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Abstract 

Wendroff, B., T. Warnock, L. Stiller, D. Mayer and R. Brickner, Bits and pieces: constructing chess endgame 
databases on parallel and vector architectures, Applied Numerical Mathematics 12 (1993) 285-295. 

An endgame database for chess encodes optimal lines of play for a specific endgame involving a small number 
of pieces. The computation of such a database is feasible for as many as six pieces provided the inherent 
parallelism in the problem is fully exploited. Two computer architectures which can do this are the SIMD 
CM-2 and the vector multiprocessor YMP. For each machine the computer programs operate on sets of chess 
positions, each position represented by a single bit. The high-level algorithm is an iterative backtracking 
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procedure. After describing endgame databases and classifying the complexity of endgames we outline the 
algorithms and give some details of their implementation in Fortran for parallel and vector architectures. For 
endgames with five or more pieces it is important to use the symmetries of the chess board to reduce storage 
requirements, and we indicate briefly how this can be done for the vector architecture. Some timing 
comparisons are presented. 

1. Introduction 

Computers are having a significant impact on the game of chess. There are many computers 
which play chess, and some of these have even achieved the skill of a weak grandmaster [2]. 
There is software which stores games in a database which can then be used to study various 
openings or can be used to analyze the style of play of a future opponent [l]. What we will 
consider in this paper is the use of computers to create an endgame database [9]. In the 
endgame there are a small number of pieces left on the chess board, and one can imagine 
describing all the correct lines of play. For the chess community such databases provide 
unequivocally correct move sequences from any position in the database, and have been used to 
challenge accepted wisdom about the outcome of various games. For the computer scientist 
endgames provide an interesting and open-ended computational problem-when all n-piece 
endgames have been solved we need only go on to consider (n + l&piece games. All five-piece 
endgame databases [5] and almost all pawnless six-piece databases [4] have been created, 
although archival storage of the latter is not available. 

This paper is primarily directed at an audience normally dealing with scientific computations 
such as computational fluid dynamics. In contrast to those problems, endgame database 
construction involves parallel logical operations on sets of bits. In the hope that it will be 
instructive for those doing large scale scientific computations, we present the basic algorithms 
in some detail in the form of code fragments, and we discuss how these perform for smaller 
endgames on two supercomputers, the Connection Machine CM-2 [6], and the Cray YMP8/128. 
The algorithm was originally devised for the Connection Machine [5], but, as we shall show, it 
has a natural implementation on the Cray. Since the time the work described here was 
implemented, the CM-2 upgraded to a CM-200 [7]. The CM-200 is a generally similar 
architecture to the CM-2, except that it has a faster clock and improved routing microcode: the 
CM code runs approximately 40 per cent faster on the CM-200 than on the CM-2. However, 
since the code was developed for the CM-2, and most of the runs occurred on the CM-2, we 
will discuss the CM-2 version in the remainder of the paper. 

The CM-2 is a single-instruction multiple-data (SIMD) distributed-memory machine. It has 
64K processors connected on a 16-dimensional hypercube. Each processor has a l-bit band- 
width and a g-kilobyte memory, and operates at approximately 7 mh. During any one clock 
(machine cycle) each processor is either doing the same instruction as every other processor or 
is idle. However, for scientific computation, which are often floating-point-intensive, the l-bit 
processors are typically not used. Instead, the CM-2 is configured as 2K 64-bit wide Weitek 
vector units interconnected to form an 11-dimensional hypercube. However, as we shall see, the 
bit-serial architecture is convenient for the chess endgame problem, so we did not use the 
Weitek units explicitly in our endgame code. 

The YMP8/128 is an 8-processor 12%million-word shared-memory machine operating at 
166 mh. The bandwidth for both machines is 64 bits. The processors operate asynchronously on 
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independent instruction streams. They communicate with each other primarily through the 
shared memory, but also through special registers. The processors have vector and scalar 
functional units which operate in parallel. 

Using an analysis similar to that in [3], we can get a very rough idea of the kind of relative 
performance we might expect on these two machines by the following argument. On the CM-2 
we could think of each processor as representing a chess position. Take as a performance 
measure the clock rate of 7 mh times 64K, the number of positions on which an operation can 
be performed simultaneously. This number is 448. On the YMP we will think of each bit in the 
64-bit word as representing a chess position, so an operation on a single word treats 64 
positions simultaneously. In addition, the parallel vector functional units can do two logical 
operations, two loads, and a store simultaneously. With eight processors working the YMP does 
8 * 5 * 64 = 2.56K simultaneous operations. Multiplying by 166 mhz we get the performance 
measure of 425. Thus, it is not unreasonable to expect similar performance on this problem for 
the two machines. Of course, the actual behavior depends critically on programming details. 

2. Endgame databases 

Each particular collection of pieces defines a particular endgame. Piece names are abbrevi- 
ated by the first letter of their names, except for knights which are denoted by the letter N. In 
describing endgames, the white pieces are listed followed by the black ones. Thus, KRK 
denotes the endgame in which white has king and rook, and black has only his king. KBNKN is 
the ending with the white king, bishop, and knight and the black king and knight. 

A chessboard has 64 squares and there are 64” ways to put iz distinct objects on a 
chessboard. A database which contains information about every such arrangement need have at 
most 64” items. In a chess endgame database the objects are chess pieces and the information 
stored is a small integer defined as the number of moves to “win” for the strong side (usually 
white) assuming optimal play by both sides, that is, assuming that the winning side is trying to 
win in as few moves as possible while the losing side is trying to put off the loss as long as 
possible. The term “win” may have several different meanings for different databases depend- 
ing on the chess goal. Typically, white has a win if black can be mated with the given pieces on 
the board or if white can capture a black piece leaving a lost position for black in an endgame 
with fewer pieces. Logically, then, the database is an array of integers M(p,, . . . , p,), where 
each pi represents the location of the ith piece. This together with a program which can 
generate moves from a given position and can do a shallow minimax search is all that is needed 
to play perfect chess in the endgame. 

For example, suppose the ending is KQK. The position in Fig. 1 will be found in the 
database as a mate in 10. Now, order white’s possible moves in some way and create the 
position P resulting from the first move. P is a black-to-move position. Create the set of 
white-to-move positions resulting from all of black’s possible moves from P. If any one of these 
is in the database as a mate in more than nine moves, try the next white move. Eventually a 
white move will be found with the property that black has no choice but to move to a position 
which is a win in nine for white. This is repeated after black makes his response, but now 
looking for a win in one less move, and so on until black is mated. A move sequence found this 
way is shown in Fig. 1. 

Table 1 shows some typical max-to-win values for different sizes of endgames. 
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1. Wg7-fB, &4-b5 2. ‘%Y8-a3, *b5-c6 3. %3-b4, fc6-d5 4. F$h8-g7, *d5-c6 
5. ##b4-a5, *c6-d7 6. wa5-c5, *d7-e8 7. ‘#k5-a7, *e8-d8 0. @g7-f6, *d8-c8 
9. L&6-e6, &8-d8 10. V#d7 checkmate 

Fig. 1. A win-in-10 position from the endgame KQK. White and black each are playing optimally, although equally 
good alternatives have not been shown. The rows of the chessboard are numbered from l-8 starting at the bottom, 
and the columns of the chessboard are lettered from a-h starting at the left. Thus, white’s first move above is to 

move the queen one square northwest. 

3. Complexity 

We give a rough classification of endings according to their complexity. 

Definition 1. An endgame is trivial if neither side can mate from any position of the given 
game. 

Examples of trivial endgames are KK, KBK, and KNK. 

Definition 2. A subgame of an endgame is any endgame resulting by deleting one or more 
pieces. 

Thus, a subgame of KBNK is DESK. 

Definition 3. A simple endgame is one with no pawns all of whose subgames are trivial. 

Table 1 
Some typical max-to-win 
endgame, but it can be 
increases, the endgames 
before computer analysis 

values for different-sized endgames. The “Nodes” field is the number of nodes in the 
reduced slightly by more aggressive treatment of symmetry. As the max-to-win value 
become increasingly difficult to comprehend. The last two had been considered draws 

Endgame 

KQK 
KRKN 
KBBKN 
KRBKNN 

Nodes Max-to-win 

40960 10 
2621440 21 

167772160 66 

10737418240 223 
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Examples of simple endgames are KQK, KRK, KBNK, KBBK, and KNNK. 

Definition 4. An n-simple endgame is a pawnless endgame all of whose subgames are (n - 1) 
simple, where we identify the O-simple endgames with the trivial ones and the l-simple 
endgames with the simple ones. 

For example, KBNKN is a 2-simple endgame since each subgame is either simple or trivial. 
On the other hand, KRBKR is not 2-simple since it has 2-simple subgames. From the chess 
point of view these two endgames are equally complex, but not from the programmer’s 
viewpoint, the latter being more difficult. KBNKN is the most complicated ending we will 
consider. 

Definition 5. A complex ending is any ending with pawns. 

Because pawns can change type by promotion, these endings are difficult for both chess 
players and chess programmers. 

4. Retrograde analysis 

A procedure for constructing an endgame database for chess was described precisely in [8]. 
The idea, called retrograde analysis, is to work backward from the goal of checkmate using 
unmoues instead of moves. A simple unmove of a chess piece follows the same rules as a move 
except that after an unmove, say by white, the resulting position must be legal for white to 
move. Captures cannot be made on an unmove, so one cannot unmove to an occupied square. 
Permitted are uncaptures, wherein a piece of the opposite color is left behind. This happens 
when pieces of the opposite color occupy the same square, which is the way that captured 
pieces are represented. 

The database for simple endgames is done as follows. We start with a set B, of all positions 
in which black is checkmated, that is, these are all the (chessically) legal black-to-move 
positions for which black is in check and has no legal moves. By Definition 2, all pieces will be 
present. For all the positions in B, find all the positions reached by all the white unmoves. 
There will be no uncaptures since in legal positions no two pieces can be on the same square. If 
K, is this set, then K, is the set of all legal positions from which white can mate in one move. 
Now, let C be the set of all positions reached by all the black unmoves from positions in K,. 
Again, there will be no uncaptures. Each position in C has to be tested to see if black can 
escape, that is, if there is a black move which creates a position not in K,. Note that a capture 
by black automatically escapes, which is correct for simple endgames. Each position with an 
escape has to be removed from C. With what is left form B, = C U B,. These are the legal 
positions from which black loses in one move or less. Form K, by performing white unmoves 
on B,. Let IV, = K, - K,. These are the positions from which white wins in exactly two moves. 
This process is repeated until a Ki+i is reached such that Ki+ 1 - Ki is empty. Setting IV, = K,, 
the database consists of the collection {P,j) for all positions P in wj, j = I,. . . , i. 
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In order to determine the positions in C from which black can escape it seems necessary to 
try all the moues from a given position to see if an escape exists. This step can be eliminated by 
having black unmove from the set of positions not in K, (which must include the positions with 
one of white’s pieces captured). The result is the set of positions which give black an escape [4]. 
Call this set E. Now white can unmove from the set of positions not in E to get K,. The actual 
computation is slightly different, since stalemates must be taken into account. 

For nonsimple endgames the situation is much more complicated since all possible subgames 
formed by captures on either side must be included. 

5. Two implementations 

Let us look further into the implementation of retrograde analysis. For any chess position P 
let II,(P) be the set of all positions reached by white’s unmoving from P. For example, then, 

K, = u 4vw* 
PEE 

This will be done in a loop like, 

for all positions P 
if PEE then 

K, = K, U L!,(P). 

However, each unmove forming 17,(P) can 
“unmove the rook one square to the east”. 
have 

for all positions P 
if PEE then 

be constructed from elementary unmoves such as 
Letting V~ represent an elementary unmove, we 

for all elementary unmoves n;, 
K, = K, u T,,$ P). 

We could just as well interchange the loops to get 

for all elementary unmoves 7rm 
for all positions P 

if PEE then 
K, = K, u To. 

The point to this is that in this form the loop over P is fully vectorizable with the proper data 
structure, whereas the first form offers little opportunity for vectorization. The second form 
was actually designed with the CM-2 in mind: on that machine each processor represents a 
group of positions and the processors simultaneously perform TV. On the Cray, 7rm involves 
motions of words or shifts of bits within a word; on the CM-2, ~~ involves motions of bits from 
processor to processor or shifts of bits in the memory of each processor. Additional paralleliza- 
tion can be achieved on the Cray by asynchronous splitting of the loop over P among its 
processors. 
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On both machines the test for P in E is not done explicitly but is taken care of by the data 
structure. This is necessary in order to produce the needed regularity of the algorithm and 
means that a lot of the computation is redundant. Each iteration going from K, to K,+l 
requires exactly the same amount of computation. For that reason it is clear that the 
predecessor of the complement version is appropriate. This is not the case with the first form of 
the algorithm, where the amount of work depends on the number of positions being processed. 
For some endings the complement of K, will be very dense and it will be more efficient to 
compute black’s forward moves. 

Our experience with the first algorithm is that it is at least an order of magnitude slower 
than the second. 

6. Elementary moves as motions 

Chess pieces move according to definite rules. On an otherwise empty board a rook can 
move any number of squares along its row or column (rank or file), bishops move diagonally any 
number of squares, queens move as both a rook and a bishop, and kings move as queens but 
only one square. Knights jump to the next column and then two rows away or vice versa. No 
piece can unmove to or past an occupied square. 

For the moment let us think in terms of Fortran 77 and, for definiteness, the ending KRK. 
The objects we want the compute are sets of positions such as B,, Ki, etc. These can be treated 
as two-dimensional arrays of 64-bit words with dimension 

dimension B,(64, 64), 

with the convention that the first argument is the position of the white king, the second 
argument is the position of the black king. Here, we have supposed that the squares of the 
chess board have been numbered from 1 to 64 in some way. The third piece, the white rook, is 
represented by the appropriate bit position in the word. Let A(i,j), be the kth bit in the word 
A(i,j). For example, the set B, is equivalent to the array B,( a, . > if 

if position (i, j, k) in B,, 

In other words, the array B,( *, . > is the characteristic function of the set B,. 
We can also look at this geometrically, thinking of the universe of all possible chess positions 

as a cube of 643 boxes. A particular cube represents a set of positions if and only if whenever 
position (i, j, k) is in the set the box at (i, j, k) contains a 1. To find the result of unmoving the 
rook one square to the east for all the positions in the set we need to take the contents of every 
box and move along the rook axis of the cube. Thus, 

do 10 i = 1,64 
do 10 j = 1,64 

temp(i, j) = shiftr(A(i, j), 1) 
10 continue 

creates the set temp of all positions obtained by unmoving the rook one square to the east (if 
the bit positions in the word are appropriately ordered) from all the positions in A. There will 
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be some illegal positions in temp, but these can easily be removed by a masking operation. We 
can then repeat this loop with temp on the right to get the two-square moves, and so on. Taking 
the union of the results produces the set of all rook unmoves to the east positions. Then the 
whole thing is repeated for west, north, and south. To unmove the white king to the east we 
move contents of boxes along the white king axis. The loop is 

do 10 i = 1,64 
do 10 j = 1,64 

temp(i, j) = A(i - 1, j) 
10 continue 

and so on. 
More generally, with more pieces one piece will be “in word” and the others will be “in 

array”. We should mention that we could just as well have used a two-dimensional representa- 
tion of the chessboard rather than a one-dimensional one for either or both of the two kings. 

The data structure on the CM-2 is very similar. In an n-piece endgame it - 1 pieces will be 
“in processor”, that is, the set of all possible configurations of n - 1 pieces will be mapped l-l 
onto the set of virtual processors. Here, however, the two-dimensional chessboard representa- 
tion is appropriate. The nth piece resides “in ram”, that is, 64 bit locations in the memory of 
each processor define the possible positions of the nth piece. We will use a the CM Fortran 
dialect of Fortran 90, except that CM Fortran does not yet support 64-bit integers. The 
statements 

INTEGER * 8 A, TMP, 

DIMENSION A(64, 64), B(64, 64), 

CMF$LAYOUT A( :NEWS, :NEWS), B( :NEWS, :NEWS) 

do the mapping, while 

temp = 0, 

a=0 

initialize the arrays. Then a white king unmove is done with 

forall (i = 1:64, j = 1:64) temp(i, j) = A(i - 1, j) 

which moves the 64 bits in each processor at location A to location temp in the “next” 
processor along the white king column axis. The “in ram” rook unmove is taken care of with 

temp = shiftr(a, 1) 

which shifts the 64 bits at location A in each processor over one place and puts the result in 
location temp. As with the Fortran 77, masks are used to filter the illegal positions. 

7. Symmetry 

We indicated at the beginning of Section 2 that there are at most 64” possible configurations 
of IZ chess pieces. It is well known that for pawnless endgames many of these positions are 
equivalent under the symmetries of the chessboard. For example, if P is a position which is 
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Fig. 2. The ten possible positions of the black king. No matter where the black king is in a position, the position 
be reflected and rotated so that is brought into the lo-square octant shown. 

can 

checkmate for black then so are all the positions obtained by reflecting the position about 
either main diagonal or about the vertical or horizontal midlines or any composition of these 
transformations, so long as the position does not contain any pawns. In fact, the group of 
symmetries of the chess positions is simply D,, the dihedral group of order 8. 

By exploiting this symmetry, the storage requirements and the time requirements of the 
computation can be reduced. In the most abstract formulation, we are trying to reduce the 
computational requirements of a search on a state space invariant under symmetry. Although 
this leads to deep and interesting theory, the essential characteristics of the treatment of 
symmetry can be understood without recourse to the group-theoretic machinery. 

The key observation is that any chess position without pawns can be rotated and reflected in 
such a manner that the black king is on one of the ten squares in the lower left-hand octant of 
the board (see Fig. 2). 

Therefore, we have reduced the number of possible positions of the black king from 64 to 10. 
Instead of using a 64 X 64 X 64 array of 64-bit integers to store the set of positions in a 
four-piece endgame, in which the first axis encodes the position of the black king, we only need 
to use a 10 X 64 X 64 array of 64-bit integers. 

Unfortunately, there is a price to pay in terms of code complexity for this data layout. 
Basically, all the pieces other than the black king can be moved just as before. However, 
sometimes when the black king moves, it will move out of the 10 squares to which it is 
restricted. When this happens the entire chessboard, including the other pieces, must be 
rotated and reflected so as to bring the black king into the octant to which it is restricted. 

This transformation process is difficult to do on both architectures. On the wide-word 
architecture implementation, some piece is stored “intra-word”. The transform on this piece 
therefore induces a bit permutation of the bits of each word. Furthermore, this permutation 
must be done for each of the 7 non-identity transforms at each iteration of the main loop. A 
naive method to do this would be to actually move the bits one at a time. However, such l-bit 
operations are inefficient on a wide-word machine. A much more efficient way is to use lookup 
tables to implement the transformation. Each 64-bit word within which the permutation is to be 
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implemented is divided into four 16-bit fields. For each permutation, for each of the four 16-bit 
fields, a lookup table is used that gives the 64-bit word to which that 16-bit field is mapped. The 
final transform will simply be the logical bitwise OR of the four values that are looked up. The 
“inter-word” permutations use a gather operation on a pre-computed list of addresses. 

On the CM-2 architecture, the bit permutation is fairly straightforward. Since the architec- 
ture is bit-serial anyway, it is easy to perform this; just as important, the system software 
supports the variable-length bit-fields we use. Unfortunately, on that architecture, the motion 
of the other pieces induces a general communication operation among all the processors, which 
operates at lower bandwidth than intra-processor operations. 

8. Timing 

The parallel CM-2 code requires between about 1 and 2 seconds per iteration for a five-piece 
endgame [4], depending on the load on the front end of the CM-2 and depending on the 
particular endgame and certain configuration choices in the program. We think that the vector 
implementation could require a comparable amount of time. We have a code for the endgame 
KBNKN running on one CPU of a YMP. It does all the unmove operations, including the 
permutation operation needed for the symmetry constraint, in about 3 seconds per iteration. It 
does not handle all the induced subgames correctly, so we cannot quote a time for the complete 
endgame. We also do not have a multitasking version for the YMP, but the outer loops of the 
Fortran code are easily multitasked. 

For the four-piece endgame KRKN one CPU of the YMP takes 0.12 seconds per iteration, 
while one sequencer (16K processors) of the CM-2 uses more than 0.16 seconds. 

However, by running in slicewise mode [3] and using the vector implementation on each 
node, we think a significant speedup in the CM-2 code could be obtained. 
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