

* * * *

Funded by

the European Union

Funded by the European Union. This project has received funding from the European Union's Horizon Europe research and innovation programme under arant agreement No 101096691. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Climate, Infrastructure and Environment Executive Agency (CINEA), Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union. This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101075693.

This project has received funding from UK Research and Innovation - Innovate UK under Innovation Funding Service (ISF)

Tallinn, Estonia. 13/06/2024

Analysis of the value chain scenarios in the Baltic and Mediterranean Regions

Alla Shogenova & Kazbulat Shogenov Tallinn University of Technology

CCUS ZEN Partners

- Leandro Sousa, Maria Bonto, Ramboll, Denmark •
- Adam Wóicicki, Polish Geological Institute National Research Institute, Poland ٠
- Ane Elisabet Lothe, Eirik Falck da Silva, SINTEF Industry, Norway .
- Cağlar Sınayuc. Betül Yıldırım. Sevtac Bülbül. •
- Middle East Technical University (METU) Petroleum Research Center, Türkiye ٠
- Florian Schmitt, Matthias Honegger, Perspectives Climate Research, Germany .
- Ingvild Ombudstvedt, Lena Østgaard, IOM Law, Norway ٠
- Peter Frykman, GEUS Geological Survey of Denmark and Greenland, Denmark •
- Chérif Morcos, Laurianne Bouvier, AXELERA, France .
- Anastasios Perimenis CO2Value Europe ٠
- Audrey Lopez Technip, France •
- Ioannis Koumentis Genesis Energies, France ٠

Funded by the European Union

Geoscience for a sustainable Farth

Derspectives

climate group

UK

SINTEF

GEUS

RAMBOLL

METU

Objectives

Work Package 3 -**Value Chain Scenarios Objectives**

Identify the most promising CCUS value chains for the CCUS ZEN regions based on SWOT analysis. Identif • Establish a generic framework for the selection of the most prospective CCUS value chains, based on the high-level screening methodology established Establish in WP1 and integrated with WP2 analyses. • Identify potential PCI and determine key stakeholders. Identify

Funded by the European Union

Innovate UK

Integrating non-technical aspects

CCUS ZEN WEBSITE: https://www.ccuszen.eu/about-project/projectpartners

Funded by the European Union

immediate needed actions.

UK

possible year for the projects to start

Integrate technical and non-technical data collected by project

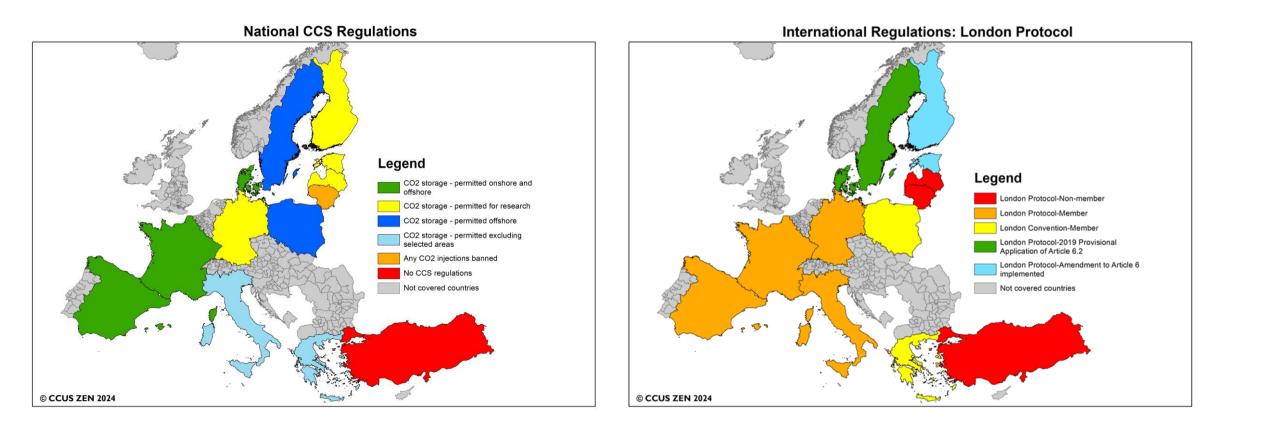
technical aspects such as legislation and social acceptance and

Categorize the list of the promising CCUS value chains to be

analysed further into the more ready (first-line readiness) and

less-ready (second-line readiness) value chains and define the

into common maps showing overall situations in the two CCUS

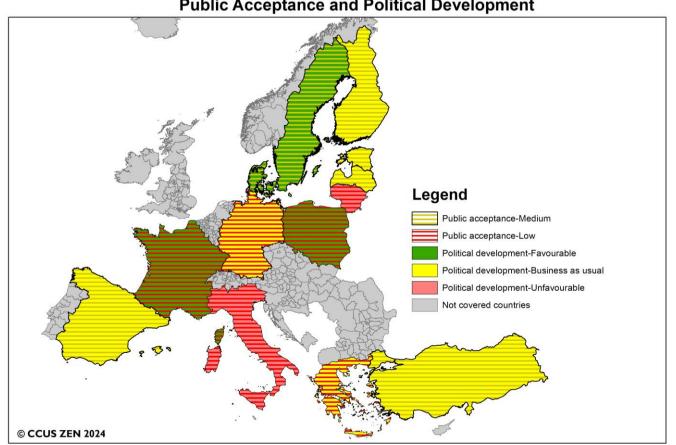

Identify value chains facing severe challenges due to non-

propose mitigation measures and recommendations for

ZEN regions and selected CCUS value chains.

Integrating non-technical aspects: Regulations

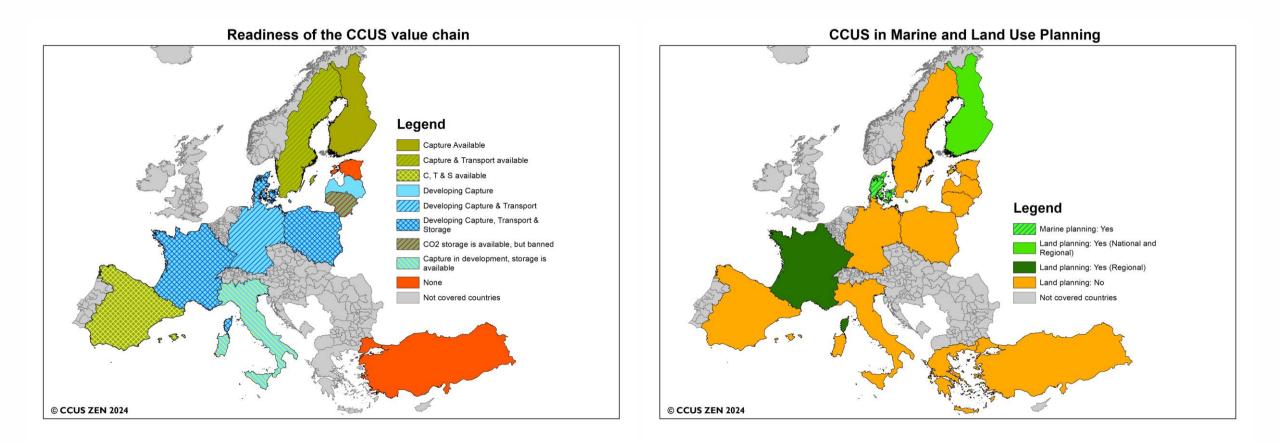
Funded by the European Union



UK

Innovate

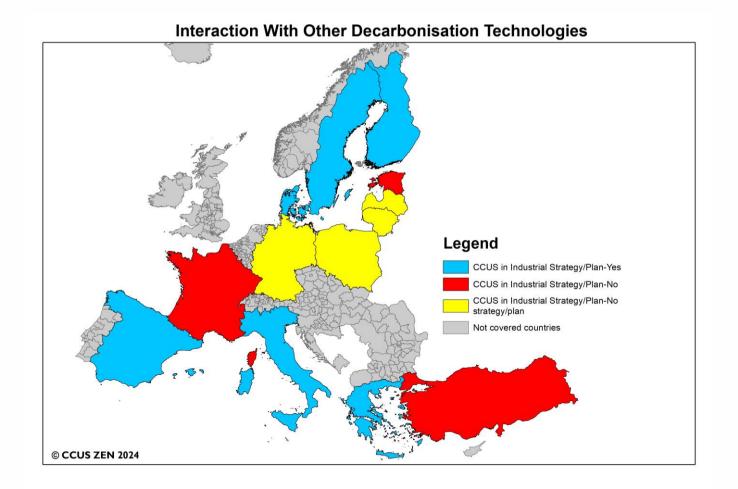
Public acceptance and political development



Funded by the European Union

Innovate UK

READINESS OF CCUS VALUE CHAIN AND CCUS IN MARINE AND LAND USE PLANNING

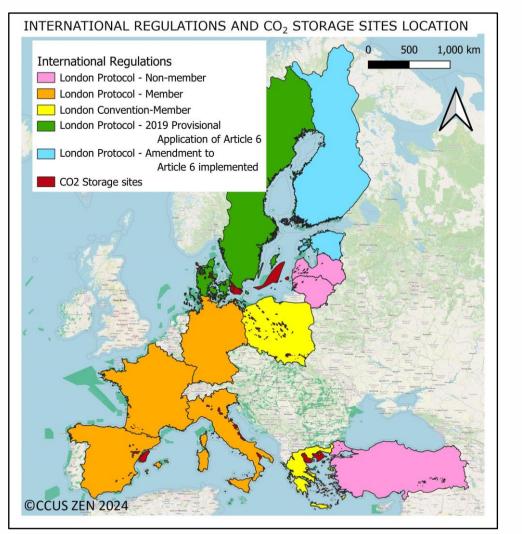

UK the European Union

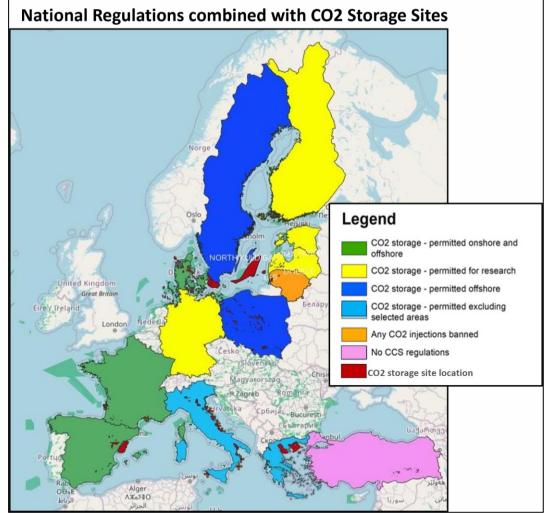
Funded by

Innovate

υ-u 13/06/2024

INTERACTION WITH OTHER DECARBONIZATION TECHNOLOGIES




Funded by the European Union

Innovate UK

Integrating technical and non-technical data

Funded by Innovate UK the European Union

SWOT analyses of CCUS value chains

	INTERNAL GROUPS Strength and Weakness		RNAL GROUPS Unities and Risks	Public Acceptance and Political Development
	Technical	Technical	Non-technical	Picture descent datases as sual Picture descent datases as sual Picture descent datases Michael datase
	CO ₂ emission plants	Area around	Social	National CCS Regulations
Sele, m		the storage site	Political development	Legend
	CO ₂ storage sites	DEGOLE Intraana Operation of the second seco	Regulatory	Construction of the second sec
	Infrastructure (available and planned)	Ab "Akmenes Cementas"	MRV (Monitoring Reporting and Verification)	CCUS ZEN 22M Monitoring, Reporting, Verification and Accounting Readiness
Figure 1. Paving the way – A selection of today's carbon capture and utilization pathways University – University – Univer	CO ₂ use options		Financial	
Copure Antipares				
HERCCL full CCUS chain demons		* * * * * * * * * * Funded by the European Union	Innovate UK	CCCK ZK N544

INTERNAL FACTORS

Technical (Strength and Weakness)

CO₂ emission plants

- CO_2 volumes (including Bio-CO₂)
- Longevity of the plant and capture-readiness
- Piloting/planning of CO₂ capture
- CO₂ use options available
- Green hydrogen production planning

CO₂ storage sites

- Porosity and permeability of the reservoir rocks
- CO_2 storage capacity
- Quality of the cap rock
- Safety and injectivity
- Storage Readiness Level (SRL)

Infrastructure

- Transport distance
- Availability of the natural gas pipelines
- Total CO₂ emissions per distance unit
- Wells in operation
- Availability of the offshore infrastructure
- Planned PCI projects

CO_2 use options

- CO₂ use projects in operation, or R&D
- Longevity of CO₂ use products
- Availability of Bio-CO₂ for CO₂ use
- Volume of CO₂ which could be used
- Possible revenues

Technical Non-technical The area in and around the Social storage site: Public acceptance HARMFUL Located in a densely populated area Belonging to landlords • **Political development** Located in seismic risk area **Governmental Support** Located in Natura 2000 area or • CCUS included in NECP STRENGHTS WEAKNESSE other protected area. DEGOLE Sia "Schwenk Latvija", Brocenu Ruphica VIESATU Regulatory TE International Regulations: DOBELE THREATS **BUDENE** London Protocol and related • issues Ab "Akmenes Cementas' **Regional Regulations: Multivariate** Helsinlki Convention **Balrcelona** Convention • **SWOT** National Regulations National Regulations combined with CO2 Storage Sites CCS Regulations analyses of National CO2 tax **CCUS** value chains Leaend **MRV** (Monitoring Reporting CO2 storage - permitted onshore and and Verification) CO2 storage - permitted for research MRV and accounting readiness CO2 storage - permitted offshore CO2 storage - permitted excluding Financial celected areas Availability of government Any CO2 injections banned No CCS regulations financial support along the value CO2 storage site location chain

Baltic Clusters

Storage sites location:

- Latvia (B-1)
- North Poland (B-4)
- Denmark (B2, B3)
- ▷One national onshore project: North Poland (B-4)
- ⊳One bilateral onshore project (B-1)
- ⊳Two projects offshore and onshore for 3 countries (B2, B3)

Baltic -2, Germany. Denmark, Sweden, 20/33 emitters (9 clusters), 8 storage sites

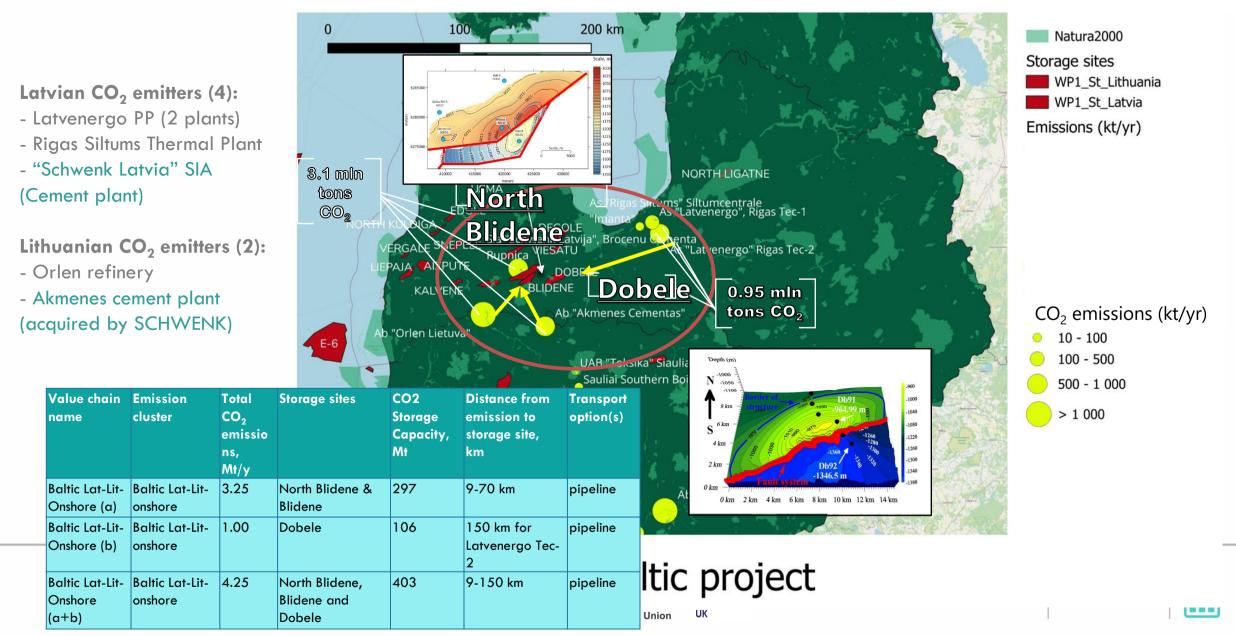
Baltic -3, Germany, Denmark, Sweden, 16 emitters (4 clusters), 3 storage sites

BALTIC 4 CLUSTERS

Baltic - 1, Latvia-Lithuania, 6 emitters (2 clusters), 2 storage sites

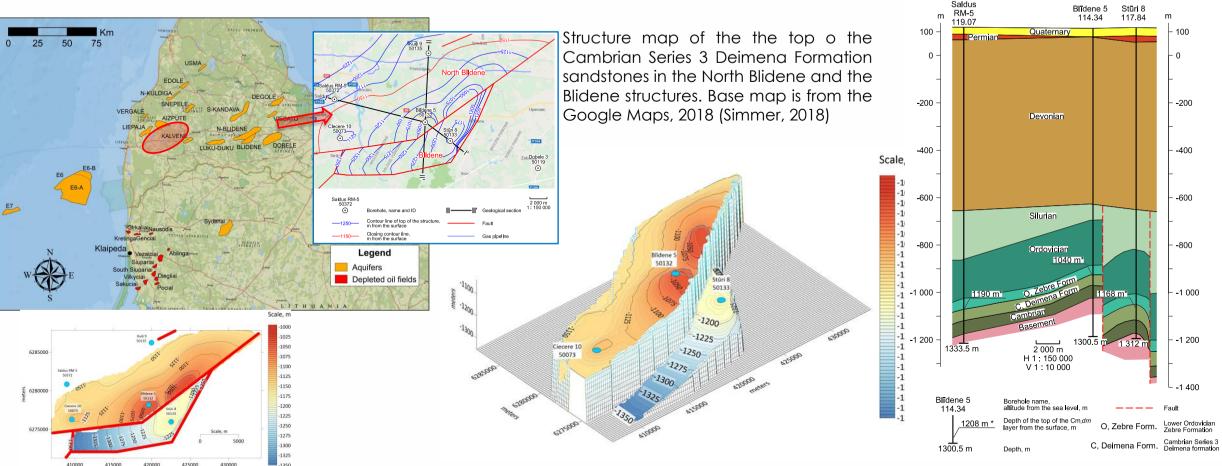
Baltic - 4, North Poland, 18/11 emitters (1 cluster), **2** storage sites

Funded by the European Union


UK

Innovate

Baltic-1: Latvian-Lithuanian onshore CCUS cluster



Geological Storage Options

BALTIC-1

Blidene and North-Blidene structures

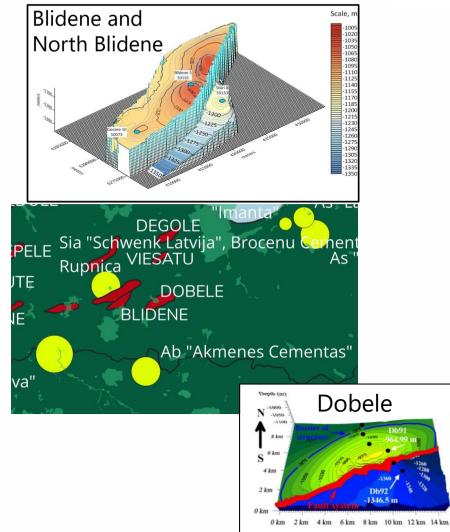
Geological section I - I'

Contour maps of the top o the Cambrian Deimena Formation in the North Blidene (left) and the Blidene (right) structures. Fault line is indicated with red polyline

3D structure maps of the Deimena Formation in the North Blidene (above) and the Blidene (below) structures. Both pictures are composed using Golden Surfer 15 software (Simmer, 2018)

Geological sections across line I-I'. The map and section are composed using Bentley PowerCivil for Baltics V8i (SELECTseries 2) software (Simmer, 2018)

UK



Baltic-1: Latvian-Lithuanian onshore CCUS project

Cambrian Deimena Formation sandstones reservoir in Latvia

Parameters	North Blidene	Blidene	Dobele
Storage ID	S_LV10	S_LV2	S_LV4
Depth of reservoir top, m	1035-1150	1168-1357	965-1013
Reservoir thickness, m	48	66	52
Trap area, km²	141	62	70
$\rm CO_2$ density, kg/m ³	881	866	900
Net to gross ratio, %	75	80	85
Salinity, g/l	100-114	100-114	114
Permeability, mD	370-850	370-850	0.1- 670/360
T, °C	18	22.9	18
Storage eff. factor (Seff) Optimistic/Conservative (%)	30/4	5/3	20/4
Porosity (min-max/avg), %	12.5-25.6/20	13.5- 26.6/21	10-26/19
Optimistic CO ₂ storage capacity (min-max/avg), Mt	167-342/267	19-37.5/29.6	56-145/106
Conservative CO_2 storage capacity (min-max/avg), Mt	22.2- 45.5/35.6	11.4- 2.5/17.8	11-29/21

Funded by the European Union

UK

Innovate


Baltic offshore scenario

Company Cluster name Facility name

City ecto CO2

(FTS)

CO2 from Total CO2 Industry reported from bioma Waste- CO2 emission

					name		sector	(ETS) (t/y)	ss (t/y)	to- energy (†/\/)	emission s (t/y)
				estonia							
			tic-Est-Lat- -Offshore	Eesti Power Plant	Enefit Power As	Auvere	Power	2607958	16000		2623958
			tic Est-Lat- -Offshore	Auvere Power Plant	Enefit Power As	Auvere	Power	885666	409944		1295610
			tic Est-Lat- -Offshore	Auvere Shale Oil Plant	Enefit Power As	Auvere	Shale Oil Plant	788760			788760
		CO2 from	Total	Balti Power Plant	Enefit Power As	Narva	Power	645847	187767		833614
-	reporte d (ETS)	Waste -to-	CO2 emission	VKG Shale Oil Plant	VKG Oil As	Kohtla- Järve	Shale Oil Plant	697209			697209
	(t/y)	energ v (t/v)	s (t/y)	VKG Energia North Thermal Power Plant	VKG Energia Oü	Kohtla- Järve	Power	593857			593857
emical	2208916		2208916	Kiviõli Chemical Plant	Kiviõli Keemia- tööstuse OÜ	Kiviõli	Shale Oil Plant	159357			159357
	304646 293090		304646 293090	Horizon Paper Factory	Horizon Tsellu-loosi ja Paberi		Paper		000.004		252369
E		198000	198000		AS Utilitas	Kehra	and pulp	12888	239481		
Ē		169000	169000	Utilitas Tallinn Power Plant	Tallinna Elektrijaam Oü	Tallinn	Power	9796	259000		268796
<u>.</u>			126007	Fortum Cogeneration Plant	Fortum Eesti As	Pärnu	Power		268000		268000
ardous E		79000	79000	Anne Cogeneration Plant	Anne Soojus As	Tartu	Power		244450		244450
Ē	112704	112704	112704	Iru Waste to Energy Plant	Enefit Power As	Iru	WtE		244430	138483	138483
			11655826					Total for	Estonia	:	8164463

Parameters	E6-A	Baltic offshore sce	nario
Storage ID	S_LV5		
Depth of reservoir top m	, 848-901	0 50 100 km Kunda	The Palt
Reservoir thickness, m	53	Tallinn •	The Balt Lithuani
Trap area, km ²	553		WtE Plan
CO ₂ density, kg/m ³	658		Lithuani
Net to gross ratio, %	90	Pärnu Tartu	The CO ₂
Salinity, g/l	99		
Permeability, mD	10-440		ships, lo
	(170)		Estoniar
T, °C	36		(four pla
Storage eff. factor (Seff) Optimistic/Conservativ e (%)	10/4	NORTH LIGATNE VERGALE SOUTH KANDAN VIESATU	generati producti Sillamäe
Porosity (min- max/avg), %	14-33/21	Liepaja	in Latvia This clus
Optimistic CO ₂ storage capacity (min- max/avg), Mt	243-582/ 365	Klaheda	including N Cluster Na
Conservative CO ₂	97-233/		
storage capacity (min-	146		
max/avg), Mt		Kaunas, Vilnius	
Dept 	Full system	Bo m E6-B Depth (m) -1000 -1	1 Latvian Onsh 2 Lat-Lit Onsh 3 Est-Lit Offsh E6
	n structure	5 km 30 km 35 km 40 km 45 km CCUS	Total produced

Carbon Neutral Scenario for the Baltic States

Tallinn	The Baltic of Lithuanian WtE Plant a Lithuania.	fossil an and othe	d bio-er r source	nission s locate	source ed in ce	es – one of entral and s	which Klaip south-easte	peda ern
Pärnu Tartu	The CO ₂ is pipelines, v ships, locat	suppose vhile the ed as fai	d to be E6 struc r as 80 k	transpo cture is m from	to be l Klaipe	om proxim inked by pi eda Port.	ipelines an	d d
NORTH LIGATNE NORTH LIGATNE NERVICE DOBOLE TURNADAVA DOBOLE	Estonian no (four plants) generation production Sillamäe ar in Latvia (6 This cluster including 9	s produc plants u) will use d Kunda 15 km by will be a Mt of fo	ed only sing bo CO_2 pip a ports a y ship fro able to cossil and	fossil e th oil sh peline c ind ther om Silla capture 2.1 Mt	mission nales an or truck n ship (nmäe). and st of bio	ns and thre nd biomass $c/train transCO_2 to theore annual-CO_2.$	e power co s for energy sport to E6 storage ly 11.1 t CC	o- y e site
1 Stor & & &	N Cluster Name	Number Distance	Fossil CO ₂	Bio- CO ₂	Total (CO ₂ Storage	Capacity ⁻	Trans-
		of emitter: km	s Mt	Mt	Mt	site	Opt/Cons. Mt	port
Kaunas Vilnius	1 Latvian Onshore 2 Lat-Lit Onshore		1.0 150		1.0	Dobele	106/21	
2023	3 Est-Lit Offshore	3	3.25		3.25		ene 267/35.6	5
	E6	-	9.45	2.21	11.66	& Blidene E6A	29.6/17.8 365/146	
****	Total produced	Pipelines Ship 26	30-140 80-645 13.7	2.21	15.91		767 6 (22)	
CCUS **** Funded by					13.31		767.6/220	J.4

Baltic offshore scenario

Carbon Neutral Scenario for the **Baltic States**

Mt

2.21

2.21

2.1

Mt

1.0

3.25

11.66

15.91

15.23

Capacity

Mt

North-Blidene 267/35.6

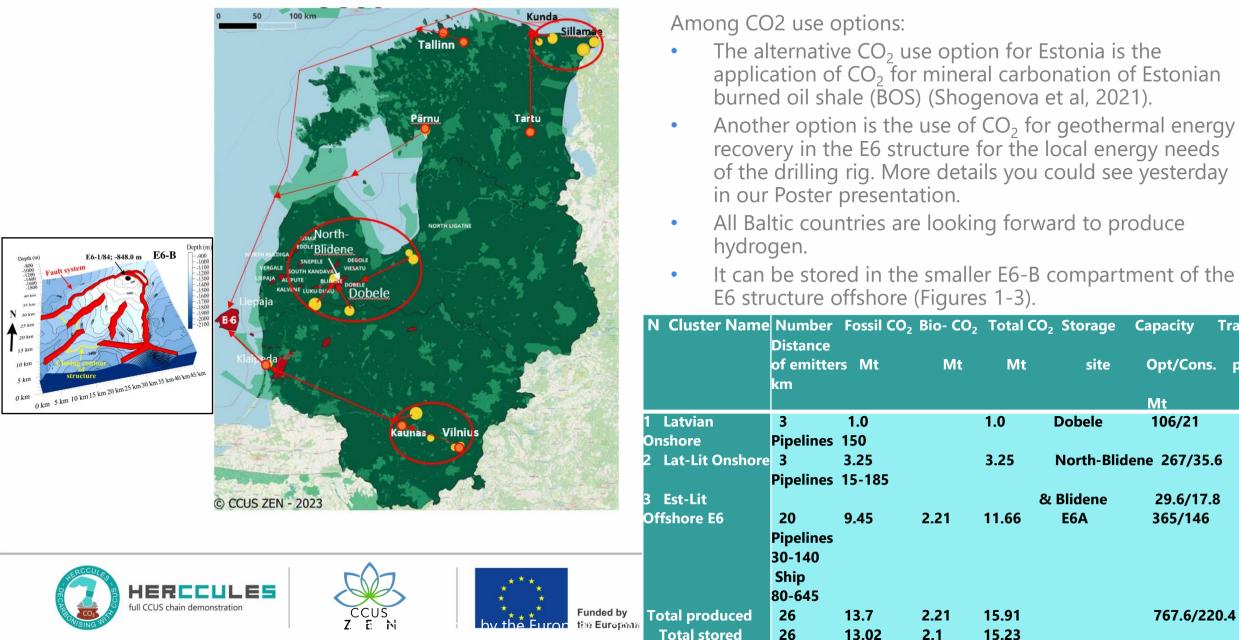
106/21

29.6/17.8

767.6/220.4

365/146

site


Dobele

& Blidene

E6A

Trans-

Opt/Cons. port

Baltic-2

- ▷ 20 of them has high potential to adopt CO2 capture.
- Eight geological storage sites in Denmark onshore and offshore with a mean capacity of around 928 Mt.
- Among these, Bifrost and Greensand
- Six projects with CO2 use options elaborating CO2 conversion into methanol with a conversion rate up to 72%.
- ▷ 30% of captured CO2 could be used and 70% stored
- ▷ 15.1 Mt CO2 could be injected annually
- \triangleright 6 Mt CO2 could be used annualy within 15 **CCU** plants

Funded by the European Union

Innovate UK

Baltic 3

- Baltic 3: •
 - 4 clusters with 13 emitters
 - Maximum emission volume⁻ 57 Mt annually
 - 3 storage sites _
 - Maximum storage volume: _ approximately 456-882 Mton
- Possible transport infrastructure includes • pipeline and ship

Country	Cluster	Total CO2 emissions [kton/ yr]	Emitters number
Germany	Rostock Cluster	2,515.0	3
Denmark	Copenhagen Cluster	1,191.5	3
	North-western Zealand Cluster	534.0	1
Sweden	South Sweden Cluster	1,495.0	6
Total	-	5,735.5	13
ACCUL			

•Potential transport

alternatives:

•Ship (yellow)

•Pipeline (brown)

Funded by the European Union

Innovate

NK

Stenlille

EKR 22 Hessela GEUS Lisa Offshore storage sites Nearshore and onshore storage sites Jammerbugt Gassum Voldum Thorning Aarbus Havnsø Stenlille Rødby © CCUS ZEN 2023 **Capacity mean** On / (million tonnes) Storage name Status offshore P90 P10 Seismic camp 423 Havnsø Nearshore 204 aign Seismic camp 449 Rødby Onshore 242 aign Ϋ́ Seismic camp

Onshore

10 (mean)

100 kn

aign finished

Baltic-4. North-Poland

Project ID	Value chain name	Involved countries	ber of	Total CO ₂ emissio ns, Mt/y	Number of emissio n sources	r of emissio n		mbe r of stor	CO ₂ stora ge capac	years for stora	Distance from emission sources to storage sites, km	Poland, 18 emitters (1 2 storage s	cluster),	
Baltic-4	North Poland onshore	Poland	1	13.63/ 1 7.37	18(11)	1	KonaryJ, Kamic nki K	2	381	28/52	6.8-62.8			
 Lower-I sandsto total th porosity permeating caprock 	y storag Middle Juras ones (multip ickness ~160 y~15%; ability~300 n s(s):Lower Ba	s sic le), D m nD	Later	Bydroszcz WtE			Storage capacity (M 0 - 50 50 - 100 100 - 1 000 Emitter Kuyavia-Ma 0 00 - 500 500 - 1 000 ⇒ 1 000 Subclusters Pipelines	asovia (kt/	yr)	No.		© CCUS ZEN 2023		200
	ian (seconda			Lantkowo che	emitals fouroctaw chemical	S KONARY Konary	pociawek a	VGCC		- And	Sierpc Bidgek	SW [m] 0	КАМІО 1 IG-3 К.	
9 0 K, 0000 0000 0000 0000 0000 0000 000		0-772 0-772 0 10 K J J J T T 					area Rujova		Cost		Percet refine the harden of the harden	$-1000 - \frac{K_1}{J_2}$ $-2000 - \frac{J_3}{J_2}$ $-3000 - \frac{J_1}{T_3}$ $-4000 - \frac{T_3}{T_3}$	K. J ₃ J ₂ J ₁ T. P ₂	T

6000

CCUS Z E N

HERCCULES

full CCUS chain demonstration

7000 -

Kamionki storage site 1) Reservoir 1: Lower Cretaceous sandstones, thickness ~80 m Porosity 20%: Permeability~400 mD Caprock: Upper Cretaceous ~200 m (marl, marly limestone) 2) Reservoir 2: Lower -Middle Jurassic sandstones, Porosity~15%; Permeability~200 mD Caprock(s): Upper Aalenian to Lower Bajocian, Bathonian (secondary)

Baltic - 4, Northern

Funded by

the European Union

Innovate UK

КĶ

Regulatory readiness of the analysed value chains: Baltic Region

Among higher - readiness value chains are

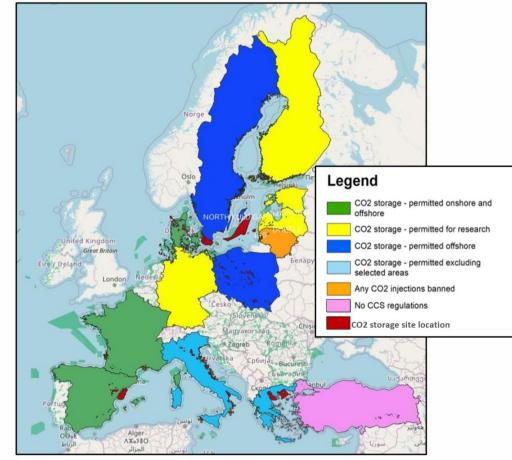
- Cross-border Baltic-2 (onshore and offshore storage)
- Baltic-3 (onshore storage)
- CCUS projects with CO₂ emission sources in Denmark, Sweden and Germany and CO₂ storade in Denmark.
- The main internal strengths of these two value chains:
- The high storage capacity associated with very good reservoir properties, large thickness of primary cap rocks
- High density of total emissions per unit distances and other strong technical parameters
- CO₂ capture and CO₂ use options are under development
- Many CCUS research and demo projects in Denmark
- Their main external opportunities are
- The favourable CCS policies and regulations and financial governmental support in Denmark, where CO_2 storage sites are located.
- Germany, Sweden and Denmark are Contracting Parties to the London Protocol (LP),
- Sweden and Denmark have deposited a declaration of provisional application of Amendment to Article 6
- The main risks
- Among the risks for Baltic -2 and -3 is German international regulations.
- **Germany** has not yet deposited a declaration of provisional application **of Amendment to Article 6** with the IMO.

This, in addition to a bilateral agreement, is needed before the export of CO_2 for offshore storage.

Funded by the European Union

UK

Innovate


INTERNATIONAL REGULATIONS AND CO2 STORAGE SITES LOCATION

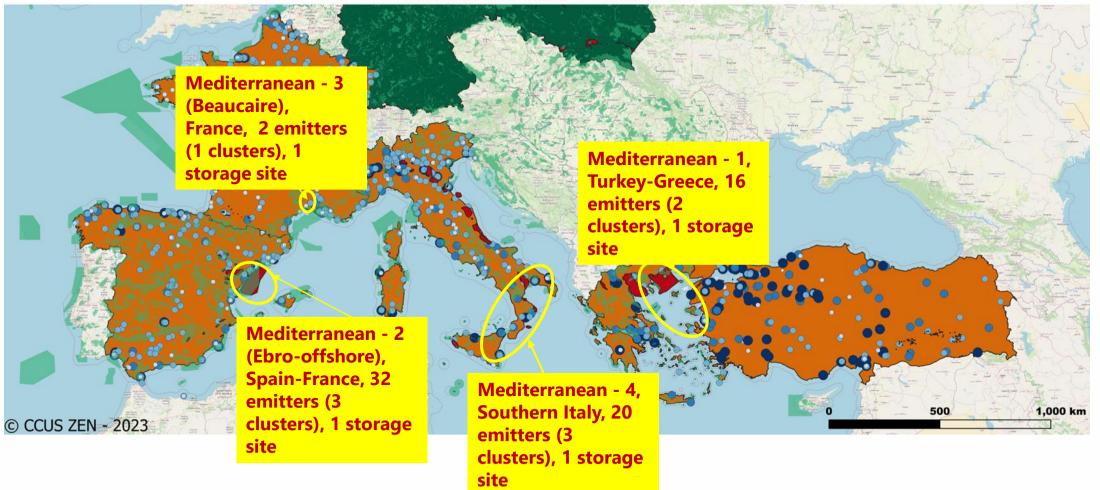
Readiness of the analysed value chains : Baltic Region

Baltic-1 value chain with CO₂ storage onshore Latvia and Baltic-4 value chain with CO₂ storage onshore Poland are categorized as less ready since they have regulatory risks:

- ▷ Industrial-scale CO₂ storage is not yet permitted in Latvia
- ▷ In **Poland**, CO₂ storage **is permitted now offshore** in the Baltic Sea. However, considering that CO_2 storage in the Baltic Sea is not permitted by the Helsinki Convention, it is not possible now to inject CO₂ offshore Baltic, and regulations on onshore storage are still being developed.
- > Despite the planned changes in the CCS regulations and other available technical strengths, these regulatory changes in Latvia and Poland may take additional time and the risks should be seriously considered.

National Regulations combined with CO2 Storage Sites

Funded by the European Union

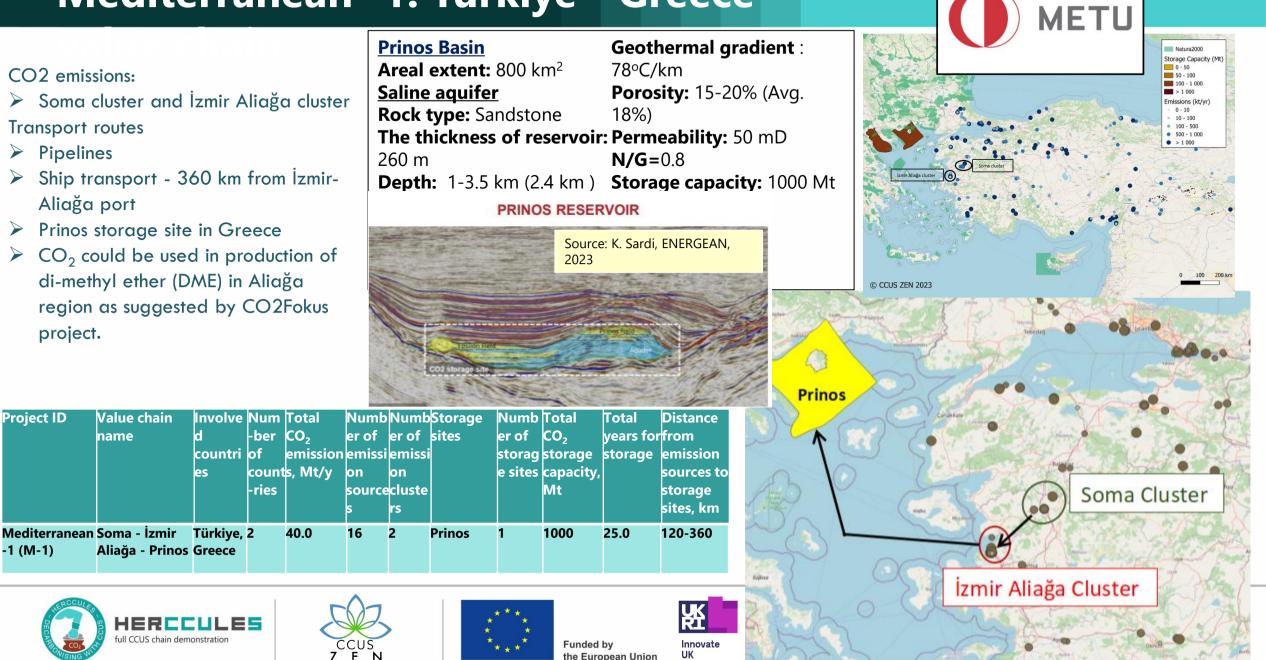


UK

Innovate

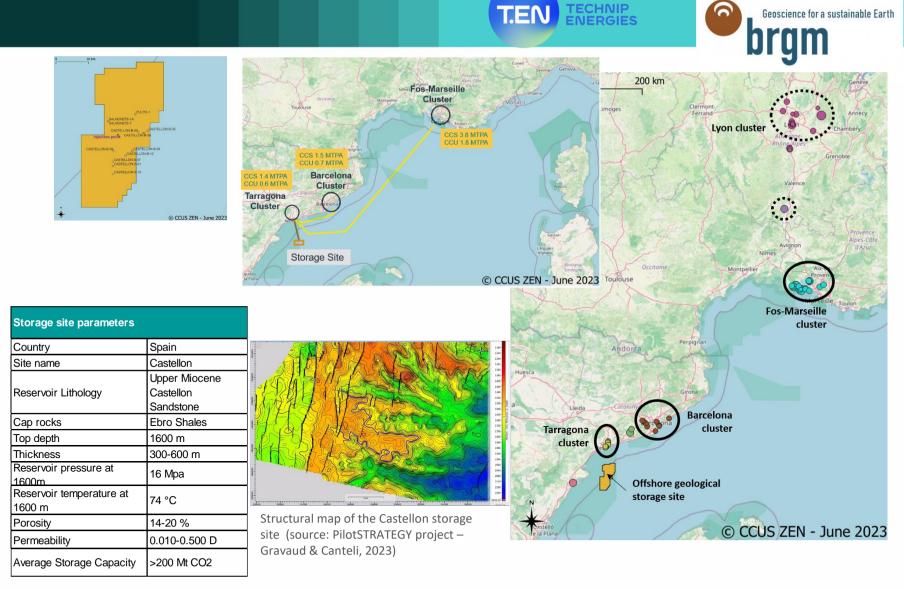
Four Mediterranean clusters

Mediterranean 4 clusters


Funded by

the European Union

Innovate UK

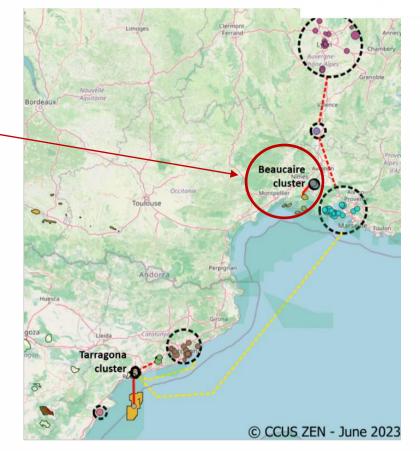


Mediterranean -1. Türkiye - Greece

Mediterranean 2

- \succ The Mediterranean-2 project comprises of 3 clusters of large emitters (32 emitters, producing 23.8 MtCO2) and one storage site offshore in Spain.
- The industrial clusters:
- Tarragona Spain •
- Barcelona Spain .
- Fos-Marseille cluster in France. .
- Geological storage site for is located offshore Tarragona in the Ebro Basin.
- Various CO2 utilization options \geq are considered on the base of CCU feasibility projects in France and Spain.
- It is assumed that 9.8 Mt CO2 will be captured, from which 6.7 Mt stored and 3.1 Mt CO2 used

Funded by the European Union



Innovate UK

- The Beaucaire value chain is a local-scale scenario with two emitters (a paper plant and a cement plant) emitting 1.17 Mt/y
- The storage is onshore saline aquifer site Haut d'Albaron, with a storage capacity 34 Mt.
- Onshore pipeline of total length 32.6-38.5 km.
- Proximity with protected area is taken into account.
- → In the Beaucaire area, CO_2 use for catalytic methanol production can be considered with a potential of 200 kt CO_2 /y.

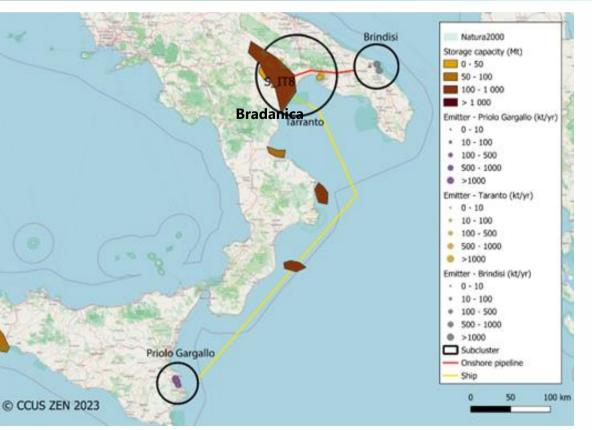
Funded by

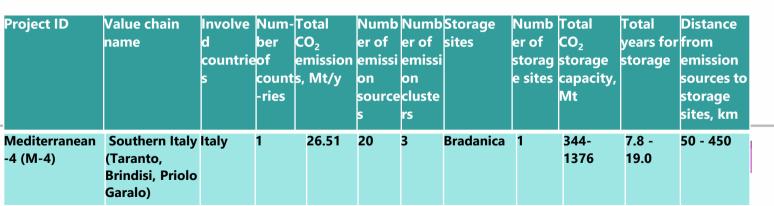
the European Union

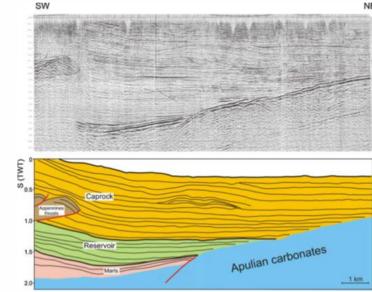
Innovate

UK

Location of Tarragona and Beaucaire clusters, transport pipelines and storage sites. In dashed lines are potential


extensions of the CCUS project.




Mediterranean - 4

- CCUS value chain from Southern Italy, with three emitters clusters:
- Brindisi, Taranto and Priolo Gargallo.
- Transport to onshore storage site.
- Ship transport is marked from Priolo Gargallo
- Pipelines from
 Brindisi and
 Taranto.

Bradanica storage site:

•Reservoir:

Late Pliocene sands and silty sands with marl, locally more than 800 m thick, effectively 650 m thick.

•Caprock:

•Clay and silty clay, 1500 m thick in places. •Storage capacity:

0-0

with efficiency of 1% - 344 Mt,

4% - 1376 Mt.

Readiness of the analysed value chains:

Mediterranean-2, 3 and 4 value chains, which include emission sources and storage sites in Spain (M-2), France (M-3) and Italy (M-4), are assessed as more ready at regulatory side than M-1.

- \triangleright Mediterranean-1 including CO₂ emissions from Türkive and CO₂ storage in Greece as less ready, considering the regulatory risks:
- \triangleright There is a lack of CCS regulations and CO₂ capture and transport infrastructures in Türkive.
- > Türkive and Greece are not Contracting Parties to the London Protocol and are therefore not bound by its requirements for cross-border CO₂ transport
- **France, Spain and Italy are members of the LP.**
- > Italy is planning to implement Amendment and provisional application to the Article 6.

However technical and geological parameters of the storage sites in M-3 are not satisfied to the known requirements

Some projects in both regions have also technical risks for the area around storage site (external group 1):

For Italy seismic risks should be checked for the storage site areas.

Most countries have risks connected with location of Natura 2000 areas close to the storage sites or intersected with storage sites.

The study will be finalized with an overview of readiness and recommendations for advancing ready and less ready cases toward CCUS implementation.

Using multivariate SWOT analysis, guantitative estimations will be also applied.

UK

Funded by the European Union

Four Mediterranean clusters

Any CO2 injections hanned

No CCS regulations O2 storage site location

Overview of parameters in the analysed values chains

Project ID	Value chain name	Involved countries	Number of count-	Total	Number of	Number of	Storage sites	Number of storage	Total CO ₂ storage	CO ₂ transport	Regulatory	y problems
		countries	ries	emission		emission		sites	capacity, Mt	Distance, km	National	Internatio nal
Baltic-1	Baltic Lat-Lit- onshore	Latvia, Lithuania	2	4.25	6	2	North Blidene, Blidene and Dobele	3	403	9-150	\checkmark	
Baltic-2	DE DK SWE Jutland network	<mark>Germany,</mark> Denmark, Sweden	3	20	33	9	Gassum, Voldum, Jammerbugt Inez, Bifrost, Greensand, Lisa, Thorning	8	928	5-750		V
Baltic-3	Copenhagen	<mark>Germany,</mark> Denmark, Sweden	3	5.9	16	4	Rødby, Havnsø, Stenlille	3	657	5-115		\checkmark
Baltic-4	North Poland onshore	Poland	1	13.6/7.4	18(11)	1	Konary J, Kamionki K	2	381	7-63	\checkmark	
Mediterranean - 1 (M-1)	Soma - İzmir Aliağa - Prinos	Türkiye, Greece	2	40.0	16	2	Prinos	1	1000	120-360	\checkmark	\checkmark
Mediterranean - 2 (M-2)	Ebro offshore	Spain, France	2	24	32	3	Castellon	1	>200	50-450		
Mediterranean - 3 (M-3)	Beaucaire	France	1	1.17	2	1	Haut d'Albaron	1	34	27		
Mediterranean - 4 (M-4)	Southern Italy (Taranto, Brindisi, Priolo Garalo)	Italy	1	26.51	20	3	Bradanica	1	344-1376	50 - 450		
Total range for all clusters			1-3	1.2 -40	2-33	1-9		1-8	34-1400	5-750		

Funded by the European Union

Innovate UK

> THANKS FOR YOUR ATTENTION