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A bottleneck optimization problem on a graph with edge costs is the problem of 
fiudiig a subgraph of a certain kind that minim&es the maximum edge cost in the 
subgraph. The bottleueck objective contrasts with the more common objective of 
mhimizing the sum of edge costs. We propose fast algorithms for two bottleneck 
optimization problems. For the problem of finding a bottleneck sparmiug tree in a 
directed graph of n vertices and m edges, we propose an O(min( n log n + m, 
m log* n ))-time algorithm. For the bottleneck maximum cardinality matching prob- 
lem we propose an O((n log n)‘12 ’ 7 m)-hme algorithm. 0 1988 Academic press, hf. 

1. INTR~Du(~TI~N 

Consider network optimization problems in which we are given a graph 
with edge costs and asked to find a subgraph of a certain kind that 
minimizes some function of the costs of the edges in the subgraph. The 
usual objective function is the sum of the edge costs. Another natural 
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objective function is the maximum of the edge costs. We shah call optimiza- 
tion problems with the former objective function sum problems and prob- 
lems with the latter, bottleneck problems. 

Some bottleneck problems can be solved asymptotically more efficiently 
than the corresponding sum problems. For example, Camerini [3] has 
observed that a bottleneck spanning tree in an undirected graph with n 
vertices and m edges can be computed in O(m) time. The best known time 
bound to find a spanning tree nn ‘nimizing the sum of edge costs is 
O(m logB(m, n)), where /3(m, n) = min{illog% I m/n} [9]. Here log* 
is the iterated logarithm, defined by log(‘)x = x, log(‘+‘)x = loglog(‘)x, 
log*x = min{ il log% < l} - . 

In this note we present two results of this kind, for two problems 
posed by the second author in a problems column [14]. For the problem 
of finding a bottleneck sparming tree in a directed graph, we give an 
O(min{ n log n + m, m log*n})-time algorithm. The best known bound for 
finding a spanning tree minimizing the sum of edge costs is O(n log n + m) 
[9]. For the problem of finding a bottleneck maximum cardinality matching 
in an undirected graph, we give an O((n logn)‘/*m)-time algorithm. This 
improves the O(n ‘/*m log n)-time algorithm of Bhat [l], which he stated 
only for bipartite graphs. The best known bound for finding a minimum 
total cost maximum cardinality matching depends on whether the problem 
graph is bipartite or not. In the former case (the assignment problem), such 
a matching can be computed in O(n*log n + nm) the [6], or in O(n”*m 
log(nC)) time if all edge costs are integers of absolute value at most C [lo]. 
In the latter case, such a matching can be computed in O(n*log n + 
nm log log log *,+n) time [8], or in O((na(m, n)log n)“*m log(&)) time if 
all edge costs are integers of absolute value at most C, where a is a 
functional inverse of Ackerman’s function [ll]. Whether there are even 
better bounds for the two bottleneck problems we consider remains an open 
question. 

2. BOTTLENECK SPANNING TREES IN DIRECTED GRAPHS 

Let G = (V, E) be a directed graph with n vertices and m edges. For 
ease in stating time bounds we assume that m 2 n 2 2. Let s be a 
distinguished root vertex of G and for each edge (u, w) let c(u, w) be a 
real-valued cost. We consider the problem of finding a spanning tree rooted 
at s (containing paths from s to all other vertices) whose maximum edge 
cost is minimum. We call such a tree a bottleneck spanning tree. 

Camerini [3] has proposed an O(m log n)-time algorithm for finding a 
bottleneck spanning tree. We shall describe an O(min{ n log n + m, 
m log*n})-time method. 
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To obtain an O(n log n + m) bound, we note that Dijkstra’s single-source 
shortest path algorithm [4], if modified slightly, will compute a bottleneck 
spanning tree. The algorithm grows a tree from the root s. It computes a 
parent p(u) in the tree for each u # s. The algorithm maintains a collection 
of vertices F that are candidates for inclusion in the tree. Each vertex 
u E F has an associated cost c(u) for inclusion, which is the minimum cost 
of an edge from a vertex already in the tree to u. Initially, F = {s } and 
c(s) = - 00. The algorithm consists of repeating the following step n 
times: 

General Step. Select a vertex u E F with c(u) minimum and delete it 
from F. For every edge (u, w), if w  is neither in the tree nor in F, add w  to 
F and define c(w) = c(u, w) and p(w) = u; otherwise, if w  is in F and 
c(u, w) < c(w), replace c(w) by c(u, w) and define p(w) = u. 

If a Fibonacci heap [6] is used to implement the frontier set F, this 
algorithm runs in O(n log n + m) time. 

For sparse graphs we can obtain a better bound of O(m log*n). For any 
real number A, let G(X) = (V, {(u, w) E E]c(u, w) < A}), and let A* = 
rnin{X]Vu E V there is a path in G(A) from s to Y}. To find a bottleneck 
spanning tree it suffices to compute A*, since any spanning tree in G(X*) is 
a bottleneck spanning tree for G, and a spanning tree in G(h*) can be 
found in O(m) time. 

We find A* by using repeated splitting to narrow the interval of possible 
values of A. The number of intervals into which the current interval is split 
is a function k(i) of the number of splits i that have taken place; as i 
increases so does k(i). The algorithm maintains values A, and A, such that 
A, I A* I A,. Initially A, is the minimum edge cost, A, is the maximum 
edge cost, and i, a count of the number of iterations, is zero. The algorithm 
consists of the following steps: 

1. Replace i by i + 1. Let S, = {(u, w) E E]c(u, w) I A,} and Ei = 
{(u, w) E EIX, < c(u, w) I A,}. 

2. Partition El into k(i) subsets S,, S,, . . . , SkCij, each of size 

1IEMdi)j or bW~(i% such that if (u, w) E Si and (x, y) E Si+i, 
then c(u, w) zz c(x, y). 

3. Find the minimum j such that Gj = (V, S, U S, U S, u * - - U Sj) 

is such that all vertices are reachable from s. 
4. If j = 0, let A* = A, and stop. Otherwise, replace A, and A,, 

respectively, by the minimum cost and the maximum cost of an edge in Sj, 
and go to Step 1. 

The correctness of this algorithm is obvious. Steps 1 and 4 each take 
O(m) time per iteration. Step 2 can be done by repeated median-finding: 
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split E, into a lower half and an upper half, then split each half into halves 
and so on. (We shall choose k(i) to be a power of two.) Since median-find- 
ing takes linear time [2,17], step 2 takes O( IEi [log k(i)) time per iteration. 

Step 3 takes O(m) time using an incremental search. The search begins at 
s and advances only along edges in S,,. If the search stops before all vertices 
are reached, edges in S, become eligible for searching. In general, each time 
the search stops without having reached all vertices, edges in the next set Sj 
become eligible for searching. Implementation of such a search requires the 
maintainance, for each vertex u, of an adjacency list A(u). Each vertex is in 
one of three states: unlabeled, labeled, or scanned. Initially s is labeled, all 
other vertices are unlabeled, j = 0, and A(u) = { w]( u, w) E S,} for each 
vertex u. The search consists of the following steps: 

3.1. If some vertex is labeled, select a labeled vertex u, mark it 
scanned, and go to step 3.2. Otherwise, if no vertex is unlabeled, stop. 
Otherwise go to step 3.3. 

3.2. For every vertex w  E A(u), if w  is unlabeled, mark it labeled. 
Go to step 3.1. 

3.3. Replace j by j + 1. For each edge (u, w) E Sj, if u is un- 
labeled, add w  to A(u); otherwise, if w  is unlabeled, mark w  labeled. Go to 
step 3.1. 

It remains to choose k(i) and to analyze the total running time of the 
algorithm. We define k(1) = 2, k(i) = 2k(i-1) for i 2 1. This choice 
guarantees that, in the ith iteration, ]Er 1 = O( m/k( i - l)), which implies 
that step 2 in the ith iteration takes O((m/k(i - 1))log k(i)) = O(m) 
time. Thus the total time per iteration is O(m). The number of iterations is 
O(log*n), giving an overall time bound of O(m log*n). 

Almost the same algorithm will solve the following problem: given two 
vertices s and t in a directed graph with edge costs, find a path from s to t 
that minimizes the maximum cost of an edge on the path (or, equivalently, 
maxim&s the minimum cost). We call such a path a bottleneck shortest 
path. This problem arises in the implementation of Edmonds and Karp’s 
“maximum capacity augmentation” version of the Ford-Fulkerson maxi- 
mum network flow algorithm [5]. The only change necessary in the al- 
gorithm above is to stop the incremental search as soon as f is labeled. Thus 
the bottleneck shortest path problem can be solved in O(min{ n log n + m, 
m log*n >) time. If the graph is undirected, a variant of Camerini’s al- 
gorithm [3] will compute a bottleneck shortest path in O(m) time, as 
observed by Lesley Matheson (private communication, 1987). 
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If the edges are given in sorted order, a bottleneck shortest path tree can 
be found in O(m) time. We merely run Step 3 of the above algorithm once, 
with j = m and each Si containing a single edge. 

3. &HmENBCK MAXIMUM CARDINALITY MATCHINGS 

Let G = (V, E) be an undirected graph. G is bipartite if V can be 
partitioned into two sets A and B such that every edge has one vertex in A 
and one vertex in B. A matching is a subset of edges, no two sharing a 
common vertex. A maximum-cadinality matching is a matching containing 
as many edges as possible. Suppose G has a real-valued cost c(u, w) on 
each edge (u, w). We consider the problem of finding a maximum-cardinal- 
ity matching whose maximum edge cost is minimum. We call such a 
matching a bottleneck matching. In the discussion to follow, we assume 
some familiarity with standard augmenting path methods for finding a 
maximum cardinality matching. (See e.g. [18].) 

The bottleneck matching problem for the special case of bipartite graphs 
(the bottleneck assignment problem) has been considered by Gross [13], 
Garfinkel [12], and Bhat [l]. Garfiiel observes that a bottleneck assign- 
ment can be computed by using an incremental search method to find 
augmenting paths. Although Garfinkel gives no time bound, the resulting 
algorithm can be seen to run in O(nm) time. 

Bhat observes that a maximum cardinality matching algorithm in combi- 
nation with binary search yields an 0( n’/*m log n>time algorithm for 
computing a bottleneck matching. We describe the method below; then we 
modify it to reduce the funning time to O(n log n)l’*m). 

Algorithms for computing a maximum cardinal&y matching in 0( n’/*m) 
time have been developed for the bipartite case by Hopcroft and Karp [15] 
and for the general case by Micah and Vazirani [16]. These algorithms have 
the important but often overlooked property that they can be used as 
approximation algorithms in the following sense: if M* is a maximum 
cardinality matching then in O(km) time for any k either algorithm will 
compute a matching M such that 1 M* 1 - 1 MI < n/k. This property is the 
key to our fast algorithm. 

The first step in computing a bottleneck matching is to sort the edges by 
cost. This takes O(m log n) time. Let e,, e,, . . . , e, be the edges, in nonde- 
creasing order by cost. Using a maximum cardinality matching algorithm, 
we compute I, the size of a maximum cardinality matching. Then we use 
binary search to find the minimum value i* of i such that the graph 
Gi = (V, Ei = {el, e,, . . . , e,}) contains a matching of size 1. To test whether 
a guess i for i* is high or low, we use a maximum cardinality matching 
subroutine. The total running time of this method is O(n’flm log n). 
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We do better by using binary search to find a bottleneck matching that is 
only approximately of maximum cardinality. For a parameter k (to be 
chosen below), we compute a value i’ such that the graph GiJ has a 
matching size at least I - n/k, and G,L, does not have a matching of size 1. 
To test whether a guess i for i’ is high or low, we use the approximation 
version of the Hopcroft-Karp algorithm (on a bipartite graph) or the 
Micah-Vazirani algorithm (on a general graph). We compute a matching 
M in Gi such that I&f] is within n/k of maximum. If ]M] < I- n/k, then 
the guess i is too low. The time to find i’ using this approach is 0( km log n). 
This gives us not only a value for i’, but also a matching M of size at least 
I - n/k, all of whose edges have cost at most c( ei,) I c( e,.). 

The matching M can be augmented to form a bottleneck matching by 
finding a bottleneck minimum augmenting path, augmenting M accord- 
ingly, and repeating this at most n/k times. Each augmentation requires a 
search for an augmenting path. Such a search can be done in O(m) time by 
using a standard method for finding an augmenting path (as described for 
example in [18] for general graphs) and making it incremental as in Section 
2: we initialize i to be equal to i’, let the search advance only along edges in 
Ei, and increase i by one each time the search terminates without finding 
an augmenting path. The total time to augment M to form a bottleneck 
matching is O(nm/k). 

The overall time to find a bottleneck matching is 0( mk log n + rim/k). 
Choosing k = (n/log n)“’ gives a time bound of 0( n log n)l12m). 

The same technique gives a bound of O(n log n)l12m) for finding a 
cardinality-k matching whose maximum edge cost is minimum, where k is 
an input parameter. The bottleneck matching problem arises in approxi- 
mate weighted matching and in efficient implementation of Christofides’ 
heuristic for the traveling salesman problem [7,11]. Our approach to 
bottleneck matching can also be used in efficient algorithms for computing 
the density and arboricity of a graph [19]. 
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