

* * * *

Funded by

the European Union

Funded by the European Union. This project has received funding from the European Union's Horizon Europe research and innovation programme under arant agreement No 101096691. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.

Funded by the European Union. This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101075693.

This project has received funding from UK Research and Innovation - Innovate UK under Innovation Funding Service (ISF)

Tallinn, Estonia. 13/06/2024

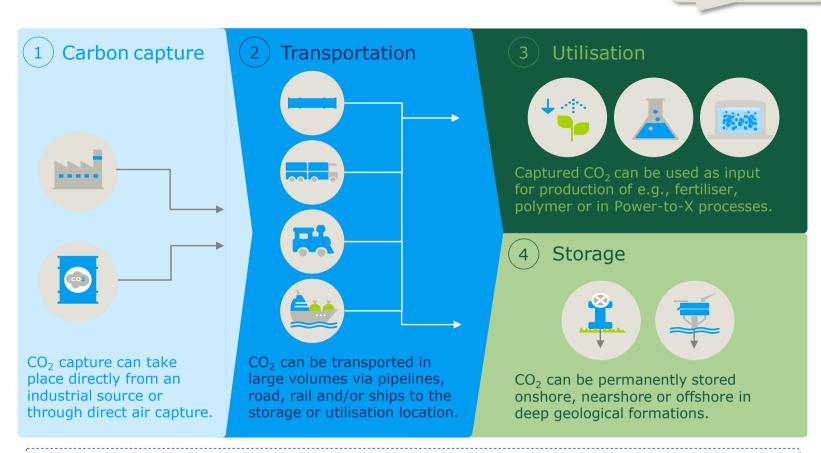
Technical modelling of the Baltic CCUS ZEN Scenario (Denmark, Sweden & Germany)

Leandro-Henrique Sousa / Ramboll

Carbon capture, utilisation & storage

With more than 50 experts and project managers and more than 100 successfully completed assignments within CCUS over the last 3-4 years, Ramboll is a leading CCUS advisor.

We have a deep understanding of the industry, the technologies and their application and so we can help clients navigate the challenges and pitfalls that projects in this market entail.



We have comprehensive, multidisciplinary expertise across the CCUS value chain

Non-exhaustive list of potentials for utilisation

3

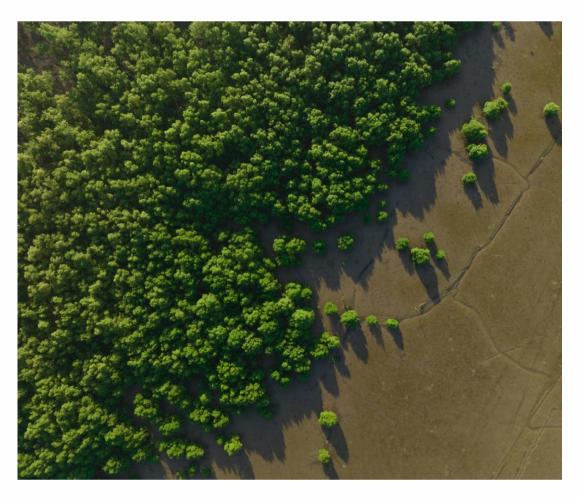
4

Our CCUS advisory covers both the public and private sectors.

We continuously advise policymakers and industrial clients in all stages of the CCUS value chain.

We provide technical, commercial and environmental insights into all phases of capturing, transporting, and utilising and/or storing CO_2 .

- We offer clients the **full range of project lifecycle services** for the planning, construction and operation of CO₂ capture facilities. Our technical and commercial expertise draws on extensive project experience.
- Transportation of captured CO₂ is a key step in the CCUS value chain. Our experience across all key carbon transport modalities allows us to recommend the most technically and economically feasible setups.
 - We have a comprehensive understanding of **possibilities for CO₂ utilisation** (CCU), demonstrated through our **worldclass experience in Power-to-X** across all technologies, resource inputs and offtake potentials.


In addition to utilisation, our extensive experience with **assessing storage possibilities for captured CO₂** (CCS) provides the client with a fully integrated overview of all potentials.

Agenda

1 _ Introduction

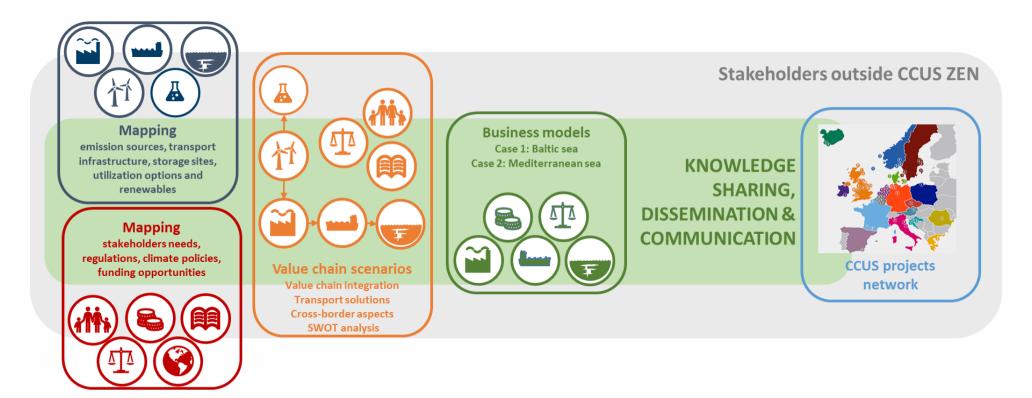
- **2** _ Emission sources
- **3** _ Storage sites
- 4 _ Utilisation projects
- **5 _ Transport infrastructure**
- **6** <u>Scenario selection and final remarks</u>

7_Q&A

Funded by

the European Union

UK



CCUS ZEN framework for CCUS value chain development

Regional screening

CCUS chains selection

Business model development

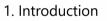
Funded by the European Union

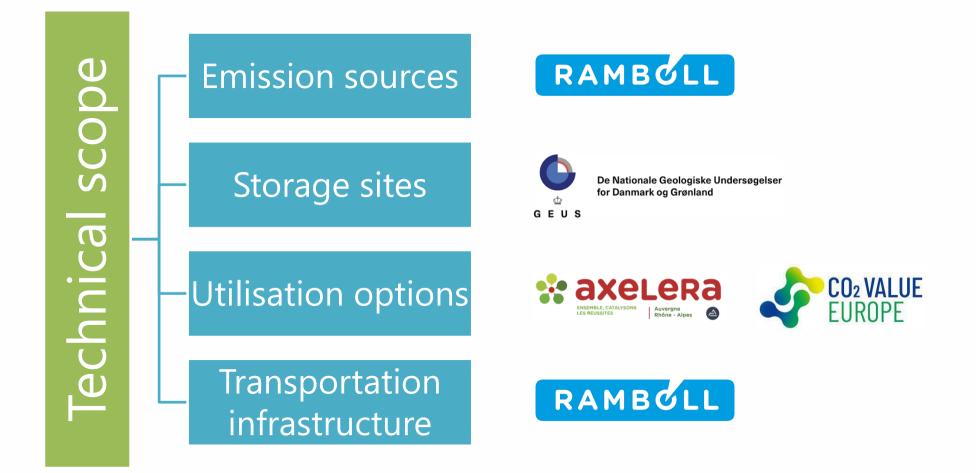
UK

1. Introduction

Setting forth a large scale, cross-border CCUS initiative

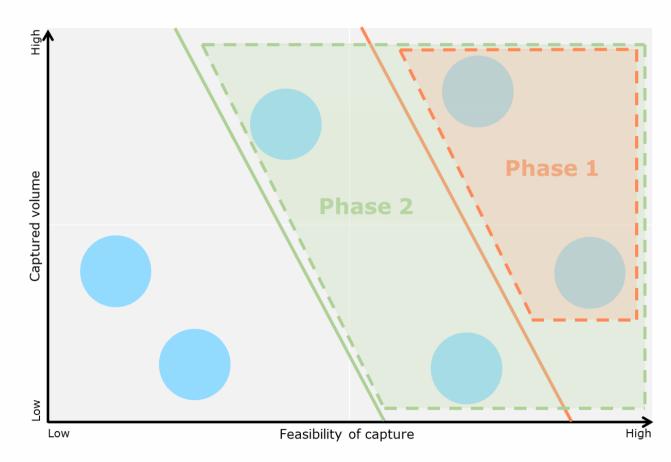
- \geq 3 countries
- \geq Up to 33 emitters
- \rightarrow Up to 20 MTPA of captured CO₂
- > 8 geological storage locations
- \geq More than 928 million tonnes of mean storage capacity
- > 15.1 MTPA injection volume
- 6 MTPA for 15 CCU installations


Funded by the European Union


liftone

1. Introduction

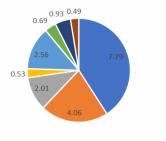
Funded by the European Union

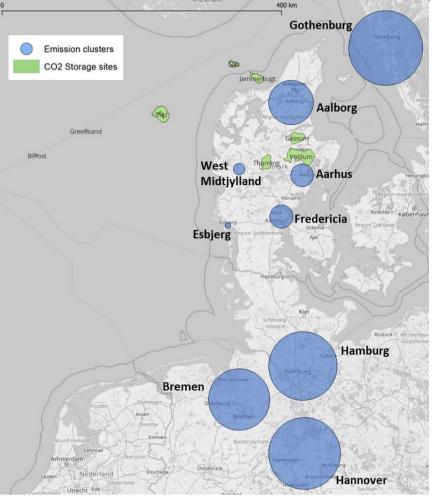


The emitters were analysed and filtered through the "valueeffort" matrix prioritisation technique

- 56 emitters analysed and 33 selected
- Filtering of emitters selected in WP1 according to:
 - Captured volume (quantitative variable)
 - > Feasibility of capture (qualitative assessment mainly based on existing decarbonisation, retrofitting or out phasing plans)
- Phases 1 and 2 represent potential first line and followers, respectively for a CCUS decarbonisation solution.

13/06/2024


Funded by the European Union


Nine clusters were defined with an assumed capture rate of 95%, resulting in 20 million tonnes per year of CO_2

Country	Cluster	CO₂ emissions [Mton/yr]	CO₂ captured [Mton/yr]	Captured biogenic CO₂ [Mton/yr]	Number of emitters
Germany	Bremen Cluster	2.78 - 3.43	2.64 - 3.26	2.64	2 - 3
	Hannover Cluster	3.12 - 3.99	2.96 - 3.79	1.73 - 1.81	4 - 5
	Hamburg Cluster	1.05 - 3.80	1.00 - 3.61	0.00 - 1.14	1 - 4
Sweden	Gothenburg Cluster	3.12 - 4.12	2.96 - 3.92	0.34 - 0.65	5 - 9
	Aalborg Cluster	2.48 - 2.48	2.36 - 2.36	0.13	2 - 2
	Aarhus Cluster	0.82 - 2.72	0.78 - 1.16	0.25 - 0.55	2 - 3
Denmark	West Midtjylland Cluster	0.00 - 0.62	0.00 - 0.59	0.00 - 0.34	0 - 2
	Fredericia Cluster	0.85 - 1.28	0.81 - 1.21	0.67	3 - 4
	Esbjerg Emitter	0.22	0.21	0.12	1
Total (Phase 2)		14.44 - 22.66	13.71 – 20.10	5.90 – 8.05	20 - 33

- Captured CO_2 in million tonnes per year.
- The power sector emitters were selected due to their plans to retrofit to biofuels. The resulting emissions are assumed to be similar as before retrofit.
- Multiple emitter sectors result in a diverse impurity mix. T&S infrastructure may be affected.

2. Emission sources

9

13/06/2024

Funded by the European Union

Eight storage sites located in Denmark, providing approximately 928 million tonnes of storage

Storage case	Site name	Туре	Location	Mean capacity [Mton]	Injectivity [MTPA]
1	Gassum	Deep Saline Aquifer	Onshore	146	3.0
2	Voldum	Deep Saline Aquifer	Onshore	213	3.0
3	Jammerbugt	Deep Saline Aquifer	Nearshore	100	3.0
4	Inez	Deep Saline Aquifer	Offshore	178	3.0
5	Bifrost	Depleted O&G field	Offshore	Min. 60	0.8
6	Greensand	Depleted O&G field	Offshore	Min. 128	1.5
7	Lisa	Deep Saline Aquifer	Offshore	29	0.5
8	Thorning	Deep Saline Aquifer	Onshore	74	0.3

- The network considers a mix of onshore, nearshore and offshore storage sites.
- The two commercial and licensed projects (Bifrost and Greensand) have \geq limited published information but include predicted injection rate when in operation.
- A round for CO₂ storage licensing was launched for multiple onshore sites which include Gassum and Thorning.

3. Storage sites

Funded by the European Union

UK

Innovate

At least 30% of the captured CO₂ is dedicated to CCU and 70% to CCS, aligned with the Impact Assessment of the EU 2040 climate targets communication

Option 1 – CCU near emitters					Option 2 - CCU near hubs								
Country	Cluster	Captured CO ₂ from Phase 1 emitters (Biogenic fraction) (Mtpa)	Captured CO ₂ from Phase 1 emitters for CCU (Mtpa)	Number of CCU installations close to Phase 1 emitters	Average capture capacity of CCU installation (ktpa)	Average product capacity of CCU installation (ktpa)	Country	Cluster acting as collection hub	Captured CO ₂ from all emitters (Biogenic fraction) (Mtpa)	Captured CO ₂ from all emitters for CCU (Mtpa)	Number of CCU installations close to the collection hub	Average capture capacity of CCU installation (ktpa)	Average product capacity of CCU installation (ktpa)
Germany	-	6.61 (4.98)	1.98	7	280	190 (for methanol) 85 (for synthetic jet fuel)	Germany	Bremen	10.66 (5.59)	3.20	5	640	450 (for methanol) 192 (for synthetic jet fuel)
Denmark	-	4.16 (1.17)	1.25	8	156	109 (for methanol) 47 (for synthetic jet fuel)	Denmark	Aalborg	5.53 (1.82)	1.66	5	332	232 (for methanol) 100 (for synthetic jet fuel)
Sweden	-	2.95 (0.34)	0.89	5	178	125 (for methanol) 53 (for synthetic jet fuel)	Sweden	Gothenburg	3.95 (0.65)	1.19	5	238	167 (for methanol 72 (for synthetic jet fuel)

Option 2 has in general considered a larger average capacity because it reflects a concept where CO₂ volumes have been centralised, hence the facilities may \geq accommodate larger volumes.

- Option 1 shows more risk, as the utilisation plants are dependable of their respective emitter
- Option 2 was selected for further stages

4. Utilisation projects


Funded by the European Union

UK

CO₂ transported through a batch method requires a high complexity value chain

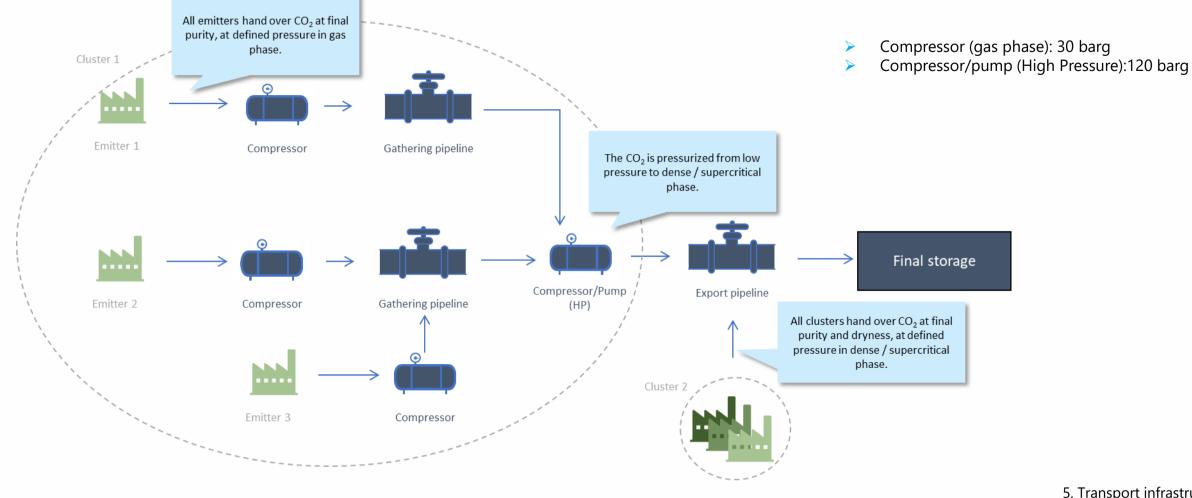
Funded by

the European Union

E N

Innovate

UK



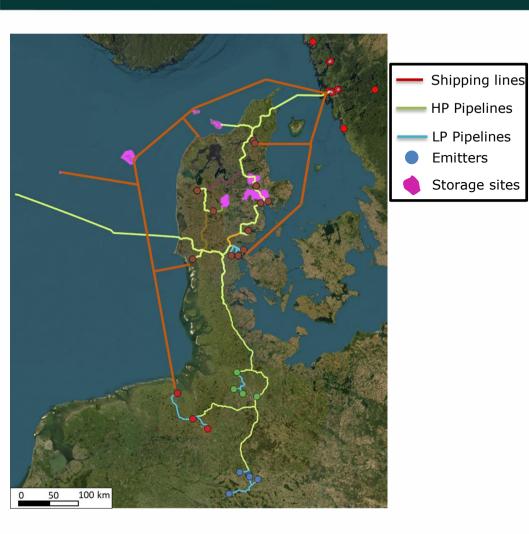
5. Transport infrastructure

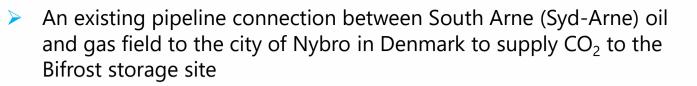
13/06/2024

Continuous transportation methods, although less flexible, can decrease complexity

Funded by

5. Transport infrastructure




Innovate UK the European Union

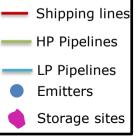
All scenarios for the Baltic case study in one figure

- The routes have prioritised information such as:
 - Areas of environmental and cultural importance
 - Existing and planned infrastructure
 - Technical feasibility (high-level)
 - Soil conditions

The capacity of the medium pressure ships developed specifically for CCS applications is about 10,000 m³ CO₂. Much larger capacities, up to 50,000 m³ are expected to be achieved for low pressure variants. Constrained by the port capacity.

Port	Max draft [m]	Max beam [m]	Max LOA [m]	Max DWT [t]
Aalborg	9.4	40	250	102,000
Esbjerg	10.3	71	250	76,640
Hirtshals	9	-	150	-
Wilhelmshaven	20	52	430	260,000
Gothenburg	19	-	350	225,000

5. Transport infrastructure



Funded by the European Union

One possible solution for a CCUS value chain

> 33 emitters with 20 MTPA of captured CO₂

 \geq CCU in Bremen: 3.2 MTPA

- > CCU in Aalborg: 1.7 MTPA
- > CCU in Gothenburg: 1.2 MTPA
- CCS: 14 MTPA (out of 15.1 MTPA) estimated)

5. Scenario selection and final remarks

Funded by the European Union


UK

Innovate

The study concludes with essential material for the economic assessment and development of a technical and business plan in WP4

- The use of large-scale transport infrastructure, including extensive pipeline networks involves multiple stakeholders that participate or are impacted by the project, resulting in cost and risk-related uncertainties.
- The significant CO₂ emissions of the German and Swedish economies, combined with Denmark's promising storage capacity, suggest a favourable balance for effective CCUS deployment of the Baltic project. The network could also account for expansion to other regions of Denmark, Sweden and Germany, and countries not analysed at this stage.
- The practical use of Danish storage facilities is paramount. This involves ensuring that logistical, institutional, and contractual factors support the timely implementation of storage solutions, which is essential for the CCUS deployment timeline. With close to 90% use of the Danish geological storage sites, this scenario is quite subject to the success of these infrastructure.

5. Scenario selection and final remarks

Funded by the European Union

> GRAZIE PER L'ATTENZIONE> THANKS FOR YOUR ATTENTION