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Abstract

This reference outlines the D’Agostini procedure used for iterative unfolding. We first
motivate and outline the method in a manner suitable for users new to the technique. Next
is shown the full propagation of errors due to the unfolding process, including the derivation
of the final form of the covariance matrix.
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1 Introduction

The general class of unfolding methods is amongst the physicist’s toolbox as a powerful means to
connect an experiment’s observable variables with true physical quantities. Typically a matrix can
be built to encompass the effects of the measurement process on a simulated ‘true’ distribution
and the manifestation of said distribution as an experimenter’s desired observable. With this
response matrix, a distribution of the observable in an experiment can be unfolded, providing
an estimate of the true parent distribution.

A variety of unfolding methods exist, each with its respective strengths and weaknesses. For
example, the simplest method is the matrix inversion unfolding, which for a well populated,
highly linear response matrix can be both efficient and precise. However, even with relatively
small off-diagonal elements, this method can be unfavorable, as the matrix may be singular
or may introduce wildly fluctuating results due to limited statistics. There exist methods to
quell such issues, though these require the tuning of various parameters which typically have no
physical connection to the experiment at hand.

Here we discuss D’Agostini’s iterative unfolding technique presented in [1], a manifestly in-
ferential method. Starting from Bayes’ theorem, an iterative unfolding procedure is developed,
which then can be implemented without too much difficulty for the typical experimenter. This
document has been adapted from Chapter 7 and Appendix B of [2].
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2 Method

As discussed in the Section 1, the conceptually simplest way to connect true causes Cµ and
observable effects Ej is via their respective count distributions, n and φ, a reponse matrix, R,
and it’s inverse M1:

n(E) = Rφ(C),

φ(C) = M n(E).
(1)

Due to the aforementioned potential difficulties in matrix inversion, we can take into consideration
Bayes’ theorem,

P (Cµ|Ej) =
P (Ej |Cµ)P (Cµ)∑nC
ν P (Ej |Cν)P (Cν)

, (2)

where nC is the number of possible causes. Equation 2 dictates that having observed the effect
Ej , the probability that it’s origin is due to the cause Cµ is proportional to product of the
probability of the cause and the probability of the cause to produce that effect. Hence, the
elements P (Ei|Cµ) represent the probability that a given Cµ results in the effect Ei, and is the
response matrix typically generated via modeling or simulation. Continuing with P (Cµ|Ej), we
can then connect the measured observed effects to their causes by

φ(Cµ) =

nE∑
i

P (Cµ|Ei)n(Ei) . (3)

Stepping back to eq. 2 for a moment, one identifies P (Cµ) as the prior cause distribution,
representing our current knowledge of the causes. The prior is a normalized distribution such
that

∑nC
µ P (Cµ) = 1. This normalization requirement is not imposed on the response matrix

efficiency εµ: 0 ≤ εµ =
∑nE

j P (Ej |Cµ) ≤ 1, ie, a cause does not need to produce any effect.
Taking this (in)-efficiency into account, we rewrite eq. 3 as

φ(Cµ) =
1

εµ

nE∑
i

P (Cµ|Ei)n(Ei) . (4)

Identifying here the explicit form of M , the full matrix (Bayesian) inversion equation is then

φ(Cµ) =

nE∑
j

Mµj n(Ej) , (5)

where

Mµj =
P (Ei|Cµ)P (Cµ)

[
∑nE

k P (Ek|Cµ)][
∑nC

ν P (Ei|Cν)P (Cν)]
. (6)

The response matrix P (Ei|Cµ) is generated via simulation, and the n(Ei) provided through
measurement, apparently bestowing the freedom to choose the form of P (Cµ). Again, P (Cµ)

1 Except for C and E, all variables and subscripts related to causes are Greek letters, while Latin letters are
used for effects. The only superscript is the iteration number, i.
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represents the total of our prior knowledge of the parent distribution. Typically an experimenter
refrains from introducing bias in the prior, and two such appropriate choices are the uniform and
non-informative Jeffreys’ [3] priors:

PUniform(Cµ) =
1

nC

PJeffrey(Cµ) =
1

log(Cmax/Cmin)Cµ
,

keeping in mind that the these priors place the causes on equal footing, not that all parent cause
distributions are equally probable.

We now possess all the necessary machinery to perform an unfolding. Having started with a
conservative initial prior, the unfolded result is a Bayesian best estimate of the true distribution.
There is nothing stopping us from using this result as the best knowledge estimate of P (Cµ) in
eq. 6 for a subsequent unfolding. We can take this any number of steps further, making the
process an iterative unfolding. Thus, after calculating φ(Cµ) via eq. 5, we recalculate Mµj per

eq. 6, returning again to eq. 5 for an updated φ(Cµ)′. Since P (Cµ) =
φµ∑
ν φν

=
φµ

NTrue
, where

NTrue is the estimated true number of cause events, we can make the change P (Cµ)→ φµ in eq.
6. Adding the iteration superscript and shortening the notation1, this equates to

Mµj =
Pµj φ

i
µ

εµ
∑

ρ Pρj φ
i
ρ

φi+1
µ =

∑
j

Mµj nj .

The unfolding proceeds until a desired stopping criterion is satisfied, say by comparing subsequent
iterations with a test statistic such as a χ2. The algorithm below outlines the basics to the iterative
unfolding scheme:

Algorithm 1 Unfolding Algorithm

φ0 ← Prior
testStatistic← Pass
while ( testStatistic = Pass ) do

M ←M(P (E|C), φi)
φi+1 ←M × n
testStatistic← TS(φi, φi+1)

end while
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3 Regularization

After each iteration, the resulting posterior distribution, P (Cµ), is our new best guess of the
(normalized) parent distribution. Using this best estimate as the prior for the next iteration,
one can induce large fluctuations in neighboring Cµ bins. It is here the equivalence of matrix
inversion techniques and iterative unfolding is seen. After many iterations, wild fluctuations can
appear, indicating the granularity in the MC derived Pµj . Furthermore, in using the posterior
as the subsequent prior, one is ‘telling’ the unfolding that physical distributions of that nature
are allowable priors. Instead, as pointed out in [1] (section 6.3), for an experimenter interested
in a particular model’s parameters, fitting all but the last posterior is equivalent to performing a
maximum likelihood fit to the data.

As physical measurements are expected to be smooth (a safe assumption for energy spectra
for example), one can regularize the φiµ. In principle one can choose any smoothing function. For
the cosmic-ray energy spectrum for example, φiµ can be simply fit to a power law or a spline as was
done in [4], using the fitted function as the input prior for the next iteration. While this could be
seen as a loss of information, it is important to remember that any improved prior distribution
will enhance our estimation method, along with the prior expectation that our distribution is
smooth.

The other possibility is to avoid regularization altogether and instead ensure that Pµj is
smooth enough. The granularity of the cause and effect bins will dictate the degree of smoothness
required to ensure non-fluctuating φi solutions. The more widely used techniques for smoothing
Pµj include kernel density estimation and penalized spline fitting routines.
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4 Unfolding Uncertainties

To begin the excursion into the calculation of uncertainties, we first shorten the notation in
accordance with footnote 1:

P (Ei|Cµ) = Pµi φ(Cµ) = φµ n(Ej) = nj .

As outlined in [1] (section 4), the covariance matrix V = V (φ, φ′) from statistical contributions
has two components: V Data from the counted measured effects distribution, and V MC due to the
limited MC statistics in Pµj . This can be seen from considering the uncertainties from nj and Mµj

in eq. 5. Since φ = M × n = M(P (E|C)) × n, we can identify respectively the aforementioned
error contributions as

V Total = V Data + VMC

=
∂φ

∂n
Cov(n, n′)

∂φ′

∂n

+
∂φ

∂P
Cov(P, P ′)

∂φ′

∂P
.

4.1 V Data

D'Agostini argues that since the data sample nj is a realization of a multinomial distribution,
then

V Data = M Cov(n, n′)M (7)

where the Cov(n, n′) is the covariance matrix of the measurements with respect to the estimated
true number of events

∑
µ φµ = Ntrue:

Cov(nk, nj) =

{
nj(1− nj

Ntrue
) if k = j

− njnk
Ntrue

if k 6= j
. (8)

However, Adye ([5] section 5) demonstrates that this error estimation is only valid for the
first iteration, as subsequent φi are not independent of nj . Indeed, we should re-write eq. 7
appropriately as

V Data =
∂φi+1

∂n
× Cov(n, n′)× ∂φi+1′

∂n
, (9)

with
∂φi+1

µ

∂nj
= Mµj +

φi+1
µ

φiµ

∂φiµ
∂nj
−
∑
σ,k

εσ
nk
φiσ

MµkMσk
∂φiσ
∂nj

where again the superscripts i and i + 1 refer to the iteration number. The full derivation of
∂φi+1

∂n (eq. 20) is found in section 4.4.2 below. In some cases it is safe to use the Poisson form of
Cov(n, n′):

Cov(nk, nj) = nk δkj . (10)
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4.2 V MC

The contribution from VMC , while well outlined in [1] and below, is quite a monster. If one
simply implements the equation verbatim into code, the expected time for calculating all elements
∼ (number of bins)7. Thus, here we present the form of VMC , while in section 4.4.3 we show
the explicit expansion and further contraction of indices towards a more reasonable, practical
calculation.

D’Agostini identifies VMC via ∂
∂M giving

VMC = n× Cov(M,M ′)× n′. (11)

Further expansion reveals

Cov(Mµk,Mλj) =
∑

{σr},{σs}

∂Mµk

∂Pσr

∂Mλj

∂Pσs
Cov(Pσr, Pσs), (12)

∂Mµk

∂Pσj
= Mµk

[δµσ δjk
Pσj

− δµσ
εσ
−
δjkMσk εσ

Pσk

]
, (13)

Cov(Pσr, Pσs) =

{
1
ñσ
Pσr (1− Pσr) if r = s

− 1
ñσ
Pσr Pσs if r 6= s

. (14)

In the final expression, ñµ represents the number of simulated events which fell into the true
cause bin µ. If our simulation is weighted, we identify ñ with the effective number of events

ñµ =
(
∑
j wµj)

2∑
j w

2
µj

for all j events in bin µ.

Once again, Adye ([6]) shows this is a first order estimate, only valid for the first iteration.
Re-writing 11 with ∂

∂P ,

VMC =
∂φi+1

∂P
× Cov(P, P ′)× ∂φi+1′

∂P
, (15)

we identify ∂φi+1

∂P as

∂φi+1
µ

∂Pλk
=
δλµ
εµ

(nk φiµ
fk
− φi+1

µ

)
−
nkφ

i
λ

fk
Mµk

+
φi+1
µ

φiµ

∂φiµ
∂Pλk

−
∑
ρ,j

nj
ερ
φiρ

MρjMµj

∂φiρ
∂Pλk

whose derivation (eq. 21) is found in section 4.4.3 below. Of course, D’Agostini’s form of
Cov(P, P ′) remains valid for use with the new construction of the partials. One may also use a
Poisson covariance if justified appropriately:

Cov(Pρr, Pλs) = σρrσλsδρλδrs, (16)

with σρr being the error estimates on Pρr estimated when filling P with Monte Carlo.
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Algorithm 2 Unfolding Algorithm - Including Errors

φ0 ← Prior
testStatistic← Pass
while ( testStatistic = Pass ) do

M ←M(P (E|C), φi)
φi+1 ←M × n
∂φi+1

∂n ← eq. 20
∂φi+1

∂P ← eq. 21
testStatistic← TS(φi, φi+1)

end while
V Total ← V Data(∂φ

i+1

∂n ) + VMC(∂φ
i+1

∂P )
σ2
φ ≈ diag(V Total)

4.3 Updated Unfolding Algorithm

The afore-outlined unfolding algorithm must be modified to include the propagation of systematic

errors. At each iteration we have φi+1, so both ∂φi+1

∂n and ∂φi+1

∂P can be calculated. The results
are propagated and saved until the full covariance matrix is required for error estimates on the
final φ.

4.4 Expansion of Components of V

4.4.1 Some useful formulae

Recalling the unfolding formulae from before,

φi+1
µ =

∑
k

Mµk nk Mµj =
Pµj φ

i
µ

εµ fj
,

where the efficiency, ε, and normalization, f , of M are

εµ =
∑
j

Pµj fj =
∑
µ

Pµj φ
i
µ.

Of note is the presence of φi, ie, the unfolded cause distribution from the previous iteration, or
the prior in the case i = 0.

We will be taking derivatives of these objects with respect to nk and Pλk, to wit,

∂Pµj
∂nk

= 0
∂εµ
∂nk

= 0
∂fj
∂nk

=
∑
µ

Pµj
∂φiµ
∂nk

(17)

∂Pµj
∂Pλk

= δµλ δjk
∂εµ
∂Pλk

= δλµ
∂fj
∂Pλk

= δjk φ
i
λ +

∑
µ

Pµj
∂φiµ
∂Pλk

. (18)

The explicit forms of
∂φiµ
∂nk

and
∂φiµ
∂Pλk

will be shown below, but only for i = 0 do

∂φiµ
∂nk

= 0 ,
∂φiµ
∂Pλk

= 0, (19)
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as no unfolding has been performed. This will clearly not be the case for subsequent iterations
when φi becomes dependent on nk and Pλk.

4.4.2 Expansion of V Data

Making the appropriate substitutions, the index representation of eq. 9 is

V (φi+1
µ , φi+1

ν )Data =
∑
jk

∂φi+1
µ

∂nj
Cov(nj , nk)

∂φi+1
ν

∂nk
,

with

∂φi+1
µ

∂nj
=

∂

∂nj

∑
k

Mµk nk

=
∑
k

(Mµk
∂nk
∂nj

+ nk
∂Mµk

∂nj
)

=
∑
k

(Mµk δjk + nk
∂Mµk

∂nj
)

= Mµj +
∑
k

nk
∂Mµk

∂nj︸ ︷︷ ︸
∂Mµk

∂nj
=

∂

∂nj

Pµkφ
i
µ

εµfk

=
Pµk
εµfk︸ ︷︷ ︸
Mµk

φiµ

∂φiµ
∂nj
−
Pµkφ

i
µ

εµfk︸ ︷︷ ︸
Mµk

1

fk

∑
σ

Pσk
∂φiσ
∂nj

=
Mµk

φiµ

∂φiµ
∂nj
−Mµk

∑
σ

εσ
Pσk
εσfk︸ ︷︷ ︸
Mσk
φiσ

∂φiσ
∂nj

=
Mµk

φiµ

∂φiµ
∂nj
−
∑
σ

εσ
φiρ
MµkMσk

∂φiσ
∂nj

∂φi+1
µ

∂nj
= Mµj +

1

φiµ

∂φiµ
∂nj

∑
k

Mµknk︸ ︷︷ ︸
φi+1
µ

−
∑
σ,k

εσ
nk
φiρ
MµkMσk

∂φiσ
∂nj

∂φi+1
µ

∂nj
= Mµj +

φi+1
µ

φiµ

∂φiµ
∂nj
−
∑
σ,k

εσ
nk
φiσ
MµkMσk

∂φiσ
∂nj

(20)
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Recalling eq. 19,
∂φ0µ
∂nj

= 0 for the first iteration, eliminating the last two terms of eq. 20 and

recovering
∂φ1µ
∂nj

= Mµj as per [1]. In practice, one need only calculate
∂φi+1

µ

∂nj
for each iteration,

saving the result until the full calculation of V Data is required.

4.4.3 Expansion of VMC

Similar to V (φi+1
µ , φi+1

ν )Data, we identify the contributions to V from the Monte Carlo:

V (φi+1
µ , φi+1

ν )MC =
∑
λj

∑
ρk

∂φi+1
µ

∂Pλj
Cov(Pλj , Pρk)

∂φi+1
ν

∂Pρk
.

Proceeding forward,

∂φi+1
µ

∂Pλk
=

∂

∂Pλk

∑
j

Mµjnj =
∑
j

nj
∂Mµj

∂Pλk︸ ︷︷ ︸
∂Mµj

∂Pλk
=

∂

∂Pλk

Pµjφ
i
µ

εµfj

=
φiµ
εµfj

∂Pµj
∂Pλk

+
Pµj
εµfj︸︷︷︸
Mµj

φiµ

∂φiµ
∂Pλk

− 1

εµfj

Pµjφ
i
µ

εµfj︸ ︷︷ ︸
Mµj

(
fj

∂εµ
∂Pλk

+ εµ
∂fj
∂Pλk

)

=
φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− 1

εµfj
Mµj

(
fjδλµ + εµδjkφ

i
λ + εµ

∑
ρ

Pρj
∂φiρ
∂Pλk

)
=

φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− Mµj

εµ
δλµ −

Mµjφ
i
λ

fj
δjk −

∑
ρ

ερMµj
Pρj
ερfj︸︷︷︸
Mρj

φiρ

∂φiρ
∂Pλk

=
φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− Mµj

εµ
δλµ −

Mµjφ
i
λ

fj
δjk −

∑
ρ

MρjMµj
ερ
φiρ

∂φiρ
∂Pλk

,

and going back to
∂φi+1

µ

∂Pλk
to include the sum over j,

∂φi+1
µ

∂Pλk
=
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∑
j

nj

[ φiµ
εµfj

δλµδjk +
Mµj

φiµ

∂φiµ
∂Pλk

− Mµj

εµ
δλµ −

Mµjφ
i
λ

fj
δjk −

∑
ρ

MρjMµj
ερ
φiρ

∂φiρ
∂Pλk

]
=
nkφ

i
µ

εµfk
δλµ +

1

φiµ

∂φiµ
∂Pλk

∑
j

Mµjnj︸ ︷︷ ︸
φi+1
µ

−
δλµ
εµ

∑
j

Mµjnj︸ ︷︷ ︸
φi+1
µ

−
nkMµkφ

i
λ

fk

−
∑
j

∑
ρ

nj
ερ
φiρ
MρjMµj

∂φiρ
∂Pλk

,

with final form

∂φi+1
µ

∂Pλk
=
δλµ
εµ

(nkφiµ
fk
− φi+1

µ

)
−
nkφ

i
λ

fk
Mµk

+
φi+1
µ

φiµ

∂φiµ
∂Pλk

−
∑
ρ,j

nj
ερ
φiρ
MρjMµj

∂φiρ
∂Pλk

.

(21)

Again for the first iteration
∂φ0µ
∂Pλk

= 0, eliminating the last two terms of eq. 21, and recovering

D’Agostini’s version. Again, upon implementation one need only calculate
∂φi+1

µ

∂Pλk
at each iteration,

saving it until VMC is needed for error estimation.
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