

FAIRICUBE –
F.A.I.R. INFORMATION CUBES

WP4 Share

D4.1 FAIRiCUBE Hub Architecture

Deliverable Lead: EOX

Deliverable due date: 28-02-2023

Version: 2.1

17-11-2023

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

2 / 56

Document Control Page

Document Control Page

Title D4.1 FAIRiCUBE Hub Architecture

Creator EOX

Description The FAIRiCUBE Hub Architecture details the functionalities available from the
FAIRiCUBE Hub for users but also for providers of services, data, apps,

notebooks, etc.

Publisher “FAIRiCUBE – F.A.I.R. information cubes” Consortium

Contributors All

Date of delivery 28-02-2023

Type Text

Language EN-GB

Rights Copyright “FAIRiCUBE – F.A.I.R. information cubes”

Audience ✓ Public

☐ Confidential

☐ Classified

Status ☐ In Progress

☐ For Review

✓ For Approval

☐ Approved

Revision History

Version Date Modified by Comments

0.1 11-12-2022 Stephan Meißl, EOX Initial draft

0.2 14-12-2022 Cristina Carnerero, 4sfera

Jaume Targa, 4sfera

Review

0.3 12-02-2023 Kathi Schleidt, DataCove
Peter Baumann, JacobsU

Cristina Carnerero, 4sfera

Jaume Targa, 4sfera
Stefan Brand, EOX

Stephan Meißl, EOX

Further input

0.4 26-02-2023 Kathi Schleidt, DataCove
Mirko Gregor,

space4environment
Stephan Meißl, EOX

Restructuring and further input

1.0 27-02-2023 Kathi Schleidt, DataCove

Peter Baumann, JacobsU
Stephan Meißl, EOX

First complete release

1.1 07-03-2023 Jaume Targa, 4sfera

Cristina Carnerero, 4sfera
Eudard Lama, 4sfera

Final review

1.2 08-03-2023 Stephan Meißl, EOX Final version for submission

1.3 16-06-2023 Christian Schiller, Stephan
Meißl, EOX

changing:
FAIRiCUBE Hub to FAIRiCUBE Lab

FAIRiCUBE Platform to FAIRiCUBE
Hub

adding API and workflow

descriptions
adding FAIRiPATH – as new Fig .2

1.4 05-09-2023 Christian Schiller, Stephan adding additional Details about

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

3 / 56

Meißl, EOX the FAIRiCUBE Lab setup of Apps,

Control Plane and Worker Plane

1.5 02-10-2023 Antonio Cozzolino, Epsilon adding Knowledge Base

2.0 13-10-2023 Jaume Targa, 4sfera Final review

2.1 17-11-2023 Christian Schiller, Stephan
Meißl, EOX

Updating Metadata ingestion
procedure, replacing placeholder

Figures, adding Community
Collaboration Platform Chapter

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

4 / 56

Disclaimer

This document is issued within the frame and for the purpose of the FAIRICUBE project. This project

has received funding from the Horizon Europe research and innovation programme under grant

agreement No. 101059238. The opinions expressed and arguments employed herein do not necessarily

reflect the official views of the European Commission.

This document and its content are the property of the FAIRiCUBE Consortium. All rights relevant to this
document are determined by the applicable laws. Access to this document does not grant any right or

license on the document or its contents. This document or its contents are not to be used or treated in

any manner inconsistent with the rights or interests of the FAIRiCUBE Consortium or the Partners
detriment and are not to be disclosed externally without prior written consent from the FAIRiCUBE

Partners. Each FAIRiCUBE Partner may use this document in conformity with the FAIRiCUBE

Consortium Grant Agreement provisions.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

5 / 56

Table of Contents

Document Control Page.. 2
Disclaimer ... 4
Table of Contents .. 5
List of Figures ... 7
1 Introduction ... 9
2 FAIRiCUBE Hub Overview .. 11
3 FAIRiCUBE Lab (an EOxHub instance) ... 14

3.1 Control Plane .. 14
3.1.1 Configuration Management .. 15
3.1.2 GitHub as Identity Provider .. 15
3.1.3 JupyterLab Profiles ... 16
3.1.4 Keycloak .. 16
3.1.5 Shared Jupyter Notebooks ... 17
3.1.6 Shared Conda Environments .. 18
3.1.7 Shared Secrets ... 19
3.1.8 Shared Object Storage .. 19
3.1.9 Apps ... 20
3.1.10 Complete Configuration Example .. 20

3.2 Worker Plane .. 21
3.2.1 Interactive Development Environment - Jupyter Notebooks ... 22
3.2.2 Data access ... 23
3.2.3 User access .. 23

3.3 Machine Learning Platform - MLflow .. 25
3.3.1 MLflow Tracking ... 25
3.3.2 MLflow Projects .. 26
3.3.3 MLflow Models ... 26
3.3.4 MLflow Model Registry .. 26

4 Datasets & Models .. 27
5 Services & Storage .. 37

5.1 Euro Data Cube, Sentinel Hub, GeoDB, etc. ... 37
5.2 EarthServer Federation and rasdaman ... 39

5.2.1 rasdaman Architecture .. 39
5.2.2 Datacube Access .. 40
5.2.3 Datacube Import and Maintenance ... 41
5.2.4 EarthServer Federation .. 41

6 Hub & URLs .. 42
7.1 Notebook and Algorithm Sharing .. 44

7.1.1 FAIRiCUBE Lab - EOxHub .. 44
7.1.2 FAIRiCUBE Services/Apps - rasdaman ... 45

7.2 Service and App Onboarding .. 45
8 Interfaces and User interactions ... 47

8.1 User – Catalog .. 47
8.2 Data Metadata & Process Metadata interactions ... 47
8.3 User – Notebooks ... 47
8.4 User Notebook – Catalog ... 48
8.5 User Notebook – Data Access interactions ... 48
8.6 User Notebook – Data Processing interactions .. 48
8.7 User Notebook – Sharing ... 48
8.8 Download Notebooks ... 49

9 Community Collaboration Platform .. 50
9.1 Implementation .. 50

10 Knowledge Base ... 52
11 Deployment and Operations Strategy .. 54

11.1 FAIRiCUBE Catalog.. 54
11.2 FAIRiCUBE Lab - EOxHub .. 54

11.2.1 Principles for Operations .. 55
11.2.2 Deployment Services split into three Segments .. 56

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

6 / 56

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

7 / 56

List of Figures

Figure 1: Schematic Project Overview ___ 9

Figure 2: FAIRiCUBE Architecture Overview __ 12

Figure 3: FAIRiPATH – Overview of the FAIRiCUBE Hub Data Flow ___ 13

Figure 4: FAIRiCUBE Lab Architecture __ 14

Figure 5: Keycloak for authorization __ 17

Figure 6: FAIRiCUBE Catalog launcher tile ___ 17

Figure 7: FAIRiCUBE Catalog Notebook Viewer ___ 18

Figure 8: Example of a Conda-store environment configuration (here from DeepESDL) _________________________ 19

Figure 9: Examples of Kernel selection in a Conda environment (here from DeepESDL) _________________________ 19

Figure 10: Example of MLflow for experiment tracking (here from DeepESDL) ________________________________ 20

Figure 11: MLOps Tooling __ 22

Figure 12: FAIRiCUBE HUB Login __ 23

Figure 13: JupyterLab profile selection - Use Case specific workspace profiles _________________________________ 24

Figure 14: JupyterLab workspace launcher __ 24

Figure 15: JupyterHub Control panel ___ 25

Figure 16: Greeting page after successful Login __ 25

Figure 17: Screen presented to Users not configured to a Use Case ___ 25

Figure 18: FAIRiCUBE Hub Architecture – Datasets, Processes, & Models ____________________________________ 27

Figure 19: Resource-metadta GitHub Issues ___ 29

Figure 20: Resource Metadata Request ___ 29

Figure 21: Codelist change proposal ___ 30

Figure 22: Data Ingestion Request Procedure __ 31

Figure 23: Data request WebGUI - Landing page ___ 32

Figure 24: Data request WebGUI - Entry Form (2 sections are shown) ______________________________________ 33

Figure 25: FAIRiCUBE STAC Browser Interface ___ 34

Figure 26: Data Access Catalog ___ 34

Figure 27: Details of a Dataset (Sentinel-2 L2A 120m Mosaic) ___ 35

Figure 28 Interface for a Dataset (Sentinel-2 L2A 120m Mosaic) ___ 35

Figure 29: Browse Interface Feature of the STAC Browser __ 36

Figure 30: FAIRiCUBE Hub Architecture - Services & Storage __ 37

Figure 31: EOxHub as deployed for Euro Data Cube ___ 38

Figure 32: Data Workflows ___ 39

Figure 33: rasdaman high-level architecture ___ 40

Figure 34: FAIRiCUBE Hub Architecture - Hub & URLs ___ 42

Figure 35: Cloud Workspaces ___ 43

Figure 36: Schematic FAIRiCUBE Lab Architecture __ 44

Figure 37: Bring Your Own Algorithm ___ 45

Figure 38: Landing page of the Community collaboration platform __ 51

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

8 / 56

Figure 39: Knowledge Base - Application Architecture __ 53

Figure 40: GitOps Principle ___ 55

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

9 / 56

1 Introduction

This is the deliverable D4.1 “FAIRiCUBE Hub Architecture” of the FAIRiCUBE project, i.e., the

FAIRiCUBE integrated datacube platform. It provides a detailed description of the FAIRiCUBE Hub

architecture detailing its components, its deployment and operations strategy based on control and
worker plane as well as on-boarding requirements and processes for service and application providers.

The FAIRiCUBE Hub Architecture details the functionalities available from the FAIRiCUBE Hub for users

but also for providers of services, data, apps, notebooks, etc.

D4.1 FAIRiCUBE Hub Architecture, this deliverable, is the output of the WP4 Share Task 4.1 “Define

FAIRiCUBE Hub Architecture” prepared by EOX and JUB. As such, it relies on the further WPs WP5
"Ingest", WP4 "Share", and WP3 "Process” which each contribute a key facet to the overall FAIRiCUBE

Hub.

The core objective of FAIRiCUBE is to enable users from beyond classic Earth Observation

(EO) domains to provide, access, process, and share gridded data and algorithms in a FAIR

and TRUSTable manner.

To reach the objective above, the FAIRiCUBE Hub is developed. This Hub is a cross-cutting platform
and framework for data ingestion, provision, analysis, processing, and dissemination, to unleash the

potential of environmental, biodiversity and climate data through dedicated European data spaces.

Within the FAIRiCUBE project, TRL 7 will be attained for new components and the overall system,
together with the necessary governance aspects to assure continued maintenance of the FAIRiCUBE

Hub beyond the project lifespan (Figure 1). It will enable a broader range of stakeholders to focus on
what they are supposed to do best: overcome technical barriers to make data-driven decisions and

leverage state-of-the-art processing technologies, including Machine Learning (ML).

Figure 1: Schematic Project Overview

The FAIRiCUBE Hub is the central technology point of FAIRiCUBE. The Hub provides access to diverse
data sources as well as processing and visualization tools. Users wishing to perform an analysis can

bring their own data to FAIRiCUBE, whereby non-aligned sources (point, vector, but also gridded data
not aligned to the European Grid) will be transformed as required before ingestion or during a request.

Diverse analysis and ML tools are made available for users to tailor to their specific requirements and

data sources. Finally, the FAIRiCUBE Dashboards will allow for interactive presentation of results.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

10 / 56

In WP2, selected use cases illustrate how data-driven projects can benefit from cube formats,

infrastructure, and computational benefits. They guide the project in creating a user-friendly

FAIRiCUBE Hub providing relevant stakeholders an overview of both data and processing modules

readily available to be applied to these data sources.

Tools enabling users not intimately familiar with the worlds of EO and ML to scope the requirements
and costs of their desired analyses are implemented, easing uptake of these resources by a broader

community. The FAIR sharing of results with the community is fostered by providing easy to use tools

and workflows directly in the FAIRiCUBE Hub.

One of the expected results of the FAIRiCUBE Hub is that, in addition to a rich catalog of available

gridded data resources, diverse processing modules utilizing diverse ML techniques (in some cases pre-
trained for specific applications) are made available. The functionality and usability are trialled through

the defined use cases to provide an advanced method/procedure to big data analysis with the help of

ML, to improve decision making for a broad range of interested parties.

This document represents the first version, due at M8, i.e., by 28.02.2023, of the deliverable D4.1

“FAIRiCUBE Hub Architecture” of the FAIRiCUBE project. No further versions of D4.1 are due. This

deliverable reports the activities carried out within the Task 4.1 “Define FAIRiCUBE Hub Architecture”.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

11 / 56

2 FAIRiCUBE Hub Overview

The FAIRiCUBE Hub is a fully managed cloud environment providing scalable compute and (co-located)

storage resources for diverse stakeholders ranging from scientists to decision makers. The FAIRiCUBE

Hub Architecture is based on EOxHub as well as rasdaman and other Open-Source components. The
overall FAIRiCUBE Hub encompasses the FAIRiCUBE Catalog, FAIRiCUBE Services and Applications, as

well as the FAIRiCUBE Lab (see Figures 18, 30, and 34). The user interaction with the FAIRiCUBE Hub
is mainly by interactively using Jupyter Notebooks or other applications in the FAIRiCUBE Lab or

directly by using the provided FAIRiCUBE Services and APIs.

Please find below the definitions of the components of the FAIRiCUBE Hub to avoid confusions and

ambiguities.

FAIRiCUBE Hub: The overall FAIRiCUBE technical environment encompassing the FAIRiCUBE Catalog,

FAIRiCUBE Services and Applications, as well as the FAIRiCUBE Lab.

FAIRiCUBE Catalog: The integrated catalog providing metadata and references to ingested datasets,

processes, and models available from FAIRiCUBE.

FAIRiCUBE Services/Apps: Components providing various ways to access the data and processing

facilities provided by FAIRiCUBE.

FAIRiCUBE Lab: A single container for all workspaces providing the interface to back-ends via various

back-end protocols as well as an execution environment for user provided workloads.

FAIRiCUBE Workspace: The user area within the FAIRiCUBE Lab where users are able to collaborate

and share the content of their workspaces.

FAIRiCUBE Knowledge Base: Provides a set of tools to enable appropriate knowledge of how to

apply algorithms and ML techniques to solve similar demands.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

12 / 56

Figure 2: FAIRiCUBE Architecture Overview

The FAIRiCUBE Hub provides a complete working environment where users can access algorithms and

data remotely to obtain computing resources and tools that they might not otherwise have and avoid
the need to download and manage large volumes of data. This new approach removes the need to

transfer/download large e.g., Earth Observation data sets around the world, while increasing the
analytical power available research scientists, industry, operational service providers, regional

authorities, and policy analysts.

FAIRiCUBE provides:

• Easy access to data and the tools to exploit these data.

• Use of online cloud computing resources which removes the need to download and store large

volumes of data locally.

• Data, visualisation, and processing options that are tailored to the needs of science and

operational users.

• Personalised and private accounts that can be accessed from any location through the

Internet.

• A clear and intuitive user interface to access the platform functionality, including an interactive

map portal for visualising data and outputs.

• Access to built-in processors or user-provided processors.

• Processor outputs that can be used in other processors, shared with other users, or download.

• Access to considerable processing capacity for analysis of large volumes of data.

• A customisable online development environment with all the necessary software tools and

libraries to develop processors and optionally make them available to other users.

• A collaboration environment for groups to communicate via a platform forum, share software

code using the platform code repository, and track problems with a built-in issue tracker.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

13 / 56

Figure 3: FAIRiPATH – Overview of the FAIRiCUBE Hub Data Flow

In Figure 3 an overview showing the flow of data and metadata within the FARiCUBE Hub system is
given. Data provided will be submitted vi STAC-API to the STAC catalog holding the metadata. If

required some preprocessing steps (e.g., conversions, geographic transformations and if necessary,
some gap-filling procedures) might be applied to the respective dataset. Such preprocessing steps are

especially useful to harmonize datasets (e.g., their resolution, projection, etc.) prior to ingestion.

Once preprocessing is finished data will be ingested into the data-store from where will be readily
available to further actions applied by the user. These include further data analysis, visualization and

ML-Training. All results can be submitted into the storage for further usage or fed into ML-Models.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

14 / 56

3 FAIRiCUBE Lab (an EOxHub instance)

The EOxHub deployment, aka FAIRiCUBE Lab, is separated in two parts, the Control and the Worker

Plane. The Control Plane offers the central Hub functionalities, data management and analysis, and

needs to run continuously. User workloads are executed in the Worker Plane which is scaled as

needed.

As a central component, the FAIRiCUBE Lab provides users a workspace where they can install apps
like JupyterLab, manage service subscriptions, and administrate their data. The workspace provides a

runtime for user-defined workloads. The workspace connects the control plane of the EOxHub with the

worker plane.

Figure 4 shows the FAIRiCUBE Lab Architecture as Virtual Private Cloud (VPC) in a Kubernetes cluster

split into control (bottom) and worker (top) plane providing the workspaces. The tooling deployed in
the worker plane like JupyterLab, pygeoapi1, or MLflow2 is accessed by end users whereas the control

plane is accessed by API or cluster management only.

Figure 4: FAIRiCUBE Lab Architecture

3.1 Control Plane

The operator control plane provides tenant specific workspaces to individual science teams or other

users. In order to do so, some stable workloads need to be always running in the Kubernetes cluster:

• User management & access control

• Metrics & monitoring

• Workload management & invocation

• Infrastructure provisioning

1 https://pygeoapi.io

2 https://mlflow.org

https://pygeoapi.io/
https://mlflow.org/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

15 / 56

The control plane is declaratively deployed and operated through GitOps principles relying on the Flux

CD tooling (see Section Error! Reference source not found. “Error! Reference source not

found.”. Important to mention is that the cluster management is nominally performed exclusively
through GitOps, i.e., operators don’t need to run any commands like kubectl directly on the cluster and

thus don’t need any access rights granted. In case of the necessity of troubleshooting or deeper
debugging, operators are assuming roles via Identity and Access Management (IAM) but never via

accounts directly.

The control plane relies on these managed services:

• Elastic Kubernetes Service3 (EKS) to provide a kubernetes cluster

• S3 for object storage

• Cognito following the Open ID Connect4 (OIDC) standard for user management

• Elastic File System5 (EFS) for block storage

The main tools running in the control plane are

• Prometheus6 to collect exported metrics

• Grafana7 to provide metrics dashboards

• Alertmanager8 to send notifications for example to dedicate operations Slack channels

• Brigade9 for running scriptable, automated tasks

• Elastic stack of elasticsearch, fluent, and kibana10 (EFK) to collect and present logs

3.1.1 Configuration Management

The configuration management of the FAIRiCUBE Lab is organized in a private GitHub repository

(https://github.com/FAIRiCUBE/flux-config/) to manage the workspace profiles for JupyterLab sessions,

installed applications for users of the FAIRiCUBE Lab teams, as well as all other team relevant
configurations. Currently there are four teams (Use Cases) configured with different profiles, apps,

secretes, buckets, etc. as required.

The configuration management relies on GitOps principles to deploy the desired configuration via the

Flux CD operator. GitHub issues at https://github.com/FAIRiCUBE/flux-config/issues are used to track

the status of various configuration requests. The sections below provide details of how the different
aspects of the FAIRiCUBE configuration are managed in the central configuration management and

which options are available.

3.1.2 GitHub as Identity Provider

The FAIRiCUBE Lab uses GitHub as Identity Provider. The YAML code below shows the configuration to grant an
administrator and a user access to the resources of a specific FAIRiCUBE team via userName and role.

 allowedLogins:
 - approvalTimestamp: "2023-06-07T00:00:00Z"
 creationTimestamp: "2023-06-07T00:00:00Z"
 email: achtsnits@eox.at
 userName: achtsnits

3 https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-kubernetes-service.html

4 https://openid.net/connect/

5 https://aws.amazon.com/efs

6 https://prometheus.io

7 https://grafana.com/

8 https://prometheus.io/docs/alerting/latest/alertmanager/

9 https://v1.brigade.sh

10 https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html

https://github.com/FAIRiCUBE/flux-config/
https://github.com/FAIRiCUBE/flux-config/issues
https://docs.aws.amazon.com/whitepapers/latest/overview-deployment-options/amazon-elastic-kubernetes-service.html
https://openid.net/connect/
https://aws.amazon.com/efs
https://prometheus.io/
https://grafana.com/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://v1.brigade.sh/
https://www.elastic.co/guide/en/elasticsearch/reference/current/elasticsearch-intro.html

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

16 / 56

 role: admin

 allowedLogins:
 - approvalTimestamp: "2023-06-07T00:00:00Z"
 creationTimestamp: "2023-06-07T00:00:00Z"
 email: stephan@meissl.name
 userName: schpidi
 role: user

3.1.3 JupyterLab Profiles

Different JupyterLab profiles can be configured and are available for authenticated and authorized

users as shown in Figure 6.

The YAML code below shows the configuration for one JupyterLab profile of the Use Case 4 (UC4.

spec:

 k8s-namespace: fairicubeuc4
 creationTimestamp: "2023-06-07T00:00:00Z"

 inventory:
 - creationTimestamp: "2023-06-07T00:00:00Z"

 entityId: eoxhub
 entityType: infra

 expirationDate: "2024-12-31"

 productKey: EOxHub - Default
 activations:

 - activationDate: "2023-06-07"
 creationTimestamp: "22023-06-07T00:00:00Z"

 data:

 profile_fairicubeuc4: display_name=FAIRiCUBE-
UC4,node_purpose=useruc4,mem_guarantee=30064771072,cpu_guarantee=7,mem_limit=322122547

20,cpu_limit=7.5,s3_bucket_name=hub-fairicubeuc4,secret_names=hub-fairicubeuc4
 s3_bucket: "53687091200"

 storage: "53687091200"
 user: "2592000" #30d

 useruc4: "2592000" #30d

 url: https://eoxhub.fairicube.eu
 entityId: eoxhub

 entityType: infra

The main information is encoded in this line:

profile_fairicubeuc4: display_name=FAIRiCUBE-

UC4,node_purpose=useruc4,mem_guarantee=30064771072,cpu_guarantee=7,mem_limit=322122547
20,cpu_limit=7.5,s3_bucket_name=hub-fairicubeuc4,secret_names=hub-fairicubeuc4

This profile, named “FAIRiCUBE-UC4”, provides a guaranteed minimum of 30 GB RAM with a maximal

amount of 32GB of RAM, and a guaranteed minimum of 7.5 CPUs. It further injects a secret, as

described below, and mounts the Use Case specific S3 bucket named "hub-fairicubeuc4".

3.1.4 Keycloak

Keycloak is used as authorization system. Users can be granted various rights for example to get
access to the shared folder to curate the shared Jupyter notebooks or to get access to conda-store to

manage conda environments.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

17 / 56

Figure 5: Keycloak for authorization

3.1.5 Shared Jupyter Notebooks

Created Jupyter notebooks can easily be shared with other FAIRiCUBE users within the same customer

or team by making them available on a curated shared folder. Curation access to this shared folder is
granted via Keycloak as described above. From there they are automatically picked by the FAIRiCUBE

Lab and made available through the Notebook Catalog UI.

This UI is shown once a JupyterLab profile is started where the user sees the FAIRiCUBE Catalog tile

on the launcher as shown in the bottom of Figure 6. Through this UI it is possible to browse, execute,

and comment on Jupyter notebooks to steer interaction and foster collaboration. Also shown is the
mounted S3 bucket already made available for direct access to the provided datasets and the available

Machine Learning notebooks.

Figure 6: FAIRiCUBE Catalog launcher tile

At the final stage of expansion there will be various "Getting-started" and specific "Tutorial notebooks"

available for execution in the FAIRiCUBE Catalog (as shown below).

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

18 / 56

Figure 7: FAIRiCUBE Catalog Notebook Viewer

3.1.6 Shared Conda Environments

The FAIRiCUBE Lab bundles the open source conda-store tool (https://github.com/Quansight/conda-

store) to provide the familiarity and flexibility of conda environments to FAIRiCUBE users at
https://eoxhub.fairicube.eu/conda-store. The conda-store tool not only enables the usage of conda

environments but also supports through its UI the initial environment creation as well as the sharing of

created environment with other users. Figure 8 shows the conda environment management via an
environment.yml specification files. Team members can be granted the permissions to curate the

available environments for their team via Keycloak as described above.

https://github.com/Quansight/conda-store
https://github.com/Quansight/conda-store
https://deep.earthsystemdatalab.neteoxhub.fairicube.eu/conda-store
https://deep.earthsystemdatalab.neteoxhub.fairicube.eu/conda-store

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

19 / 56

Figure 8: Example of a Conda-store environment configuration (here from DeepESDL)

The kernel or conda environment to use in a specific notebook can be adjusted with a drop-down

menu in the top right corner of the notebook as shown in Figure 9.

Figure 9: Examples of Kernel selection in a Conda environment (here from DeepESDL)

3.1.7 Shared Secrets

Sometimes it is necessary to share configuration values, particularly secrets, within teams. In order not

the share them in external tools, with the danger of unintended disclosure, the FAIRiCUBE Lab
supports shared secrets configured via the central configuration management. The secrets themselves

are never stored in plaintext but only in a sealed state.

Technically, access credentials are added to JupyterLab sessions by adding them to the qhub
kubernetes secret, in the corresponding namespace, via flux. K8s secret values are just base64

encrypted strings and it is always necessary to assess if it is feasible to check them in into git (even if it
is a protected git repository) or not. For sensitive values it is recommended to check them in into git as

encrypted values and only decrypt them within the k8s cluster. This functionality is established through

the sealed-secrets tooling (https://github.com/bitnami-labs/sealed-secrets) as described in the
README of the repository at https://github.com/FAIRiCUBE/flux-config#using-access-credentials-via-

environment-variables.

The YAML code below shows an example of a k8s secret:

apiVersion: v1

data:
 test: cGFzc2Vk #your secret name and its value base64 encoded

kind: Secret
metadata:

 name: qhub

 namespace: fairicubeuc4
type: Opaque

3.1.8 Shared Object Storage

FAIRiCUBE Lab users are granted with ready-made access to object storage (S3), i.e., all necessary
access details like bucket name and credentials are available during runtime as environment variables.

https://github.com/bitnami-labs/sealed-secrets
https://github.com/FAIRiCUBE/flux-config#using-access-credentials-via-environment-variables
https://github.com/FAIRiCUBE/flux-config#using-access-credentials-via-environment-variables

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

20 / 56

This allows the users to directly leverage curated datasets made available to their team as well as to

curate datasets and other output artefacts themselves and share them within their team.

The team setup and the granted quota for storage is centrally managed in the configuration system

using a YAML code like the one below.

s3_bucket: "53687091200"

It is also possible to disseminate the team's data through other means, e.g., via public endpoints or

through Sentinel Hub.

3.1.9 Apps

Common data science and ML tooling may be pre-installed in conda environments on a per team basis

and are therefore available during runtime. In addition, it is also possible to install "always-running"

apps, to analyse ML experiment runs or share results without the need of a running a FAIRiCUBE Lab

JupyterLab session.

One example is MLflow tracking work with different ML frameworks like "scikit-learn" or "pytorch" as

shown in Figure 10.

Figure 10: Example of MLflow for experiment tracking (here from DeepESDL)

3.1.10 Complete Configuration Example

The YAML code below is a complete customer.yaml configuration for the fairicubeuc4 the examples

above.

apiVersion: hub.eox.at/v1alpha1

kind: Customer

metadata:
 name: fairicubeuc4

 namespace: core
spec:

 k8s-namespace: fairicubeuc4
 creationTimestamp: "2023-06-07T00:00:00Z"

 inventory:

 - creationTimestamp: "2023-06-07T00:00:00Z"
 entityId: eoxhub

 entityType: infra
 expirationDate: "2024-12-31"

 productKey: EOxHub - Default

 activations:
 - activationDate: "2023-06-07"

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

21 / 56

 creationTimestamp: "2023-06-07T00:00:00Z"

 data:

 profile_fairicubeuc4: "display_name=FAIRiCUBE-
UC4,node_purpose=useruc4,mem_guarantee=30064771072,cpu_guarantee=7,mem_limit=322122547

20,cpu_limit=7.5,s3_bucket_name=hub-fairicubeuc4,secret_names=hub-fairicubeuc4"
 s3_bucket: "53687091200"

 storage: "53687091200"
 user: "2592000" #30d

 useruc4: "259200" #30d

 url: https://eoxhub.fairicube.eu
 entityId: eoxhub

 entityType: infra
 properties: {}

 allowedLogins:

 - approvalTimestamp: "2023-06-07T00:00:00Z"
 creationTimestamp: "2023-06-07T00:00:00Z"

 email: achtsnits@eox.at
 userName: achtsnits

 role: admin
 - approvalTimestamp: "2023-06-07T00:00:00Z"

 creationTimestamp: "2023-06-07T00:00:00Z"

 email: stephan@meissl.name
 userName: schpidi

 role: user

3.2 Worker Plane

Via the control plane, workloads are deployed and scheduled on the worker plane

The multi-tenant worker plane is responsible for the following tasks:

• Workload orchestration and scheduling on dynamically allocated cloud resources (e.g., GPU

nodes)

• User code execution on top of custom environments based on needs of science teams for

example on custom base images

• Flexible in terms of installed tooling (i.e., dynamic deployment via API)

These are the apps or tooling which either are deployed or can readily be deployed in the worker plane

as shown in the figure above:

• JupyterLab to interactively execute Jupyter notebooks written mostly in Python

• pygeoapi to programmatically execute user workloads for example Jupyter notebooks

• DVC11 (Data Version Control) for collaborative data management like ML artefacts

• MLflow or TensorBoard12 to support Machine Learning operations (MLOps13)

• Almost any Docker image can be deployed and run in the worker plane

• fluentd14 to collect logs for debugging

11 https://dvc.org

12 https://www.tensorflow.org/tensorboard

13 https://ml-ops.org

14 https://docs.fluentd.org

https://dvc.org/
https://www.tensorflow.org/tensorboard
https://ml-ops.org/
https://docs.fluentd.org/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

22 / 56

Further apps can and will be made available in the course of the project execution, for example, to

demonstrate the results of the use cases in a FAIRiCUBE Viewer.

There are many apps and tools available to support the Machine Learning Operations (MLOps) pipeline
as shown in Figure 11. Jupyter notebooks run in JupyterLab together with jupytext, git, and DVC

support. They document the first steps from data retrieval & ingestion via data preparation to model
training with versioned source code and data management and pipeline definitions. Further tools like

MLflow, TensorBoard, pygeoapi, EOxHub itself, SQLite, S3, Grafana, and Prometheus support the

model training, model evaluation & tuning, deployment in production, and monitoring of the system.
The workspace allows for sharing ML activities for reproducibility within a team or even making them

publicly accessible.

The core app deployed in each EOxHub workspace is a managed JupyterLab, allowing the interactive

execution of Jupyter notebooks close to the data. Jupyter notebooks can be executed either

interactively, for example to develop an algorithm, or in a headless way using a REST API provided by

pygeoapi.

FAIRiCUBE Lab provides Cloud Workspaces through the workflow management runtime for docker
containers and relies on object storage to persist data as shown in the figure below. It offers science

teams, projects, communities, etc. a cloud footprint with a subscription – a so-called “Workspace as a

Service”.

Figure 11: MLOps Tooling

3.2.1 Interactive Development Environment - Jupyter Notebooks

The FAIRiCUBE Lab is centred on the usage of Jupyter Notebooks, allowing to execute them close to

the data for simple exchange and sharing of processing modules. The notebooks can either be

executed interactively using a managed JupyterLab environment, for example to develop an algorithm,

or in a headless way using a REST API, meaning without a graphical user interface.

The available data can be accessed in these Jupyter notebooks via different means depending on what
is best suited for the use case at hand and the skill level of the user. The available options span from

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

23 / 56

direct object storage access via the xcube or xarray Python libraries to the Process API of Sentinel Hub

and Open Geospatial Consortium (OGC) defined interfaces like the Web Coverage Service (WCS) and

Web Coverage Processing Service (WCPS). Jupyter notebooks can further utilize libraries like dask to

parallelize and scale processing jobs.

FAIRiCUBE Lab defines (via control plane) different computational profiles, as required by the Use
Cases, which are sets of kernel environments with specific configurations. Configurations differentiate

by variables like available GPU/CPU, memory size or storage capacity. Profiles can also be distinguished

by configuration of different Conda kernels.

The JupyterLab in FAIRiCUBE offers Conda and Conda store, a popular package manager for Python,

to create, manage and install environments with specific sets of packages and dependencies. It is

possible to manage different kernels with different settings for separated projects or profiles.

JupyterLab will be used as a development environment for machine learning models training and

deployment. In combination with MLflow setup this can serve as a complete machine learning lifecycle

development environment.

3.2.2 Data access

Data delivered via SentinelHub API can be integrated to be accessed directly within the JupyterLab
environment and used as input for model predictions or for training and development of algorithms.

Results of model inferences are storable and downloadable from within the FAIRiCUBE environment or

can be transferred elsewhere.

3.2.3 User access

The FAIRiCUBE Lab is deployed at https://eoxhub.fairicube.eu. The authentication is using GitHub as

identity provider as shown in Figure 12.

Figure 12: FAIRiCUBE HUB Login

After a successful login the main tool provided by the FAIRiCUBE HUB Lab is JupyterHub allowing to

start configured JupyterLab profiles as shown in Figure 6. Configuration details are provided below.

https://eoxhub.fairicube.eu/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

24 / 56

Figure 13: JupyterLab profile selection - Use Case specific workspace profiles

Once the desired Use Case specific workspace profile is selected and the "Start Button" has been

pressed, a user specific server will be started, as shown in Figure 14. The start-up procedure might

require some minutes since the whole workspace has to be prepared and provisioned.

Figure 14: JupyterLab workspace launcher

Beside the User's JupyterLab workspace JupyterHub further provides the JupyterHub Control panel,

which can be reached via the Main Menu entries: File → Hub Control Panel.

This Control panel can be used to Stop the User's server at the end of a working Session (Figure 15).

However, every inactive User session will be terminated by the system after a pre-defined time interval
of inactivity (culling). This feature is implemented to avoid unnecessary costs due to forgotten

sessions.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

25 / 56

Figure 15: JupyterHub Control panel

In rare cases, e.g., when a user session hangs, it can be necessary to Stop a server manually (Figure 15). Thereafter the
server can also be started again manually (Figure 16).

Figure 16: Greeting page after successful Login

If a user logs in and currently has no access rights to any of the Use Case workspaces, the User will be confronted with
the following screen (Figure 17).

Figure 17: Screen presented to Users not configured to a Use Case

It has to be noted here that the access to every FAIRiCUBE Use Case has to be configured manually by

the operators for each Use case via https://github.com/FAIRiCUBE/flux-config/ e.g., for UC4 this can

be done at: https://github.com/FAIRiCUBE/flux-config/blob/master/fairicubeuc4/customer.yaml before

access is possible for the specific user.

3.3 Machine Learning Platform - MLflow

Each Use Case team decides which apps shall be made available. One of these apps is MLflow.

MLflow is an open-source platform for managing the end-to-end machine learning lifecycle. It allows

the user to track experiments, package code into reproducible runs, and share and deploy models.

MLflow can be incorporated into Jupyter notebooks or other code and supports multiple programming
languages. MLflow provides a comprehensive solution for managing the machine learning lifecycle,

from tracking experiments to deploying models. It is widely used in industry and academia and is
constantly evolving to support the latest trends and technologies in the field of machine learning. At a

high level, MLflow consists of four main components: tracking, projects, models, and registry.

All components can be accessed via Python code in the FAIRiCUBE Lab.

3.3.1 MLflow Tracking

The MLflow tracking component (Figure 10) allows users to log and track training parameters, code,

and output metrics from their machine learning experiments. The tracking component provides an API

https://github.com/FAIRiCUBE/flux-config/
https://github.com/FAIRiCUBE/flux-config/blob/master/fairicubeuc4/customer.yaml

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

26 / 56

for Python, R, and other languages, as well as an UI for visualising experiments and comparing

different runs. The tracking server can store data in various backends, including a local file system, an

Amazon S3 bucket, or a PostgreSQL database.

MLflow Tracking uses the concept of runs, which are executions of some piece of data science code,

e.g., training of models. MLflow Tracking supports auto-logging for many classic libraries such as
TensorFlow, Scikit-Learn, Spark, or Pytorch, but manual logging is available in other cases. Runs can

be stored as local files, on a remote server, or into an SQLAlchemy compatible database. The tracking

UI allows to directly visualise tracked metrics and search for the best components.

3.3.2 MLflow Projects

The MLflow projects component provides a standard format for packaging and distributing machine
learning code, including dependencies, in a reproducible way. Projects can be run locally or on a

cluster, and MLflow can manage the environment and dependencies for each run. In addition, the

Projects component includes an API and command-line tools for running projects, making it possible to
chain together projects into workflows. In the ML project file, it is possible to define the software

environment and entry points with parameters to define workflow.

3.3.3 MLflow Models

The models component allows users to easily package models in a standard format for deployment.

Models can be exported in multiple formats, including TensorFlow, PyTorch, and ONNX, and can be
deployed using a variety of tools, including Docker, Kubernetes, and Amazon SageMaker. It is also

possible to access models with standard ways as REST API or batch inference on Apache Spark

Native flavours allow MLflow models to be treated with corresponding functions without the need to
integrate tools with each library. Flavours can be defined in the MLmodel file. Model signatures are

defining outputs and inputs needed for deploying models as a REST API. The Model API allows saving,
loading, and logging of the model also as adding different flavours. MLflow also provides an evaluate

API to evaluate previously built models on one or more datasets.

3.3.4 MLflow Model Registry

Finally, the MLflow Model Registry component allows users to store, manage, and deploy models in a

central repository. Models can be versioned, and access can be controlled using role-based access
control. The Model Registry works both in UI and API versions. It provides model lineage (which

MLflow experiment and run produced the model), model versioning, stage transitions (for example

from staging to production), and annotations. Model versioning allows models to be archived and

redeployed in the future.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

27 / 56

4 Datasets & Models

The FAIRiCUBE Hub provides access to a wider variety of datasets, processes, and models. These can

either be available local or external (federated) to FAIRiCUBE. Figure 18 shows the FAIRiCUBE Hub

architecture with a focus on datasets, processes, and models.

The FAIRiCUBE Catalog holds metadata for datasets as well as processes. Datasets are either local or

external ones. Processes are either algorithms provided mainly as Jupyter notebooks, invokable

models, or specific deployed services or apps.

External datasets are federated from the Euro Data Cube (EDC) or from the EarthServer Federation.

Figure 18: FAIRiCUBE Hub Architecture – Datasets, Processes, & Models

If a dataset or a process/analysis resource is not already available in FAIRiCUBE via one of the
provided Datastores (e.g., AWS, DIASes, Euro Data Cube, EarthServer Fed., etc.) then a User can issue

a Data Request to get the data ingested into FAIRiCUBE.

Two type of request are provided by FAIRiCUBE:

• https://github.com/FAIRiCUBE/data-requestshttps://github.com/FAIRiCUBE/data-
requests/issues/new?assignees=Mohinem%2CSchpidi&labels=data-request&projects=&template=data-

request.ymlresource-metadata: Collect information for processing/analysis resources as well

as propose a change to a codelist. (https://github.com/FAIRiCUBE/resource-metadata)

◦ Issue resource-metadata: https://github.com/FAIRiCUBE/resource-

metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml

◦ Issue codelist change: https://github.com/FAIRiCUBE/resource-
metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal

.yml

• data-requests: Request for data to be made available within FAIRiCUBE Lab.

◦ Such a data request can be initiated via a provided WebGUI available at

https://fairicube.eu/datarequest.html

In general, before submitting a request, a user wishing to use a specific dataset or resource on the

FAIRiCUBE Hub should first take a look at the FAIRiCUBE Catalog (https://catalog.fairicube.eu, Figure
25-29) to see if the dataset or resource is already available and ready to be used. The contents of this

https://github.com/FAIRiCUBE/data-requests
https://github.com/FAIRiCUBE/data-requests/issues/new?assignees=Mohinem%2CSchpidi&labels=data-request&projects=&template=data-request.yml
https://github.com/FAIRiCUBE/data-requests/issues/new?assignees=Mohinem%2CSchpidi&labels=data-request&projects=&template=data-request.yml
https://github.com/FAIRiCUBE/data-requests/issues/new?assignees=Mohinem%2CSchpidi&labels=data-request&projects=&template=data-request.yml
https://github.com/FAIRiCUBE/resource-metadata
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://fairicube.eu/datarequest.html

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

28 / 56

FAIRiCUBE Catalog are maintained in a GitHub repository15 as static json files which are exposed via

GitHub pages together with this dynamic web interface, i.e. the STAC-fastapi Browser (Figure 25) .

In case it is not yet listed in the catalog, the user should further consult the resource-metadata GitHub
issues (https://github.com/FAIRiCUBE/resource-metadata/issues , Figure 19), to check if the dataset is

already in a draft request state. In case the dataresource is already listed, the user can directly convert

the draft into an issue in the GitHub repository where progress is further tracked.

When the dataset is neither already present in the FAIRiCUBE Catalog nor in the resource-metadata

GitHub project, the user should issue a new request utilizing the respective links and the issue

template as shown in Figure 20:

• Issue resource-metadata: https://github.com/FAIRiCUBE/resource-

metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml

• Issue codelist change: https://github.com/FAIRiCUBE/resource-

metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.ym

l

To add new resource-metadata to the FAIRiCUBE Catalog or request a codelist change the

following request procedure has been defined (links provided above):

• The resource-metadata request procedure relies on GitHub, where each request is handled as

an issue created by the resource requester, and then addressed together with one of the

ingestion handling partners.

• A resource-metadata request issue template has been created to assure that the data

requester provides all required information.

• The GitHub issue management is used for problems raised, addressed, and solved pertaining

to a specific data request, providing full traceability.

• Once all uncertainties are resolved the GitHub issue is labelled approved, which will trigger the

ingestion process.

15 https://github.com/FAIRiCUBE/catalog

https://github.com/FAIRiCUBE/resource-metadata/issues
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/catalog

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

29 / 56

https://catalog.fairicube.eu/

Figure 19: Resource-metadta GitHub Issues

The Resource Metadata Request can be reached at: https://github.com/FAIRiCUBE/resource-

metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml

https://github.com/orgs/FAIRiCUBE/projects/1https://github.com/FAIRiCUBE/data-requests

Figure 20: Resource Metadata Request

https://catalog.fairicube.eu/
https://catalog.fairicube.eu/
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=metadata-request.yml
https://github.com/orgs/FAIRiCUBE/projects/1
https://github.com/FAIRiCUBE/data-requests
https://github.com/FAIRiCUBE/data-requests

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

30 / 56

The Codelist change proposal can be reached at: https://github.com/FAIRiCUBE/resource-

metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml.

Figure 21: Codelist change proposal

In the case a user wants to have a additional dataset added, the user needs to create a data

request using the data request WebGUI (https://fairicube.eu/datarequest.html), which ensures that all
required metadata is provided, proper tags are added, and all relevant people are notified. With the

submission of the WebGUI form a GitHub Pull Request is issued as a new branch which the user is

automatically watching and thus receiving notifications of updates depending on their GitHub

notifications configuration.

Any new data request is addressed by the requester together with one of the ingestion handling
partners. Any progress, problems, discussions, etc. shall be documented in an GitHub issue associated

to the respective Pull Request, so that everybody interested can follow the progress and provide

additional feedback or information as necessary.

The following procedure for a data request has been set up and is shown in Figure 24.

https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://github.com/FAIRiCUBE/resource-metadata/issues/new?assignees=&labels=&projects=&template=codelist_change_proposal.yml
https://fairicube.eu/datarequest.html

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

31 / 56

Figure 22: Data Ingestion Request Procedure

Once all metadata and data requirements are fulfilled and confirmed by the data requester, the
ingestion handling partners will perform the merge and the Pull request will be closed. The respective

branch in GitHub will also be closed and deleted. Any issues and discussions associated with the Pull

Request are still available after the branch has been merged and deleted.

Figure 38 shows the Landing page of the Data Ingestion Request, providing also a listing of available

datasets, and allowing for editing of already provided metadata.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

32 / 56

Figure 23: Data request WebGUI - Landing page

Figure 24 shows the Entry Form of the Data request WebGUI. Here the necessary metadata has to be

provided in order to enable the data ingestion process.

In the editing mode, already provided metadata will be filled into the respective fields of the Entry

Form (Figure 24).

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

33 / 56

Figure 24: Data request WebGUI - Entry Form (2 sections are shown)

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

34 / 56

When the merge is done the newly submitted data is available as a STAC item to the STAC Browser.

The dynamic catalog using the STAC Browser is currently deployed at https://catalog.fairicube.eu. The

STAC Browser provides additional features like searching, which are not available in the static STAC
catalog. The next screenshots provide various views on the STAC Browser pages showing available

catalogs and the search interface.

Figure 25: FAIRiCUBE STAC Browser Interface

Figure 26: Data Access Catalog

https://catalog.fairicube.eu/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

35 / 56

Figure 27: Details of a Dataset (Sentinel-2 L2A 120m Mosaic)

Figure 28 Interface for a Dataset (Sentinel-2 L2A 120m Mosaic)

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

36 / 56

Figure 29: Browse Interface Feature of the STAC Browser

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

37 / 56

5 Services & Storage

The FAIRiCUBE Hub architecture focusing on services and storage is detailed in Figure 8.

Local datasets and models are either stored in cloud Object Storage in provided buckets or in the
provided rasdaman storage. Notebooks are mostly stored on the provided workspaces but can also be

shared for example via Object Storage. External datasets are federated from the Euro Data Cube or the

EarthServer Federation. Euro Data Cube relies on cloud resources from Amazon Web Services (AWS),
the Open Telekom Cloud (OTC) as used in the forthcoming Copernicus Data Space Ecosystem (CDSE),

or the DIASes, whereas the EarthServer Federation uses INSPIRE or the DIASes.

The local datasets are available within the FAIRiCUBE Hub via the FAIRiCUBE Services/Apps providing

several access mechanisms based on where they are registered or ingested. In summary the data

residing in rasdaman storage is accessible via WMS/WMTS, WCS, WCPS, openOE, or 3rd party code
provided by rasdaman whereas the data in Object Storage can be accessed via the Process API, Batch

API, Statistics API, openEO, WMS provided by Sentinel Hub or directly in xarray, s3, etc. Additionally,

vector data can be made available via GeoDB providing a PostgREST API or openEO.

These services are exploited by processes written as Jupyter notebooks or via tools like MLflow, DVC,

TensorBoard, etc. running in provided workspaces in the FAIRiCUBE Lab.

Figure 30: FAIRiCUBE Hub Architecture - Services & Storage

5.1 Euro Data Cube, Sentinel Hub, GeoDB, etc.

The core app deployed in each FAIRiCUBE Lab workspace is a managed JupyterLab. This allows to

interactively execute Jupyter notebooks close to the data. Jupyter notebooks can not only be executed

interactively in the browser, for example to develop an algorithm, but also in a headless way, i.e.,
without a graphical user interface, using a REST API provided by pygeoapi (for now please see

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

38 / 56

https://eurodatacube.com/documentation/headless-notebook-execution for details, note that this

documentation will be made available specifically for FAIRiCUBE at the FAIRiCUBE Lab URL).

The concept behind these JupyterLab-based open-source workspaces for earth & data science,
powered by EOxHub, has evolved during the Euro Data Cube project. It is now generalised and

deployed for the FAIRiCUBE project. Figure 15 shows the deployment of EOxHub in the frame of the

Euro Data Cube.

Figure 31: EOxHub as deployed for Euro Data Cube

Figure 10 shows different data workflows that can be realized in the provided workspaces relying on

the integrated services. The top flow shows EO data exploitation in a client data processing engine.
The user’s web browser relying on JavaScript (JS) connects directly to Cloud Optimized GeoTIFFs

(COGs) provided via object storage.

The next flow, in the figure, shows on-the-fly data cube access via Sentinel Hub followed by the mass-

processing service Sentinel Hub Batch, and lastly pre-generated data cubes with xcube (please see

https://eurodatacube.com/documentation/choose-your-workflow for more details about these services,
note that this documentation will be made available specifically for FAIRiCUBE at the FAIRiCUBE Lab

URL). These APIs can either be consumed directly by external clients, via the EOxHub Workspace, or
via an App, for example, one providing a specific OGC API (WCS, DAPA, etc.) on top of the available

services.

The FAIRiCUBE project will integrate further services as required. Section Error! Reference source

not found. provides more details on this service integration.

https://eurodatacube.com/documentation/headless-notebook-execution
https://eurodatacube.com/documentation/choose-your-workflow

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

39 / 56

Figure 32: Data Workflows

5.2 EarthServer Federation and rasdaman

Actionable datacubes™ have been pioneered by rasdaman (“raster data manager”) early on16 and
which at the same time has coined the domain of Array Databases aiming at high-quality management

and analytics on massive multi-dimensional datacubes. In recent years, various alternatives have been
developed, usually extending the xarray python library into some service17. This is in contrast to

rasdaman, where the complete database system has been implemented, with every component hand-

optimized for performance and scalability. A deep comparison of 19 datacube engines18 has been

published by Research Data Alliance.

Distinguished service capabilities include zero-coding datacube queries, transaction support, automatic
data management, server-side query optimization (including parallelization and federation), versatile

access control, and several more relevant features.

5.2.1 rasdaman Architecture

The rasdaman architecture resembles a standard DBMS architecture implemented in C++, with every

component specifically implemented and hand-optimized for tiled arrays (Figure 3). These components
include client APIs (such as C++), query parsing, optimizing, and execution, storage and index

management, and several more. Queries are translated into logical trees, then to physical trees, and

finally to executable code.

The rasdaman Array DBMS is domain agnostic and also has been used, e.g., in human brain imaging

and cosmology. Geo semantics is added through a layer which understands space and time and,
hence, also regular and irregular space-time grids. Access to this geo semantics layer is through OGC

WMS, WMTS, WCS, and WCPS. Further, data can be offered compliant with INSPIRE requirements19.

16 P. Baumann: Language Support for Raster Image Manipulation in Databases. Proc. Int. Workshop on Graphics Modeling, Visualization in Science

& Technology, Darmstadt/Germany, April 13 - 14, 1992, Springer 1993, pp. 236 - 245
17 In fact, xarray and xcube and further python libraries can well act as clients to rasdaman using it as the Big Data backend.
18 https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00399-2

19 http://inspire-wcs.eu, the official INSPIRE-WCS Good Practice and only full implementation of INSPIRE-WCS.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

40 / 56

Figure 33: rasdaman high-level architecture

The declarative array query language rasql, which in the meantime has been adopted into ISO SQL20,

offers a rich spectrum of declarative operators streamlined for array access, extraction, aggregation,

analytics, and fusion.

Storage of arrays relies on partitioning into sub-arrays called tiles. Tiles, which form the unit of storage
access, can be stored in rasdaman’s own storage manager or in a pre-existing archive; in the latter

case, data do not get copied, but registered and evaluated in-situ. This was in fact a sine-qua-non for

unleashing Peta-scale archives. Based on a rigorous analysis of possible tiling patterns21, several
strategies have been devised which are available to the administrator as a tuning parameter22 in

addition to storage location, compression, etc.

All this remains completely transparent to the user, as queries describe the result, not the algorithm.

Each incoming query gets optimized individually through a series of highly effective techniques,

including over 150 tensor algebra rules, cost-based optimization, just-in-time compilation into machine
code, parallelization, and distributed processing with peer-to-peer federation. Publicly available

benchmarks underline that this full-stack approach has remarkable performance advantages23; for
example, the query splitting mechanism, evaluated by distributing single queries over more than 1,000

Amazon nodes24, allows a substantially more effective parallel processing than, say, MapReduce type

parallelization where all processors execute the same code.

5.2.2 Datacube Access

Thanks to the support for open standards, a wide spectrum of 3rd-party clients can tap into rasdaman
datacubes, ranging from simple map visualization (ex. Leaflet, OpenLayers) over Virtual Globes (ex:

NASA WorldWind, Microsoft Cesium) and Web GIS (ex: QGIS, ArcGIS) to high-end analytics (ex: R,

python). We detail some basic ways to access datacubes.

20 ISO: 9075-15:2019 SQL/MDA (Multi-Dimensional Arrays). iso.org/standard/67382.html

21 P. Furtado, P. Baumann: Storage of Multidimensional Arrays based on Arbitrary Tiling. Proc. Intl. Conf. on Data Engineering (ICDE), March 23-
26, 1999, Sydney, Australia

22 P. Baumann, S. Feyzabadi, C. Jucovschi: Putting Pixels in Place: A Storage Layout Language for Sci-entific Data. Proc. IEEE ICDM Workshop on
Spatial and Spatiotemporal Data Mining (SSTDM), 2010, Sydney, Australia, pp. 194 – 201

23 H. Kristen: Comparison of Rasdaman CE & AGDCv2. gitlab.inf.unibz.it/SInCohMap/datacubes/-
/blob/master/datacube_comparison/datacube_comparison.md

24 A. Dumitru, V. Merticariu, P. Baumann: Exploring Cloud Opportunities from an Array Database Per-spect¬ive. Proc ACM SIGMOD Workshop on

Data Ana-lytics in the Cloud (DanaC), 2014, Snowbird, USA

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

41 / 56

Visualization. The OGC Web Map Service (WMS) allows the visualization of stacks of 2D map layers.

Datacubes containing more dimensions than just x/y can be mapped to 2D through temporal selection

using the TIME parameter and vertical selection with the HEIGHT parameter. In summary, layers can

be retrieved from stored data or derived dynamically (“virtual layers”).

OGC Web Map Tile Service (WMTS) is a related service with reduced functionality, access to predefined

tiles via some given identifier. WMTS is supported by rasdaman as well.

Extraction. OGC Web Coverage Service (WCS) is a modular suite for coverage handling. WCS-Core

supports subseting and output format choice, where extensions add bespoke functionality. One of
these extensions is the datacube language WCPS (see details below), which incorporates all capabilities

of the WCS Core and its extensions, but further allows building expressions of arbitrary complexity.

Therefore, WCPS generally is recommended over WCS.

Analysis. The OGC Web Coverage Processing Service (WCPS) defines a datacube analytics language

that is aware of space and time (and hence, regular and irregular grids). Queries of arbitrary
complexity can be expressed and evaluated server-side; in the case of rasdaman, queries undergo

highly effective optimization prior to execution. Expressive power includes all Tomlin function
categories (local, focal, zonal, global) and reaches up to, for example, the Discrete Fourier Transform.

Rasdaman also supports the option of integrating custom code; code can be developed, integrating

specialized libraries as required, and be linked dynamically into the server and invoked via the query
language as so-called User-Defined Functions (UDFs). The rasdaman engine automatically orchestrates

built-in and UDFs during query optimization and evaluation. Additionally, native Machine Learning

support is going to be provided in FAIRiCUBE.

5.2.3 Datacube Import and Maintenance

An intelligent ETL (Extract, Transform, Load) suite allows simple setup of automatic import pipelines,
building on and enhancing the OGC WCS-T standard. For every datacube, a small configuration file

governs import and piecewise growth of its datacube; most parameters are recognized automatically,
and all common formats are supported – only missing information must be provided, resulting in a

dozen of lines of configuration. Import can be configured to mean copying into the database (“ingest”)

or just registering the input files for further query processing directly on these files (“in situ”). Any kind
of pre-processing can be built into such import pipelines. Also, “virtual datacubes” can be built from

existing, even heterogeneous datacubes, such as the integration of Sentinel-2 data in different UTM
zone grid tiles into a single Sentinel-2 datacube. Pre-confectioned datacube configuration files for a

wide range of common situations are available off-the-shelf.

5.2.4 EarthServer Federation

EarthServer is the currently only location-transparent federation offering large-scale spatio-temporal

datacubes. Large-scale data centres such as several DIASs, Julich Research Center, Universita di
Napoli, Alfred-Wegener-Institute, and the National Supercomputing Center Taiwan (to name but a few)

contribute datacubes of Copernicus data (all Sentinel data, CLMS, etc.), climate/weather datacubes,

thematic data on land governance, maritime topics, and more.

Participation of data providers in EarthServer is free and open, based on a transparent and democratic

governance.

In FAIRiCUBE, EarthServer data are made available to the user partners. In the future, the FAIRiCUBE
specific assets can get integrated into the federation, thereby enhancing the overall critical mass of

diverse data offered.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

42 / 56

6 Hub & URLs

Figure 10 provides a view on the FAIRiCUBE Hub architecture focusing on the FAIRiCUBE Lab and URLs
where the various FAIRiCUBE components are or will be available. The main landing page of

FAIRiCUBE is https://fairicube.eu providing general project information and links to further

components.

The subdomain https://hub.fairicube.eu will provide the main landing page for the FAIRiCUBE Hub,

whereas https://eoxhub.fairicube.eu already provides the entry page to the EOxHub deployed at
FAIRiCUBE Lab. Apps deployed in user workspaces will be made available under URLs following the

pattern https://<app>.<uuid>.eoxhub.fairicube.eu.

An initial version of the static FAIRiCUBE catalog is available at https://catalog.fairicube.eu. A dynamic

version of the FAIRiCUBE catalog (https://catalog.eoxhub.fairicube.eu/) is currently under development

and will replace the static one. It is based on the STAC-API which provides additional features such as
an extended search functionality. Though the STAC-API itself is still under development, it already

provides a good basis and can be extended based on the FAIRiCUBE needs.

The datacube part by rasdaman has been set up under the URL https://fairicube.rasdaman.com (in

future: https://rasdaman.fairicube.eu) and provides a landing page and an API endpoint.

Figure 10 also shows the FAIRiCUBE Lab managed JupyterLab and its integration with surrounding
services currently available like rasdaman, Sentinel Hub, xcube, or GeoDB. Further services can be

integrated in the course of the project execution as requested by Use Cases, for example to connect to

the rasdaman deployment for FAIRiCUBE.

Figure 34: FAIRiCUBE Hub Architecture - Hub & URLs

Once all required data has been put in place, analysis and machine learning can commence. In order

to enable easy access to existing processing modules together with available data, we utilize EOxHub

(https://hub.eox.at/), a platform and workflow management runtime for Earth Observation services
and apps developed and maintained by the project partner EOX. EOxHub is branded to provide the

https://fairicube.eu/
https://hub.fairicube.eu/
https://eoxhub.fairicube.eu/
https://catalog.fairicube.eu/
https://catalog.eoxhub.fairicube.eu/
https://fairicube.rasdaman.com/
https://rasdaman.fairicube.eu/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

43 / 56

FAIRiCUBE Lab and deployed on a kubernetes25 cluster. Kubernetes is an open-source container

orchestration system for automating software deployment, scaling, and management.

The FAIRiCUBE Lab is centred on the usage of Jupyter Notebooks, allowing to execute them close to
the data for simple exchange and sharing of processing modules. The notebooks can either be

executed interactively using a managed JupyterLab environment, for example to develop an algorithm,
or in a headless way using a REST API meaning without a graphical user interface. The available data

can be accessed in these Jupyter notebooks via different means depending on what is best suited for

the use case at hand and the skill level of the user. The available options span from direct object
storage access via the xcube26 or xarray27 Python libraries to the Process API of Sentinel Hub and Open

Geospatial Consortium (OGC) defined interfaces like the Web Coverage Service (WCS) and Web
Coverage Processing Service (WCPS). Jupyter notebooks can further utilize libraries like dask28 to

parallelize and scale processing jobs.

The FAIRiCUBE Lab provides Cloud Workspaces through the workflow management runtime for docker
containers and relying on object storage to persist data based on EOxHub as shown in Figure 12. It

offers science teams, projects, communities, and other diverse stakeholders a cloud footprint, i.e.,

usage of resources of IT cloud providers, with a subscription – a so-called “Workspace as a Service”.

Figure 35: Cloud Workspaces

Figure 17 shows the schematic FAIRiCUBE Lab Architecture based on EOxHub and Apps and Services

made available within.

The available Apps reach from the central JupyterLab via ones providing specific OGC APIs to very
specialized ones serving individual use cases. Access can either be granted only to the user themself,

to a group of users, or access is made open to anybody.

Services on the other hand are the integration of external operationally available services needing a
subscription by the user and are ready to be used. Examples of such services are Sentinel Hub29

operated by Sinergise or geoDB30 operated by Brockmann Consult.

The App/Service Developer pushes the App/Service software to the code management repository
where an automatic CI/CD (Continuous Integration/Continuous Deployment) pipeline tests, builds,

packages, and publishes the App/Service as Docker image after which it is registered at the
Marketplace. The App/Service Consumer discovers the App/Service and requests or triggers the

deployment of the App/Service to their workspace to be run on the Cloud Infrastructure. The
App/Service is now available to be used by the Consumer within the resources provided in their

workspace subscription.

25 https://kubernetes.io

26 https://xcube.readthedocs.io

27https://xarray.dev

28https://www.dask.org

29 https://www.eurodatacube.com/marketplace/services/edc_sentinel_hub

30 https://www.eurodatacube.com/marketplace/services/edc_geodb

https://kubernetes.io/
https://xcube.readthedocs.io/
https://xarray.dev/
https://www.dask.org/
https://www.eurodatacube.com/marketplace/services/edc_sentinel_hub
https://www.eurodatacube.com/marketplace/services/edc_geodb

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

44 / 56

Figure 36: Schematic FAIRiCUBE Lab Architecture

7 Sharing of Notebooks, Algorithms, Services, and Apps

This section provides an overview on how to share notebooks and algorithms within the FAIRiCUBE

Hub as well as how to onboard services and apps in the FAIRiCUBE Lab.

Until the upcoming deployment of the FAIRiCUBE components, the available functionality is described
in this document using links to the Euro Data Cube documentation. Note that this documentation will

be made available specifically for FAIRiCUBE at the FAIRiCUBE URL.

7.1 Notebook and Algorithm Sharing

Jupyter notebooks to be executed in the FAIRiCUBE Lab are the main mechanism to package processes
and algorithms devel of Notebooks, Algorithms, Services, and Appsoped by the various teams and use

cases as shown for example in Figures 30 and 34.

The metadata requirements for processes and algorithms are described in the deliverable D4.3 “Public

Listing (Catalog) of FAIRiCUBE processing/analysis resources”.

7.1.1 FAIRiCUBE Lab - EOxHub

There are multiple ways to share notebooks and algorithms in EOxHub. This depends on the audience

they shall be shared with.

The most straightforward way to share is to simply store a notebook in the shared storage space. A
more advanced mechanism would be to use a common Git repository or any other means the team

agrees to.

On the FAIRiCUBE Lab, there is a dedicated wizard available for sharing a notebook publicly under the

“My contributions” section (for details see https://eurodatacube.com/documentation/notebook-

contributions). Notebooks shared this way will be made available on the marketplace offered by

EOxHub (see the Euro Data Cube marketplace at https://eurodatacube.com/notebooks for reference).

There is another option to make an algorithm directly available to users via the Insights On Demand
functionality (https://eurodatacube.com/documentation/checking_out_data_on_demand). This way,

users can run an algorithm for their specific parameters directly on the platform without any need to

deploy it in their workspace.

From the algorithm provider side this is called the “Bring Your Own Algorithm” functionality

(https://eurodatacube.com/documentation/offer_algorithms_for_on_demand_data_generation).

https://eurodatacube.com/documentation/notebook-contributions
https://eurodatacube.com/documentation/notebook-contributions
https://eurodatacube.com/notebooks
https://eurodatacube.com/documentation/checking_out_data_on_demand
https://eurodatacube.com/documentation/offer_algorithms_for_on_demand_data_generation

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

45 / 56

Figure 9 shows the steps involved in the “Bring Your Own Algorithm” function. The algorithm consumer
can, after obtaining credits, directly order Insights On Demand. The algorithm provider develops and

offers an algorithm on the platform including signing a provider agreement with the platform operator
and sending invoices to the platform operator as agreed. The platform operator is responsible to

operate the platform, manage credits and orders, and to send usage reports to operators.

Figure 37: Bring Your Own Algorithm

7.1.2 FAIRiCUBE Services/Apps - rasdaman

Datacube wrangling is likewise possible in rasdaman, both client and server side. Notebooks can easily

access, extract and process datacubes with only three lines of code for opening a connection, defining

the query, and the sending/receiving request. Manifold examples and tutorials exist. Additionally, UDFs
allow integration of any external code into the server, thereby allowing to share such code with other

users.

7.2 Service and App Onboarding

The EOxHub powered FAIRiCUBE Lab allows to easily share EO specific workloads with other users via

the marketplace. In order to do so, the source code of an app must be available in a GitHub repository

which contains a Dockerfile. EOxHub will automatically build a docker image and publish it. There are a

number of sample apps available that can serve as a template for further apps.

The application can then be deployed by other users, where it will be available under a respective
custom URL to receive network traffic. For more details, please refer to

https://eurodatacube.com/documentation/app-contributions with the usual disclaimer that this

documentation will be made available specifically for FAIRiCUBE at the FAIRiCUBE Lab URL.

The final selling option offered on the FAIRiCUBE Lab is to sell a subscription to an API service. An

external, operationally available service can be added to the marketplace for users to subscribe to.

EOxHub will take care of:

• user access and subscription management,

• automated service brokering and user credentials within our kubernetes cluster,

• seamless integration and credential injection in a user’s Jupyter notebooks and Apps,

• automated user billing and invoicing, and

• revenue sharing.

For more details, please refer to https://eurodatacube.com/documentation/sell-service-subscription for

now.

New services will be integrated in the course of the project execution as requested by Use Cases for

example to connect to the rasdaman deployment for FAIRiCUBE.

https://eurodatacube.com/documentation/app-contributions
https://eurodatacube.com/documentation/sell-service-subscription

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

46 / 56

In the course of the project, the rasdaman capabilities will be embedded seamlessly in the FAIRiCUBE

Lab so that users have a wide range of options available.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

47 / 56

8 Interfaces and User interactions

This chapter describes the Interfaces between the different components of the FAIRiCUBE Hub from a

User's viewpoint. When applicable the respective protocols used are also provided. For existing,

especially external systems which may be accessed by the FAIRiCUBE Hub, links to the respective

description (e.g., APIs) are, if possible, provided.

8.1 User – Catalog

FAIRiCUBE operates 2 Catalogs, each hosted in a separate GitHub Repository which are accessible at
https://github.com/FAIRiCUBE/data-requests, allowing for new data to be made available within

FAIRiCUBE, and https://github.com/FAIRiCUBE/resource-metadata, which manages information for

processing/analysis resources.

Note: Currently the dynamic catalog is reachable at, https://catalog.eoxhub.fairicube.eu but this will be
moved to https://catalog.fairicube.eu once stable enough to replace the current static catalog.

These GitHub Repositories are exposed via a STAC-API and can be accessed via the single endpoint at

https://stacapi.eoxhub.fairicube.eu/. As a frontend to the exposed STAC-API implemented using the

software STAC-FastAPI an instance of the software STAC Browser acts as Web-GUI at
https://catalog.eoxhub.fairicube.eu allowing detailed interactive searches in the offered FAIRiCUBE

Catalog.

The following abbreviation is used: IF = Interface

• IF to STAC Browser:

◦ Web GUI based on http/s protocol

• IF from STAC Browser to Catalog

◦ STAC-API (standard) based on REST http/s protocol

• IF to GitHub Issue:

◦ based on http/s REST protocol

• IF to GitHub Project (https://github.com/orgs/FAIRiCUBE/projects/)

◦ based on http/s REST protocol

8.2 Data Metadata & Process Metadata interactions

3 scenarios: data exists in Catalog / data not available / data requested but not yet published

• User checks catalog – data is found in Catalog

• User checks catalog – data is not found in Catalog - additional check of Data Access GitHub

project, data is not found - Request for new Data via Data Request Issue template – Operator

checks – GitHub Issue – static json file are exposed via GitHub pages

• User checks catalog – data is not found in Catalog - additional check of Data Access GitHub

project, data is found in project – user can convert project draft into GitHub Issue – static json

file are exposed via GitHub pages

See also the procedure provided in Figure 22.

8.3 User – Notebooks

• User access Jupyter Notebooks via Web-GUI. Notebooks provide preconfigured tools which

allow easy access and usage of the resources provided by FAIRiCUBE Hub.

https://github.com/FAIRiCUBE/data-requests
https://github.com/FAIRiCUBE/resource-metadata
https://catalog.eoxhub.fairicube.eu/
https://catalog.fairicube.eu/
https://catalog.eoxhub.fairicube.eu/
https://catalog.eoxhub.fairicube.eu/
https://github.com/orgs/FAIRiCUBE/projects/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

48 / 56

◦ IF via Browser

• based on http/s

◦ Headless execution of Notebooks: for long running processing jobs and possibility for

headless execution i.e., running a job non-interactively (asynchronous). The status of

these jobs can be queried.

• IF via HTTP-API request

◦ based on http/s e.g., using cURL

8.4 User Notebook – Catalog

• IF to STAC Catalog

◦ STAC-API (standard) based on REST http/s protocol

8.5 User Notebook – Data Access interactions

• IF to local data

◦ Filesystem (mounted)

• IF to Object Storage

◦ S3 or SWIFT

• IF to rasdaman

◦ REST, WCPS

• IF to EDC SentinelHub APIs

◦ HTTP-APIs: Process, WMS

• IF to GeoDB (EuroDatcube)

◦ postSQL, postGIS, postgREST

• IF to other services (e.g., EarthServer, DIASes, AWS, etc.)

◦ HTTP-API REST

8.6 User Notebook – Data Processing interactions

• IF to rasdaman

◦ WCPS, REST

• IF to EDC SentinelHub APIs

◦ HTTP-APIs, Process, Statistics, Batch processing

• IF to OpenEO

◦ HTTP/S

• IF to other services (e.g., Euro Data Cube, EarthServer, DIASes, AWS, etc.)

◦ OGC Application Packages (e.g., CWL, WPS, etc)

8.7 User Notebook – Sharing

• IF sharing a Notebook within a WP/within FAIRiCUBE

◦ pull/push to GitHub via https, ssh

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

49 / 56

8.8 Download Notebooks

• Download interface for shared processing routines; download and then run on local laptop –

e.g., for preprocessing steps, later upload to the FAIRiCUBE Hub/Cube

• IF to download Notebooks

◦ based on http/s, REST

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

50 / 56

9 Community Collaboration Platform

The aim of this task is to develop an information exchange community collaboration platform, which

will serve as contact points for experts and scientists using datacubes for environmental studies.

All partners, particularly those contributing a use case, provide requirements for the Community
collaboration platform, to best support their ML workflows and processes. In addition, requirements

enabling collaboration, both within and across project teams, are collected and the functionality

provided is designed to support these needs.

Based on the collected requirements, new apps are developed and offered for deployment in users’

workspaces on the FAIRiCUBE HUB. These apps are based on existing Open-Source software, like
MLflow, as much as possible. The apps themselves will be released as Open-Source on GitHub again.

Care will be taken to assure close integration of ML capabilities with the data resources being provided.
The community collaboration platform focuses on the general technological information and knowhow

associated with the setup, usage and processing of datasets on the FAIRiCUBE Hub and the usage of

ML-Tools applied to these datasets.

9.1 Implementation

The community collaboration platform is setup as a collection of markup documents, based on the

MkDoc definition, and collected in the FAIRiCUBE GitHub repository. This sub-repository is structured
according to the requirements provided by "Read The Docs"31, which acts as the target platform for

publication of the community collaboration platform. It allows project internal as well as external users

to submitt their information, experiences and code to the platform and therefore share it with others.

"Read The Docs" features the automatic deployment of the documentation, and examples e.g. present

as Jupyter Notebooks, with every change of the documentaion source, via the usage of a Webhook.
Therefore there is no need for an extra maintenance effort to manage the documentation. Changes are

submitted to the GitHub repository, and if accepted by te owner, are then immediately present in the

community collaboration platform.

The community collaboration platform GitHub repository is accessible at:

https://github.com/FAIRiCUBE/collaboration-platform.
The Read The Docs" based platform is accessibe at: https://fairicube.readthedocs.io. A screnshot of

the landing page is shown below in Figure 38.

31 https://about.readthedocs.com/

https://github.com/FAIRiCUBE/collaboration-platform
https://fairicube.readthedocs.io/en/latest
https://about.readthedocs.com/

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

51 / 56

Figure 38: Landing page of the Community collaboration platform

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

52 / 56

10 Knowledge Base

The Knowledge Base is a toolkit to enable appropriate knowledge of how to apply algorithms and ML

techniques to solve UC’s and similar demands.

The core task of the Knowledge Base (KB) is to provide to the community a set of tools, documents,

algorithms, code, tips and tricks, mistakes to avoid, examples of use and so on.

The architecture of the KB is composed by a web-application, a database and multiple data sources.

The web-application is coded using Python and the Django web-framework. It consists in a set of web

pages with static content and an interactive query tool.

The pages:

• “Use Cases” summarizes main aims and results of the use cases and provides access to more

in-depth descriptions and specific resources.

• “Query Tool” is the engine of the KB. It allows to query KB resources based on predefined or

customized queries.

• “Self-training Library” links to a number of training resources freely available from the web

and/or from the project repositories to support understanding and reuse of the project

outcomes and resources.

• “Tips & Tricks” shares solutions adopted / workarounds to overcome various challenges faced

in the UC lifetime.

The “Metadata Catalog” and the “GitHub Project” items in the Menu directly interact respectively with

the Metadata Catalog and with the GitHub repositories of FAIRiCUBE.

GitHub, websites and content created by FAIRiCUBE are used as sources of the data used in

Knowledge Base.

A PostgreSQL database is the engine of the query tool and contains thein formation, originating from

the metadata of the resources, on which to make SQL queries. The database does not contain all the

metadata fields but only those utilized to filter the various metadata records, where each record
corresponds to a resource. The result of a query is a table containing, for each resource found, the

Name, Description and link to the resource in the Metadata Catalog. This last is then used for a

complete visualization of the resource.

The procedures of reading data on GitHub and ingesting it into this database are done automatically by

a specific Python function.

In particular, the ingestion of resource metadata into the PostgreSQL is executed through several steps

• identification of metadata in the 'resource-metadata' GitHub repository: issues representing

resource metadata (I.e., created through the resource metadata request form) are identified

through the label 'a/p metadata' and become input to step 2.

• Creation of key-value dictionaries: A Python program creates appropriate key-value

dictionaries, associating values to the corresponding metadata fields. These are then passed to

a builder, specific to the resource type, which creates the metadata in STAC-JSON files.

Specifically, if the file is not already present in the metadata folders it is inserted, otherwise the

processing of the next issue is done.

• Insertion of the record in the DB: if the file is not present in the DB (the resource ID is used as

the identifier) it is inserted using an appropriately selected list of fields.

The phase of checking if data are present or not in the folders and DB is necessary in order to write

and load only new files, thus saving resources and avoiding overwriting all files at each execution.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

53 / 56

• Process automation: The entire process of creating STAC metadata and ingesting it into the

PostgreSQL database is fully automated using a Python script (executes all steps above

sequentially).

The Query Tool is organized into two parts:

• “Predefined Queries” allows to select from a list of common UC resources queries that have

been prepared to quickly get resources based on most widely utilized search criteria.

• “Custom Queries” allows users to build custom queries by selecting one or more parameters to

filter on and/or by specifying keywords

The self-training library contains a set of links to web pages and project resources, appropriately

selected and organised into categories, with the aim of provide to the user a basic background on

FAIRiCUBE Knowledge Base topics.

The Tips & Tricks section contains a number of solutions to problems and questions encountered

during the project. This section gives the user the opportunity to quickly solve known problems and
also avoid remaking same mistakes. Also in this case, the data sources are web pages and project

resources.

Figure 39: Knowledge Base - Application Architecture

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

54 / 56

11 Deployment and Operations Strategy

This section details the strategy for deployment and operations of the various components of the

FAIRiCUBE Hub as shown for example in Figures 30 and 34

11.1 FAIRiCUBE Catalog

The current static FAIRiCUBE Catalog is deployed on GitHub pages and available at
https://catalog.fairicube.eu, (see Error! Reference source not found. in section Error! Reference

source not found.). The contents of this FAIRiCUBE Catalog are maintained in a GitHub repository32
as yaml files plus accompanying details. The yaml files stored on GitHub are transposed to STAC json

files during an automated build step33. These static json files are exposed via GitHub pages together

with this basic catalog web interface.

The entry point for the static json files is https://catalog.fairicube.eu/stac/index.json providing the

STAC Catalog listing and linking to all the available data as individual STAC Collections (e.g.,

https://fairicube.github.io/catalog/stac/corine-land-cover.json) as detailed in the previous section.

This static catalog will be replaced with a rich web catalog based on STAC Browser which is connected

to a STAC API endpoint implemented using STAC-FastAPI. This rich catalog is supporting searching by
fields like dates, providing summaries of the available data, etc. A first version of this rich web catalog

is available at https://catalog.eoxhub.fairicube.eu, but the the catalog will be transferred to

https://catalog.fairicube.eu once he search functionality is implemented.

11.2 FAIRiCUBE Lab - EOxHub

From a deployment and operations point of view, the FAIRiCUBE Lab is a fully managed cloud

environment providing scalable compute and (co-located) storage for diverse stakeholders ranging

from scientists to decision makers.

Operations of an Exploitation Platform offering Big Data and Machine Learning usually involves
substantial cost. It is a challenge to determine beforehand the expected consumption by AI-based

Apps of cloud resources for processing and storage. The Marketplace concept therefore must include

tools for parametrised cost estimation and quotations for the Consumer. When processing is underway

informative and real-time cost accounting results are needed to avoid cost overruns.

It has been decided among the project partners to use the Frankfurt region of the Amazon Web
Services (AWS) as the cloud infrastructure provider. The first deployment will be performed on AWS in

a public cloud tenant owned by the project partner NILU.

The control plane will be bootstrapped, i.e., the initial cloud resources will be provisioned, and
operated by the project partner EOX. Together with use case partners, it will be decided which

resources shall be made available in the elastic and dynamically scaling worker plane to run science
and other user workloads in their so-called workspace profiles. This decision is an important step, as it

defines the incurred costs at runtime. Taking this decision together shall help the use case partners to

fully understand the cost implications later. Different profiles have different per hour costs associated

which is important to keep in mind when running workloads for example on CPU or GPU resources.

The deployment uses GitOps principles which are shown in Figure 40. Developers push code changes
to a Git repository where the Continuous Integration (CI) pipeline automatically tests, builds, packages,

and publishes the code to a docker image repository. The flux Automator can be used to update the

32 https://github.com/FAIRiCUBE/catalog

33 https://github.com/FAIRiCUBE/catalog/blob/main/.github/workflows/pages.yml

https://catalog.fairicube.eu/
https://catalog.fairicube.eu/stac/index.json
https://fairicube.github.io/catalog/stac/corine-land-cover.json
https://catalog.eoxhub.fairicube.eu/
https://catalog.fairicube.eu/
https://github.com/FAIRiCUBE/catalog
https://github.com/FAIRiCUBE/catalog/blob/main/.github/workflows/pages.yml

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

55 / 56

configuration to use new versions either via an update hint from the CI pipeline or manually by the

developer.

For Continuous Deployment (CD) the operators push configuration changes to a Git repository which is

deployed fully automatically in the kubernetes cluster by the orchestrator using the deploy service.

Figure 40: GitOps Principle

This way the deployment relies on declarative configurations to establish tailored workspace profiles for

on-boarded users (GPU yes/no, #CPUs, total memory, storage types, conda environments, credentials,
etc.). A GitHub repository will be used to store these configurations mainly of assignment of users to

team(s) and the associated workspace profiles. Login to the FAIRiCUBE Lab will be primarily performed

via GitHub as identity provider.

It is important to note that usage metrics are available on user, group, and cluster level. These metrics

are collected using Prometheus and are visualised in Grafana dashboards.

The main advantages of following the GitOps principles are:

 Deployments can be fully automated via git commit (roll-backs via git revert, audit trail via git

log)

 Security is largely improved as the Application and Service Developers don’t need to access the

cluster

 Full auditability and easy replication are achieved by having all state and state changes tracked

in git

11.2.1 Principles for Operations

In summary, the main principles of operations are:

 Staff access to AWS services is only necessary for troubleshooting respectively for preparatory

setup tasks and maintenance (e.g., EKS version upgrades) but not for daily business

operations.

 For the initial setup a temporary bootstrap user with quite elevated permissions is needed to

get the terraform based tooling in place.

 IAM users and assumed IAM roles are only leveraged by service accounts, not staff users.

They are made accessible to EKS workloads as kubernetes secrets.

 User-facing services & applications are deployed and upgraded with GitOps concepts on EKS,

leveraging the fluxcd (“flux”) tooling following a pull approach (no push, i.e., no direct

kubernetes access is needed).

 Staff access to EKS cluster is only necessary for troubleshooting. This can be managed on

kubernetes namespace level via flux.

FAIRiCUBE : D4.1 FAIRiCUBE Hub Architecture

56 / 56

11.2.2 Deployment Services split into three Segments

The deployment services rely on Infrastructure as Code principles to streamline cloud resource creation

and are split into three segments. This separation acknowledges the different set of people involved,

frequency of change, and different environments (staging vs. production):

1 Roll out infrastructure for kubernetes based runtime environment

 EKS (with configured autoscaling nodegroups) running in VPC

 DynamoDB, S3 (only relevant for terraform)

 EFS (backing workspace storage)

 ECR (for all published containers)

 Core components (helm charts) to deploy apps in kubernetes cluster

2 Roll out infrastructure for storage and access

 S3

 IAM (for service accounts, not for users)

3 Deploy user facing services & applications (EOxHub Workspace, Backend APIs, etc.) via Git

The first segment is automated via EOX tooling using terraform (“terrahub”). It supports an automated

reconciliation loop and is safe to recreate.

The second segment has no automated reconciliation loop for various reasons like manual archiving or

configuration drift.

The third segment is automated via the flux operator.

11.2.2.1 Segment 1 - Roll out Runtime Infrastructure

The first segment relies on “terrahub” which is an EOX customized automation tool to template and
orchestrate terraform scripts for AWS infrastructure and kubernetes components. It supports rolling

out the runtime environment to host all workloads, user-facing services & applications.

terrahub uses a special Git repository with a declarative configuration file to manage cloud services.

This special Git repository is stored in a self-hosted GitLab instance.

The CI/CD pipeline clones this Git repository and applies the configuration file:

git clone https://gitlab-ci-token:${CI_JOB_TOKEN}@gitlab.eox.at/eox/hub/terrahub-deploy

cd terrahub-deploy/hub-test

terrahub deploy -c config.yaml --disable-prompt

terrahub uses the secrets (AWS credentials) that are configured for the CI/CD pipeline.

11.2.2.2 Segment 2 - Roll out Storage and Access

The second segment is managed via the AWS CLI and console. Different setups for staging and
production environments are rolled out. S3 storage is configured with fine grained IAM permissions on

bucket level and backup and retention policy. IAM roles and permissions are created which are

propagated to EKS cluster as kubernetes secrets.

11.2.2.3 Segment 3 - Deploy User Facing Services and Applications

The third segment is the Continuous Deployment (CD) which is managed via the flux GitOps operator

as described above and backed by a Git configuration repository. It is used to deploy new versions of
customer facing apps and services. The GitOps principle helps to enforce an “avoid branching” policy,

i.e., customization must be possible via configuration. Developers and operators are responsible to

integrate their product into an environment, i.e., responsible teams directly commit to the Git

configuration repository.

