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INTRODUCTION 

Three decades ago, Seeger and Schottky 1 presented a very simple model suggesting that the 
excess energy, 7, and excess volume per unit area, 8V, of grain boundaries (GBs) in metals are 
closely interrelated. They assumed the GB region, of width 8V and surrounded by bulk material, 
to be characterized by a lower atom and therefore electron density. Considering only the change 
in the kinetic and potential energies of the electrons, they solved the one-dimensional 
Schrodinger equation to show that y=y(SV) is a practically linear function. An interesting aspect 
of their model is the fact that the detailed atomic structure does not enter at all, except via 
the parameter 5V. More recently, using more sophisticated electronic structure methods, 
Ferrante and Smith 2 demonstrated that some normalized expansion parameter is also the key 
parameter in the energies of bimetallic interfaces, and that the detailed atomic structure may 
be irrelevant in the basic shape of the y(SV) binding curve. 

That the excess volume is an important structural parameter associated with GBs is also 
apparent from simple hard-sphere models 3. Following the destruction of the perfect-crystal 
stacking due to the introduction of a GB into a stack of lattice planes, the crystal has to expand 
locally at the interface to accommodate the structural mismatch. In these models it is 
assumed that the most stable GB structure is the one which yields the smallest excess volume 
per unit GB area, an assumption verified by the atomistic simulation results presented below. 

Experimental evidence, based on the effect of hydrostatic pressure on the relative energies of 
different GBs, 4 supports these concepts. Rotating sphere-on-a-plate experiments suggest that 
those GBs which give rise to energy cusps show a smaller excess volume than the higher-energy 
boundaries outside of these cusps. 4 More recent high-resolution TEM experiments provide 
direct evidence for the existence of volume expansions at GBs, 5-7 although their precise 
magnitude remains difficult to determine. Also, no direct information on the GB energy is 
available from these observations. 

Atomistic computer simulations for metals, employing central-force potentials, have provided 
little information on volume expansions at GBs because virtually all such simulations were 
carried out at constant volume. By their very nature, the interactions between metal atoms 
near an interface are anisotropic because the effective electron density which mediates these 
interactions depends on direction. This anisotropy, in principle, rules out the use of pair 
potentials, which were employed in most previous GB simulations. These conceptual problems 
associated with the use of pair potentials in the simulation of inhomogeneous metal systems 
have been partially overcome only recently with the development of many-body potentials.8, 9 
In these potentials, the local-volume dependence of the binding energy is considered explicitly, 
via the net electron density experienced by every atom due to its interaction with the 
surrounding atoms. Conceptually they are therefore based on a much better physical description 

1913 
0036-9748/89 $3.00 + .00 



1914 GRAIN BOUNDARY ENERGY Vol. 23, No. ii 

of metallic bonding than are pair potentials. Like pair potentials, however, they are strictly 
empirical potentials, and one can never be certain that they reproduce the properties of a 
specific material other than those to which they were fitted. For that reason, in this paper the 
correlation between 7 and 6V will be investigated for both a many-body and a very simple pair 
potential. The comparison of the results will provide insight into the role of many-body effects 
in GBs; also, it allows identification of phenomena which are entirely independent of potential 
and, hence, representative of generic properties of fcc materials. 

COMPUTATIONAL PROCEDURE 

The iterative energy minimization procedure ("lattice statics") employed to relax GBs at zero 
temperature was described in detail in Ref. 10. In addition, a constant-pressure relaxation 
method was used which permits the unit-cell volume to increase or decrease in response to the 
internal pressure in the direction of the GB-plane normal, thus enabling the GB to expand or 
contract. Also, by computing the forces which the two halves of a bicrystal exert on each- 
other, translations parallel to the GB plane are permitted. 

Both a many-body potential of the Embedded-Atom-Method (EAM) type, fitted to five properties 
of Au; 8 and a simple Lennard-Jones (L J) pair potential, fitted to two perfect-crystal properties 
of Cu, 11 will be used. The related cohesive-energy curves for a periect crystal are shown in 
Fig. 1. To emphasize the different shapes of the curves associated with the two potentials, the 
values at the related minima have been subtracted. The effect of these shape differences on the 
predicted GB energies and volume expansions will be discussed below. 

The unrelaxed input geometries of the symmetrical and asymmetrical tilt and twist boundaries 
investigated below were obtained by misorienting point-defect free perfect-crystal slabs 
appropriately with respect to each-other. Although reconstruction and impurity segregation 
may be important in real materials, these simple point-defect free model systems are useful to 
study structure-property correlations prior to introducing additional complications, such as 
impurities, reconstruction, temperature, etc. 
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Fie. 1 {left~: Cohesive energy vs. lattice parameter for the potentials employed in this paper. 
The equilibrium cohesive energies of -3.91 eV and -1.03 eV for the EAM and LJ potentials, 
respectively, were subtracted to emphasize the shape differences. 

GB energy (in mJ/m2) vs. 8V/a for two twist GBs in the fcc lattice (LJ potential). 
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SIMULATION RESULTS 

A simple method for determining the eqilibrium volume expansion per unit area, 5V, is 
illustrated in Fig. 2 for the so-called T,5 boundary on the (100) plane and the Z7 boundary on the 
(111) plane. (Here Zdenotes the inverse density of coincident-site lattice (CSL) positions 
which are in common to the two halves of a bicrystal, provided no translation parallel or 
perpendicular to the GB plane is permitted.) In these calculations, the positions of the far- 
away perfect-crystal regions surrounding the GB were held fixed at a constant value of 5V, and 
a constant-volume relaxation was performed for each value of 8V. Similar to Fig. 1, the GB 
energy shows a minimum at the eqilibrium value of 5V, which is different, however, for the two 
GBs considered. Interestingly, as suggested by Meiser and Gleiter 4, 5V is indeed smaller for the 
boundary with the lower energy. Fig. 2 also illustrates the effect of a restriction to constant 
volume in the simulation, which leads to systematically larger GB energies and to substantially 
different relative energies of the two GBs. This demonstrates how important it is to allow the 
bicrystal volume to equilibrate. I t  should be mentioned in this context that the definition of 
the GB energy as the change in Gibbs free energy, G, with GB area, A, at constant temperature, T, 
pressure, p, and number of particles, N, (including composition), according to 12 

7 = (o~G/o~A)T,p,N , (1) 

dictates constant-pressure simulations. Constant-volume simulations, therefore, lead not only 
to numerically wrong values of y for a given potential, but energies thus determined are 
conceptually not the true excess energy in the Gibbsian sense. Consistent with the definition of 
y in Eq. (1) is the definition of 8V (to be distinguished from the overall volume V) according to 1 3 

5V = (o~V/~A)T,p,N , (2) 

which indicates that the excess volume of a GB is to be determined under the same conditions 
as the excess energy. 

The method of extracting 7 and 8V from a series of constant-volume calculations is not very 
efficient. A systematic investigation of the 7(5V) correlation was therefore performed by using 
the constant-pressure relaxation procedure described above. The results thus obtained for four 
different types of boundaries are summarized in Figs. 3(a) and (b). 
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Table 1: Parameters of a least-squares fit to the data in Figs. 3(a) and (b), according to 7(8V) = 
a + J3dV. Also listed are results (which include symmetrical GBs only) 14 for an EAM potential 
for Cu. a is in units of mJ/m2; 13 is in units of mJ/(m2a), where a is the ideal-crystal lattice 
parameter listed also in the Table (in Angstrom units). 

Au (EAM) Cu (LJ) Cu (EAM) 

a 105.6 120.7 104.5 
1021 5497 9636 

a 4.0828 3.6160 3.6212 

As is well known, five macroscopic degrees of freedom (dof) are needed to characterize a single 
bicrystalline GB. The boundaries considered in Fig. 3 range from the simplest symmetrical tilt 
boundaries (STGBs) with 2 dof, via symmetrical twist GBs (3 dof) and asymmetrical tilt GBs (4 
dof), to asymmetrical twist (or general) boundaries (with 5 dof). In total, Figs. 3(a) and (b) each 
contain 85 STGBs, 74 pure twist GBs, 55 asymmetrical tilt GBs, and 39 general boundaries. 
(These simulations are discussed in a recent series of articles). 14 In view of this variety of 
GBs considered, the reasonably good linear correlation between 7 and 8V in these results, 
obtained for both potentials, is rather remarkable (see also Table 1). With the values listed in 
Table 1 one could, in principle, obtain approximate GB energies from volume expansions 
extracted, for example, from TEM observations. 

READ-SHOCKLEY ANALYSIS OF EXCESS VOLUMES 

In a recent article 16 it was suggested that the modified Read-Shockley 17 expression, 

7(e) = sine [ E c - E s In(sine)]/b (3) 

0.020 

may be valid not only for low- but also high-angle boundaries, in which the dislocation cores 
overlap completely. In Eq. (3), e denotes the CSL misorientation angle, while Ec/b and Es/b 
represent the core and strain-field energy per unit length of an isolated lattice dislocation; b is 
the length of the Burger's vector. Whereas the physical reasons for the validity of Eq. (3) even 
for high-angle GBs are not clearly understood 16, strong evidence for its validity, for both 
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Fie. 4: Excess volume (in units of a) vs. twist angle for (001) (left) and (111) twist GBs in Au 
(right half). The solid lines represent a least-squares fit of Eq. (4) to the data points. 



symmetrical and asymmetrical boundaries, was presented in Ref. 16. This evidence was 
obtained from computer simulations similar to the ones presented here, using the same two 
interatomic potentials. Owing to the close interrelation between ~, and 8V observed above, one 
would expect that a relationship analogous to Eq. (3) should exist for the excess volume. 
Therefore, in analogy to Eq. (3) we write : 

5V(0) = sine [ 8V c - 8V s In(sin0)]/b (4) 

0.16 

where 8Vc/b is the excess core volume per unit length of a dislocation, while 5Vs/b is the 
related strain-field contribution. As in Eq. (3), the range of e values for a given 
misorientation axis has to be normalized so as to cover the full range from 0 to 180 o. In 
cases in which symmetries exist for a certain misorientation axis, e therefore may be a 
multiple of the usual CSL misorientation angle 16. 

For both potentials a least-squares fit of Eq. (4) to the data in Fig. 3, with 5V c and 5V s as 
adjustable parameters, was performed. Typical results thus obtained are shown in Figs. 4 (for 
pure twist GBs for the EAM potential) and 5 (for symmetrical tilt and general GBs, simulated 
via the LJ potential). Analogous to the results for the GB energy 16, Figs. 4 and 5 suggest that 
the Read-Shockley model works equally well in predicting the excess volumes of high-angle 
boundaries, based entirely on the volume changes associated with low-angle GBs, i.e., of 
isolated lattice dislocations. As in case of the energies, the fits in Figs. 4 and 5 do not include 
the minor cusps which appear whenever a GB with a particularly small planar unit-cell area, 
A=FA1, is approached (where A1 is the smallest possible unit-cell area for a given 
misorientation, and F is the density of planar CSL sites) 14 
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Fig. 5: Excess volume, (~V/a, vs. misorientation angle for <001> STGBs (left) and (221)(001) 
asymmetrical twist boundaries. Solid lines represent a least-squares fit of Eq. (4) to the data 
points. 

CONCLUSIONS 

We note that, according to Figs. 3(a) and (b), the volume expansions and energies obtained for 
the LJ potential are generally much larger than for the EAM potential. The reason for this 
difference is readily apparent from Fig. 1, according to which an increase in volume is much 
less costly in energy for the LJ than for the EAM potential. A similar difference to the LJ 
results was also obtained for the EAM potential fitted for Cu 14. This illustrates that, although 
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behavior, significant quantitative differences may be obtained for different potentials fitted to 
the same material. Also, in numerous cases rather different optimum translational states 
parallel to the GB plane are obtained for the two potentials (for details see Ref. 14), as one 
would expect according to Ref 18. Although EAM potentials represent a given material better 
than the simple LJ potential (because they were fitted to a larger number of empirical 
properties), for lack of quantitative experimental information the above results cannot be 
substantiated. However, since two potentials as diverse as the LJ and EAM potentials yield the 
same generic behavior, we are lead to conclude that: 

(a) The practically linear ~,(SV) correlation, the interpretation of which was first 
suggested by Seeger and Schottky,1 is a generic property of GBs in fcc metals; this correlation, 
in principle, permits GB energies to be extracted from TEM measurements. 

(b) Local-volume effects, considered only in the EAM potential, affect the magnitude of 
the GB energy and volume expansion but not the basic behavior obtained from the simulations. 

(c) The detailed atomic structure, including translations parallel to the GB plane, found to 
be rather different for the two potentials in numerous cases, has little effect on the generic 
7(5V) correlation reported here. 

We also note that, according to Figs. 4 and 5, the volume expansion at high-angle GBs in the 
Read-Shockley sense (in which the dislocation cores overlap substantially) is very well 
described in terms of Eq. (4), the underlying physics of which is based entirely on the Read- 
Shockley picture for low-angle boundaries; i.e., on the physics of isolated lattice dislocations. 
We hope that this puzzling observation will contribute to a renewed discussion of the role of 
lattice dislocations in the basic physics of high-angle GBs. 
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