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TABLE R1 (definitions and scaling properties): The table shows the definitions of diversity indices and their mutual scaling properties. 
The references (e.g., T01.4) attributed to the equation marks refer to the derivations of the relationships (see Theses and Proofs T01 for 
derivations). The equation marks without references are derived through simple rearrangements of the equations listed in the table. All 
listed scaling properties are exact except those marked as ‘ ≅ ’. Where possible, indices are defined according to Koleff et al. (2003) and 
Gaston et al. (2007); see the column ‘Notes’ for exceptions. Consistent with Koleff et al. (2003), and Gaston et al. (2007), a refers to the 
number of species shared by the focal assemblages (� ≝ ��∩�), and b and c represent the numbers of species unique to the first and 
second assemblages (� ≝ �� − ��∩� and 	 ≝ �� − ��∩�). Further references can be found in the 'Notes' column. 
 
Notation Definition scaling properties Notes 
��
 ≝ ��〈��〉 

 

Gaston et al. (2007) call 
��
 as 
���, for 
the case of two assemblages; 
��� scales 

with indices of Jaccard index family only if 
the two sub-assemblages are adjacent, but 
it has fundamentally different inferences. 
��� =(�
�.�) 2 11 + � 

Overall Whittaker (1960) beta-diversity 
of two sub-assemblages of one assemblage. (in 

this study), �� = ��∪� = �� + �� − ��∩� and 〈��〉 = (�� + ��) 2⁄  
Beta-diversity sensu stricto (T08) 

J  ≝ �� + � + 	 ≝ ��∩��� + �� − ��∩� 

 

� =(�
�.�) 
�� !1 + "#� − 
�� !  
Jaccard index (1912) 

reversed turnover or co-occurrence if applied 
on between two species level (T02) 


�$ ≝ � + � + 	2� + � + 	 ≝ �� + �� − ��∩��� + ��  


�$ =(�
�.�) 11 + � Schluter & Ricklefs (1993) 
turnover or reversed co-occurrence applied on 

between two species level (T02) 


�ø& ≝ 2�2� + � + 	 ≝ 2��∩��� + �� 


�ø& =(�
�.') 2 �1 + � Sørensen (1948) similarity, 
reversed turnover or co-occurrence applied on 

between two species level (T02) 


()*+ ≝ 2�� + 	 ≝ 2��∩��� + �� − 2��∩� 


()*+ =(�
�.�,) 2 �1 − � Raup & Crick (1979) 
reversed turnover or co-occurrence applied on 

between two species level (T02) 
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-* ≝ 1− �2� + � + 	 ≝ 1− ��∩��� + �� 


-* =(�
�.�.) 11 + � Bray & Curtis (1957) simplified for incidence 
data 

Turnover or reversed co-occurrence if applied 
on between species level (T02) 
/0 ≝ 1− 2�2� + � + 	 ≝ 1− 2��∩��� + �� 


/0 =(�
�.1) 1 − �1 + � Harte & Kinzig (1997) 
Turnover or reversed co-occurrence applied on 

between two species level (T02) 


2 ≝ � + 	2� + � + 	 ≝ �� + �� − 2��∩��� + ��  


2 =(�
�..) 1 − �1 + � Wilson & Shmida (1984) in Gaston et al. (2007) 
Baselga (2010a,2012) calls this index Sørensen 

dissimilarity 
Turnover or reversed co-occurrence applied on 

between two species level (T02) 
3 ≝ � + 	� + � + 	 ≝ �� + �� − 2��∩��� + �� − ��∩�  


3 =(�
�.,) 1 − � 
3 =(�
�..,�
�.,) 2 
21 + 
2 
Gaston et al. (2001) 

Turnover or reversed co-occurrence applied on 
between two species level (T02) 


��  ≝ min(�, 	)� +min(�, 	) ≝ min(��, ��) − ��∩�min(��, ��)  


�� =(�
�.8) 1 − 
�� !  Simpson beta 
Simpson (1943); Lennon et al. (2001) 

reversed nestedness (T05) 


�� !  
(9:) 

≝ �� +min(�, 	) ≝ ��∩�min(��, ��) 

�� ! =(�
�.8) 1 − 
�� , 
�� ! =(�
�.;) �<$$ =�<= 

Lennon et al. (2001), Šizling et al. (2016) 
�� !  equals 9: (range nestedness) Šizling et al. 
(2009) if computed between two species 

ranges Nestedness (T05) 
 
>2? 
 
 

≝ 2 min(�, 	)� + 2min(�, 	) 
 

≝ 2 min(��, ��) − ��∩�2min(��, ��) − ��∩� 

 
>2? =(�
�.��) 2 
�� 1 + 
��  

Introduced as turnover component of Jaccard 
dissimilarity in Baselga (2012) 

reversed nestedness (T05) 
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@A ≝ 2 |� − 	|2� + � + 	 ≝ 2 |�� − ��|�� + ��  

 

"1 + " =(�
�.�
) 2 − 
@A4  


@A =(∗) 21 − "1 + " 

 

Lennon et al. (2001) 
species richness contrast (T06) 

(* follows from the above E19.10	 IJK�LMNO) 

" 
 ≝ � +min(�, 	)� +max(�, 	) ≝ min(��, ��)max(��, ��) 

" =(�
�.�
) 2 − 
@A2 + 
@A  " =(�
�.;) �
�� ! (1 + �) − � 
 

Newbold et al. (2016)scales in one-to-one 
manner with 
@A by Lennon et al. (2001);  

reversed species richness contrast or species 
richness uniformity (T06) 
RST =(∗) 
U+� ≝ 
2 −
��  does not scale with other indices Baselga ( 2012) (* it is labeled as 
U+� in 

Baselga 2010) 
No family under examination (T09) 
>ST ≝ 
3 − 
>2? does not scale with other indices Baselga ( 2012) 
No family under examination (T13) 
&VR ≝ 2min	(�, 	)� + � + 	 ≝ 2min(��, ��) − ��∩��� + �� − ��∩�  

does not scale with other indices Introduced as (one-for-one) replacement and 
labeled "&TA  in Podani & Schmera (2011) 

no phenomenon in consideration 
 
SVR ≝ W<|X#Y|W<X<Y  if � ≠ 0 & � ≠ 	 ≝ �[∩\<|�[#�\|�[<�\#�[∩\  if ��∩� ≠ 0 & �� ≠ �� ≝ 0 if ��∩� = 0 or �� = �� 

 


SVR =(�
�.��) 1 − 
&VR 
if there were not for the 

extra conditions that make 
the index value zero 

Introduced as nestedness and labeled :&TA!  in 
Podani & Schmera (2011) 

no phenomenon in consideration 


&�X ≝ �� + 	 ≝ ��∩���  

 
 
 


&�X = 
�� !  where �� = min	(��, ��) 
else it does not scale with other indices 

Ruggiero et al. (1998) 
Nestedness or reversed turnover depending on 
the direction; �� stands for species richness of 

the approached assemblage if we leave 
assemblage X (T11) 
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〈
�� 〉 ≝ 1O]
�� ,�S
�^�  

〈
�� 〉 =(�
�.��) 1 − 〈
�� ! 〉; 〈
�� 〉 ≅(�
�.��) ` 
arithmetic mean across n Simpson indices as 

introduced in Lennon et al. (2001) (a pair wise 
index); it is labeled simply Sim in literature 

(e.g., Gaston et al. 2007) 
The scaling (12) works for only assemblages 

with a high number of sites (≥ 10) 
reversed Nestedness (T05,T03) 〈
�� ! 〉 ≝ 1O]
�� ,�!S

�^�  
〈
�� ! 〉 =(�
�.��) 1 − 〈
�� 〉; 	〈
�� ! 〉 ≅(�
�.��,��;.��) 1 − `; 〈 =�<=〉 ≅(�
�.�'∗) 〈
�� ! 〉 〈 $�<$〉 

The scaling between 〈
�� 〉 and D works only 
for assemblages with a high number of sites 

(≥ 10) 
Nestedness (T05,T03) 

(*) if 	Nb(〈
�� ! 〉, 〈 $�<$〉) ≅ 0, which is likely 

D Discrepancy 
(defined with an algorithm) 

` ≅(�
�.��) 〈
�� 〉 =(�
�.��) 1 − 〈
�� ! 〉 Brualdi & Sanderson (1999) 
Scaling (T01.12) works only for assemblages 

with a high number of sites (≥ 10) 
Reversed Nestedness (T03) :Uc(d  ≝ 1O]:Uc(d,�S

�^�  

:Uc(d,� ≝ 1− 
�� ,�  if the two 
assemblages vary in their 

species richness; otherwise :Uc(d,� ≝ 0. 

does not scale with other indices 
it would scale with 
�� !  if there was not 

for condition �� = �� 		⇒ :Uc(d = 0 

Almeida-Neto et al. (2008) 
No family under examination (T12) 

:
 Number of gaps 
(defined with an algorithm) 

does not scale with other indices Patterson & Atmar (1986) 
For two assemblages (in this study), :
 ≝ fgh	(X,Y)�W<X<Y  if the two assemblages vary in 

their species richness; otherwise :
 ≝ 0. 
No family under examination (T10) 
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:*  (defined with an algorithm) :*� =(�
�.�;) 1 − 
�$ =(�
�.�
) ijøk� =(�
�.') =�<=  :*� 〈�〉→mnooop(�
�) 2
�� ! − 1  
 

Wright & Reeves (1992), 
For two assemblages (in this study), 

 :*� ≝ �[∩\�[<�\ (standardized as in Gotelli and 

McCabe 2002); :*� ≝ �[∩\#+(�[∩\) Wq(�[∩\)#+(�[∩\) 
(standardized as in Wright & Reeves 1992) :*�, reversed turnover (T02) :*� Nestedness (T04) 
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Theses (theses and proofs): Theses T1-21 state whether or not each index from Table R1 
satisfies the constraints of the spatial phenomena (Figure 3 in Šizling et al. 202X), the conditions 
for i-independnce of the indices, and the scaling between indices within a family and between 
families. The evidences for the theses employ three parameters: �, (the number of shared 
species, ��∩�,), � (the number of species exclusive to the first assemblage, �� − ��∩�), and 	 (the 
number of species exclusive to the second assemblage, �� − ��∩�). The individual arrangements 
in Figure 3 in Šizling et al. (202X), are characterized as follows: � = 0 for the arrangements r3 
and r4; � = 0 in arrangements r1,r2,r5 and r6; � = 0 and 	 = 0 in arrangement r5; and by 	&. < 	&� < 	&� in arrangements r1,r2,r6. 
 
Understanding the evidence for the theses requires a basic knowledge of linear algebra. 
Specifically, one should know: what a system of linear equations is and how it can be converted 

to a matrix (e.g., system: ���s� + ���s� = ��; ���s� + ���s� = ��; the matrix: t��� ������ ��� 	 ∥ 	 ����v); 

the Gauss elimination method; Cramer’s rule and the theorem stating that a nonzero 
determinant indicates a set of mutually independent (in our work, i-independent) equations 
while a zero determinant indicates a set of mutually (i-)dependent equations. Formore details on 
the link between linear algebra and indices of diversity see Box 2 and Box 3 in Šizling et al. 
(202X). 
 
T01 (scaling properties): Relationships between the focal indices obey the equations listed in 
Table R1. The evidence for the relationships is as follows (the numbering ‘1-22’ refers to the 
labels associated with equation marks in Table R1; brackets 〈. 〉 denote a mean value): 

1. � = WY<X<W = W(Y<W)<(X<W)#W = wxyz{|,}~�w}�wxyz{|,}~�w< |�wxyz{|,}~�w# wxyz{|,}~�w = ij����<$��#ij��� . 

2. 
R& = W<X<Y�W<X<Y = �1 + WW<X<Y�#� = ��<=. 
3. 
�ø& = �W�W<X<Y = 2�1 + W<X<YW �#� = 2(1 + �#�)#� = 2 ==<�. 
4. 
��� = W<X<Y(�W<X<Y) �⁄ =(��;.�) 2
R& = 2 ��<=. 
5. 
/0 = 1 − �W�W<X<Y =(��;.') 1 − 
��& = 1 − 2 ==<� = �#=�<=. 
6. 
2 = X<Y�W<X<Y = �W<X<Y#�W�W<X<Y = 1 − �W�W<X<Y =(��;.1) �#=�<=. 
7. 
3 = X<YW<X<Y = W<X<Y#WW<X<Y = 1 − WW<X<Y = 1 − �. 
8. 
�� = fgh	{X,Y~W<fgh	{X,Y~ = W<fgh{X,Y~#WW<fgh	{X,Y~ = 1 − WW<fgh{X,Y~ = 1 − 
�� ! . 

9.  �"(1 + "#� − 
�� ! ) =(�
�.�) 
�� ! 	⇒ �(" + 1 − 
�� ! ∙ ") = 
�� ! ∙ " ⇒	 =�<= = 
�� ! $�<$. 

10. Let � ≤ 	 then " = X<WY<W and thus 
@A = 2 Y#X�W<X<Y = 2 (Y<W)#(X<W)�W<X<Y = 2 (Y<W)(�#$)�W<X<Y = 

= 2(1 − ")��W<X<YW<Y �#� = 2(1 − ") �W<X<W<YW<Y �#� = 2(1 − ")(1 + ")#� = 2 �#$$<�  ⟹ " = �#i���<i��. 
11. 
�� =(�
�.8) 1 − 
�� ! 	⟹	 〈
�� 〉 = 〈1 − 
�� ! 〉 	⟹	 〈
�� 〉 = 〈1〉 − 〈
�� ! 〉 
12. Simulation based evidence (see Figure R2 below). 

13. 
==<� =(�
�.;) 
�� ! $�<$ ⇒ 〈 =�<=〉 = 〈
�� ! $�<$〉 ⇒ 〈 =�<=〉 = 〈
�� ! 〉 〈 $�<$〉 + cov(
�� ! , $�<$). 

Where the i-th values 
�� ,�!  and 
$��<$� are s-independent across all i, cov �
�� ! , $�<$� = 0. 

Nestedness, 
�� ,�!  and species richness uniformity 
$��<$� does not constraint each other (share 

only one sr component of the ��, ��, ��∩�) and are likely s-independent (implying zero 
covariance). However, an ecological driver makes covariance nonzero and then the relationship 
in Table R1 does not work. 
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14. (0 ≤ " ≤ 1	 ⇒ 	0 ≤ $�<$ ≤ 0.5), it follows (0 ≤ $�<$ ≤ 0.5	&	 =�<= =(�
�.;) 
�� ! $�<$⟹ =�<= ≤0.5
�� !  ⇒ � ≤ ij����#ij��� ). 

15. � =(�
�..) �#i��<i� =(���	iRST) �#i���#ij���<i���<ij��. 

16. 
-* ≝ 1 − �[∩\�[<�\ = 1 − � �[<�\#�[∩\�[<�\ = 1 − �
-*  ⇒ 
-* = 1 − �
-*   ⇒ 
-* = ��<=. 
17. 
()*+ ≝ ��[∩\�[<�\#��[∩\ = 2� �[<�\#�[∩\�[<�\#��[∩\ = 2� �1 − �[∩\�[<�\#�[∩\�#� = 2 =�#=. 
18. 
RST ≝ 
2 − 
�� = �[<�\#��[∩\�[<�\ − �[∩\�\ = �[�[∩\#�\�[∩\�\(�[<�\)   = j\� �[∩\#�\�[∩\�\(�[<�\)   = ($��#�)�[∩\�[<�\ . �� ≤ �� is an arbitrary choice without losing generality. 

19. :*� ≝ �[∩\�[<�\ = �[<�\<�[∩\#�[#�\�[<�\ = 1 − �[<�\<�[∩\�[<�\ = 1 − 
�$ . 

20. :*� ≝ �[∩\�[<�\ = �� ��[∩\�[<�\ = ijøk� . 

21. 
>2? ≝ 2 fgh(�[,�\)#�[∩\�fgh(�[ ,�\)#�[∩\ = 2 �#ij����#ij��� = 2 ij���<ij��. 

22. 
SVR + 
&VR ≝(∗) �[∩\<|�[#�\|�[<�\#�[∩\ + 2fgh(�[,�\)#�[∩\�[<�\#�[∩\ =(����q) �[∩\<�[#�\�[<�\#�[∩\ + 2 �\#�[∩\�[<�\#�[∩\ =�[<�\#�[∩\�[<�\#�[∩\ = 1.  (*)=no discontinuity conditions 

 
T02: Jaccard index (J) is consistent with the constraints on reversed turnover. 
Note: All the indices that follow strictly increasing function of J are consistent with the 
constraints on reversed turnover, and all indices that follow a strictly decreasing function of J 
are consistent with the constraints on turnover. For the scaling, see Fig. 5 in Šizling et al. (202X), 
Thesis T01, and Table R1. For a new index, consult Repository RI4: Calculator. 
Evidence: � = WW<X<Y. Here � = 0 in re-arrangements r3 and r4 in Figure 3 in Šizling et al. (202X). 

Hence �{93~ = �{94~ = 0, which excludes the species richness contrast but supports turnover as 
defined in our framework. Additionally, �{91~ < �{92~ < �{96~ < �{95~ in Figure 3 in Šizling et al. 
(202X). Hence, 0 < �{91~ < �{95~ = 1, which supports only the reversed constraints of turnover. 
 
T03: Discrepancy (D) for a high number of sites approaches a function that is consistent with the 
constraints on nestedness. 
Note: Figure R2 shows that more than 10 sites are sufficient to achieve consistency with the 
constraints. 
Evidence: For a small number of sites to compare, index D does not follow any of the focal 
phenomena. This evidence is based on D computed for various pairs of sets (M1 = M2 = 15, 
M3=10, M4 = M5 = M6 = M7 = M8 = M9 = M10 =M11=5, and M12=4.). The rough (non-
standardized) Discrepancy is defined as the minimum number of incidences that must be shifted 
along rows of an incidence matrix (rows represent sites; columns represent species) to achieve 
absolutely nested assemblages (Brualdi and Sanderson 1999). This definition simplifies to 
‘min(��, ��) − ��∩�’ for two assemblages. Index D is standardized by the number of incidences 
within the focal matrix, thus ` = min(��, ��) − ��∩� (�� + ��)⁄  in the case. The computed order 
is therefore 0 = `{91~ = `{92~ = `{95~ = `{96~ < `{93~ < `{94~ = 0.5. The equality `{91~ = `{95~ excludes species richness contrast, nestedness, and turnover, and the inequality `{93~ < `{94~ excludes nestedness, but not contrast. However, if the number of sets is large 
enough (simulations suggest more than 30 simulations), the standardization by the number of 
incidences begins to work properly and the index D will scale with the indices of nestedness 
(Figure R2 below). We demonstrate the reason using two extreme cases: with maximum and 
minimum possible D. The Discrepancy of an absolutely nested matrix is by definition zero (no 
shift of incidences is needed). Maximum Discrepancy occurs in a matrix where almost all 
incidences (except the incidences of one site) must be shifted to gain an absolutely nested 
matrix. The Discrepancy of an absolutely non-nested matrix (where each site has its unique set 
of species) is then computed as the total species richness (sum across all sites) of species that 
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has to be shifted (i.e., excluding one of the most species rich sites). This equals  ∑ ����2TR�^� −��s�^���2TR{��~, where �� is the species richness of the i-th site. It is standardized by the number of 

incidencies, i.e., ∑ ����2TR�^� . Hence, ` = ∑ ��j����� � # Wq� �j����{��~∑ ��j����� � = 1 −  Wq� �j����{��~∑ ��j����� � , which approaches one 

if ��s�^���2TR{��~ ≪ ∑ ����2TR�^� . This is the case of practically all datasets with large numbers of sites, 
and therefore ` ≅ 1 can be attributed to absolutely non-nested multisite assemblages. It is 
apparent that all matrices between these two extremes have D values between 0 and 1. The 
condition ��s�^���2TR{��~ ≪ ∑ ����2TR�^�  might only be violated if the maximum species richness was 
high and species richness of the other sites was extremely small, which is unlikely. Simulations 
show a one-to-one scaling of D with Simpson beta (non nestedness) for matrices of 30 and 100 
sites (Figure R2). 
 
T04: :* , standardized as in Wright & Reeves (1992)  (here labeled :*�; labeled as C in Wright & 
Reeves 1992) approaches i-dependence on Simpson beta as Species Richness approaches infinity. :*� is i-dependent on species richness. 
Note: N£� is thus consistent with the constraints on Nestedness. 

Evidence: :*� ≝ �[∩\#+(�[∩\)f¤¥(�[∩\)#+(�[∩\), where max(��∩�) = �� if we put �� ≥ ��, and E() stands for 

expectance. So, E(��∩�) = �<⋯<�\�\ = �\<�� . Hence :*� = ��[∩\#�\#��\#� . In general,	:*� =�&�[∩\#&�\#�&�\#�  , where 9 > 0 emulates variation in species richness. Apparently, :*� is i-dependent 

on r, and lim&→m:* = 2 �[∩\�\ − 1 = 2
�� ! − 1. 

 
T05: Simpson beta 
��  and 
>2? are consistent with the constraints on reversed nestedness and 
�� !  is consistent with the constraints on nestedness. 
Note: The evidence is done for 
�� . For the strictly increasing function of 
>2? with 
�� , and the 
strictly decreasing function of 
�� !  with 
��  see Fig. 5 in Šizling et al. (202X), Thesis T01, and 
Table R1. 

Evidence: 
�� = fgh{X,Y~W<fgh{X,Y~. 
�� {93~ = 
�� {94~ = 1 because � = 0 in these cases; 
�� {91~ =
�� {92~ = 
�� {95~ = 
�� {96~ = 0 because one of the variables �, 	 equals zero and � ≠ 0 in 
these cases. All the indices are continuous and none of them depends on max	(�, 	). For scaling 
between 
>2?, 
�� !  and 
��  see (T01.8, T01.21 and Figure 5 in Šizling et al. 202X). 
 
T06: 
@A and " are consistent with the constraints on species richness contrast and species richness 
uniformity (i.e., reversed species richness contrast), respectively. 
Evidence: R is the ratio of minimum to maximum species richness. Hence "{91~ = "{93~ <"{92~ < "{96~ < "{94~ = "{95~ = 1. R is therefore inversely related to species richness contrast, 
representing species richness uniformity.  
@A scales negatively with R, (see T01.10). 
 
T07: 
SVR is inconsistent with the constraints on nestedness, turnover or species richness contrast. 
Evidence: If we ignore the extra conditions that make 
SVR discontinuous (i.e., 
SVR if ��∩� = 0 
or �� = ��) then 0 = 
SVR{94~ < 
SVR{93~ < 
SVR{95~ = 
SVR{96~ = 
SVR{92~ = 
SVR{91~ = 1, 
where r1,…,r6 are re-arrangements of two assemblages defined in Figure 3 in Šizling et al. 
(202X). The inequality 
SVR{94~ < 
SVR{93~ excludes nestedness, the equality 
SVR{92~ =
SVR{91~ excludes the species richness contrast, and the equality 
SVR{92~ = 
SVR{91~ excludes 
turnover. 

If we add the condition: “
SVR = 0 if ��∩� = 0” (the variant of the index under discussion 
in Šizling et al. 202X, which is labeled :&TA  in Podani and Schmera 2011), then the relations 
become 0 = 
SVR{94~ = 
SVR{93~ < 
SVR{95~ = 
SVR{96~ = 
SVR{92~ = 
SVR{91~ = 1. This again 
excludes species richness contrast and turnover, but it agrees with the constraints on 
nestedness (Figure 3 in Šizling et al. 202X). This is only due to the extra condition, so if we 
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consider that indices must follow the requirement of continuity, the 
SVR does not capture the 
nestedness. However, there is another reason why 
SVRdoes not capture the experience of 
nestedness. The constraints :{91~ = :{92~ implies independence of nestedness from the species 
richness of the richer assemblage. If we violate this condition where there is an overlap between 
the assemblages (i.e., ��∩� > 0), then we are inconsistent with the constraint :{91~ = :{92~ 
(Figure 3 in Šizling et al. 202X). The intuition is that if we enter the sea, then the fraction of how 
much we are immersed does not depend on the size of the sea. It is easy to see that 
SVR ≝2(�� − ��∩�) (�� + �� − ��∩�)⁄  changes with changing �� (= max	(��, ��)), which excludes 
nestedness (arbitrarily without loss of universality �� ≤ ��). 

If we add the condition: “
SVR = 0 if ��∩� = 0 or �� = ��” (this variant of the index that is 
labeled :&TA!  in Podani and Schmera 2011) then the relations turn into 0 = 
SVR{94~ =
SVR{93~ = 
SVR{95~ = 
SVR{96~ = 
SVR{92~ = 
SVR{91~ = 1. Again, the equality 
SVR{93~ =
SVR{95~ excludes nestedness, the equality 
SVR{92~ = 
SVR{91~ excludes the species richness 
contrast, and the equality 
SVR{92~ = 
SVR{91~ excludes turnover. 
 
T08: Index 
&VR is inconsistent with the constraints on nestedness, turnover and species richness 
contrast. The index 
&VR is also inconsistent with the concept of One-for-One Replacement. 
Evidence: The relations for 
&VR are reversed to the relations for 
SVR where no extra conditions 
that make the index discontinuous are considered (i.e., 0 = 
&VR{94~ < 
&VR{93~ < 
&VR{95~ =
&VR{96~ = 
&VR{92~ = 
&VR{91~ = 1), for 
&VR = 1 − 
SVR in this case (T01.22). Therefore, the 
reasoning for nestedness, species-richness contrast, and turnover follows the evidence T07 
above.  In the case of one-for-one replacement, there is a constraint "{94~ = "{93~ on the one-
for-one replacement that follows the point of Podani & Schmera (2011). The inequality 
&VR{94~ < 
&VR{93~ therefore excludes one-for one replacement. Because the numerator of 
&VR 
for r3 equals the numerator of 
&VR for r4, the problem is introduced by denominator (i.e., 
standardization of the index with �� + �� − ��∩�). One may argue that the one-for-one 
replacement of r3 differs from one-for-one replacement of r4, and thus the inequality 
&VR{94~ < 
&VR{93~ does not disqualify 
&VR as a measure of the one-for-one replacement. In this 
case, however, there should be a difference between 
SVR(�� = 8, �� = 20, ��∩� = 1) and 
SVR(17,20,10), but 
SVR(8,20,1) = 
SVR(17,20,10) (Figure 1 in Šizling et al. 202X). 
 
T09: Nestedness by Baselga (
RST) is inconsistent with the constraints on nestedness, turnover and 
species richness contrast. 

Evidence: 
RST = X<Y�W<X<Y − fgh	(X,Y)W<fgh	(X,Y). For re-arrangements r1 and r2 in Figure 3 in Šizling et al. 

(202X), 
RST{91~ < 
RST{92~, because 
�� {91~ = 
�� {92~ = 0, � = 0, 	&� < 	&�, and � does not 
vary between these two cases. This excludes nestedness. 
RST{95~ = 
RST{93~ = 0, because � = 	, 
which excludes turnover. 
RST{91~ > 
RST{93~ = 0, which excludes species richness contrast 
(
RST{93~ = 0, because � = 0; and (
RST{91~ > 0, because �MO(�, 	) = 0 and � ≠ 	). 
 
T10: Number of gaps (:
) is inconsistent with the constraints on nestedness, turnover and species 
richness contrast. 
Evidence: This evidence is based on :
 indices computed for various pairs of sets (M1 = M2 = 
15, M3=10, M4 = M5 = M6 = M7 = M8 = M9 = M10 =M11=5, and M12=4.). The computed order is 0 = :
{91~ = :
{92~ = :
{94~ = :
{95~ = :
{96~ < :
{93~ = 0.3 for the index that was 
standardized by number of incidences within the focal matrix. This matches no experience of the 
five spatial phenomena. 
 
T11: The Ruggiero index of beta-diversity  (
$�X) is consistent with the constraints on reversed 
turnover or nestedness depending on the direction. 
Evidence: The index rib depends on the order of the focal assemblages. It is defined as 
$�X = WW<Y, where c captures either the first or second assemblage. In our case, 0 = 	&1 < 	&. <
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	&� < 	&� and �&1 = �&. = �&� = �&�. Hence, 0 < 
$�X{91~ < 
$�X{95~. At the same time 0 = 
$�X{93~ < 
$�X{94~, because � = 0 in these cases. The index 
$�X thus captures reversed 
turnover. If we replace b with c, then 
$�X{91~ = 
$�X{92~ = 
$�X{96~ = 
$�X{95~ = 1, because c=0 
in these cases. The index rib therefore captures nestedness in the case. 
 
T12: Nestedness by Almeida-Neto et al. (2008) (:Uc(d) would be consistent with the constraints 
on nestedness if we ignored the condition that �� = �� 	⟹	:Uc(d = 0. 
Evidence: Where assemblages differ in their species richness, :Uc(d equals 
�� !  from the 
Simpson beta family, which is an index of nestedness. Where assemblages have equal species 
richness :Uc(d = 0. If we accepted that two equal sized assemblages are not mutually nested 
(:¬`­(95) = 0, but :¬`­(96) = 1), then :Uc(d would be an index of nestedness. However, 
our framework excludes this possibility. 
 
T13: The Nestedness resultant component of Jaccard dissimilarity (
>ST) is inconsistent with the 
constraints on nestedness, turnover or species richness contrast. 
Evidence:  This evidence is based on :
 indices computed for various pairs of sets (M1 = M2 = 
15, M3=10, M4 = M5 = M6 = M7 = M8 = M9 = M10 =M11=5, and M12=4.). The computed order is 
>ST{93~ = 
>ST{94~ = 
>ST{95~ = 0, 
>ST{96~ = 0.2, 
>ST{92~ = 0.5, and 
>ST{91~ ≅ 0.7. The 
equality 
>ST{94~ = 
>ST{95~ excludes nestedness and turnover, and tha equality 
>ST{93~ =
>ST{94~ excludes species richness contrast. 
 
T14: An algorithm to compute Jaccard similarity and Simpson nestedness from two i-independent 
indices if one of the indices is partitioned. 
The algorithm: Let  ®� = 0�w�[∩\<0¯w�[<0°w�\±�w�[∩\<±¯w�[<±°w�\ + 0�|�[∩\<0¯|�[<0°|�\±�|�[∩\<±¯|�[<±°|�\ = ®W + ®X  

(if index ®X is subtracted the ²�X coefficients are multiplied by ‘−1’) 
and ®� = 0�¯�[∩\<0¯¯�[<0°¯�\±�¯�[∩\<±¯¯�[<±°¯�\  . 

 
Then the triple ®W, ®X, and ®� are necessarily i-dependent. Thus 

³´µ ¶®W·�W − �̧W ®W·�W − �̧W ®W·'W − '̧W®X·�X − �̧X ®X·�X − �̧X ®X·'X − '̧X®�·�� − �̧� ®�·�� − �̧� ®�·'� − '̧� ¹ ≡ 0. 

®�, and ®� are known (®� = ®W + ®X), so 
 

³´µ ¶(®� − ®X)·�W − �̧W (®� − ®X)·�W − �̧W (®� − ®X)·'W − '̧W®X·�X − �̧X ®X·�X − �̧X ®X·'X − '̧X»� »� »' ¹ ≡ 0  

where »� = ®�·�� − �̧�. 
 
After expansion 
 ®X� ±̀± − ®X(®� ±̀± − `0± + `±0) + ®� ±̀0 −`00 = 0, 
 

where `±± = ³´µ ¶·�W ·�W ·'W·�X ·�X ·'X»� »� »' ¹; `00 = ³´µ ¶
�̧W �̧W '̧W�̧X �̧X '̧X»� »� »' ¹; `±0 = ³´µ ¶

·�W ·�W ·'W�̧X �̧X '̧X»� »� »' ¹;  
 

and `0± = ³´µ ¶ �̧W �̧W '̧W·�X ·�X ·'X»� »� »' ¹. 
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Having ®X, we can pick up two i-independent indices and then use the algorithm from Box 3 in 
Šizling et al. XXXX to compute any dimensionless index. 
This solution works only if the indices ®W, ®X are mutually i-independent, the indices ®W, ®� are 
mutually i-independent, and the indices ®�, ®X are mutually i-independent (together they are 
always i-dependent). If any pair of indices is mutually i-dependent, the solution is simpler: 
convert the i-dependent indices to an index from their family (Table R1) and then follow the 
algorithm from Box 3 in Šizling et al. XXXX. 
 
T15: Symmetric and linear indices with equal denominators are i-dependent.  
That is: Let us have two indices that are defined as  ®¼ ≝ ½�¾¿�(�[∩\)<½¯¾¿̄ (�[)<½°¾¿°(�\)A�¾¿�(�[∩\)<A¯¾¿̄ (�[)<A°¾¿°(�\) , (²�¼#'¼, À�#' ∈ Â),|À�¼| + |À'¼| > 0  (T15.1) 

®i ≝ ½�Ã¿�(�[∩\)<½¯Ã¿̄ (�[)<½°Ã¿°(�\)A�Ã¿�(�[∩\)<A¯Ã¿̄ (�[)<A°Ã¿°(�\) , (²�i#'i , À�#' ∈ Â),ÄÀ�iÄ + ÄÀ'iÄ > 0  (T15.2) 

where Å�(Æ) are strictly increasing or strictly decreasing functions from Â< to Â<, and ²�¼ =²'¼,	²�i = ²'i, and À�¼ = À�¼, À�i = À�i,  
then (À�¼ = À�i & À�¼ = À�i) ⇒ ®¼ is i-dependent on ®i. 
Note 1: if Å�(Æ) = Æ, ∀Æ ∈ È, then Eqs. T15.1 and T15.2 turn into Eq. 8 in Šizling et al. 202X. 
Note 2: It follows that two asymmetric indices with equal denominators are i-independent. 
Note 3: The symmetry required here is a stronger form of symmetry as it necessitates symmetry 
in both the numerator and denominator separately. For example, the index R is not a symmetric 
index according to this theorem. 
Evidence:  

ÉIL ¶®¼À� − ²�¼ ®¼À� − ²�¼ ®¼À' − ²'¼®iÀ� − ²�i ®iÀ� − ²�i ®iÀ' − ²'i0 1 1 ¹
= (®¼À� − ²�¼)Ê®iÀ� − ²�iË + (®¼À' − ²'¼)Ê®iÀ� − ²�iË − (®¼À� − ²�¼)Ê®iÀ' − ²'iË− (®¼À� − ²�¼)Ê®iÀ� − ²�iË= ®¼ �²�i(À� − À') + À�Ê²'i − ²�iË� + ®i(À�(²�¼ − ²'¼) + ²�¼(À' − À�))+ ²�¼Ê²�i − ²'iË + ²�i(²'¼ − ²�¼) 

Therefore determinant is zero (i.e., indices are i-dependent) If À� − À' = 0 & ²'¼ − ²�¼ = 0 & ²'i − ²�i = 0. 
 
T16: (species rich and poor assemblages): The variation of �V��& = 2〈�〉"/(1 + ") indicates 
inevitable change in richness of the species poorer assemblage, and the variation of �&�Y� =2〈�〉/(1 + ") indicates inevitable change in the richness of the species richer assemblage. 
Evidence: The evidence is based on the solution of the system of three equations for �, 
�� !  and 〈�〉. See Box 2 in Šizling et al. 202X. If ��, ��, and ��∩�are mutually i-independent, the system 

follows ¶� � −� − 10 
�� ! −11 1 0 ∥ 002〈�〉¹~ Î
� � −� − 10 
�� ! −10 0 � + 1 ∥

002�〈�〉Ï ⇒ ��∩� = 2〈�〉 ==<� & �� = �[∩\ij���  & 

�� = (=<�)�[∩\#=�\= . It follows that �� = 2〈�〉 =(=<�)ij��� =(+Ð.�) 2〈�〉 $�<$. The last equality follows 

from Eq. 2. Finally, �� = �〈�〉=#�〈�〉= ����= = 2〈�〉 �1 − $$<�� = �〈�〉$<� = �\$ . Because 0 < " ≤ 1, then �� ≤ ��, and we relabel �V��& ∶= �� and �&�Y� ∶= ��. If ��, ��, and ��∩�are mutually i-dependent, 
then 
�� ! = 1 or " = 1 and the derived equations for �V��& and �&�Y� remain valid. 
 
T17: Jaccard index (J) is consistent with conceptual predefinition of co-occurrence if applied to 
more sites occupied by two species instead of more species that belong to two assemblages. 
Evidence:  If we consider the Venn diagrams in Figure 3 (Šizling et al. 202X) to show two species 
ranges (sets of occupied sites), then the constraints on Co-occurrence follow:  Min = Co{r4~ = Co{r3~ < Co{r1~ < Co{r2~ < Co{r6~ < Co{r5~ = Max. 
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Because 0 = �{r4~ = �{r3~ < �{r1~ < �{r2~ < �{r6~ < �{r5~ = 1, the evidence is completed. 
 
T18: The system of Eq. 10 and Eq. 11 in Šizling et al. (202X) is mutually i-independent if ��∩� ≠ 0 and �� ≢ �� ≢ ��∩� ≢ ��. 
Evidence: If ��, ��, and ��∩�are mutually i-independent, then the system follows    

¶� � −� − 10 
�� ! −11 1 0 ∥ 002〈�〉¹~ Î
� � −� − 10 
�� ! −10 0 � + 1 ∥

002�〈�〉Ï. If � ≠ −1 and � ≠ 0 and 〈�〉 ≠ 0 (mean 

S), this matrix provides a unique and non-trivial (i.e., non-zero) solution of the system. 

Alternatively, ³´µ Î� � −� − 10 
�� ! −10 0 1 + � Ï = �(1 + �) ∙ 
�� ! ≠ 0, if �, 
�� ! ≠ 0. Since 	��∩� ≠ 0 implies 

� ≠ 0, 
�� ! ≠ 0, and 〈�〉 ≠ 0, it follows that 2�〈�〉 ≠ 0 and the solution is not trivial (it is non 
zero). As an alternative, the last scaling equation can be replaced with �� + �� − ��∩� = ��c� 
where ��c� is species richness of both sites. If the condition ‘��∩� ≠ 0 and �� ≢ �� ≢ ��∩� ≢ ��’ 
is violated, then each index definition is a linear function of two variables and thus two 
equations are enough to get a unique solution, making one of the equations i-dependent on the 
others. 
 
T19: (i-dependence of three indices): If ��∩� ≠ 0 (i.e., � ≠ 0), then the value of any index defined by 
Eq. 8 in Šizling et al. (202X) can be computed from values of Jaccard index (J) and Simpson 
nestedness (
�� ! ) using 
 ® = =(ij��� (½�<½¯)#½¯<½°)<ij��� ½¯=(ij��� (A�<A¯)#A¯<A°)<ij��� A¯ .    (Equation 12 in Šizling et al. 202X) 

 
Evidence: Consider arbitrary �� ≤ ��. Then ��∩� ≠ 0	 ⇒ 	�� ≠ 0	 ⇒ 	�� ≠ 0. The new index is 

defined as ® = ½��[∩\<½¯�[<½°�\A��[∩\<A¯�[<A°�\  (|À�| + |À'| > 0 & |²�| + |²'| > 0), which is the definition Eq. 8 in 

Šizling et al. (202X). The Eq. 12 results as a solution of the determinant equation 

ÉIL Ö −� −� � + 10 
�� ! −1®À� − ²� ®À' − ²' ®À� − ²�Ö = 0. The proof of the i-independence follows the reverse 

logic. (i) substitute definitions of � and 
�� !  into Eq. 12, (ii) convert Eq. 12 into the third equation 
of the system of linear equations and (iii) show that the determinant equals zero. In the same 
way is proved the equation for triplets ®, �, " and ®, 
�� ! , ". In these cases the restriction ��∩� ≠ 0 is replaced with �� ≠ 0. 
 
T20: If Šizling et al. (2016) published only two partitioned indices (
RST, 
SVR) then the referred 
information would be unequivocal. 
Evidence: When we convert the indices reported by Šizling et al. (2016) into two partitioned 
indices, we got 
RST = 0.1, 
SVR = 0.61 for the pre-agricultural landscape, and 
RST = 0.00, 
SVR = 0.51 for early agricultural landscape. These indices suggest: �� ≅ 31.01, �� ≅ 22.99, ��∩� ≅ 15.48 or �� ≅ 41.63, �� ≅ 12.37, ��∩� ≅ 2.28 for pre-agricultural landscape; and �� ≅ 32.00, �� ≅ 32.00, ��∩� ≅ 21.60 or �� ≅ 48.32, �� ≅ 15.68, ��∩� ≅ 0.00 for early 
agricultural landscape (thesis T14 or Repository R4: calculator). This can be interpreted as 
either increasing species richness uniformity (" increases from 0.74 to 1), or decreasing species 
richness uniformity (" decreases from 0.74 to 0.32) species richness uniformity. This dual 
interpretation precludes any correct conclusion. 
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T21: Any dimensionless index of turnover (defined by the constraints in Fig. 3) must have both �� 
and �� in its denominator. 
Evidence: Dimensionless indices are ratios with numerators and denominators. Accurate 
measurement of turnover requires that information on both assemblages ��, and �� be 
represented to capture their interaction fully. Including only one of ��, or �� in the denominator 
while having both in the numerator creates an index without an upper limit. This contradicts the 
required bounded nature of the index, as specified by the constraints T{r4~ = T{r3~ = Max in Fig. 
3. 
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FIGURE R2 (average values): Relationships between indices of nestedness computed for more 
assemblages as simulated (30 sites x 30 species – black dots; 100 sites x 100 species – blue dots) 
and observed (red dots, R6 - data description). Matrices were generated to cover a wide 
spectrum of assemblages (see simulation details below). Indices include D  (discrepancy by 
Brualdi & Sanderson, 1999); 〈�M�〉 (simple mean of the Simpson index across all pairs of 
adjacent plots; Lennon et al., 2001); and 〈9:〉 ≡ 〈
�� ! 〉 (simple mean of nestedness as defined in 
Šizling et al., 2009); D, was standardized by dividing with the total number of incidences within 
the focal matrix (Greve et al., 2005). The indices scale with each other in a one-to-one manner, 
belonging to the same family and measuring the extent of nestedness. For exact evidence, see 
theses T03, and T05. 
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a)      b) 

 
 
FIGURE R3 (interrelated assemblages): Relationship between pairwise indices where there is 
no contrast in species richness (a) and where assemblages are perfectly nested (b). As predicted, 
no contrast in species richness merges families of �, and 
��  together, and perfect nestedness 
merges families of �, 
RST, and 
@A together.  The evidence that 
RST shows variability where 
nestedness is perfect disqualifies this measure from being a proxy for nestedness component. 
Black rectangles delimit the merged families. For a detailed legend, see capture to Figure 5 in 
Šizling et al. 202X. 
 
The random points for Fig. R3 and Figs 5,6 in Šizling et al. (202X) follow ��∩� = "OÉ(1) ∗ (1 −E), �� = ��∩� + L9KO	(100 ∗ (1 − :) ∗ "OÉ(1))/100, �� = E9KO	(100 ∗ ("OÉ(1) ∗ (min(1, �� +Ø) −max(0, �� − Ø)) +max(0, �� − Ø))/100. E, :, Ø ∈ 〈0,1〉 where T=1 indicates no shared 
species richness; T=0 indicates all possible overlaps in species richness; N=1 indicates absolute 
nestedness; N=0 indicates that nestednes is not constrained; C=1 indicates unlimited species 
richness contrast; C=0 indicates no species richness contrast; G=0.2 indicates a maximum 20% 
variation in the difference between species richness of the sites. In particular, T=0, N=0, C=1 
(Figure 5 in Šizling et al. 202X); T=0, N=0, C=0.2 (Figure 6); T=0, N=0, C=0 (Figure R3A); T=0, 
N=1, C=1 (Figure R3B in Šizling et al. 202X). 
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FIGURE R4 (Multisite Version of Eq. 2 in Šizling et al., 202X): The accuracy of the 
approximate Eq. 2 applied to mean values across multiple pairs of sites follows thesis T01.13. 
The exact equality between the X-values and Y values in the plot is affected by the covariance 
between 
�� !  and " (1 + ")⁄ , which is expected to be nearly zero. The figure shows the extent to 
which this expectation is met for simulated (30 sites x 30 species – black dots; 100 sites x 100 
species – blue dots) and observed (red dots) multiple-site assemblages (R6 data description and 
RI2: Data). The y-axis shows the left side of the equation (i.e., the mean reversed turnover; 〈� (� + 1)⁄ 〉), and the x-axis shows the right side of the equation (i.e., the product of the mean 
values of nestedness, 〈
�� ! 〉 and species richness uniformity 〈" " + 1⁄ 〉). The points approach an 
identity line, showing that the covariance approaches zero as expected. The 30x30 and 100x100 
assemblages were produced by the algorithm adopted from Šizling et al. (2009). 
 
Šizling, A.L., E. Šizlingová, D. Storch, J. Reif and K. J. Gaston. 2009. Rarity, commonness, and the 

contribution of individual species to species richness patterns. American Naturalist, 
174:82-93. 
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R5 (i-independence of and s-dependence on species richness): 
The Jaccard index (J), and thus all the indices that scale one-to-one with J (Figure R5), has been 
referred to as ‘dependent’ on species richness (Simpson, 1943; Lennon et al., 2001; Koleff & 
Gaston, 2002; Baselga, 2010a) and on the contrast between species richness of two assemblages 
(Simpson, 1943). This has led to a search for an index that is species richness ‘independent’, and 
to attempts to modify J, so that ecologists could compare assemblages that varied in species 
richness. This s-dependence between J and species richness was based on empirical experience 
(Koleff & Gaston, 2002), and on arguments that there are bounds on the J imposed by contrast in 
species richness (Simpson, 1943).  

We found that all dimensionless (unitless) indices, including J, are i-independent of 
species richness. For all indices that can be expressed by the universal definition (Eq. 8 in Šizling 
et al. 202X) it holds that 
 ® ≝ ½��[∩\<½¯�[<½°�\A��[∩\<A¯�[<A°�\ = ½�Ù�[∩\<½¯Ù�[<½°Ù�\A�Ù�[∩\<A¯Ù�[<A°Ù�\ , (Ú ≠ 0)     (Eq. R5) 

 
and thus the index does not change when ��, ��, and ��∩� scale proportionally to each other. In 
this case, the index has the same value regardless of species richness, and thus it is not uniquely 
determined by species richness. Any observed s-dependence between the dimensionless index 
and species richness is therefore caused by disproportional scaling between ��, �� or ��∩�. 

Disproportional scaling can, however, appear at sites with small species richness 
because species richness is an integer. In this case, the frequency distribution of possible J values 
is affected by total species richness. This in turn affects the most likely value of J, imposing its s-
dependence on species richness. The reason is that the Jaccard index can only have a finite 
number of values. For example, if �� = 1 then � = 1, 1 2⁄ , 1 3⁄ , 1 4⁄ ,… , 0, accumulating possible 
values below 1/2. �� = 2 then allows for 2/3, which is above 1/2, �� = 3 allows for 3 4⁄ > 2 3⁄  
and so on. Further computation of possible J values for increasing �� (Figure R5) shows an 
increasingly even distribution of J-values. This mechanisms works for any index that can be 
expressed by Eq. 8 in Šizling et al. (202X), and the effect cannot be eliminated by inventing a new 
dimensionless index. 

 

 
 
FIGURE R5: Rank plot of the first fifty values that can reach Jaccard index if �� is fixed and �� 
and ��∩� vary within their limits (1 ≤ �� < ∞ and 0 ≤ ��∩� ≤ min	(��, ��)); the three 
distributions on display correspond to �� = 1 (circles), �� = 2 (squares) and �� = 3 (triangles). 
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R6 (data description): 
For comparison with the results from the artificial (simulated) data, we also plotted observed 
values of the indices. This allows us to identify relationships that are mathematically possible 
but may be rare or absent in nature. These observations consisted of three different datasets: a 
set of 29 microbial assemblages extracted from cryoconite on the Greenland Ice Shield, a set of 
24 arctic plant assemblages (4 from Greenland, and 20 from Svalbard), and a set of 20 temperate 
zone plant assemblages (10 from the Czech Republic, and 10 from Southern Norway). The 
microbial assemblages were sampled by J.Ž. and A.Š, and processed by J.Ž. Plant assemblages 
were sampled by A.L.Š., Eva Šizlingová and E.T (see Dataset RI.2). 
 A list of plant species found in a 10x10 m area was recorded. The data are nested in the 
sense that the assemblages are grouped so that each group of five assemblages is located within 
a 1km diameter circle.  For the purposes of this analysis, only Genera were used. 
 Microbial assemblages were sampled at 300 m intervals along two lines on the western 
margin of the Greenland Ice Sheet in the vicinity of Kangerlussuaq. Sampling and sample 
processing procedures followed Cameron et al. 2016. Here we use data inferred from 
environmental RNA using Illumina amplicon sequencing to detect the active part of the 
microbial assemblage. Processing of the sequencing output was performed using the QIIME2 
environment (Bolyen et al., 2019), filtering for sequences present at least three times in the 
whole dataset, and rarefaction to the sampling depth of 5000 features per sample. This resulted 
in the exclusion of 7 samples out of 36 that had fewer features than the sampling depth. The 
remaining samples were used for the diversity analysis. 
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