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As a family of serine-dependent enzymes, the carboxylesterases (EC 3.1.1.1) demonstrate a broad substrate specificity. Mouse 
carboxylesterases comprise at least 20 genetically distinct loci. We cloned a full-length cDNA for a novel mouse carboxylesterase, 
Es-male which was expressed predominantly in male livers. This carboxylesterase consisted of 554 amino acid residues, and 
exhibited 43% and 42% similarities to the known mouse esterases Es-22 and pEs-N, respectively. Es-male contained a 
C-terminal ER-retention signal PEEL, indicating that it may be a microsomal carboxylesterase. 

We used AZAPII vector to construct a subtraction 
cDNA library as described by Klickstein [1] and Gold- 
man and Lafuze [2]. Briefly, double-stranded cDNAs 
were synthesized from liver mRNAs of [Balb/cJ × 
DBA/2J]  F1 males, ligated to EcoRI adaptors. The 
cDNAs were subtracted by a 50-fold excess of the 
Balb/cJ  cDNAs digested by AluI and RsaI, then lig- 
ated to EcoRI site of AZAPII vectors. We prepared 
the Fl-enriched, single-stranded cDNAs (F1 probe) 
using a Subtractor Kit (Invitrogen, San Diego, CA). 
The subtracted cDNA library was double-screened by 
F1 and Balb/cJ  probes (both single-stranded cDNAs); 
the clones hybridizing more strongly with the F1 probe 
were selected. We used mouse albumin and y-actin 
cDNAs to judge relative degrees of hybridization. As a 
result, we obtained 11 different clones which hy- 
bridized strongly to the F1 probe but weakly to the 
Balb/cJ  probe. 

Clone p1016, one of the 11 cDNA clones, contained 
a 900 bp insert. We screened the F1 library using the 
900 bp insert as probe, and obtained p1016-13 for 
further characterization. We sequenced both strands of 
2036 bp insert of p1016-13: the insert cDNA was 
digested by Sau3AI, RsaI, AluI, EcoRI or PstI, lig- 
ated to M13 vectors, then sequenced using Sequenase 
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(USB, Cleveland, OH). Fig. 1 shows the nucleotide and 
deduced amino acid sequences. The nucleotide se- 
quence comprised of 48 bp 5'-noncoding, 1662 bp 
coding, and 326 bp 3'-noncoding regions. The cDNA- 
encoded protein consisted of 554 amino acids, and 
exhibited 43.3% and 41.8% identities to the mouse 
carboxylesterases Es-22 and pEs-N [3,4], respectively. 
The closest known carboxylesterase is rabbit form 2 
[5]sharing the 44.5% identity. This sequence identity is 
relatively low when compared with a minimum 60% 
identity among the 11 rodent, rabbit, pig, and human 
carboxylesterases already published [3-15]. The p1016- 
13, however, conserved very well the characteristic 
sequences for the carboxylesterase family, which in- 
cluded the active-site regions and residues (Asp-109, 
Ser-214 and His-443) (Fig. 1). Four cysteines (at posi- 
tions 83, 110, 267 and 278), which may be involved in 
the specific disulphide bonds, were also conserved. We, 
therefore, conclude that the pl016-13-enconded pro- 
tein is a novel carboxylesterase. Proteins which re- 
tained in the endoplasmic reticulum (ER) lumen often 
contain a retention signal at their C-termini [8,16]. This 
new carboxylesterase also contained a C-terminal ER- 
retention signal (PEEL). In addition, the enzyme has 
an N-terminal hybrophobic sequence which may direct 
its transport into microsomal lumen. The presence of 
N-terminal and C-terminal signals indicate that the 
carboxylesterase is a microsome-luminal enzyme. We 
name the newly-discovered carboxylesterase Es-male 
because our research indicated that it is expressed 
predominatly in male livers. 
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We determined this male-predominant expression 
by performing Northern hybridization using 32 P-labeled 
p1016-13 as probe, and examined the mRNA levels of 
Es-male in the livers of sham-operated, hypophysec- 
tomized, and hypophysectomized and growth hormone- 
treated male and female FI mice (Fig. 2). The mRNA 

was expressed at much higher levels in mate than 
female livers. Moreover, the high-level expression in 
the males was regulated by growth hormone, while the 
low-level expression in the females was constitutive. 
The degree of sex-dependency could be underesti- 
mated, however, because it is not known how many 
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Fig. 1. Nucelotide and deduced amino acid sequences of carboxylesterase Es-male. Three active-site residues are shadowed, while the conserved 
sequences including the active-site residues are underlined by dotts. Four conserved cysteines are boxed. The N-terminal signal sequence is 
indicated by solid-underline, whereas the C-terminal retention signal is shaded and boxed. A putative polyA signal is indicated by dashed-under- 

line. 
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Fig. 2. Male-predominant, GH-dependent expression of Es-male 
mRNA. Liver RNAs were prepared, enriched for poly(A)-containing 
RNAs using Oligo-dT cellulose column, electrophoresed on a dena- 
tured agarose gel, transferred to Nytran paper, and hybridized by 
32p-labeled p1016-13. Wherase the arrow indicates Es-male mRNA, 
migrations of ribosomal RNAs are indicated by 28 S and 18 S. Sham 
and Hypox. denote the sham-orerated and hypophyesctomyzed mice. 
GH shows that mouse was treated by 50 #g of bovine growth 
hormone (obtained from National Hormone and Pituitary Program) 

every 12 h for 5 consecutive days. 

c a rboxy l e s t e r a se s  a r e  e x p r e s s e d  in m o u s e  l ivers,  and  to 

w h a t  d e g r e e  t he i r  m R N A s  a re  c ross -hybr id ized .  N e v e r -  

t he l e s s ,  th is  r e g u l a t i o n - m o d e  in m a l e  l ivers  is 

r e m i n s c e n t  o f  t ha t  f o u n d  in t he  m a l e - s p e c i f i c  s t e ro id  

1 6 a - h y d r o x y l a s e  P45016 ~ (2D9)  [17]. M o u s e  Es-1 is 

k n o w n  to  be  a f e m a l e - p r e d o m i n a n t  p l a s m a  car-  

b o x y l e s t e r a s e  w h o s e  m R N A  is d e v e l o p m e n t a l l y  in- 

c r e a s e d  in f e m a l e  l ivers  [18]. K a d n e r  et  al sugges t  t ha t  

Es-1 m a y  r e g u l a t e  t he  e s t r o g e n  levels ,  s ince  it hydor -  

lyzes va r ious  e s t e r s  i nc lud ing  fa t ty  ac id  es te r s  o f  es t ra -  

diol ,  and  b e c a u s e  it is absen t  in y o u n g  m i c e  wi th  low 

e s t r o g e n  levels  [18]. T h e  subs t r a t e  speci f ic i ty  o f  E s - m a l e  

n e e d s  to be  d e f i n e d  in fu tu re  in o r d e r  to s p e c u l a t e  a 

ro le  o f  this e n z y m e  in m a l e  livers. 
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