
Anoma Research Topics | TECHNICAL REPORT

Heterogeneous Paxos 2.0: the Specs
Aleksandr Karbyshev a and Isaac Sheff a

aHeliax AG

* E-Mail: aleksandr@heliax.dev, isaac@heliax.dev

Abstract
We introduce Heterogeneous Paxos 2.0, a modified version of Heterogeneous Paxos. Simi-
lar to the original, our assumptions and guarantees remain consistent; however, our new
version simplifies the algorithm logic, reduces bandwidth usage, and enables a more effi-
cient implementation.

Keywords: heterogeneous Paxos ; distributed algorithm ; consensus ;

(Received Jun 17, 2024; Version: Jun 27, 2024)

Contents

1 Introduction 1
1.1 Broadcast Primitive . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 2a Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 One Message In, at Most One Message Out . . . . . . . . . . 2
1.4 Byzantine Behavior Detection . . . . . . . . . . . . . . . . . 2

2 Specification 3
2.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Learner Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Protocol Message Structure . . . . . . . . . . . . . . . . . . . 4
2.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Protocol Properties . . . . . . . . . . . . . . . . . . . . . . . 8
2.7 Mailbox Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Future Work 9

References 9

1. Introduction
We present a modified version of Heterogeneous Paxos protocol [SWvRM20].
Our assumptions and guarantees are similar to those of the original, but our
new version simplifies algorithm logic, reduces communication complexity,

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 1–9

https://art.anoma.net
https://dx.doi.org/10.5281/zenodo.12572558


and allows for a more efficient implementation. This new version, Heteroge-
neous Paxos 2.0, is formally specified in TLA+ [Lam02] in the Typhon repos-
itory [Ano], but here we attempt to explain the protocol in more reader-
friendly terms.

Our new protocol results from several distinct improvements to the origi-
nal Heterogeneous Paxos. Applied together, they are Heterogeneous Paxos
2.0. The remainder of this introduction describes the main improvements.

1.1. Broadcast Primitive
We assume a broadcast primitive, which sends each message to each accep-
tor and learner. For liveness, this primitive must provide the guarantee that
each message received by one honest (safe and live) acceptor is eventually re-
ceived by all acceptors. To guarantee this, the original Heterogeneous Paxos
had each acceptor echo well-formed messages to all other acceptors.

Instead, we leave the exact implementation of broadcast out of the Het-
erogeneous Paxos 2.0, allowing multiple possible implementation options.
While echoing all messages would work, so would (for example) explicitly
requesting unknown refs from a received message, which would (likely) re-
quire much less bandwidth.

1.2. 2a Messages
Instead of sending a 2a message (Section 2.3) for each learner [SWvRM20],
we send a single 2a with a set of learners. Conceptually, this is similar to
sending a set of 2amessages, but in practice, it is more efficient, both to send
and to track with refs (Section 2.3).

1.3. One Message In, at Most One Message Out
With the broadcast primitive and the 2a messages, we can substantially sim-
plify our protocol: In fact, we can remove all recursion and broadcast at most
one message for each message received. This entails another minor change:
instead of each actor receiving its own message in the same atomic action
that it sends it (messages are broadcast, so actors receive their own mes-
sages), they receive them in some future action, just like any other message.
This change, in turn, may increase implementation efficiency by breaking
up atomic actions into smaller schedulable pieces.

1.4. Byzantine Behavior Detection
Each message specifies the previous message from the same sender (Sec-
tion 2.3). This makes it much easier to detect certain kinds of Byzantine
behavior: two messages referencing the same parent form a proof of mis-
behaviour. In contrast, the original protocol called for comparing transitive

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 2

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


history sets [SWvRM20]. This change makes detecting Byzantine behaviour
much easier to implement without sacrificing any guarantees.

2. Specification
2.1. Network Model
We assume the closed-world distributed system consisting of a fixed finite set
of acceptorsA, a fixed finite set of proposers P and a fixed finite set of learners
L. The learners are uniquely identified by their learner IDs. We denote by
S ⊆ A a set of safe, non-Byzantine, acceptors that follow the protocol.

We assume that message broadcast is reliable, i.e., every message sent or
received by a correct (safe and live) actor is eventually received by all live
actors. The delivery order of sent messages does not have to be preserved.

2.2. Learner Graph
We use the notion of learner graph introduced in [SWvRM20]. We recap its
formal definition below.

Let L be a fixed finite set of learners, and A a fixed finite set of acceptors.

• Nodes of learner graph are elements 𝛼 ∈ L.

• Each learner 𝛼 is labelled with a set 𝑄𝛼 . The elements of 𝑄𝛼 are quo-
rums 𝑞 ⊆ A. We assume that each 𝑄𝛼 is closed upwards, i.e., for any
𝑞′ ⊇ 𝑞 ∈ 𝑄𝛼 , we have 𝑞′ ∈ 𝑄𝛼 .

• For any pair 𝛼, 𝛽 ∈ L, there is a graph edge labelled with a set of
quorums, 𝛼−𝛽 , called a safe set of 𝛼 and 𝛽 . We assume that any safe
set 𝛼−𝛽 is closed upwards, i.e., for any 𝑞′ ⊇ 𝑞 ∈ 𝛼−𝛽 , we have 𝑞′ ∈ 𝛼−𝛽 .

• The graph is undirected, i.e., 𝛼−𝛽 = 𝛽−𝛼 .

Definition 1 (Condensation). We say that the learner graph is condensed if
for all 𝛼, 𝛽,𝛾 ∈ L

𝛼−𝛽 ∪ 𝛽−𝛾 ⊆ 𝛼−𝛾
Definition 2 (Validity). We say that the learner graph is valid if for any 𝑠 ∈
𝛼−𝛽 , 𝑞 ∈ 𝑄𝛼 , and 𝑟 ∈ 𝑄𝛽 we have 𝑠 ∩ 𝑞 ∩ 𝑟 ≠ ∅.
Definition 3 (Entanglement). We say that learners 𝛼 and 𝛽 are entangled if
the set of safe acceptors S belongs to the learners’ safe set.

Entangled(𝛼, 𝛽) def
= S ∈ 𝛼−𝛽

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 3

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


2.3. Protocol Message Structure
• Each message is assigned one of the types: 1a, 1b or 2a. We write 𝑥 :𝑡
to denote that message 𝑥 has type 𝑡 .

• Each message 𝑥 contains a cryptographic signature that uniquely iden-
tifies the message signer, denoted by Sig(𝑥).

• Each message 𝑥 , except for 1a-messages, carries a finite list of refer-
ences to some other messages, 𝑥 .refs. In practice, each reference is
represented by a hash of the referenced message. Acceptors remem-
ber previously received messages (known_messages), allowing them to
resolve references. 1a-messages do not reference any other messages.

• Each message 𝑥 , except 1a-messages, carries a distinguished reference,
𝑥 .prev, to a previous message signed by the same signer, identified by
Sig(𝑥). If 𝑥 is the first message sent by the sender, 𝑥 .prev contains a
special non-reference value ⊥.

• Each 2a-message 𝑥 contains a list of learner IDs, 𝑥 .lrns.

• Each 1a-message 𝑥 has two specific fields: 𝑥 .val contains a proposed
value, and 𝑥 .bal is a natural number specific to this proposal—its ballot
number. We assume that ballots are value-specific: 𝑥 .bal = 𝑦.bal im-
plies 𝑥 .val = 𝑦.val. One way to implement this is to include the hash
of the value in the (least significant bits of the) ballot.

2.4. Definitions
We extend Sig() over sets of messages to mean the set of signers of those
messages:
Definition 4 (Message set signers). For any set of messages𝑀

Sig(𝑀) def
= {Sig(𝑚) | 𝑚 ∈ 𝑀}

Definition 5 (Transitive references).

Tran(𝑥) def
= {𝑥} ∪

⋃
𝑚∈𝑥 .refs

Tran(𝑚)

Definition 6 (Transitive previous).

PrevTran(𝑥) def
= {𝑥} ∪

{
PrevTran(𝑥 .prev) if 𝑥 .prev ≠ ⊥
∅ otherwise

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 4

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


Definition 7 (Message 1a).

Get1a(𝑥) def
= argmax

𝑚:1a ∈Tran(𝑥)
𝑚.bal

Definition 8 (Ballot).
B(𝑥) def

= Get1a(𝑥).bal
Definition 9 (Value).

V (𝑥) def
= Get1a(𝑥).val

Definition 10 (Caught acceptors).

Caught (𝑥) def
= Sig

©«
 𝑚 ∈ Tran(𝑥)

∃𝑚′ ∈ Tran(𝑥).
Sig(𝑚) = Sig(𝑚′)

∧𝑚 ∉ PrevTran(𝑚′)
∧𝑚′ ∉ PrevTran(𝑚)


ª®®®¬

Definition 11 (Connected learners). For any learner 𝛼 and message 𝑥

Con𝛼 (𝑥)
def
= {𝛽 ∈ L | ∃𝑠 ∈ 𝛼−𝛽. 𝑠 ∩ Caught (𝑥) = ∅}

Definition 12 (Buried 2a-messages). For any learner 𝛼 , 2a-message 𝑥 and
message 𝑦

Buried𝛼 (𝑥 :2a, 𝑦)
def
=

Sig

©«

𝑚 ∈ Tran(𝑦)

∃𝑧 ∈ Tran(𝑚).
𝑧 :2a

∧𝛼 ∈ 𝑥 .lrns ∧ 𝛼 ∈ 𝑧.lrns
∧B(𝑧) > B(𝑥)
∧V (𝑧) ≠ V (𝑥)


ª®®®®®¬
∈ 𝑄𝛼

Definition 13 (Connected 2a-messages). For any learner 𝛼 and message 𝑥

Con2as𝛼 (𝑥)
def
=

 𝑚 ∈ Tran(𝑥)
𝑚 :2a

∧ Sig(𝑚) = Sig(𝑥)
∧ ∃𝛽 ∈ Con𝛼 (𝑥).¬Buried𝛽 (𝑚, 𝑥)


Definition 14 (Freshness). For any learner 𝛼 and 1b-message 𝑥

fresh𝛼 (𝑥 :1b)
def
= ∀𝑚 ∈ Con2as𝛼 (𝑥). V (𝑚) = V (𝑥)

Definition 15 (Quorum of message). For any learner 𝛼 , 2a-message 𝑥

q𝛼 (𝑥 :2a)
def
= Sig

({
𝑚 ∈ Tran(𝑥) | 𝑚 :1b ∧ fresh𝛼 (𝑚) ∧ B(𝑚) = B(𝑥)

})
DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 5

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


Definition 16 (Chain property).

ChainRef (𝑥) def
= 𝑥 .prev ≠ ⊥ → 𝑥 .prev ∈ 𝑥 .refs ∧ Sig(𝑥 .𝑝𝑟𝑒𝑣) = Sig(𝑥)

Definition 17 (Decision). For any learner 𝛼 and set of messages 𝑆

Decision𝛼 (𝑆)
def
= Sig(𝑆) ∈ 𝑄𝛼 ∧ ∀𝑥,𝑦 ∈ 𝑆. 𝑥 :2a ∧ 𝛼 ∈ 𝑥 .lrns ∧ B(𝑥) = B(𝑦)

Any set of messages 𝑆 such that Sig(𝑆) ∈ 𝑄𝛼 is called a message quorum. If
Decision𝛼 (𝑆) holds, we shall write V (𝑆) to denote V (𝑥) for some message 𝑥 ∈ 𝑆 .
Definition 18 (Well-formedness). For any message 𝑥

WellFormed1b(𝑥) def
= ∀𝑦 ∈ Tran(𝑥). 𝑥 ≠ 𝑦 ∧ 𝑦 ≠ Get1a(𝑥) → B(𝑦) ≠ B(𝑥)

WellFormed2a(𝑥) def
= 𝑥 .lrns = {𝛼 ∈ L | q𝛼 (𝑥) ∈ 𝑄𝛼 }

WellFormed (𝑥) def
=

ChainRef (𝑥)
∧ (𝑥 :1b → (∃𝑧 ∈ 𝑥 .refs. 𝑧 :1a) ∧WellFormed1b(𝑥))
∧ (𝑥 :2a → 𝑥 .refs ≠ ∅ ∧WellFormed2a(𝑥))

2.5. Protocol
The formal specification of the protocol is formulated in PlusCal [Lam09]

in the Typhon repository [Ano]. For better readability, we present the pseu-
docode of learner and acceptor algorithms in Figures 1 and 2, respectively.
Like TLA+ and PlusCal, we specify exactly which actions are safe for each
actor. This does not rule out unnecessary or repetitive actions. Formally,
each action is a predicate over state changes: the action is only deemed safe
if every part of the predicate holds true. Actions can include other actions.

To ensure liveness, we require weak fairness [Lam02]: in any execution
trace, if an action is safe for an infinite sequence, it eventually occurs.

Next, we describe the semantics of some particular instructions.

Instruction Semantics.

broadcast(𝒛) When called, it sends message 𝑧 to every learner and acceptor,
including the caller. Formally, this would mean that the defined state
change is only allowed if the new state includes 𝑧 in the network.

assume 𝑷 is a synonymofPlusCal’s ”when” instruction [Lam24]. The instruc-
tion, defined for Boolean state predicate 𝑃 , restricts possible execu-
tions and should be considered as a guard à la Dijkstra [Dij75]: ex-
ecution of the function containing ”assume 𝑃” is only possible if the
predicate evaluates to true during such a putative execution.

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 6

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


1 Acceptor::init():

2 known_messages = {}
3 recent_messages = {}
4 prev_message = ⊥
5

6 Acceptor::process_1a(𝑚):

7 assume 𝑚.𝑡𝑦𝑝𝑒 = "1a"

8 with 𝑧 = 1b(prev = prev_message, refs = recent_messages∪{𝑚}):
9 if WellFormed1b(𝑧):
10 recent_messages = {𝑧}
11 prev_message = 𝑧
12 broadcast(𝑧)
13

14 Acceptor::process_1b(𝑚):

15 assume 𝑚.𝑡𝑦𝑝𝑒 = "1b"

16 with Λ ⊆ L:
17 with 𝑧 = 2a(prev = prev_message, refs = recent_messages∪{𝑚}, lrns = Λ):
18 assume WellFormed2a(𝑧)
19 recent_messages = {𝑧}
20 prev_message = 𝑧
21 broadcast(𝑧)
22

23 Acceptor::process_2a(𝑚):

24 assume 𝑚.𝑡𝑦𝑝𝑒 = "2a"

25 recent_messages ∪= {𝑚}
26

27 Acceptor::receive(𝑚):

28 assume 𝑚 ∉ known_messages
29 assume ∀𝑟 ∈ 𝑚.refs. 𝑟 ∈ known_messages

30 known_messages ∪= {𝑚}
31

32 Acceptor::process_message(𝑚):

33 assume WellFormed (𝑚)
34 receive(𝑚)

35 process_1a(𝑚) || process_1b(𝑚) || process_2a(𝑚)

Figure 1. Heterogeneous Paxos 2.0 acceptor specification.

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 7

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


1 Learner::init():

2 known_messages = {}
3 decision = ⊥
4

5 Learner::receive(𝑚):

6 assume 𝑚 ∉ known_messages
7 assume ∀𝑟 ∈ 𝑚.refs. 𝑟 ∈ known_messages

8 known_messages ∪= {𝑚}
9

10 Learner::process_message(𝑚):

11 assume WellFormed (𝑚)
12 receive(𝑚)

13

14 Learner::decide():

15 with 𝑠 ⊆ known_messages:

16 assume Decisionself (𝑠)
17 decision = V (𝑠)

Figure 2. Heterogeneous Paxos 2.0 learner specification.

with 𝒙 ∈ 𝑺: 𝑪 is adopted from the PlusCal counterpart [Lam24]: an ele-
ment 𝑠 is non-deterministically chosen from the given set 𝑆 and 𝐶 is
executed with 𝑥 being locally defined to be equal to 𝑠 . The instruction
”with 𝑥 = 𝑣: 𝐶” is equivalent to ”with 𝑥 ∈ {𝑣}: 𝐶”.

𝑪1 || . . . || 𝑪𝒌 means a parallel execution of 𝐶𝑖 , 𝑖 = 1, . . . , 𝑘 .

2.6. Protocol Properties
Theorem 19 (Validity). For any learner 𝛼 , and set of messages 𝑠

Decision𝛼 (𝑠) =⇒ ∃𝑥 . 𝑥 :1a ∧ V (𝑠) = V (𝑥)

Proof. Directly follows from the definitions of B(), V () and Decision(). □

Theorem 20 (Safety). Let the learner graph of the network be valid and con-
densed. Let 𝛼, 𝛽 ∈ L be learners such that Entangled(𝛼, 𝛽). For any protocol
execution and reachable network state, if Decision𝛼 (𝑠𝛼 ) and Decision𝛽 (𝑠𝛽) hold
in that state, for some message quorums 𝑠𝛼 and 𝑠𝛽 , then V (𝑠𝛼 ) = V

(
𝑠𝛽
)
.

Proof. See TLA+ protocol formalization in [Ano]. □

2.7. Mailbox Layer
The predicates Acceptor::receive() and Learner::receive() (Figures 1 and 2) de-
fine causal message delivery, i.e., the message can be received only once and
only if all its direct references have already been received. In practice, this
logic can be separated out into a special mailbox component. This compo-
nent can be used by both local acceptor and learner, avoiding code duplica-
tion and allowing for more efficient message processing.

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 8

https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net


A mailbox implementation could be integrated into the broadcast imple-
mentation (Section 1.1): one mailbox might request missing messages from
another when it receives a message 𝑚, but has not yet received 𝑚’s causal
dependencies.

3. Future Work
Due to the recursive structure of protocol messages, a naïve implementation
of the presented algorithmwould lead toO(𝑙 ·𝑛5) complexity of message pro-
cessing, where 𝑙 is the number of learners in the network, i.e., given number
𝑛 of messages received so far, the time required to process the following mes-
sage is proportional in the worst case to 𝑛5. In the ongoing work, we are de-
veloping an effective implementation of this algorithm using additional data
structures that has a linear time complexity of message processing, O(𝑙 · 𝑛).
We are planning to formally prove that this implementation correctly real-
izes the proposed algorithm.

References
Ano. Anoma. Typhon project github repository. https://github.com/anoma/typhon/

tree/2ff6266f27986a6bec3d49fccc8f06697a9d163e. (cit. on pp. 2, 6, and 8.)
Dij75. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-

tion of programs. Commun. ACM, 18(8):453–457, 1975. (cit. on p. 6.)
Lam02. Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers. Addison-Wesley, 2002. (cit. on pp. 2 and 6.)
Lam09. Leslie Lamport. The pluscal algorithm language. In Martin Leucker and Car-

roll Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, 6th Inter-
national Colloquium, Kuala Lumpur, Malaysia, August 16-20, 2009. Proceedings,
volume 5684 of Lecture Notes in Computer Science, pages 36–60. Springer, 2009.
(cit. on p. 6.)

Lam24. Leslie Lamport. A PlusCal User’s Manual. C-Syntax Version 1.8, 2024. (cit. on
pp. 6 and 8.)

SWvRM20. Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C. Myers. Het-
erogeneous paxos: Technical report, 2020. (cit. on pp. 1, 2, and 3.)

DOI: 10.5281/zenodo.12572558 Anoma Research Topics | June 27, 2024 | 9

https://github.com/anoma/typhon/tree/2ff6266f27986a6bec3d49fccc8f06697a9d163e
https://github.com/anoma/typhon/tree/2ff6266f27986a6bec3d49fccc8f06697a9d163e
https://dx.doi.org/10.5281/zenodo.12572558
http://art.anoma.net

	Introduction
	Broadcast Primitive
	2a Messages
	One Message In, at Most One Message Out
	Byzantine Behavior Detection

	Specification
	Network Model
	Learner Graph
	Protocol Message Structure
	Definitions
	Protocol
	Protocol Properties
	Mailbox Layer

	Future Work
	References

