6.136)

The functionsâ(j~)andi3(~~)are plotted in fig. 20.
By using (6.107) and (6.136),we find

y=e~, x=yj5di2!d~. (6.137)

Thus, from ii(i5) and ~i(~5),we also derive I(s) and,9(j~).Equation (6.133) is satisfiedby setting

= ~(x(~), y(j3)) ~ (6138)

Identifying ~ = ~ and j5 = ~, we have~ = j~/~ andthereforeall othercharacteristicsof a soliton
star. -

In fig. 21 the solid curve is z1(~3)which is independentof e’~10~,andthe dashedline is e~’1°~/8.For
e”t0~= 2.5, therearetwo solutionsof (6.138). It is clearthat if we decreasee10~,the dashedline will
swing counterclockwiseuntil it reachesa critical point, called c, when

e~°~= e~= 1.266. (6.139)

At c, (6.139) hasonly one uniquesolution. The correspondingtrajectoryis given in fig. 19a.

O.~4 ~ __
logio9 Iog,

0~

log10~ log,0 ~

Fig. 20. From solutions of d(~i),l3(~),x(~3),and v(/i). one can derive d(~5).tJ(j5), x(~i)and y(~) for any initial value ii(0).
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Fig. 21. The initial value e”
101 determines the slope of the dashed line, le”101

15, whose intersection with Li(~)gives a solution of the soliton star.

For e ~s(0) <e ~, thereis no solution. For e~0) > e~ thereare two solutions. By systematically
changinge’~

0~,we can survey all the zero-nodesolutions(n = 0). In figs. 22aand 22b, M is plotted
versusN, schematicallyin 22aandpreciselyin 22b. In fig. 23 we show the curvesof M, N andR versus
w and R versusM, and in fig. 24, the dependenceof e~°~M, w, and R on

In section3, we haveshownthat cuspson theM versusNcurve areclosely relatedto the stability of
solitonsolutions. If one solitonsolutionon the lowestbranchof the M versusNcurve is stableunder
smallperturbations,thenthe whole lowestbranchis stableundersmallperturbations.WhenN is small,
the effect of gravity is negligible andwe know from previoussectionsthat the solitonis stable.Thus all
bosonstar solutionson the lowest branchare stableunder smallperturbations.

In the aboveexamplethe surfaceenergydominates;as a resultwe havea very largeupperlimit for
the solitonmass.If onechoosesa differentform for U(a’), thenthe maximummassfor abosonstarcan
be much smaller. In particular, as mentionedin section 6.1, if p dominates in (6.16), or if U =

+ Aa’4 with A >0 (thereforeonly oneminimum), thenthe maximumbosonstarmassbecomesof
the order of the solarmass,or smaller[24,123].

6.7. Mini-bosonstarts [7, 8, 25, 28]

When thereis no self-interactionof the scalarfield, i.e.

U=~m2a’2, (6.140)

the nonlinearandattractivenatureof the gravitationalinteractionstill allowsthe existenceof another
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Fig. 22. Soliton star mass M versus the particle number N: a schematic drawing in (a) and the actual plot in (b).

type of nontopologicalsoliton, the mini-boson star, which is the solution of (6.57)—(6.60),regular
everywhereand with

w<m. (6.141)

Therefore,at we have

2 2 1/2

a’=0(exp[—(m —w ) p])—~O. (6.142)
Likewise, U, V and W all —~0exponentiallyat ~. Thus, u and v approachthe Schwarzschildsolution
also exponentially,asp—~,

e’—*(1—4a/p)’’2, e~—*(1—4a/p)12,where a= 4GM. (6.143)
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Fig. 23. (a) M versus as, (b) N versus as, (c) R versus as, and (d) R versus M.

When w is only slightly less than m, such that

~ns(1—w2/m2)H2<<1, (6.144)

the deviationsof the metric e2~’and e2~from 1 are alsosmall, i.e.

uI-~1, vI~1. (6.145)
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Fig. 24. (a) e0151 versus ~5, (b) M versus ~_,, (c) as versus ~ and (d) R versus
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This is the Newtonianlimit of the mini-bosonstar. In this limit, we can neglectu2 andv2 (6.57)—(6.59)
become

2v + 2p dv/dp = 8~irGp2(W+ V + U), (6.146)

—2v + 2p du/dp = 8’irGp2(W + V—U), (6.147)

d2u/dp2+pt(du/dp—dv/dp)=87rG(W—V—U). (6.148)

For w <m, a- decreaseswith increasingp. Approximately,a- is proportionalto

2 2 .2

exp[—(m—ar) p]=e . (6.149)

Thus, the radial size of the mini-star is —(~m)1anda typical p derivatived/dpbrings a factor~m, i.e.

d/dp—~m, (6.150)

and thereforewe mayestimate

(ma’)~da’/dp = O(~). (6.151)

For the samereason,V is small comparedto U by afactor ~2 Sincew is nearm, W differs from Uby
a similar factor, i.e.

V/U = O(~2), (U — W)/U= 0(~~). (6.152)

Multiplying da’/dp to the equation(6.60) we get, without approximation,

(d/dp)(W+ V— U) = —(4/p)V—2(W + V) du/dp. (6.153)

Substituting(6.150)—(6.152) in the aboveequation,we seethat the left-handside is O(m~3U)andthe

right-handside is 0(Um~u).Thus,

u=O(~2). (6.154)

From (6.146),we estimate

v = O(GU/~2m2). (6.155)

Combining (6.154), (6.155) and (6.152),we find (6.148) to be consistentwith

GU/m2~2= O(~2). (6.156)

Therefore



T.D. Leeand V. Pang,Nontopologicalsolitons 333

GU/m2 = 0(~~),v = 0(~2). (6.157)

Neglectinge~from the sum (6.146)+ (6.147),we have

d(v + u)/dp = 8’rrGpW. (6.158)

Combining (6.154), (6.157) and (6.140) with (6.60), we derive, accurateup to 0(~2m2a’),

d2a’/dp2+ (2/p) da’/dp= (m2 — w2e2u)a’. (6.159)

Likewise, ~[(6.146)+ (6.147)]+ (6.148)becomes

d2u/dp2+ (2/p)du/dp = 4~rGw2a’2, (6.160)

which is accurateup to 0(~4m2).Define

y 1— (w2/m2)e2u. (6.161)

Equations(6.159) and (6.160) can be written as

V2a’ = ym2a’, V2y= 8ITGm2a’2, where V2 = —~-~+ ~ -~-. (6.162)
dp pdp

Theseequationscan also be deriveddirectly by using Newtoniangravity.
Introducing

yA2~, p=(mA)’~, a’(8~G)~2A2fr,~ (6.163)

dp pdp

we convert (6.162) into a setof scaleindependentequations:

“2.’ ~‘ 2

Va~ya’, Vya’ . (6.164)
The solutionof a( j5) can be characterizedby its numberof nodesn. The groundstatecorrespondsto

n = 0. It is convenientto fix (for any n)

&=1 at p=O. (6.165)

Thesesolutions are then universalfunctions.The special casesn = 0 and 5 are given in fig. 25 as
examples.

Takethe ground statesolution, n = 0. From the numericalresults,we find

~‘—~~=—0.91858as ~5—~0, ~—(~/~) as
(6.166)

where ~ = 0.97896, ~ = 3.46826.
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Fig. 25. Newtonian limit of the gravitational potential and the matter amplitude when (he number of nodes n = 0 and 5.

The asymptoticbehaviorof the matter field ô is given by

as (6.167)

where

a’=3.3943, 2(t+l)=~1/~ç. (6.168)

Once j~andô~areknown, y anda-canbe obtainedfrom (6.163),in which A
2 is relatedto w/m by taking

the p = ~ limit of the first equation,y = A2~.We have

= 1 — w2!rn2 = A2~ç. (6.169)

The particle numberis

N = 4~Jwa’2 e~”~p2dp (2Gm2YIAJ ~2~2 d~, (6.170)

wherethe integral is relatedto the asymptoticbehavior(6.166) of ~, throughGauss’ theorem.We find

N = (2Gm2) l~~1.2 (1 — w2/m)’2. (6.171)

Let

w’m(l—r). (6.172)
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For small r, (6.170) becomes

N=N0r
t~2, where N

0=(2Gm
2)t(2/’~)t12’5’

1. (6.173)

Becauseof dM/dN= w and (6.172),

dM/dN = m(1 — r) = m[1 — (N/N0)
2], (6.174)

which gives

M=Nm(1—~r). (6.175)

The values of ‘%, i’,,,’ and ‘5~for n = 0, 1, 2, 3, 4, 5 are given in table 4.
As N increases,sodoese~’t~,thereforethe Newtonianlimit is no longer agood approximation.On

the M versusN curve, fig. 26 shows that for the exact solution there are many cusps, while the
Newtonian limit (6.175) does not have any cusp. Figure 26 is obtained by integrating equations
(6.57)—(6.60)numericallywith U given by (6.140).The numericalintegrationsarecarriedout in terms
of dimensionlessquantities

~ónsmp, óm(l6irG)”2a’. (6.176)

In addition we define

Uns ~&2, 17ns~e2°(d&/d~)2,Wns~e_2U&2, (6.177)

where

e~ (w/m)e’~. (6.178)

Equations(6.57), (6.58) and (6.60) can be reducedto

e’2~—1— 2pe’2~pdv/dp= —~(W+ V + U)~ó2, (6.179)

—1 ~ = ~(W + V— U)~2, (6.180)

e255[~-~+ (‘~+ — ~) ~] = (1— e20)&. (6.181)

Table 4
Values of i,’, ~,and ~, for the newtonian
solutions when the number of nodes n = 0, 1,

2 51251.

n ,i.’ ‘ii
0 —0.91858 0.97896 3.46826
1 —1.20996 0.91627 7.71395
2 —1.34370 0.89221 11.93547

3 —1.42828 0.87799 16. 13218
4 —1.48943 0.86812 20.31019
5 —1.53701 0.86066 24.47366
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Fig. 26. Actual plot of (a) the mass M versus the particle number N and (b) the binding energy Not — M versus N, for n =

The boundaryconditionsat the origin Ei = 0 are

~=ü(0), v=0, &=&(0). (6.182)

With any given values of i~(0)and &(0), we can integrate(6.179)—(6.181)from ~ = 0 outwards.The
boundaryconditionsat j~= ci~,(6.142) and(6.143),most likely will not be satisfied.By adjustingeither

or &(0) until we satisfy the boundarycondition as ~ ~, we obtain a mini-bosonstar solution.
For very large ~ althoughthe curves M versus N, N versusw and w versuse~all keep on

oscillating, the values of M, N and w hardly deviate at all from their asymptotic limits. These
oscillations can be understoodby considering the (x, y) trajectoriesof the mini-boson stars. The
boundaryconditions(6.182) give us
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dy/dx~.0= [U(0) + W(0)] /[2U(0) — 4W(0)] ~ — , (6.183)

where U(0) and W(0) arethe values of U and W at ~= 0.
As examples,we give the (x, y) trajectoriesfor n = 0 and 1 in fig. 27, n = 10 in fig. 28d, all for the

initial value

—0(0)e =2. (6.184)

The Schwarzschildhyperbolais always representedby the dashedcurves in thesefigures. Further
illustrations of a-, x and y versus p are given in figs. 28a—28c,for n = 10. Detailed analysisof these
solutionsis given in ref. [25].

C) -
d

>‘~.

d

Os

0 0.1 0.2 0.3 0.4
x

(a)

C)

= 2

>‘

5’)

0 0.1 0.2 0.3 0.4
x

(b)

Fig. 27. The initial (x, y) trajectory of the solution with an initial value e~°
1= 2, (a) for n = 0 and (b) for n = 1. The dashed curve is the

Schwarzschild hyperbola.
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Fig. 28. Solution for a mini-soliton star solution with nodes (n = (0) and an iniual value e = 2.

Table 5 gives the valuesof radiusR, particle numberN andmassM at the first cusp (n, 1) whenthe
numberof nodesn = 0, 1 10, wherethe radiusR of a mini-star is definedby

Rns~f(U+V+W)p3dp. (6.185)

This definition of R makesuse of the massformula (6.82).
In this section,we examineonly the minimal gravitationalcoupling between the scalar field and

gravity. Of coursesolitonsolutionscan also exist with nonminimalgravitationalcouplings [124].
Gravity playsa pivotal role in the stability of a mini-bosonstar. Unlike bosonstars,withoutgravity

the mini-bosonstar doesnot exist. So we do not have a zero-gravitylimit to help us. The stability of
mini-boson stars under spherical perturbationswas establishedfor the lowest energy zero node

Table .5

Radius R. particle number N. and mass M at
the first cusp (n, I) when the number of nodes
n =0. I 10 1251.
n mR Gm’N GmM

(1 3.10978 ((.6530113 0.633(101
7.89162 1.392134 (.356265

2 12.83169 2.137840 2.085372
3 17.84001 2.883631 2.814529
4 22.89276 3.628891 3.543186
5 27.97750 4.373581 4.271317
6 33.08911 5.117754 4,998970
7 38.22251 5.861469 5.726202
8 43.37470 6.604782 6.453063
9 48.54421 7.347736 7.179595

10 53.72830 8.090369 7.905833
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solutions[56]. All othersolutionsare not stableunder theseperturbations[56,125, 126]. The proof is
nontrivial. Besidesthe stability againstfission into severalsmallermini-bosonstarsand the decayinto
planewavesolutions,onemustconsiderthe complicationsdueto black holes.For details,seeref. [56].

6.8. Fermionsolitonstars [27]

The necessaryand sufficient conditionsfor fermion soliton stars are (i) the conservationof the
fermion numberN and (ii) the existenceof nontopologicalsoliton solutions, in the absenceof the
gravitationalfield. It is the latter conditionthat distinguishesa solitonstarfrom a neutronstar, or a
white dwarf.

In orderto satisfy (ii), weassumetheexistenceof a real (hermitian)scalarfield a’, in addition to the
fermionfield t~iandthe gravitationalfield. The simplestexampleis theFriedberg—Leemodelof section
5 without the gaugefield. We choosethe self interactionof a’ to ‘have the degeneratevacuumform

t 22 2U(a-) = ~s a’ (1— a-/a’0) , (6.186)

with j~= a--mass.We may assign a- = 0 to be the normal vacuum state, and a- = a’0 the false (or
degenerate)vacuumstate.The interactionbetweena’ and 4 is

(6.187)

wheref is the couplingand~i is the adjoint of ~i, making ~(n~taLorentz scalar.Let the fermionmass(in
the normal vacuum)be m. For simplicity, we further assume

m—fa-0=0. (6.188)

so that the fermion has zero effectivemassin the falsevacuum.
For the fermion field t~i, we shall adopt the Thomas—Fermiapproximation.At eachpoint in space

thereis a Fermi momentumkF (observedin the appropriatelocal frame) which, for the spherically
symmetricsolution, dependsonly on p, or equivalentlyonly on r. The fermion energydensity is given
by the familiar expression

W=~-~Jd3knkEk, (6.189)

where the factor of 2 is due to the spin degeneracyf d
3k = 4’rr $ k2 dk, ii,, is the Fermi distribution

nk_o(k—kF)_{O ~ (6.190)

and the energy

= [k2+ (m —fa-)2]t12. (6.191)

The correspondingfermionnumberdensityii andthe nonzerocomponentsof thestresstensorT~of the
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fermion field are

2f3
= —i j d k n.

8ir
2 (6.192)

T’=W, Tr=T~5=To=Tp=~T. where T=~fd3kn ~.

[3 8’rr”

Consequently,they satisfythe identities

T~°=W—3T=(m—fa-)S,W—TE10. (6.193)

where S is the scalardensity t,1i~i in the Thomas—Fermiapproximation.

5= ~ fd3knkr~t(m_fa-). (6.194)

The total fermion numberN and the total fermion energyU(f) are given by

N = 4~f e”p
2 dp ~, E(f) = 4~fe” “p2 dp W. (6.195)

The total energyof thesystemconsistsof, besidesE(f), also the gravitationalenergyE( g) andthe a-
field energyE(a-).

E= E(f)+ E(g)+ E(a-). (6.196)

The total energydensity is

T~=W+V+U. (6.197)

Other nonvanishingcomponentsof the total stresstensorare

T~=—(T+V—U), T=T~=—(T—V--U), (6.198)

where V is defined, as in previoussections,to he

V= 4 e2U(da-/dp)2. (6.199)

Regardthe total energyE as a function of kF, a-, u, and v. The basicequationscan be obtainedby

taking the extremeof E at a fixed fermion numberN. i.e.

~E—wF~N=O, (6.200)

wherewF is the Lagrangemultiplier. This leadsto the Einstein equations

= —81TGT~, (6.201)
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the equationfor kF,

2 2t/2 u u

[kF+(m—fa-)] e —rFe —(oF—constant, (6.202)
and the a- field equation

-2 [d2a’ (2 du dv\ da’1 dU
e 55l—~+l—+————J—I+fS—-—=0. (6.203)

Ldp \p dp dp/ dpJ da’

As in the caseof scalarsoliton stars,for large fermion numberN, the fermion solitonstar solution
can also be divided into three regions: the interior (p < R), the surface (R — O(p._t)<p < R +

0(~t)), and the exterior (p > R). In the interior, we may approximate

a-a-a, (6.204)

and consequently

dU/da’=(m—fa-)’SO. (6.205)

Similarly,

U=V=0, 3T=W=k~/41T
2, (6.206)

wherekF is the Fermi momentum.

Let us define a small parameter

Ans4a-i
1(1rG/3)~

3, (6.207)

which for a’
0 -= 30 GeV is about 10 tS Introducingdimensionlessquantities

— 2 0 21/4 t/2 —u —

p=A~p, e ns(3/8’rr ) [wF/(A~sa-O)]e , v=v, (6.208)
we can write the equationsfor the interior as

2~~=(e4~2_1)e20+1,2~-~=(~e
4~2+1)e2~—1. (6.209)

As before, it is convenient to expressthe solution in terms of the variablesx and y. The W
dominancein the interior enablesus to eliminateW in (6.201); the result is

dy —3xy—2y2+2 - (6.210)
dx 5xy+3y —x —3

The initial slope,at p = 0, is

(dy/dx)
0= — . (6.211)
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Fig. 29. Universal trajectory ~ The dashed curve is the Schwarzschild hyperbola 2xv * — 1 = 0.

In fig. 29, the dashedcurve is the Schwarzschildhyperbola,and the solid curve ‘F is the solution of
(6.210)with the initial slope (6.211).

In the exterior region

U=V=W=0, (6.212)

the Schwarzschildsolution takesover. In the surfaceregion, it is more convenientto work in the
isotropic coordinates. When p = R, denote r = r~= R eu’. Within the surface, x= r du/dr and
y = 1 + rdv/dr are ‘-‘-1, du/dr and dy/dr areboth O(r). Hence,neglecting0(A2), we can regard
u = u., and~ = as constantsacrossthe surface;in addition, since S -‘-‘ mk~= AO(m~2),to the lowest
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orderin A, (6.203) becomes

e2~d2a-/dr2— dU/da-= 0. (6.213)

This gives the solution, valid for r = r
5 + O(~~’),

a- = a-0/{1 + exp[/.L e~(r— r5)]} . (6.214)

To the sameaccuracy,we havewithin the surface

U= V= O(/L
2a-~), (6.215)

but

W O(w~m)= A312O(U). (6.216)

By using (6.214),we find the integralsof Uand V acrossthe surfaceto be

f Udr Vdr= a-~eVs. (6.217)
surface surface

Hence,we mayapproximate,in the surfaceregion,

U = V= ~ ~ e~3(r— re), W= 0. (6.218)

Theseleadto

dx/dr=dy/dr= —~‘rrGr
5ep.a-~ô(r—r5). (6.219)

Integrating (6.219) acrossthe surface,we see that the discontinuities in x and y from the interior
solution “in” to the Schwarzschild(exterior)solution “A” are

= x~— x~= = ~,iiGr~e~so~, (6.220)

= — YA = = ~mGr5~ (6.221)

where~ö1~= A
2~R.SinceXA andYA areon the Schwarzschildhyperbola,we have

2xAyA+y~—1=0. (6.222)

As for bosonstars,becausez~x= .~y,we have

= ~{x~ + — [(x
1~— y~13

2+ 3]1/2} ~ yin) . (6.223)

Figure 30 showsfour examplesof the (x, y) trajectory for fermionsoliton star solutions.
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Fig. 30. Four examples of the (.v. v) trajectory of the soliton star solution. (a) e “fl = e ‘H (h) e “ = 2.05(72. n’ = I; (c) e ‘~~‘= 6.30320. n’ = 2:
(d) e ““ = 14.9137. n’ = 3.

Define i~(~) and t3(~)to be the solutionsof

V .4j/.’2 5’ U _4’.’7 2/

2p~-=(2e p~—1)e+l. 2P~j-=(se p+l)e—l, (6.224)

with the boundaryconditions

~2(0)=f3(0)=(J at j~=O. (6.225)

Any solution of (6.224)with boundaryconditions~(0)� 0 andtJ(0) � 0 can then be derivedfrom i~(/~)
and~5(~5)through

e
0~= e0 /1/ , e’~ = ~ , where ~ = ~ e2~1°1- (6.226)

The functionsü(
15) and ti(~5)are plotted in fig. 31. -

In fig. 32 the solid curve is zi(13) which is independentof e’~°
1,and the dashedstraight line is

e2’~~°~/8,plotted for e”111 = 2.5; there are two solutions of (6.223). It is clear that if we decrease
~ the dashedline will swing counterclockwise,until it reachesa critical point, called c. when

e~°1= e~”= 1.620. (6.227)

At c, eq. (6.223) has only one uniquesolution. The correspondingtrajectoryis given in fig. 30a.
For e~’~°~<e”~,thereis no solution; for e~”~°1> e”c thereare two solutions. By systematically

changinge”~°~,we can survey all the zero-nodesolutions(n = 0). In figs. 33a and33b, M is plotted
versusN, schematicallyin 33aandpreciselyin 33b. In fig. 34, we show the curvesM, N andR versusw
and R versusM, andin fig. 35, the dependenceof eu(~),M, w, andR on
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Fig. 31. From solutions of d(~i),!(,5), x(ji), and y(ji), one can derive ü(il), [3(~1),x(~)and y(jl) for any initial value ü(0).

WhenN is small andthe effect of gravity is negligible,the stability conditionhasbeendiscussedin
section3 for bosonsolitons andin section5 for fermion solitons.The effectof gravity on stability has
beenexaminedin section6.6 for the bosonstar. That resultcan be readily generalizedto the fermion
soliton star. Thus all fermion soliton star solutions on the lowest branchare stable under small
perturbations.
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Fig. 32. The initial value e”
101 determines the slope of the dashed line, (e’t0~,whose intersection with zl(~)gives a solutipn of the fermion soliton

star.
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Fig. 33. Fermion soliton star mass M versus the particle number N. (a) Schematic drawing. (h) actual plot.

Like the bosonstar,the maximumfermionstarmassdependsvery sensitivelyon the form of U [24].
With an appropriatechoiceof parameters,the fermion soliton star can havethe size and mass of a
neutronstar[127—130],or it can be of the size andmassof a “quasar”. If solitonstarsexist, they may
havebeencreatedin the early universe [131—134].

6.9. Remark

Recentprogressin particle physics points out the importanceof nonlinearity and coherencein the
realm of 10t3_10~7cm, as exemplified by the QCD vacuum in connectionwith quark confinement
andthe role of Higgs fields in electroweaksymmetrybreaking.Assumingthat theseoverall phenomena
may be effectively representedby scalar fields, it seemsreasonablethat such coherencecan be
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accumulatedand extendedto macroscopicand evento astronomicaldistances.The explicit model
solutionsderivedhereare meantto demonstratethe feasibility, at leastin principle.

At present, there is no experimentalevidence that soliton stars exist. Nevertheless,it seems
reasonablethat solutions of well-tested theories, such as Einstein’s general relativity, the Dirac
equation,the Klein—Gordon equation,etc. shouldfind their properplace in nature.
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