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Abstract: In this paper, new results on distributed fault diagnosis of continuous–time nonlinear
systems with partial state measurements are proposed. Following an overlapping decomposition
framework, the dynamics of a nonlinear uncertain large-scale dynamical systems is described as
the interconnection of several subsystems. Each subsystem is monitored by its own Local Fault
Diagnoser, based on a set of local estimators. A consensus-based protocol is used to improve the
detectability and the isolability of faults affecting variables shared among different subsystems
because of the overlapping decomposition. A sufficient condition assuring the convergence of
the estimation errors is derived. Time-varying threshold functions guaranteeing no false-positive
alarms and theoretical results containing detectability and isolability conditions are presented.
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1. INTRODUCTION

The growing scientific interest for distributed systems and
networks is testified by the wealthy amount of research,
cited by surveys such as Baillieul and Antsaklis (2007) and
Abdallah and Tanner (2007). The greater interest of the
control community is focused on the design of distributed
systems: the goal is to find distributed solutions to prob-
lems that are difficult or impossible to solve in a central-
ized framework, because of structural, efficiency, computa-
tional, and robustness issues. Practical engineering exam-
ples of large–scale and/or distributed systems are abun-
dant; e.g., large–scale communication networks, water dis-
tribution systems or traffic networks, energy, pulp-and-
paper, or steel-making plants, multi–vehicle formations,
and so on. Decentralized control methods suited to these
systems were proposed since at least the 1970s. Although
many enhancements have been achieved in the design and
analysis of decentralized and, later, distributed control and
estimation schemes, the design of fault diagnosis schemes
specifically for distributed and large–scale systems is still
a challenging field. Research activity in this field led to
effective distributed algorithms suited to discrete event
systems (see, among many others, Baroni et al. (1999)
and Preparata et al. (1967)). A notable contribution in
the field of decentralized hybrid systems fault diagnosis is
the work of Fagiolini et al. (2007). Furthermore, analysis
of fault scenarios and effects in distributed systems were

1 The work of M. M. Polycarpou is funded by the European
Research Council under the ERC Advanced Grant 291508-FAULT-
ADAPTIVE.

addressed in Teixeira et al. (2010) and in Jafari et al.
(2010). However, as far as distributed discrete–time or
continuous–time systems are concerned, qualitative fault
diagnosis schemes were attempted only recently (see as
example Lechevin and Rabbath (2009)), or quantitative
methods that were formulated for linear systems only (like
Stankovič et al. (2010)), with Zhang (2010) being one of
the few contributions on decentralized fault detection for
large–scale nonlinear systems. In this paper, we propose
a fault detection and isolation scheme for a class of non-
linear uncertain continuous-time systems, where, further-
more, the system states are only partially measurable
(in the recent paper Boem et al. (2011a), the full-state
case has been dealt with). Though several papers dealing
with centralized fault diagnosis schemes for input-output
systems have appeared in the literature (Zhang et al.
(1998, 2001); Subbarao and Vemuri (2007); Zhang and
Jaimoukha (2009)), to the best of the authors knowledge
this is the first contribution addressing distributed schemes
for input-output continuous–time nonlinear systems. More
specifically, the main contributions of this paper are the
formulation of a distributed architecture specifically for
input–output continuous-time systems, with a sufficient
condition guaranteeing the convergence of the estimators,
and the derivation of rigorous analytical conditions for
detectability and isolability.

2. PROBLEM FORMULATION

Similar to Boem et al. (2011b), we consider a multi-input
multi-output uncertain nonlinear system:



S :

{
ẋ =Ax+ f(x,u) + ηx(x,u, t) + β(t− T0)φ(x,u)

y =Cx+ ηy(x,u, t),
(1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denote the
state, the control input and the measured output vectors
respectively 2 , the matrix A ∈ Rn×n and the vector field
f : Rn×Rm 7→ Rn describe the nominal healthy dynamics,
C ∈ Rp×n is the nominal output matrix, ηx and ηy are
the uncertainties in the state and in the output equations.
The term β(t − T0)φ(x,u) represent the fault function
dynamics: φ(x,u) denotes the functional structure and
β(t− T0) characterizes the time profile of the fault:

β(t− T0) ,

{
0 if t < T0

1− e−α(t−T0) if t ≥ T0
. (2)

where T0 is the unknown fault occurrence time and α >
0 represents the unknown fault-evolution rate, modeling
either incipient faults or abrupt faults, as α → ∞. The
following assumptions are needed.

Assumption 1. The state variables x and control variables
u are bounded before and after the occurrence of a fault:
∃R, compact region of Rn×Rm : (x(t),u(t)) ∈ R, ∀t ≥ 0.

Assumption 2. The fault–evolution rate parameter α is
unknown, but lower bounded by a known constant ᾱ.

Assumption 3. The measuring uncertainty term ηy is an
unstructured and unknown nonlinear function, bounded

by a known function:
∣∣∣η(k)
y (x,u, t)

∣∣∣ ≤ η̄(k)
y (x,u, t), ∀k =

1, . . . , p, (x,u) ∈ R and ∀t ≥ 0.

In this paper, the methodology presented in Boem et al.
(2011b) for discrete–time systems is adapted to the
continuous–time context, based on the decomposition of
the monolithic system S into N subsystems SI , I =
1, . . . , N , allowing the overlapping of certain states. After
the decomposition, the I-th subsystem SI dynamics can
be described by:

ẋI =AIxI + fI(xI , uI) + gI(CIxI , uI , zI)

+ β(t− T0)φI(CIxI , zI , uI)

yI =CIxI + ηy,I(xI , uI , t),

(3)

where xI ∈ RnI , uI ∈ RmI and yI ∈ RpI are the local
state, the local control input, and the local measured
output vectors respectively, and zI ∈ RqI is the vector of
the interconnection variables 3 . The matrix AI ∈ RnI×nI

and the vector field fI : RnI × RmI 7→ RnI represent
the local nominal healthy dynamics, CI ∈ RpI×nI is the
nominal local output matrix, gI : RpI×RmI×RqI 7→ RnI is
the interconnection function that incorporates the effects
of the local state modeling uncertainty term ηx,I . The term
ηy,I is the local output uncertainty function that takes into
account the measurement error, while φI : RpI × RmI ×
RqI 7→ RnI is the local fault function.

Assumption 4. The decomposition of the monolithic sys-
tem (1) is such that zI is made of measurable variables.

This assumption is needed in order to allow the learning
of the interconnection function and of the fault function.
2 The use of boldface letters indicates that a given variable is related
to the system (1).
3 The interconnection variables zI are the states of the neighboring
subsystems nodes in the structure graph having a connection with
the subsystem I
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Fig. 1. A scheme of the proposed DFDI architecture.

Assumption 5. The structural graph and the decomposi-
tion are the same before and after the fault event.

Assumption 6. (AI , CI) is an observable pair, ∀I.

Assumption 7. The interconnection function gI is unstruc-
tured, uncertain and nonlinear, but bounded by a known

function, i.e.,
∣∣∣g(k)
I (CIxI , zI , uI)

∣∣∣ ≤ ḡ
(k)
I (CIxI , zI , uI), for

all I = 1, . . . , N , k = 1, ..., nI and for all (x,u) ∈ R.

3. DISTRIBUTED DETECTION ARCHITECTURE

In Ferrari et al. (2012), a Distributed Fault Detection
and Isolation (DFDI) methodology is proposed, consist-
ing of N agents called Local Fault Diagnosers (LFDs)
LI , I ∈ {1 . . . N}. For detection purposes, each LFD
is equipped with a non-linear adaptive estimator, called
Fault Detection Approximation Estimator (FDAE), based
on the nominal model, that computes the estimate of the
local state xI and of the local output yI . The difference
between the estimated output ŷI and the measurements yI
is the output estimation error εy,I , yI − ŷI , which plays
the role of a residual and will be compared, component by
component, to a suitable detection threshold ε̄y,I ∈ RpI .∣∣∣ε(k)

y,I(t)
∣∣∣ ≤ ε̄(k)

y,I(t), ∀k = 1, ..., pI (4)

is a necessary (but generally not sufficient) condition for
the fault-free hypothesisHI : “The system SI is healthy”.
If the condition is violated at some time instant t, then the
hypothesis HI is falsified and we can say that a fault has
occurred.

The local FDAE estimation, in the case of non-shared state
variables, can be computed as:

˙̂xI = AI x̂I + fI(x̂I , uI) + ĝI(yI , uI , vI , ϑ̂I) + LI(yI − ŷI)
ŷI = CI x̂I ,

where ĝI is the output of an adaptive approximator
designed to learn the unknown interconnection function gI
and ϑ̂I ∈ Θ̂I denotes its adjustable parameters vector. Due
to the uncertain output measurements, each LFD receives
from its neighbors the vector vI = zI + ςI , where ςI is
made with the components of ηy,J that affect the relevant
components of the neighboring subsystems measurements
yJ . In the case of variables x(s) shared among more than
one LFD, we take advantage of the redundancy obtained
by means of the overlap. We propose a deterministic
consensus protocol defined on a generic communication
graph Gs , (Os, Es), whose nodes are the LFDs in the
overlap set Os of x(s) (see Ferrari et al. (2012)):



˙̂x
(sI)
I =

∑
J∈Os

W (I,J)
s

[
A

(sJ )
J x̂J + f

(sJ )
J (x̂J , uJ)

+ĝ
(sJ )
J (yJ , uJ , vJ , ϑ̂J) + L

(sJ )
J (yJ − ŷJ)

]
(5)

where the terms W
(I,J)
s are the components of a doubly

stochastic weighted adjacency matrix, as for instance the
Metropolis matrix (Xiao et al. (2007)). Other choices are

possible, but in all cases the weights W
(I,J)
s can be viewed

as a measure of how much the I-th subsystem is confident
about the information received from subsystem J . It is
important to note that, in order to implement (5), the I-th
LFD does not need the information about the expressions

of A
(sJ )
J , f

(sJ )
J , ĝ

(sJ )
J and of L

(sJ )
J : it is sufficient that

each LFD computes locally the term A
(sJ )
J x̂J + f

(sJ )
J +

ĝ
(sJ )
J +L

(sJ )
J (yJ − ŷJ) and communicates it to other LFDs

according to the communication graph Gs.
We now analyze the dynamics of the FDAE estimation
error before the occurrence of a fault. In the non-shared
case, the i-th state estimation error component is:

ε̇
(i)
x,I = A

(i)
0,Iεx,I + ∆f

(i)
I + ∆g

(i)
I − L

(i)
I ηy,I ,

where A0,I , AI − LICI is a stable matrix (thanks to

Assumption 6), ∆f
(i)
I , f

(i)
I (xI , uI) − f

(i)
I (x̂I , uI) and

∆g
(i)
I , g

(i)
I (CIxI , uI , zI) − ĝ(i)

I (yI , uI , vI , ϑ̂I). We denote

with A(i) the i-th row of the matrix A.

In the case of shared variables, the dynamics of the LFD
state estimation error component can be written as:

ε̇
(sI)
x,I = ẋ

(sI)
I − ˙̂x

(sI)
I = A

(sI)
I xI + f

(sI)
I (xI , uI)

+ g
(sI)
I (CIxI , uI , zI)−

∑
J∈Os

W (I,J)
s

[
A

(sJ )
J x̂J

+f
(sJ )
J (x̂J , uJ) + ĝ

(sJ )
J (yJ , uJ , vJ , ϑ̂J) + L

(sJ )
J (yJ − ŷJ)

]
.

By assumption it holds
∑
J∈Os

W
(I,J)
s = 1 and, thanks to

the way the model decomposition was obtained, the state
estimation error component can be rewritten as:

ε̇
(sI)
x,I =

∑
J∈Os

W (I,J)
s

[
A

(sJ )
0,J εx,J + ∆f

(sJ )
J + ∆g

(sJ )
J

−L(sJ )
J ηy,J

]
.

We now introduce a general formulation of the state error
equation for analysis purpose. To this end we define the
extended state estimation error vector εx,E ∈ RnE×1,

with nE =
∑N
J=1 nJ , that is a column vector collecting

the state estimation error vectors of the N sub-systems:
εx,E , col (εx,J : J = 1, ..., N). The dynamics of εx,E are:

ε̇x,E = W [A0,Eεx,E + ∆fE + ∆gE − LEηyE ] (6)

where W is a N ×N block matrix

W ,

[
W1,1 . . . W1,N

. . . . . . . . .
WN,1 . . . WN,N

]
,

such that each block WI,J , with J = 1, ..., N and I =
1, ..., N collects the consensus weights of the subsystem
I with regard to the subsystem J . The diagonal blocks
WI,I are square diagonal matrices in RnI×nI , whose sI–
th diagonal element, with sI = 1, ..., nI , is equal to the

weight W
(I,I)
s if x

(sI)
I is a shared variable, and is equal to 1

otherwise. The matrices WI,J ∈ RnI×nJ , with J 6= I, have
non-null elements only in positions (sI , sJ) corresponding
to shared variables xs, and here they take the value of

the consensus weight W
(I,J)
s . This results in W being

a symmetrical, sparse and doubly–stochastic nE × nE
matrix. A0,E is a N ×N diagonal block matrix:

A0,E ,


A0,1 0 0 0

0 A0,2 0 0
. . .

. . .
. . .

. . .
0 0 0 A0,N

 ,
where the generic block is A0,J = AJ − LJCJ ∈ RnJ×nJ ,
for J = 1, .., N , resulting in A0,E being a sparse nE ×
nE matrix. ∆fE(t) is a nE × 1 matrix, collecting the

values ∆f
(sJ )
J (t), for each sJ = 1, ..., nJ and for every

J = 1, ..., N . ∆gE(t) is defined in an analogous way as

∆fE(t). Furthermore, LE , blkdiag(LJ : J = 1, .., N)
is a N × N diagonal block matrix with dimension nE ×
pE , where pE ,

∑N
J=1 pJ , while ηy,E(t) is a pE × 1

column vector collecting the uncertainty terms of the N
subsystems: ηy,E , col (ηy,I : J = 1, ..., N).

In order to guarantee the convergence of the state estima-
tion error, the matrix WA0,E has to be a stable matrix.
We derived a sufficient condition assuring that all the
eigenvalues of the matrix are in the negative semi-plane.

Proposition 3.1. If A0,E is a diagonalizable matrix (which
is not a restrictive assumption since we can choose LI , ∀I
so that this assumption is guaranteed) and if W is made so
that the elements on the diagonal Wi,i > 0.5, then WA0,E

is a stable matrix.

Proof 3.1. Since A0,E is a diagonal block matrix where the
single blocks A0,I , I = 1, . . . N are stable matrices, it is a
stable matrix in turn. If it is a diagonal or a diagonalized
matrix, the elements on the diagonal are the negative
eigenvalues −λi. Using Gerschgorin circles on the columns,
it is possible to prove that all the eigenvalues of WA0,E

are trapped in the collection of circles centered at −Wi,iλi,
with radii

∑
k 6=iWk,iλi = (1 −Wi,i)λi, where Wk,i is the

element of W corresponding to the k-th row and i-th
column, with k, i = 1, . . . , nE . The condition−Wi,iλi+(1−
Wi,i)λi < 0 assures that all the eigenvalues of WA0,E have
negative real part. This condition is satisfied if Wi,i > 0.5
for all i = 1, . . . , nE .

After the convergence of the state estimation error has
been proved, the solution of the differential equation (6)
can be written as:

εx,E(t) =

∫ t

0

eWA0,E(t−τ) [W∆fE(τ) +W∆gE(τ)

−WLEηy,E(τ)dτ ] + eWA0,E(t)εx,E(0) (7)

The extended output estimation error is then defined as:

εy,E , CEεx,E + ηy,E (8)

where CE , blkdiag(CJ : J = 1, .., N) is a N × N
diagonal block matrix, with dimension pE × nE . From
(6), (8) and the definition of CE , the following learning

law for the adjustable parameter vector ϑ̂I of the adaptive
approximator ĝI , I ∈ 1, . . . , N can be derived:

˙̂
ϑI = PΘ̂I

[
ΓIH

>
I W

>
I,IC

>
I εy,I

]
(9)



where H>I = ∂ĝI/∂ϑ̂I and PΘ̂I
is a projection operator

restricting ϑ̂I within Θ̂I (Polycarpou (1998)), ΓI is a
symmetric and positive definite learning rate matrix (see
for details Boem et al. (2011a)). In the general form, the
component-wise output estimation error can be bounded
by the following threshold, that can be computed in a
distributed way:∣∣∣ε(k)

y,E(t)
∣∣∣ ≤ ∣∣∣C(k)

E εx,E(t)
∣∣∣+
∣∣∣η(k)
y,E(t)

∣∣∣
≤
∣∣∣C(k)
E

∣∣∣ {∫ t

0

∥∥∥eWA0,E(t−τ)
∥∥∥W [

∆̄fE(τ) + ∆̄gE(τ)

+ |LE | η̄y,E(τ)dτ ] +
∥∥eWA0,Et

∥∥ ε̄x,E(0)
}

+ η̄
(k)
y,E(t) (10)

where we denote with |A| the element by element absolute
value of the matrix A. Furthermore,

∆̄f
(s)
E (t) = max

x(s)∈Rx(s)

{∣∣∣∆f (s)
E (t)

∣∣∣} ,
ε̄
(s)
x,E(0) = max

x(s)∈Rx(s)

{∣∣∣x(s) − x̂(s)(0)
∣∣∣} ,

for every s = 1, ..., nE . With regards to ∆̄gE , some
considerations are expressed in Boem et al. (2011b) and
Ferrari et al. (2012): ∆gI can be upper bounded by

∆̄gI , ‖HI‖κI(ϑ̂I) + ν̄I + maxηyI
maxςI |∆ĝI |, where κI

is such that κI(ϑ̂I) ≥
∥∥∥ϑ̃I∥∥∥. In fact, by defining the

parameter estimation error ϑ̃I , ϑ̂∗I − ϑ̂I and the function

∆ĝI , ĝI(CIxI , zI , uI , ϑ̂I)−ĝI(yI , vI , uI , ϑ̂I), we can write

∆gI = HI ϑ̃I + νI + ∆ĝI , where νI , gI(CIxI , zI , uI) −
ĝI(CIxI , zI , uI , ϑ̂

∗
I) is the Minimum Functional Approxi-

mation Error, with

ϑ̂∗I , arg min
ϑ̂I

sup
xI ,zI ,uI

∥∥∥gI(CIxI , zI , uI)− ĝI(CIxI , zI , uI , ϑ̂I∥∥∥
is the optimal weight vector. The extended upper bound
∆̄gE simply collects the upper bounds of the N subsys-
tems. The threshold in Eq. (10) guarantees that no false-
positive alarms will be issued until T0 because of the
uncertainties. This, of course and in rough terms, comes
at the cost of the impossibility of detecting faults “hidden
by the uncertainties in the system dynamics”.

3.1 Fault Detectability Analysis

Let us assume that at time t = T0 a fault φ occurs in the
monolithic system. φE denotes the extended fault function
vector collecting the N subsystems fault functions. After
the occurrence of the fault, for t > T0, the state estimation
error dynamics becomes

ε̇x,E = W [A0,Eεx,E + ∆fE + ∆gE − LEηy,E(t)]

+ (1− e−α(t−T0))φE
and the output estimation error equation for the k-th

component is: ε
(k)
y,E(t) =

C
(k)
E

{∫ t

0

eWA0,E(t−τ)
[
W (∆fE(τ)+∆gE(τ)−LEηy,E(τ))

+ (1− e−α(τ−T0))φE(τ)dτ
]

+ eWA0,Etεx,E(0)

}
+η

(k)
y,E(t)

Now, we are able to state and prove a sufficient condition
for the off-line characterization, in a non-closed form, of

a class of faults that can be detected by the proposed
FD methodology. Due to space constraints the proof of
the theorem is omitted, but the steps are similar to those
presented in the fault detectability theorem in Boem et al.
(2011a).

Theorem 1. (Fault Detectability). If there exists a time
instant t1 > T0 such that the fault φE satisfies the
inequality∣∣∣∣∫ t1

T0

C
(k)
E eWA0,E(t1−τ)(1− e−α(τ−T0))φE(τ)dτ

∣∣∣∣ > 2ε̄
(k)
y,E(t1)

for at least one component k ∈ {1, ..., pE}, then the fault

will be detected at time t1, that is
∣∣∣ε(k)
y,E(t1)

∣∣∣ > ε̄
(k)
y,E(t1).

4. DISTRIBUTED ISOLATION ARCHITECTURE

After a fault is detected by any of the N LFDs, the Global
Fault Diagnoser (GFD) receives the corresponding local
fault decision and switches each LFD from fault detection
to fault isolation operating mode, stopping the learning of

the parameter ϑ̂I . Consistently with Ferrari et al. (2012),
for isolation purposes we assume that the fault function φ
may belong to a known global fault set F or be unknown:

F , {φ1(Cx,u), . . . ,φNF
(Cx,u)},

It is possible that not all the subsystems are affected
by a given fault function φl , but only those contained

in the corresponding fault influence set Ul , {I :

∃t, ∃s, s ∈ II , φ(s)
l (Cx,u) 6= 0}, for the l–th fault

function φl, with l = 1, ...,NF . A local fault set FI
can be defined for each subsystem SI , collecting the
local fault functions φI,l such that I ∈ Ul: FI ,
{φI,1(CIxI , zI , uI), ..., φI,NFI

(CIxI , zI , uI)}. A more de-

tailed description can be found in Ferrari et al. (2012),
where a scheme of the isolation algorithm is presented.
Besides the FDAE, in the isolation mode each LFD uses
other NFI

estimators called Fault Isolation Estimators
(FIE), one for each fault in the local fault set FI , in order
to locally isolate the fault that is acting on the subsystem
I. In this way, it is not necessary that the I–th LFD knows
the global fault influence set: it is only able to isolate the
local part of a fault that influences the subsystem SI .
For each LFD LI , with I = 1, ..., N , the generic l–th
FIE, with l ∈ {1, . . . , NFI

}, monitors the corresponding
fault function φI,l, belonging to the local fault set FI . We
assume that each fault function in FI can be expressed as:

φI,l = col(ϑ>I,l,kHI,l,k(CIxI , zI , uI), k = 1, ..., nI),

where HI,l,k : RpI × RqI × RmI 7→ RqI,l,k , with k ∈
{1, . . . , nI}, l ∈ {1, . . . , NFI

}, are the known functions
describing the functional structure of the fault and ϑI,l,k ∈
ΘI,l,k ⊂ RqI,l,k are the unknown parameter vectors pro-
viding its “magnitude”, where the parameter domains
ΘI,l,k are assumed to be origin–centered hyper–spheres
with radius MΘI,l,k

, without much loss of generality. After
t = Td, the generic l–th FIE estimator is activated and
monitors its subsystem, computing a local state estimate
x̂I,l and a local output estimate ŷI,l. The difference be-
tween the estimate ŷI,l and the measurements yI is the

estimation error εy,I,l , yI − ŷI,l, used as a residual and
compared, component by component, to an appropriate

isolation threshold ε̄y,I,l ∈ RpI+ . The condition |ε(k)
y,I,l(t)| ≤



ε̄
(k)
y,I,l(t) ∀ k = 1, . . . , pI is associated to the l–th fault

hypothesis HI,l : “The subsystem SI is affected by the
l-th fault”. Should the condition be violated at some time
instant t, then the hypothesis HI,l will be falsified exclud-
ing the fault φI,l and the local fault isolation signature SI,l
will become non–empty:

SI,l(t) , {k ∈ {1, . . . , pI} : ∃ t1, t ≥ t1 > 0

such that |ε(k)
y,I,l(t1)| > ε̄

(k)
y,I,l(t1)}.

The aim of the isolation task is to exclude every but one
fault: a fault φI,ρ ∈ FI is locally isolated at time t iff
∀l, l ∈ {1, . . . , NFI

} \ ρ ,SI,l(t) 6= ∅ and SI,ρ(t) = ∅. We
can say that it actually occurred if we assume that only
faults belonging to the set FI may occur. After the fault
φ(t) has occurred, the sI–th component of the I–th local
state equation becomes

ẋ
(sI)
I = A

(sI)
I xI + f

(sI)
I (xI , uI)

+ g
(sI)
I (CIxI , zI , uI) + β(t− T0)φ(s)(Cx, u) .

The l-th FIE computes a local estimate, that, in the case
of non-shared state variables, can be defined as:

˙̂xI,l =AI x̂I,l + fI(x̂I,l, uI) + ĝI(yI , uI , vI , ϑ̂I,0)

+ LI(yI − ŷI,l) + φ̂I,l(yI , vI , uI , ϑ̂I,l)

ŷI,l =CI x̂I,l,

where LI ∈ Rni×pI is the local output error gain,

φ̂
(sI)
I,l (yI , vI , uI , ϑ̂I,l) , (ϑ̂I,l,sI )>HI,l,sI (yI , vI , uI) is the
sI–th component of a linearly-parameterized function that
learns the structure of the l–th fault function φI,l, where

the vector ϑ̂I,l , col(ϑ̂I,l,k, k ∈ {1, . . . , nI}) contains its

adjustable parameters:
˙̂
ϑI,l = PΘ̂I,l

[
ΓI,lH

>
I,lW

>
I,IC

>
I εy,I,l

]
,

where H>I,l = ∂φ̂I,l/∂ϑ̂I,l. The dynamics of the l–th FIE
estimator for the most general case of distributed fault are

˙̂x
(sI)
I,l =

∑
J∈Os

W (I,J)
s

[
A

(sJ )
J x̂J,l + f

(sJ )
J (x̂J,l, uJ)

+ĝ
(sJ )
J (yJ , uJ , vJ , ϑ̂J,0) + L

(sJ )
J (yJ,l − ŷJ) + φ̂

(sJ )
J,l

]
The i-th estimation error component is

ε̇
(i)
x,I,l = A

(i)
0,Iεx,I,l + ∆f

(i)
I + ∆g

(i)
I − L

(i)
I ηy,I

+ (1− e−α(t−T0))φ(i) − φ̂(i)
J,l,

On the other hand, the dynamics of the state estimation
error component for shared variables can be described as:

ε̇
(sI)
x,I,l = A

(sI)
I xI + f

(sI)
I (xI , uI) + g

(sI)
I (CIxI , uI , zI)+

(1−e−α(t−T0))φ(s)−
∑
J∈Os

W (I,J)
s

[
A

(sJ )
J x̂J,l + f

(sJ )
J (x̂J,l, uJ)

+ĝ
(sJ )
J (yJ , uJ , vJ , ϑ̂J,0) + L

(sJ )
J (yJ − ŷJ,l) + φ̂

(sJ )
J,l

]
.

When we consider a matched fault, that is φ(s) =

φ
(sJ )
J,l (xJ , zJ , uJ , ϑJ,l),∀ J ∈ Os, the error dynamics are:

ε̇
(sI)
x,I,l =

∑
J∈Os

W (I,J)
s

[
A

(sJ )
0,J εx,J,l + ∆f

(sJ )
J

+∆g
(sJ )
J − L(sJ )

J ηy,J + ∆φ
(sJ )
J,l

]
where

∆φ
(sJ )
J,l , (1− e−α(t−T0))φ(s) − φ̂(sJ )

J,l = (1− e−α(t−T0))

(HJ,l,sJ (t)>ϑJ,l,sJ + ∆H>J,l,sJϑJ,l,sJ )−HJ,l,sJ (t)>ϑ̂J,l,sJ

with ∆H>J,l,sJ , HJ,l,sJ (xJ , zJ , uJ) − HJ,l,sJ (yJ , vJ , uJ) .
It can be rewritten as

∆φ
(sJ )
J,l = −e−α(t−T0)HJ,l,sJ (t)>ϑ̂J,l,sJ

+(1−e−α(t−T0))(HJ,l,sJ (t)>ϑ̃J,l,sJ +∆HJ,l,sJ (t)>ϑJ,l,sJ )

if we introduce the parameter estimation errors ϑ̃J,l,sJ ,
ϑJ,l,sJ − ϑ̂J,l,sJ . Using the general formulation, we can
express the dynamics of the estimation error in the case of
a matched fault, as:

ε̇x,E,l = W [A0,E εx,E,l + ∆fE + ∆gE − LEηyE + ∆φE,l] .

We can now compute the state estimation error solution:

εx,E,l(t) =

∫ t

Td

eWA0,E(t−τ) [W∆fE(τ) +W∆gE(τ)

−WLEηy,E(τ) +W∆φE,l(τ)dτ ]+eWA0,E(t−Td)εx,E,l(Td)

The output estimation error in the case of a matched fault

can be written componentwise as: ε
(k)
y,E,l , C

(k)
E εx,E,l +

η
(k)
y,E , for all k = 1, ..., pE . It can be bounded by:∣∣∣ε(k)

y,E,l(t)
∣∣∣ ≤ ∣∣∣C(k)

E

∣∣∣ {∫ t

Td

∥∥∥eWA0,E(t−τ)
∥∥∥W [

∆̄fE(τ)

+∆̄gE(τ) + |LE | η̄y,E(τ) + ∆̄φE,l(τ)dτ
]

+
∥∥∥eWA0,E(t−Td)

∥∥∥ ε̄x,E,l(Td)}+ η̄
(k)
y,E(t) (11)

where

∆̄φE,l = col(‖HI,l,sI (t)‖κI,l,sI (ϑ̂I,l,sI )+∆̄HI,l,sI (t)ϑ̄I,l,sI

−e−ᾱ(t−Td)‖HI,l,sI (t)‖‖ϑ̂I,l,sI‖, sI = 1, ..., nI , I = 1, ..., N)

where κI,l(ϑ̂I,l) ≥
∥∥∥ϑ̃I,l∥∥∥. The threshold (11) can be

computed in a distributed way and guarantees that no
matched fault will be excluded due to the presence of
uncertainties or to the effect of the parameter estimation
error ϑ̃I,l.

4.1 Fault isolability analysis

We now consider the case of a non–matched fault
φ

(sI)
I (xI , zI , uI) = φ

(sI)
I,ρ (xI , zI , uI , ϑI,ρ), with ρ 6= l. In

this case, the dynamics of the shared sI–component of the
estimation error for the l–th FIE of the I–th LFD can be
written as

ε̇
(sI)
x,I,l =

∑
J∈Os

W (I,J)
s [A

(sJ )
0,J εx,J,l + ∆f

(sJ )
J + ∆g

(sJ )
J

− L(sJ )
J ηy,J + (1− e−α(t−T0))φ

(sI)
I,ρ (xI , zI , uI , ϑI,ρ)

− φ̂(sJ )
J,l (yJ , vJ , uJ , ϑ̂J,l)].

and considering the vector εx,E,l:

ε̇x,E,l = W [A0,E εx,E,l + ∆fE + ∆gE − LEηyE + ∆lφE,ρ] ,

where the mismatch vector is introduced

∆lφE,ρ , col((1− e−α(t−T0))φ
(sI)
I,ρ − φ̂

(sI)
I,l ,

sI = 1, ..., nI , I = 1, ..., N).

The solution can then be written as



εx,E,l(t) =

∫ t

Td

eWA0,E(t−τ) [W∆fE(τ) +W∆gE(τ)

−WLEηy,E(τ) +W∆lφE,ρ(τ)dτ ]+eWA0,E(t−Td)εx,E,l(Td)

and the output residual can be computed componentwise:

ε
(k)
y,E,l(t) = η

(k)
y,E(t) + C

(k)
E εx,E,l(t)

At this point, a sufficient condition for fault isolability can
be proved. Due to page limitations, the proof is omitted.

Theorem 2. (Fault Isolability). Given a fault φI,ρ ∈ FI , if
for each l ∈ {1, . . . , NFI

}\ρ, the following inequality holds∣∣∣∣∣
∫ Tl

Td

C
(k)
E eWA0,E(Tl−τ)∆lφE,ρ(τ)dτ

∣∣∣∣∣ > ε̄
(k)
y,E,l(Tl)

+
∣∣∣C(k)
E

∣∣∣ {∫ Tl

Td

∥∥∥eWA0,E(Tl−τ)
∥∥∥W [

∆̄fE(τ) + ∆̄gE(τ)

+ |LE | η̄y,E(τ)dτ ]+
∥∥∥eWA0,E(Tl−Td)

∥∥∥ ε̄x,E,l(Td)}+η̄
(k)
y,E(Tl)

at some time instant Tl > Td, for some k ∈ {1, . . . , pI},
then the ρ–th fault will be isolated.

4.2 Global fault isolation logic

In this subsection, we analyze the global fault isolation
logic. The GFD, which is assumed to know both the global
fault set F and the fault influence sets of all the global fault
functions, receives the local fault decisions dFD

I from each
LFD and determines which one of the faults, if any, in the
global set F affects the system S . As proposed in Ferrari
et al. (2012), it is important to make a distinction between
local and distributed faults. For a local fault, it is sufficient
that the corresponding LFD excludes every but that fault
for concluding that it is isolated. Instead, in the case of
distributed faults, the isolation requires that all the LFDs
in the influence set of that fault, exclude all other faults.

5. CONCLUDING REMARKS

In this paper, the problem of distributed fault detection
and isolation with partial state measurement was ad-
dressed in the case of continuous–time systems, by ex-
tending a diagnosis architecture developed by the same
authors in Boem et al. (2011b) for discrete-time systems.
Future research efforts will be devoted to relax some of
the detectability and isolability conditions and to illustrate
the effectiveness of the proposed technique by validation
on practically-relevant distributed use-cases, both in sim-
ulation and in actual experiments.
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