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SUMMARY

Transcription is a highly regulated and inherently
stochastic process. The complexity of signal trans-
duction and gene regulation makes it challenging
to analyze how the dynamic activity of transcrip-
tional regulators affects stochastic transcription.
By combining a fast-acting, photo-regulatable tran-
scription factor with nascent RNA quantification in
live cells and an experimental setup for precise
spatiotemporal delivery of light inputs, we con-
structed a platform for the real-time, single-cell inter-
rogation of transcription in Saccharomyces cerevi-
siae. We show that transcriptional activation and
deactivation are fast and memoryless. By analyzing
the temporal activity of individual cells, we found
that transcription occurs in bursts, whose duration
and timing are modulated by transcription factor ac-
tivity. Using our platform, we regulated transcription
via light-driven feedback loops at the single-cell
level. Feedback markedly reduced cell-to-cell vari-
ability and led to qualitative differences in cellular
transcriptional dynamics. Our platform establishes
a flexible method for studying transcriptional dy-
namics in single cells.

INTRODUCTION

Precise regulation of gene expression plays a major role in many

biological processes, such as the cellular response to environ-

mental stimuli. On the transcriptional level, gene expression is

often regulated by the activity of specific transcription factors

(TFs). In recent years, single-cell studies have greatly increased

our understanding of transcription and its regulation. For

example, it was shown that upon stimulation, signaling mole-

cules and TFs often display dynamic patterns of activity, such

as oscillations (Purvis and Lahav, 2013). Furthermore, single-

cell analysis revealed that cells of isogenic populations show
Molecular Cell 70, 745–756
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substantial amounts of expression heterogeneity (Raj and van

Oudenaarden, 2008). In eukaryotic cells, the transcription of

many genes was observed to occur in stochastic, pulsatile

bursts (Chubb et al., 2006; Raj et al., 2006; Zenklusen et al.,

2008). While the dynamics of TF activity and transcription have

each been studied extensively, a quantitative understanding of

how stochastic transcription is influenced by the abundance

and dynamics of upstream regulators is just starting to emerge

(Larson et al., 2013; Molina et al., 2013; Neuert et al., 2013;

Senecal et al., 2014).

To date, regulation of stochastic transcription has mainly been

analyzed by measuring the gene expression response to natural

stimuli, such as growth factors (Molina et al., 2013; Neuert

et al., 2013; Senecal et al., 2014). Such stimuli can simultaneously

activate a variety of signaling pathways, blurring the causal link

between the activity of individual TFs and gene expression re-

sponses. Thus, the ability to control the activity of transcriptional

regulators precisely and dynamically has the potential to lead to

new insights into gene expression regulation (Toettcher et al.,

2011). For many natural systems, performing precise perturba-

tions may be challenging due to the inherent dynamic interplay

of their components (Purvis et al., 2012). A promising, comple-

mentary strategy is the use of (semi-)synthetic systems to study

general properties of transcriptional processes in a bottom-up

fashion (Khalil et al., 2012; Senecal et al., 2014).

Here, following the latter approach, we set out to develop a

versatile framework for the interrogation of transcriptional activ-

ity in single, live cells. We combine a photosensitive TF with fast

kinetics with a real-time nascent RNA readout, enabling simulta-

neous regulation of an upstream effector and visualization of

its effect on transcriptional dynamics. To achieve independent

photoinduction and quantification of gene expression in hun-

dreds of single yeast cells in parallel, we built a low-cost exper-

imental platform based on a Digital Micromirror Device (DMD)

projector and a powerful image processing software pipeline to

automatically track, target with light, and quantify the responses

of single cells over long timespans. Using a combination of

different light perturbations and feedback control of transcription

in single cells, we are able to explore in depth the TF-mediated

modulation of transcriptional bursting in Saccharomyces

cerevisiae. By analyzing how different features of the single-
, May 17, 2018 ª 2018 The Authors. Published by Elsevier Inc. 745
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cell responses are affected by the abundance and dynamics of

active TF, we show that the amount of active TF mainly deter-

mines the propensity of transcriptional bursts as well as their

duration, and we propose a molecular mechanism able to repro-

duce these results. Additionally, we show that variability in tran-

scription levels can be compensated by tuning the input each

cell receives. Given that different effectors of gene expression

can be fused with light-sensitive DNA-binding domains, our re-

sults demonstrate a powerful and generally applicable approach

for the study of transcription at the single-cell level.

DESIGN

To effectively analyze the effects of upstream regulators on

downstream transcriptional dynamics, an experimental system

should meet the following design requirements: (1) reversible

and fast modulation of TF activity, (2) visualization of transcrip-

tional response in real time, and (3) independent regulation and

quantification of several cell responses in parallel.

Recruitment of transcriptional regulators using small-molecule

responsive DNA-binding proteins was previously employed to

analyze transcriptional regulation at the single-cell level (Janicki

et al., 2004). However, for such tools the speed of regulation is

limited by cellular uptake and release of the inducer. Given that

in natural systems TF activity can vary on a timescale of minutes

(Cai et al., 2008), an ideal tool for the analysis of transcriptional

regulation would show similarly fast activation and deactivation

kinetics. In contrast to small molecules, light can be administered

to single cells with unprecedented spatiotemporal resolution and

is thus an ideal input for our framework. In recent years, optoge-

netic tools have been developed that enable fast and reversible

control of many cellular processes, including gene expression

(M€uller et al., 2015; Toettcher et al., 2011). However, these tools

have not yet been extensively applied to study transcription sto-

chasticity. A first step in this direction was made by Larson et al.

(2013), who employed a photocaged steroid receptor ligand to

induce a pulse of steroid receptor activity in single cells.

To meet the speed and reversibility requirements, we em-

ployed a previously described photosensitive TF consisting of

a nuclear localization signal (NLS), the VP16 transactivation

domain (AD), and the bacterially derived LOV-domain protein

EL222 (VP-EL222) (Motta-Mena et al., 2014; Nash et al., 2011).

Blue light stimulation induces structural changes in EL222 in a

matter of seconds, leading to homodimerization and binding to

its cognate promoter sequence (Figure 1A). In the absence

of blue light, VP-EL222 deactivates within 1 min and shows

minimal DNA-binding activity (Motta-Mena et al., 2014). Thus,

non-induced VP-EL222 does not affect the promoter state,

e.g., nucleosome positioning, allowing early promoter remodel-

ing to be investigated.

In order to thoroughly investigate transcriptional dynamics in

response to TF inputs, a fast readout at the single-cell level is

also required. Protein stability and maturation delays preclude

the analysis of the underlying variability and kinetics of transcrip-

tion using fluorescent proteins (FPs). The MS2/PP7 RNA detec-

tion system bypasses these problems to provide real-time read-

outs of transcriptional activity (Bertrand et al., 1998; Larson et al.,

2011). In this system, RNAs are visualized by the introduction of
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multiple stem-loop sequences (MS2/PP7-SL). The stem-loops

are bound by FP-labeledMS2/PP7 coat proteins shortly after be-

ing transcribed (Figure 1A). Due to the accumulation of FPs at

the transcription site, nascent RNAs can be detected as diffrac-

tion-limited fluorescent spots in induced cells, allowing for their

quantification (Figure 1B). Recently, optogenetic protein regula-

tion was combined with transcription visualization approaches

in mammalian cells (Rademacher et al., 2017; Wilson et al.,

2017). Here, we combine a light-sensitive TF and a transcription

visualization systemwith an experimental platform for single-cell

photostimulation.

The stimulation of individual cells based on readouts of their

physiological or morphological state can guide the investigation

of biochemical network topologies at a much greater level of

detail. For example, it can enable the detection of previously un-

observed factors influencing the cellular responses (Toettcher

et al., 2013), or allow the investigation of emergent population-

level behaviors based on interactions between cells and their

environment (Chait et al., 2017). Independent photostimulation

of cells requires hardware for patterned illumination at themicro-

scope sample plane. Additionally, to precisely target the desired

cells during time course experiments, cell segmentation and

tracking are needed to locate each cell and to follow it over

time. Commercial solutions for the delivery of light to restricted

regions of the field of view are nowadays available. However,

such devices are costly and not easily interfaceable to external

software. Instead, they are typically operated manually, making

experiments in which illuminated regions change dynamically

extremely challenging. To avoid these problems, we constructed

a custom light delivery platform (Figure 1C), built from easily

available components, with a cost of around $1,000 US. Our so-

lution is fully integrated with freely available microscope control

software (Lang et al., 2012) and can be easily interfaced with

external programming languages for increased flexibility.

RESULTS

An Experimental Setup for Single-Cell Optogenetics
We built an experimental platform tailored for independent

photoinduction of gene expression or signaling in hundreds of

single yeast cells in parallel (Figure 1C). To stimulate cells with

light, we made use of a DMD projector (Zhu et al., 2012) (STAR

Methods). The DMD contains an array of about a million individ-

ual micromirrors, with each mirror being independently switch-

able between an ‘‘on’’ and an ‘‘off’’ position. When ‘‘on,’’ the

mirror reflects the light of an LED source onto the specimen,

while intermediate light intensities can be achieved by fast

pulse-width modulation of the mirror position. Coupled with a

microscope at sufficient magnification (Figure S1A), the high

pixel density of the DMD projector can thus achieve micrometer

spatial resolution. This in turn enables the generation of light pat-

terns that can precisely target individual yeast cells within a

tightly packed micro-colony with inputs of arbitrary duration

and intensity (Figure 1D). To constrain the cells onto a single

plane (necessary to maintain the DMD projector precisely

focused on the colony), a previously introduced microfluidic

chip that enables long-term observation of growing microcolo-

nies was used (Frey et al., 2015).
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Figure 1. Experimental Setup for Optogenetic Feedback Control of Single Cells

(A) Optogenetic induction of transcription and RNA labeling. VP-EL222 homodimerizes in presence of blue light, exposing its DNA-binding domain (Nash et al.,

2011). The dimer then binds to its cognate promoter, a fusion of five EL222-binding sites (EL-bs) to the truncated CYC1 promoter (CYC180), stimulating the

expression of a downstream gene. The regulated gene contains stem-loops recognized and bound by a reporter protein (tdPCP-tdmRuby3), enabling the

visualization of the produced RNAs in live cells.

(B) Nascent RNA visualization and depiction of transcriptional bursting. Top: the accumulation of fluorescently labeled nascent RNAs at the transcription site

generates a diffraction-limited fluorescent nuclear spot clearly visible under themicroscope. Bottom: illustration of the nascent RNA profile in two cells exposed to

a constant stimulus. The cellular response to the stimulus shows that transcription takes place in bursts.

(C) Experimental feedback loop for optogenetic single-cell control. Light-responsive cells are grown under amicroscope and periodically imaged. The images are

read by a computer in charge of cell segmentation and tracking, and quantification of the cellular readouts. The results are provided to feedback controllers (each

assigned to a single cell), which compute the light intensity to be projected onto each cell at the next time point, in order to attain a pre-specified behavior in the

individual cells. The calculated inputs are passed to a DMD projector, responsible for precisely targeting light onto the cells.

(D) Optogenetic induction of transcription in single cells. Top: yeast cells densely growing in a monolayer are illuminated through the DMD projector (blue) in the

pattern of a number ‘‘10.’’ The active transcription site of each cell (imaged in the fluorescence channel) is marked by a red spot (see Video S1 for time course and

Figure S1C for unprocessed data). Bottom: bright-field and fluorescence images of yeast cells selectively targeted with blue light.

(E) Pipeline for the quantification of nascent RNAs. Fluorescent images are taken at five different z-plane positions to capture the entirety of the cell. The images

are then processed to yield the nascent RNA count per cell (STAR Methods).
Parallel, single-cell optogenetic stimulation across a fast-

growing cellular population poses challenges with respect to

cell segmentation and tracking. Cell positions must be precisely

extracted to accurately target each cell with light, and cell iden-

tity across frames must be known. We therefore constructed a

software pipeline for imaging automation, real-time image pro-

cessing, and light input application (STAR Methods). With this

setup, pre-specified temporal and spatial light patterns can

be applied to individually tracked cells or cell groups (open-

loop operation). Furthermore, monitoring transcriptional activity

within each cell with an RNA detection system (see below) allows

the calculation of light inputs based on the current and past mea-

surements from each cell, in order to achieve a prespecified

target activity level (closed-loop operation). This further required

the addition of computational algorithms to quantify the cellular
readouts and compute the necessary light input adjustments

within our software pipeline (Figures 1E and S6C).

Thanks to the careful optimization of all hardware and soft-

ware components, our system is capable of updating the light

inputs to �100 tracked yeast cells every 2 min—a frequency

that allows real-time feedback regulation of fast cellular pro-

cesses such as transcription or signaling. When operating in

the less demanding open-loop mode, the system has been

used to simultaneously perturb transcription dynamics in more

than 500 cells (Figure S3E).

Optogenetic Characterization of Transcriptional
Activation and Memory
In order to manipulate and measure transcriptional activity at the

single-cell level, we combined the light-sensitive transcription
Molecular Cell 70, 745–756, May 17, 2018 747
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Figure 2. Optogenetic Characterization of

Transcriptional Activation and Memory

(A) Temporal transcriptional response of cells

exposed to constant light. Mean transcriptional

response of yeast cells (bottom) exposed to high

(red) and low (orange) blue light intensity (top).

Colored lines represent the mean and the shaded

regions represent the SD of two independent ex-

periments (mean transcriptional response of each

experiment is shown in Figure S3F). The time at

which half-maximal average nascent RNA counts

are reached (t½) is depicted on the graph.

(B) Transcriptional response to a sequence of light

pulses. Cells were exposed to pulses of high- (red)

and low- (red) intensity blue light with a duration

and an interpulse interval of 10 min (top). Colored

lines represent the mean and the shaded regions

represent the SD of three independent experi-

ments (transcriptional responses from each

experiment are shown in Figure S3G).

(C) Lack of memory in the transcriptional

response. Top: distributions of single-cell re-

sponses do not differ between two consecutive

light pulses. The x-coordinate of each point rep-

resents the transcriptional response of an indi-

vidual cell, computed by adding up the nascent

RNAmeasurements taken during the application of the first light pulse and the subsequent dark period. The y-coordinates denote the transcriptional responses of

the same cells to the second light pulse. Marginal distributions of single-cell responses are shown at the respective axis. The data correspond to the pulse

experiment with high light intensity shown in (B) andwere normalized to themaximal response. Bottom: the table shows the percentage of cells that responded to

neither the first nor the second light pulse, to both of them, or to only one of the light pulses. The data indicate that the transcriptional response of the cells is not

strongly affected by previous light pulses.
factor VP-EL222with real-time observation of transcription using

the PP7 system (Larson et al., 2011). Specifically, we engineered

a reporter gene by introducing a VP-EL222 responsive promoter,

consisting of five EL222-binding sites and a truncatedCYC1 pro-

moter (Benzinger and Khammash, 2018), as well as a sequence

encoding 24 copies of the PP7 stem-loop upstream of the

endogenous GLT1 open reading frame (ORF) (Figure 1A). A

constitutively expressed fusion protein, consisting of a PP7

bacteriophage coat protein tandem dimer fused to an NLS and

two copies of the red fluorescent protein mRuby3 (tdPCP-

tdmRuby3), binds to these stem-loops, allowing for the visualiza-

tion of nascent RNAs as a fluorescent diffraction-limited spot in

the nucleus. We performed single-molecule fluorescent in situ

hybridization (smFISH) measurements to relate the quantified

spot fluorescence values to numbers of nascent RNAs at the

transcription site (STAR Methods; Figure S2).

Activation of VP-EL222 was shown to occur within seconds

after blue light illumination (Motta-Mena et al., 2014; Nash

et al., 2011). This property enables the precise quantification of

transcriptional activation kinetics by measuring reporter gene

transcription in response to a constant light input. We found

that nascent RNAs were detectable in single cells as soon as

2 min after light exposure (Figure S3A; peak wavelength,

450 nm; spectrum, Figure S1B). In the population average,

half-maximal average nascent RNA counts were reached 8–

9 min after induction (Figure 2A). While different levels of con-

stant light intensity affected the steady-state nascent RNA

counts and thus the average transcription rate of the population,

they did not strongly affect the transient dynamics of the average

RNA count (Figure 2A). Importantly, light-dependent induction of
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transcription required the expression of the full VP-EL222 protein

as well as the presence of its cognate binding sites in the pro-

moter region (Figure S2B).

We next sought to use the fast deactivation kinetics of VP-

EL222 (Motta-Mena et al., 2014; Nash et al., 2011) to analyze

potential short-term transcriptional memory. To this end, we

measured the transcriptional response to a series of light pulses.

The average nascent RNA count started to decrease between 2

and 4 min after light withdrawal and returned to pre-induction

levels after 10min (Figure 2B). This confirms the fast deactivation

kinetics of VP-EL222 and further shows that transcription initia-

tion ceases directly with or shortly after VP-EL222 deactivation.

The response of the cell population to the different pulses was

almost identical (Figures 2B and 2C). Furthermore, the transcrip-

tional output of individual cells to two consecutive pulses was

symmetric (Figure 2C): cells presented on average a similar

response to both pulses, indicating that the first pulse did

not influence the cell’s response to the second pulse. Thus,

VP-EL222-mediated transcriptional activation does not lead to

lasting changes in the promoter state.

Characterization of TF-Mediated Transcriptional
Bursting
Examination of single-cell traces from the experiment shown in

Figure 2A revealed that transcription of the reporter gene occurs

in bursts, with periods of high transcriptional activity and periods

of inactivity in which no nascent RNAs are detectable (Figure 3A;

see Figure S2A for smFISH data). Many studies rely on a model-

based analysis of smFISH snapshot data to infer transcriptional

dynamics (Neuert et al., 2013; Raj et al., 2006). In contrast, the
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Figure 3. Characterization of Transcrip-

tional Dynamics on the Single-Cell Level

(A) Examples of transcriptional bursting at different

light intensities. Traces show the temporal evolu-

tion of nascent RNA counts for two individual cells

exposed to constant low- (orange, bottom) and

high- (red, top) intensity blue light. Traces were

taken from the experiments shown in Figure 2A.

(B) Schematic representation of burst metrics

used in this study.

(C) Modulation of burst metrics by light intensity.

Metrics described in (B) were calculated for

each cell trace derived from the experiments

shown in Figure 2A (STAR Methods). The data

shown represent the value of each burst metric

averaged over all cells exposed to a given light

intensity. Error bars indicate SD of two indepen-

dent experiments.

(D) Effects of inputs on burst metrics in a simple

two-state promoter model. Top: model describing

gene activation and deactivation (rate kON and

kOFF), nascent RNA production (rate kr), and

escape of nascent RNAs from the transcription site

(modeled to occur 2 min after the transcription

initiation event). Bottom: elevated TF activity

(induced by a higher light intensity) is assumed to increase kON and decrease kOFF. Single-cell trajectories were simulated for low and high light intensities, and

burst metrics were calculated as for the experimental data. The sensitivities of the defined burst metrics to changes in model parameters kON, kOFF, and kr can be

found in Figure S3B.
combination of a live-cell readout of transcription with a control-

lable TF enabled us to directly quantify how bursting behavior is

modulated by TF activity (Larson et al., 2013). To quantify the

transcriptional dynamics of single cells, we defined the following

metrics on individual cell traces (schematically illustrated in Fig-

ure 3B): the fraction of time a cell is actively transcribing (activity

ratio), the duration of the bursts (burst duration), the time in be-

tween bursts (inter-burst duration), and the median number of

nascent RNAs being transcribed at a given time for each burst

(burst intensity).

The analysis of cell traces revealed that the light-induced in-

crease in transcription rate shown in Figure 2A resulted primarily

from changes in the activity ratio, while burst intensity only

increased slightly with light intensity (Figure 3C). The increase

in the activity ratio was a result of both an increase in burst dura-

tion and a decrease in inter-burst duration (Figure 3C). To get an

intuitive understanding of how the concentration of active TF af-

fects transcription, we considered a simple two-state promoter

model consisting of three parameters: kON and kOFF, which

determine the rates at which the promoter switches between

states, and kr, the RNA production rate when the promoter is

in its active configuration. Nascent RNAs were modeled to

have a fixed time interval for the completion of transcription. Af-

ter analyzing the effect of the three parameters on the burst met-

rics (Figure S3B), we found that the model best fits the experi-

mental results when the abundance of active TF affects both

kON and kOFF, in opposite directions (Figure 3D). Therefore, a

light intensity increase seems to cause a similar increase in the

propensity of the promoter to transition to its ‘‘on’’ configuration,

and to decrease the propensity it switches back ‘‘off.’’ There did

not seem to be a direct effect of active TF abundance on kr, the

parameter that primarily influences burst intensity (Figure S3B).
Single-Cell Feedback Control Reduces Cell-to-Cell
Differences in Transcriptional Output
The application of constant light inputs has shown that, on

average, the propensity of transcriptional bursts and their dura-

tion increases together with light intensity (Figure 3C). However,

the time-averaged transcriptional output of single cells varies

significantly among the cell population (Figure S4A). Previous

research has shown that one approach cells take to mitigate

variations in key cellular properties is feedback (Becskei and

Serrano, 2000). By providing cells with light inputs based on

their past transcriptional state (single-cell feedback, described

below in detail), we sought to investigate to what extent feed-

back can reduce cell-to-cell variability in transcriptional output,

and how this regulation shapes transcriptional bursting. Multi-

ple feedback architectures have been shown to provide adap-

tation (Ferrell, 2016), wherein a controlled variable in the cell,

such as a protein abundance, is kept near its desired value,

or setpoint, even in the presence of disturbances. We here

used integral feedback (Franklin et al., 2015), which has been

shown to be necessary to eliminate any mismatch between

the controlled variable and the setpoint at steady state (perfect

adaptation) (Yi et al., 2000). By taking the measurement of

nascent RNA count in a given cell as our controlled variable

and using integral feedback to modulate the illumination of

that same cell, we expect cells to achieve a pre-specified

average transcription rate. Therefore, the independent closed-

loop control of several such cells (single-cell control) should in

principle reduce cell-to-cell variability in their average transcrip-

tional output.

To test this prediction, we capitalized on the capabilities of our

experimental platform to observe, quantify, and regulate tran-

scription in individual live cells. This enabled the implementation
Molecular Cell 70, 745–756, May 17, 2018 749



Figure 4. Single-Cell Feedback Control Reduces Cell-to-Cell Differences in Transcriptional Output

(A) Two alternative feedback control strategies considered in this work. Left: population control pools togethermeasurements from all cells, generating ameasure

of average cell behavior. This bulk signal is then fed to a controller, which determines a common input to be applied to all cells. In contrast, single-cell control

(right) generates an independent feedback loop for each cell.

(B) Comparison of population (red) and single-cell control (blue) performance. The goal of population control is to attain a desired population-averaged count of

nascent RNAs (black dashed line). Single-cell control aims to regulate the nascent RNA count of each cell to the same target value. The two control strategies

share the same control parameterization and reference value. Left: thick lines represent the average behavior of each experiment (88 cells for population control;

114 cells for single-cell control), and thin lines represent single-cell cumulativemoving averages of nascent RNA counts (the average of all data up until the current

time point, for each cell trace). The applied light input profiles can be found in Figure S4E. Right: distribution of time-averaged nascent RNA counts over the

experiment duration for each cell.

(C) Tracking of constant output reference profiles with single-cell control. Left: three feedback control experiments with different reference values (dashed lines)

were performed. Thin lines represent time averages of nascent RNA counts in individual cells, while thick lines indicate the average behavior of the population of

cells. The applied light input profiles can be found in Figure S4F. Right: distribution of time-averaged nascent RNA counts over the experiment duration for

each cell.
of in silico single-cell feedback control of gene transcription: the

nascent RNA count in each cell is measured and the result

fed into an integral controller implemented in a computer. The

controller then computes the light input to be applied to each in-

dividual cell at the next time point, given a pre-specified setpoint

(Figure 4A). An alternative approach to single-cell control is the

feedback regulation of a population-averaged cellular readout

with a common control input applied to all cells (population con-

trol; Figure 4A). To compare the performance of single-cell and

population control, we regulated the average nascent RNA count

to the same level using the two control strategies (Figure 4B, left).

We found that a large part of the cell-to-cell variation in the

average transcriptional output could indeed be reduced by

single-cell control in comparison topopulation control (Figure 4B,

right). Finally, we tested our platform’s ability to direct the cells to

different transcriptional levels. The results in Figure 4C demon-

strate that this can indeed be achieved, verifying the tunability

of average transcriptional output.
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Feedback Strategy Choice Strongly Impacts
Transcriptional Dynamics
Given that previous experimental and theoretical work suggests

that dynamic (feedback) regulation may affect bursting behavior

(Cai et al., 2008; Zambrano et al., 2015), we next asked how tran-

scriptional dynamics are shaped by the population-level and sin-

gle-cell control strategies. Analysis of the previously introduced

burst metrics showed that single-cell control most strongly

reduced cell-to-cell variability in the activity ratio in comparison

to population control, while it had no noticeable effect on burst

intensity (Figures 5A and S4D). Interestingly, the correlation

between burst duration and inter-burst length differed starkly

between the two control strategies: these two burst metrics

were positively correlated for single-cell control and negatively

correlated for population control (Figure 5B).

To test whether our stochastic model of the system predicts

these same patterns, we extended the model equations from

Figure 3D to include VP-EL222 and the feedback dynamics
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Figure 5. Effect of Population and Single-Cell Feedback Control on Transcriptional Dynamics

(A and B) Effect of the two alternative control strategies on the burst metrics of single cells. Each dot corresponds to statistics of a single cell trace, and color-

coded circles indicate the cell traces shown in (C). Experimental data (top) and results of simulations based on the two-state promoter model (bottom; STAR

Methods) are shown.

(A) Single-cell control reduces cell-to-cell differences in activity ratio, but not in burst intensity (Figure S4D). Color intensity indicates mean burst duration.

(B) Cells under population control present a negative correlation between burst duration and inter-burst duration, while cells under single-cell control show a

positive correlation. Color intensity is proportional to the local density of dots in the plot.

(C) Example cell traces from single-cell and population control experiments. Time course of nascent RNA count (top and middle) in single cells, together with the

applied light input (bottom). Left: population control provides one common, slow-varying input to the cell population. Right: single-cell control administers highly

dynamic light inputs, tailored to the response of each individual cell.
(STAR Methods). Simulations of population-level control could

not reproduce the correlation between burst duration and

inter-burst length observed experimentally (Figure S4H), sug-

gesting the need to further extend the model. TF variability has

previously been reported to strongly contribute to variability in

gene expression (Pedraza and van Oudenaarden, 2005; Volfson

et al., 2006). We therefore introduced cell-to-cell differences in

VP-EL222 abundance to the model (STAR Methods). Simula-

tions of this extended model reproduced the experimental re-

sults nicely (Figures 5A, 5B, and S4C).

To understand the differences in transcriptional dynamics

between the feedback strategies, it is instructive to compare

the light inputs seen by the cells. In population control, cells

receive a common, relatively constant input (Figure 5C, left).

Exploring the effect of applying constant light of different inten-

sities on the predefined burst metrics (Figures 2A and 3) led us
to conclude that cell populations with a larger amount of active

TF (cells exposed to light inputs of higher intensity) presented

increased burst times and decreased inter-burst times (Fig-

ure 3C). Therefore, assuming that TF abundance varies among

the cells, we would expect cells with higher amounts of the

regulator to experience longer bursts and shorter inter-burst

intervals, explaining the negative correlation found between the

two burst metrics in population control.

In contrast to the relatively static light inputs of population con-

trol, cells under single-cell feedback control receive more dy-

namic inputs, due to the controller reacting to the stochasticity

of transcriptional activity. In this control strategy, the input dy-

namics are thus dictated by each cell’s burst statistics: cells pre-

senting short bursts will require more frequent light stimulation to

achieve the same average expression as cells displaying long

bursts (Figure 5C, right). In the latter case, the controller will
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turn off the light input to the cells for longer periods of time to

avoid surpassing the target expression level. Importantly, sin-

gle-cell feedback resulted in a subset of cells displaying bursting

statistics not found to occur in cells of the population control

experiments (Figure 5B), highlighting the ability of dynamic sin-

gle-cell inputs to shape the endogenous transcription statistics

in individual cells.

Toward a Mechanistic Understanding of Transcriptional
Bursting and Its Modulation
The two-state promoter model used above (Figure 3D) showed

that the abundance of active TF must affect both promoter acti-

vation and inactivation rates to achieve themeasured burstmod-

ulation. However, these modeling heuristics are not easily linked

to biological phenomena. We thus next asked whether we can

find a potential physical mechanism and an accompanying

model that can explain the observed data. Analysis of the burst

duration in cells exposed to light pulses (Figure 2B) showed

that bursts initiated during the first 4 min of the 10 min pulse

were significantly longer than bursts initiatedwithin 2min of pulse

cessation (Figure 6A), indicating that inactive TF cannot bind to

its target site once it unbinds, resulting in burst termination.

To investigate whether TF binding dynamics are sufficient to

explain the experimental data, we first measured the residence

time of red fluorescent protein-tagged VP-EL222 (mScarletI-VP-

EL222) (Bindels et al., 2017) at a genomically integrated array of

80 VP-EL222-binding sites by performing a fluorescence recov-

ery after photobleaching (FRAP) experiment. Blue light expo-

sure led to the accumulation of mScarletI-VP-EL222 molecules

at the array, which resulted in easily detectable fluorescent

foci (Figures S5A and S5B) that were subsequently bleached.

In order to prevent dark-state reversion of activated VP-EL222

during the FRAP experiment, we used an EL222 mutant with a

stabilized photoactivated state (AQTrip; Zoltowski et al., 2013;

Figure S5B). We found that the fluorescence of photobleached

foci recovered on a timescale of a few minutes (Figures 6B,

S5C, and S5D). By using a simple ordinary differential equation

model that describes binding and unbinding of fluorescent and

bleached mScarletI-VP-EL222 (Figure S5E; STAR Methods),

we estimated that VP-EL222 has an average residence time at

its cognate binding site of 40 s (unbinding rate, 0.018 s�1;

Figure S5F).

Next, we investigated the expected characteristics of bursts

originating from independent TFs binding at multiple sites on

the promoter. We used a simple model of a promoter with five

binding sites, in which the binding (with rate kon) and/or unbind-

ing (with rate koff) of single VP-EL222 dimers are modeled as

state transitions, and transcription is assumed to take place

(with rate kr) when one or more VP-EL222 dimers are bound (Fig-

ure 6C). We fixed koff to the experimentally determined value and

performed stochastic simulations of this system for different

values of kon, which is equivalent to changing the concentration

of active VP-EL222 molecules. The simulated single-cell trajec-

tories were then analyzed using the previously defined burst

metrics (Figure 3B). In stark contrast to the experimental obser-

vations, we found that thismodel predicts relatively constant and

short transcription burst durations for a large range of burst frac-

tions (black line, Figure 6D). Thus, our analysis excludes inde-
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pendent TF binding tomultiple binding sites as a potential mech-

anism behind the observed transcription dynamics.

In the cellular environment, TF-binding sites may by occluded

by nucleosomes (Radman-Livaja and Rando, 2010). Competi-

tion for DNA binding between histones and TFs can reduce the

binding rate of the first TF, while subsequent binding events

may be facilitated by TF-mediated chromatin remodeling, a

fact neglected by the simple model above (Miller and Widom,

2003; Neely et al., 1999; Radman-Livaja and Rando, 2010). We

modeled this potential scenario by reducing the rate of the first

TF-binding event by the factor kc (colored lines, Figure 6D). We

found that by solely adjusting this free parameter, the modified

model could reproduce very well the dynamics of transcriptional

bursting observed in vivo (Figures 6D and S5G), suggesting that

a slow binding step for the first TFmay be a potential mechanism

for the generation of the observed bursting behavior. In contrast

to the two-state model, this mechanism does not require TF

activity to directly modify the promoter inactivation rate.

DISCUSSION

We presented an experimental framework for the real-time visu-

alization and optogenetic regulation of transcription at the sin-

gle-cell level, based on the combination of a light-sensitive TF,

the PP7 system for RNA detection, and an experimental platform

(hardware and software) for precise spatiotemporal delivery of

light inputs. This framework enables the analysis of various as-

pects of TF-mediated transcriptional regulation. The rapid acti-

vation and deactivation kinetics of EL222 allow the investigation

of transcriptional activation dynamics and memory. Further-

more, the fast readout of transcriptional activity enables the

quantification of how active TF abundance affects the dynamics

and stochasticity of transcriptional bursts. Finally, the ability to

not only specify the input strength in time but also in space

allows for the closed-loop regulation of individual cells. Feed-

back regulation can compensate the high cell-to-cell variability

observed in transcription, providing insights into possible mech-

anisms cells use to tune their gene expression dynamics.

Transcriptional Bursting and Its Modulation
Transcriptional bursting in yeast had been previously inferred

from smFISH analysis for the PDR5 gene (Larson et al., 2011;

Zenklusen et al., 2008) and was recently directly observed for

the GAL10 gene (Lenstra et al., 2015). However, it was sug-

gested that a variety of genes in S. cerevisiae are transcribed

based on uncorrelated, single-initiation events (Larson et al.,

2011; Zenklusen et al., 2008). Here, we found that transcription

from the VP-EL222 target promoter occurs in bursts with a dura-

tion in the order of minutes. We found that elevated TF activity

significantly increases burst duration and reduces the inter-burst

duration, leaving burst frequency (number of bursts per unit of

time) largely unchanged (Figure S3C). In contrast to these find-

ings, frequency modulation appears to be a widespread scheme

in mammalian gene regulation (Larson et al., 2013; Senecal

et al., 2014; Nicolas et al., 2017). However, experiments using

other physiological stimuli show that gene induction can also

be achieved by increases in burst intensity and duration in

mammalian cells (Dar et al., 2012; Molina et al., 2013).
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Figure 6. TF-Binding Dynamics and Transcriptional Bursting

(A) Removal of light input after the start of a transcriptional burst reduces burst duration. The transcriptional response of cells exposed to 10 min light pulses

(experimental data from Figure 2B) was analyzed by selecting transcriptional bursts that start up to 4 min after the beginning of the light pulse (early bursts), and

bursts that start up to 2min prior to the end of the light pulse (late bursts). The average duration of bursts of these categories is shown on the right (nine repetitions

performed in three experimental replicates, for each condition). Error bars denote the SD of each set of bursts.

(B) Quantifying the residence time of fluorescently tagged VP-EL222AQTrip at a cognate binding site array using FRAP. VP-EL222 was activated by blue light

illumination, resulting in the formation of fluorescent spots at the array site. Spots were bleached at t = 0 s and fluorescence images were acquired at 20 s intervals

to quantify fluorescence recovery. Top: fluorescent microscopy images of a representative FRAP experiment and schematic representation of fluorescent spots.

Images were normalized to compensate for photobleaching (see Figure S5C for non-normalized data). Bottom: time course of spot fluorescence relative to the

pre-bleach value (see Figures S5C and S5D and STARMethods for details on image analysis). Experimental data (points, mean and SEM of 19 cells measured on

3 separate days) and fit of an ODE model describing the experiment (line; see STAR Methods and Figures S5E and S5F for modeling details) are shown.

(C) Schematic representation of a promoter model that explicitly accounts for (non-processive) TF binding. The model consists of six states (circles) representing

an unbound promoter (red) and a promoter bound by one to five TFs (green, number of bound TFs is indicated). Transitions between states represent binding and

unbinding events to and from one of the five binding sites of the promoter. Transcription occurs with rate kr if one or more TFs are bound (green states).

(D) Comparison of observed burst duration modulation to model predictions. Stochastic simulations of the model shown in (C) were performed using the

experimentally determined value for koff and varying values for kon. The black line shows model simulation in which the rate of TF binding is independent of the

current promoter state (kon’ = kon). The green lines correspond to model simulations in which the rate of the first TF-binding event was decreased to different

degrees (kon’ = kon/kc). The experimental data (points) represent themean and SEM of the average burst duration of cell traces from Figure 2A, which were binned

by their activity ratio.
We found that input-mediated changes in promoter state are

highly transient. This result is consistent with previous studies

in S. cerevisiae (Aymoz et al., 2016) but stands in contrast to

mammalian cells where many genes were shown to display a re-

fractory period after induction (Suter et al., 2011). Furthermore,
the use of pulsed inputs indicated that TF-binding dynamics

could be crucial for transcriptional bursting. This fact was previ-

ously suggested by observations that binding site multiplicity re-

sults in increased burst duration and/or burst intensity (Raj et al.,

2006; Senecal et al., 2014; Suter et al., 2011).
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By combining measurements of VP-EL222-binding kinetics

with a mathematical model of promoter binding and transcrip-

tion, we found that binding site multiplicity can reproduce the

experimentally observed bursting behavior when the first binding

event is rate limiting, but not when binding events are assumed

to be independent. This modeling choice is consistent with pre-

vious studies that exemplify the effect of nucleosome positioning

and remodeling on noisy gene expression (Radman-Livaja and

Rando, 2010). However, gene transcription requires a sequence

of additional reactions that can be affected by TF concentration

and may give rise to a similar model architecture (Corrigan et al.,

2016; Mao et al., 2010). For example, state transitions could

represent TF-mediated nucleosome disassembly followed by

assembly of the preinitiation complex (Mao et al., 2010).

Future studies are required to evaluate the proposed TF-bind-

ingmodel of transcriptional bursting. Themechanistic model can

be used to guide future experiments, especially when combined

with an easily modifiable synthetic system. For example, in order

to test model predictions, target promoters with defined proper-

ties, such as nucleosome occupancy and number of binding

sites, can be engineered. Furthermore, VP16 can be exchanged

with other ADs and chromatin regulators (Keung et al., 2014),

whose effects on stochastic gene expression are still largely

unknown.

Dynamics of Gene Regulation Affect Transcription
Statistics
Using the capabilities of single-cell observation, quantification,

and actuation that our experimental platform offers, we could

reduce cell-to-cell variability in the average transcriptional

response (Figure 4B). In accordance with the results obtained

from applying constant illumination to a cell population, analysis

of single-cell control experiments showed that active TFs mainly

affected burst duration and the timing between bursts. Conse-

quently, the cells’ activity ratio was also changed (Figures 5A

and 5B). Moreover, transcriptional dynamics of cells controlled

individually differed starkly from cells exposed to constant light

(Figure 5B), highlighting the ability of cellular feedback to modu-

late gene expression dynamics (Zambrano et al., 2015). Cells

could in principle modulate the dynamics of upstream regulators

(e.g., constitutive expression and feedback regulation) to tune

the noise statistics of structurally similar promoters.

More broadly, dynamic stimulation of single cells based on

their current physiological state (e.g., cell-cycle stage) can pro-

vide rich information on the different roles of upstream pro-

cesses in the regulation of a downstream response (Toettcher

et al., 2013). Given that the feedback law is implemented in

a computer, biological regulatory motifs can be easily imple-

mented and tested (Milias-Argeitis et al., 2016), giving insights

into the different effects they have on the controlled network.

Further Fields of Application for the Optogenetic
Platform
In addition to the interrogation of transcriptional regulation, our

experimental framework is well suited for the study of a broad

range of scientific questions. The platform is a unique tool to

evaluate the effects of different cellular feedback strategies

on gene expression. More generally, the hardware and software
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pipeline described here, with its ability to precisely control the

abundance or activity of proteins (or RNA), can be used to study

gene expression networks. Finally, one can envision the use

of single-cell feedback for the spatial control of multicellular

systems, such as the targeted differentiation of mammalian cells

for tissue regeneration, or the analysis of spatial structures in

microbial populations.

Limitations
As demonstrated above, our experimental platform enables the

regulation and observation of transcription in yeast cells for pe-

riods of several hours. However, as transcription dynamics are

relatively fast, this requires frequent imaging of the cells. For

the quantification of nascent RNA, each imaging cycle involves

taking images at various z-plane positions to span the whole

cell volume in search of the transcription site. The long expo-

sures to high-intensity light may cause fluorophore bleaching

and phototoxicity. To limit these negative effects, the light expo-

sure time necessary to achieve a sufficient signal-to-noise ratio

must be explored and optimized.

One limitation of transcription quantification through the PP7

system is the need to introduce multiple copies of the PP7-SL

into the RNA sequence. Recent studies have shown that this pro-

cedure can affect the processing and subcellular localization of

RNAs (Heinrich et al., 2017). However, for our framework the

identity of the target RNA is not of major importance and mea-

surements are mainly affected by transcript length, which influ-

ences the dwell time of nascent RNAs. Note that we found cells

with strong cytoplasmic fluorescent spots in isolated experi-

ments. We opted to remove these experiments from our analysis

as this behavior could be a result of stressful environmental con-

ditions (Heinrich et al., 2017).

Previous studies have shown that the activity of VP-EL222

may decline during constant illumination (Motta-Mena et al.,

2014; Reade et al., 2017). In accordance, we find a decrease

of nascent RNA counts over time under uniform illumination

conditions (Figures 2A and S3F). Thus, for experiments that

require long-term measurements, experimental procedures

may need to be optimized or VP-EL222 exchanged for another

light-sensitive TF.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

S. cerevisiae: BY4741: MATa his3D1 leu2D0 met15D0 ura3D0 EUROSCARF ACCNO: Y00000

S. cerevisiae: BY4742: MATalpha his3D1 leu2D0 lys2D0 ura3D0 EUROSCARF ACCNO: Y10000

DBY41: BY4741, LEU2::ACT1pr-VPEL222-CYC1term(pDB58) Benzinger and

Khammash, 2018

N/A

DBY80: DBY41, GLT1prD::HIS3-5xELbs-CYC180pr-24xPP7SL(pDB96) This paper N/A

DBY91: BY4742, URA3::MET25pr-tdPCP-NLS-tdmRuby3-CYC1term(pDB97) This paper N/A

DBY96: DBY80 mated with DBY91 This paper N/A

DBY132: BY4741, GLT1prD::URA3MX-CYC180pr-24xPP7SL, LEU2::ACT1pr-

VPEL222-CYC1term

This paper N/A

DBY133: BY4741, GLT1prD::HIS3-5xELbs-CYC180pr-24xPP7SL(pDB96),

LEU2::ACT1pr-NLS-URA3MX-CYC1term

This paper N/A

DBY134: DBY91, LEU2::ACT1pr-VPEL222-CYC1term(pDB58) This paper N/A

DBY135: DBY91, LEU2::ACT1pr-NLS-VP16-CYC1term(pDB147) This paper N/A

DBY136: DBY91, LEU2::ACT1pr-NLS-EL222-CYC1term(pDB148) This paper N/A

DBY138: DBY132 mated with DBY91 This paper N/A

DBY139: DBY133 mated with DBY91 This paper N/A

DBY140: DBY133 mated with DBY134 This paper N/A

DBY141: DBY133 mated with DBY135 This paper N/A

DBY142: DBY133 mated with DBY136 This paper N/A

DBY30: BY4742, LEU2::80-EL-BS-Array(pDB30) This paper N/A

DBY144: DB30, URA3::ACT1pr-mScarletI-VPEL-CYC1term(pDB145) This paper N/A

DBY145: DB30, URA3::ACT1pr-mScarletI-VPEL(AQTrip)-CYC1term(pDB146) This paper N/A

DBY146: DBY4741, URA3::ACT1pr-mScarletI-VPEL(AQTrip)-CYC1term(pDB146) This paper N/A

Oligonucleotides

PP7 probe 1: [CY3]TTCTAGGCAATTAGGTACCTTA IDT DNA, (Ochiai

et al., 2014)

N/A

PP7 probe 2: [CY3]TTTCTAGAGTCGACCTGCAG IDT DNA, (Ochiai

et al., 2014)

N/A

PP7 probe 3: [CY3]AATGAACCCGGGAATACTGCAG IDT DNA, (Ochiai

et al., 2014)

N/A

Primer BS-deletion_fwd: TTAATCAATTCTTATATCTTACTTGATAACACACCAAA

CTAATCGTCTCCgtttagcttgcctcgtcc

IDT DNA N/A

Primer BS-deletion_rv: ATGATCATGTGTCGTCGCACACATATATATATGCCTGT

ATGTGTCAGCACgttttcgacactggatggc

IDT DNA N/A

Primer VPEL-deletion_fwd: AATTTACTGAATTAACAACTAGTATGGGCCCTAAA

AAGAAGCGTAAAGTCgtttagcttgcctcgtcc

IDT DNA N/A

Primer VPEL-deletion_rv:

ATAACTAATTACATGATATAGACAAAGGAAAAGGGGCCTGTCTCGAGTTAg

ttttcgacactggatggc

IDT DNA N/A

Recombinant DNA

pDB58: pKERG105/ACT1pr-VPEL222-CYC1term Benzinger and

Khammash, 2018

N/A

pDB96: pDZ306/GLT1-5xELbs-CYC180pr-24xPP7SL This paper N/A

pDB97: pRG205/MET25pr-tdPCP-NLS-tdmRuby3-CYC1term This paper N/A

pDB81: pKERG105/80-EL-BS-Array This paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pDB145: pKERG106/ACT1pr-mScarletI-CYC1term This paper N/A

pDB146: pKERG106/ACT1pr-mScarletI-VPEL222(AQTrip)-CYC1term This paper N/A

pDB147: pKERG105/ACT1pr-NLS-VP16-CYC1term This paper N/A

pDB148: pKERG105/ACT1pr-NLS-EL222-CYC1term This paper N/A

Software and Algorithms

YouScope Lang et al., 2012 http://langmo.github.io/

youscope/

CellX Dimopoulos et al., 2014 http://www.csb.ethz.ch/

tools/software/cellx.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the Lead Contact, Mustafa Khammash

(mustafa.khammash@bsse.ethz.ch).

METHOD DETAILS

Plasmid construction
E. coli TOP10 cells (Invitrogen) were used for plasmid cloning and propagation. Plasmids were constructed by restriction-ligation

cloning using enzymes from New England Biolabs (USA). All plasmids used in this study are summarized in Table S1. Sequences

and details of all DNA constructs used in this study can be found in Table S5.

All PCRs were performed using Phusion Polymerase. Plasmid pDB96 was used to insert an EL222-responsive promoter and

24 PP7 stem-loops in front of the genomic GLT1 ORF and was constructed by replacing the POL1 promoter in pDZ306 (Larson

et al., 2011) with the synthetic, EL222-responsive promoter 5xELbs-CYC180 (described and characterized in Benzinger and Kham-

mash, 2018). A construct containing two copies of PCP, the SV40 NLS, and two copies of mRuby3 (Bajar et al., 2016) (tdPCP-NLS-

tdmRuby3) under the control of theMET25 promoter was inserted into the integrating plasmid pRG206 (Gn€ugge et al., 2016) (pDB97).

Plasmid pDB58 is an integrative plasmid (LEU2 marker) based on the pRS vector series containing the VP-EL222 sequence under

control of the ACT1 promoter (Benzinger and Khammash, 2018). Variants of this plasmid carrying a deletion of the VP16 or the EL222

domain were constructed by PCR amplification from pDB58 and insertion into the same plasmid backbone (pDB147/148). pDB81, an

integrative plasmid (LEU2 marker) containing an array of 80 VP-EL222 binding sites, was constructed by amplifying a sequence

containing 5 binding sites frompcDNA-C120-mCherry and iteratively duplicating the sequence using restriction ligation cloning using

XbaI/PstI and SpeI/PstI digestion and subsequent ligation (see Table S5 for the initial sequence). Plasmids pDB145 and pDB146

contain themScarletI coding sequence directly upstream of VP-EL222 and a VP-EL222mutant with a stabilized photoactivated state

(AQTrip; Zoltowski et al., 2013), respectively. The sequence containing EL222 with the four AQTrip mutations was synthesized by

idt and inserted into the VP-EL222-bearing plasmid using restriction ligation. All constructs were verified by Sanger sequencing

(Microsynth AG, Switzerland).

Yeast strain construction
All strains are derived from BY4741 and BY4742 (Euroscarf, Germany). All strains used in this study are summarized in Table S2.

Transformations were performed with the standard lithium acetate method (Gietz and Woods, 2002) and selection was performed

on appropriate selection plates. DBY80, containing an EL222-responsive promoter and 24 PP7 stem-loops upstream of the GLT1

ORF, was constructed by transforming the PacI digested plasmid pDB96 into DBY41 (BY4741 expressing VP-EL222 from the

ACT1 promoter (pDB58), construction and characterization are described in another manuscript, under preparation). A strain ex-

pressing the tdPCP-NLS-tdmRuby3 construct was generated by transforming AscI digested plasmid pDB97 into BY4742.

DBY96, the strain used for most experiments in this study, was generated by mating DBY80 and DBY91. Diploid cells were selected

by growth on SD plates lacking both L-Lysine and L-Methionine. To construct strains used as negative control (Figure S2B), EL222

binding sites or VP-EL222 were replaced in DBY80 by a URA3MX marker amplified from a pAG60 (Goldstein et al., 1999) derived

plasmid using primer pairs BS-deletion-fwd/rv and VPEL-deletion-fwd/rv respectively and the resulting strains (DBY132 and

DBY133) were mated with DBY91 (resulting in DBY138 and DBY139). Further, DBY91 was transformed with PacI digested plasmids

pDB58, pDB147, or pDB148 resulting in strains expressing either VP-EL222, NLS-VP16, or NLS-EL222 (DBY134/135/136) in addition

to tdPCP-NLS-tdmRuby3. These strains were mated with DBY133 resulting in DBY140/141/142. DBY30, containing a genomically

integrated array of 80 VP-EL222 binding sites, was constructed by transforming BY4742 with PacI digested pDB81. Strains express-

ing mScarletI tagged VP-EL222 were generated by transformation of PacI digested pDB145 or pDB146 (AQTrip mutant).
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Culture media
Cells were grown in SD dropout medium (2%Glucose, low fluorescence yeast nitrogen base (ForMedium), 5 g/L ammonium sulfate)

with a methionine concentration of 32 mg/L. The medium’s pH was set to 5.8.

Single molecule FISH experiments
For single molecule FISH (smFISH) experiments DBY96 was grown from a single colony to saturation in SD medium (32 mg/L,

L-Methionine) at 30�C. Cultures were diluted to reach an optical density at 700 nm (OD700) of 0.4 at the start of the experiment,

the next day. For each experimental condition, 4 mL of cell culture were transferred to 25 ml glass centrifuge tubes (Schott

2160114, Duran) stirred with 3 3 8 mm magnetic stir bars (13.1120.02, Huberlab). Illumination at two different blue light intensities

(210 and 420 mW/cm2, measured at 4 cm distance from the LED light source using a NOVA power meter and a PD300 photodiode

sensor (Ophir Optronics)) was performed continuously using a setup comprised of a water bath (ED (v.2) THERM60, Julabo) set

to 30�C, a multi position magnetic stirrer (Telesystem 15, Thermo Scientific), a laser-cut, custom-made 15-tube holder, and

custom-made LED pads located underneath the culture tubes. Cultures were diluted 1:1 in fresh medium after 2h.

Cell fixation and probe hybridization was performed as described previously (McIsaac et al., 2013). Briefly, after 0, 1, 2, and 4 h of

illumination, cellswere fixated for 45min after adding 400ml of 37% formaldehyde (SigmaAldrich) to the culturemedium.Spheroplast-

ing was performed using a final Lyticase (Sigma-Aldrich) concentration of 50 Units/ml. The progress of spheroplasting wasmonitored

under the microscope. Cells were stored in 70% ethanol at 4�C overnight. Hybridization was performed using multiple probes

complementary to the PP7 stem-loop and singly labeled with CY3 at a 0.1 mM concentration (synthesized by Integrated DNA Tech-

nologies, sequences are listed in Table S5) (Raj et al., 2008). Cells were stained with DAPI (0.1 mg/ml in PBS, Sigma-Aldrich), attached

to Poly-D-Lysine treated coverslips, and coverslips were mounted on slides using Prolong Gold mounting medium (Invitrogen).

Growth conditions and loading to microfluidic chip
Cell initialization protocol

Cell cultures were started from a �80�C glycerol stock at least 24 h prior to the experiment, and kept at OD600 < 0.2 for the last 12h

leading to the experiment.

Microfluidic chip loading protocol

The cell culture was concentrated to an OD600 �2 by centrifuging the sample at 3000 g for 6 min, and discarding the appropriate

volume of supernatant to reach the targeted OD600. Meanwhile, the PDMS device and cover glass (Menzel-Glaser, Germany)

were rinsed with acetone, isopropanol, deionized water and dried using an air gun. The cells were then resuspended and 0.4 ml of

cell solution was loaded into each chamber of the clean microfluidic chip, using a conventional pipette. The cover glass was placed

on top of the PDMS device and slightly pressed down, allowing the PDMS and glass to bond electrostatically.

The loaded microfluidic chip was placed onto a custom-built microscope holder, inside the microscope’s environmental box (Life

Imaging Services, Switzerland). A flow of media of at least 10 ml/min was supplied through the device via gravity flow, and the cells

were allowed to settle in the new conditions for 2 hours prior to the start of any experiment.

Image acquisition
All images were taken with a Nikon Ti-Eclipse invertedmicroscope (Nikon Instruments), equipped with a 40x, oil-immersion objective

(MRH01401, Nikon AG, Egg, Switzerland), Spectra X Light Engine fluorescence excitation light source (Lumencor, Beaverton, USA),

pE-100 bright-field light source (CoolLED, UK), and CMOS camera ORCA-Flash4.0 (Hamamatsu Photonic, Solothurn, Switzerland).

The camera was water-cooled with a refrigerated bath circulator (A25 Refrigerated Circulator, Thermo Scientific). The temperature

was regulated to 30�Cby an opaque environmental box (Life Imaging Services, Switzerland), which also shielded the cell sample from

external light. The microscope was operated by the open-source software YouScope (Lang et al., 2012).

All measurements were run with a diffusor and a green interference filter placed in the bright-field light path. The perfect focus

system of the microscope was enabled for all measurements.

Fluorescence imaging

Excitation of mRuby3 was performed by the 550/15 nm line from the fluorescence light source. The filter-cube used had excitation

filter 561/4 nm, beam splitter HC-BS573, and emission filter 605/40nm, all from AHF Analysetechnik AG (Tubingen, Germany).

Z stacks consisting of 5 images with a step size of approximately 0.5 mm were taken with an exposure time of 300 ms per image.

With these imaging settings, images could be taken every 2 min for a period up to 4 h without bleaching more than 15% of the initial

cell fluorescence (Figure S3D).

Microscopy setting for smFISH

smFISH images were acquired using a Plan Apo Lambda 100X Oil objective (Nikon Instruments). Z stacks consisting of 31 images

with a step size of 0.1 mmwere taken for CY3 (Excitation: 542/33, Emission: 595/50) and DAPI (Excitation: 390/22, Emission: 460/50).

Phase contrast images were taken at the reference point of the Z stacks to allow for cell segmentation.

FRAP experiments and analysis
The strain DBY145 was used for FRAP analysis. DBY145 contains a genomically integrated array of 80 EL222 binding sites and ex-

presses a fusion between the FP mScarletI (Bindels et al., 2017) and a VP-EL222-AQTrip that exhibits a stabilized photoactivated
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state (Zoltowski et al., 2013). This mutant was chosen to prevent extensive photoreversion during the FRAP experiment (Figure S5B).

Initial characterization experiments were performed using themicroscopy setup described abovewith a 100x Plan Apo LambdaOil

objective (Nikon Instruments) (Figure S4B). Fluorescence recovery after photobleaching (FRAP) experiments were performed using a

Leica SP5 Point Scanning Confocal Microscope (Leica Microsystems) equipped with a 63x/1.40 HC PL APO CS2 oil-immersion

objective (Leica Microsystems) at room temperature (23.5�C).
DBY145 was grown to an OD700 of roughly 0.1 in SD medium, and then transferred to a Concanavilin A (Sigma-Aldrich) treated

8-well chambered coverslip slide (ibidi), where cells were allowed to attach and grow for at least 2 h at room temperature before ex-

periments. VP-EL222 was activated by a 20 s blue-light pulse (Leica EL6000 external light source (mercury lamp), 470/40 510 emis-

sion filter) and binding of VPEL to the array was allowed for 3 min before performing the FRAP experiment. Image stacks (9 focal

planes with 200 nm z-step size) were collected every 20 s (twice before bleaching and for 180 s post-bleaching) using a 561 nm laser

line at low laser intensity (3%) for excitation and a Leica HyD detector for emission measurement from 580 - 680 nm. Bleaching was

performed in a circular region with a 0.5 mm diameter centered around the fluorescent foci (561 nm laser, 100% intensity).

Image analysis was performed based on maximum z-projections. Mean spot fluorescence was measured in a manually selected,

circular area with 0.56 mm diameter centered around the fluorescent spot as well as in a non-overlapping control area with

1.12 mm diameter. To correct for photobleaching, the mean spot fluorescence was divided by the mean control area fluorescence

(see Figures S5C and S5D for example data). The resulting values were normalized by the value in the pre-bleach image.

A simple ODE model describing the binding and unbinding of fluorescent and dark VP-EL222 to its binding sites (BS) was used

to estimate the unbinding rate (koff) (Figures S5E and S5F). The model describes the time evolution of the free and DNA-bound fluo-

rescent VP-EL222 abundance (Vfluor and Cfluor, respectively), as well as the free and DNA-bound dark (photobleached) VP-EL222

abundance (Vdark and Cdark, respectively):

dCfluor

dt
= konVfluorðBS� Cfluor � CdarkÞ � koffCfluor
dVfluor

dt
= � dCfluor

dt
dCdark

dt
= konVdarkðBS� Cfluor � CdarkÞ � koffCdark
dVdark

dt
= � dCdark

dt
:

To simulate photobleaching, we first let Cfluor settle to its pre-bleach steady state and then converted Cfluor to Cdark to match the

relative fluorescence derived from experimental spot data pre- and post-bleaching. For comparison to the FRAP experiment the pre-

bleach value of Cfluor was then scaled to 1 in accordance to the treatment of the experimental data. For all simulations, BS was set

to 80. The model was simulated for values of kon and koff ranging over 3 orders of magnitude and simulations were compared to the

experimental data based on the sum of squared errors (Figure S5F). The initial condition for Vfluor was varied around an estimated

value and was found to have little effect on the estimated value of koff (Figure S5F).

Image analysis
Cell segmentation and tracking

Bright-field images below and above the focal plane (Nikon Perfect Focus System, +/� 5 AU) were acquired for cell segmentation and

tracking. The image above the focal plane was divided by the one below the focal plane to eliminate uneven illumination and enhance

the border of the cells. Segmentation was performed on the resulting image using MATLAB (MathWorks) code extracted from the

CellX software tool (Dimopoulos et al., 2014). Cell tracking from frame to frame was accomplished with MATLAB scripts based on

Ricicova et al. (2013).

Quantification of nascent RNAs

In our experimental setup, nascent RNAs can be visualized in the Cy3 fluorescence channel, and appear as a diffraction-limited spot,

as they accumulate at the transcription site. The fluorescence intensity of a diffraction-limited spot can be described by an Airy

pattern, whose central lobe is well approximated by a Gaussian function. Under this approximation, the volume of the Gaussian func-

tion is proportional to the number of nascent RNAs constituting the fluorescent spot.

To quantify the number of nascent RNAs in each cell we take a z stack of fluorescent images, spanning the whole cell volume. For

each captured image, we perform the following analysis:
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1. We first remove the fluorescent background signal by means of a Gaussian filter. The Gaussian filter clears features smaller

than its standard deviation.

2. Next we subtract the original image by the filtered image, obtaining a third image where the fluorescent background has been

removed, while preserving features of the size of the fluorescent spots we wish to quantify.

3. Finally, we fit a 2D Gaussian function to the pixel intensity surface of each cell (Figure S6C). Two measures of the goodness

of fit of the fitted Gaussian function, as well as its standard deviation and amplitude are used to classify a cell as either being

transcriptionally-active or inactive (Figure S6C).

Multiple diffraction-limited spots can be detected in one cell, because of the signal overlap between consecutive fluorescent

images in the z stack. If this happens, the spot with the highest signal is taken as the measurement of nascent RNA for that cell.

Calibration of spot intensities to nascent RNA counts
The conversion factor between fluorescent spot intensity (a.u.) and nascent RNA count was computed following Corrigan et al.

(2016). The spot intensity distribution obtained from live cells were aligned to the quantiles of the nascent RNA count distribution

as quantified by smFISH. Both experiments were performed on the same yeast strain, exposed to constant light intensities that

elicited a similar transcriptional response. The percentiles of each distribution were used as calibration points for the alignment

(Figure S2G).

Computation of burst metrics
Burst metrics were extracted from individual cell traces of nascent RNA counts. The traces were first smoothed with a moving

average filter (sample window of 2 time points) in order to mitigate the effect of nascent RNA quantification errors. Bursts were

located by searching for sequences of at least two consecutive time points where the transcription site contained a minimum of

10 nascent RNAs, the detection limit of our system. Burst duration and inter-burst duration were computed by counting the number

of time points present in each burst, or between bursts, respectively, and multiplying the resulting number by the measurement fre-

quency (2 min for all experiments). Burst intensity was computed by taking the mean of the nascent RNA count in all time points

composing the burst. The burst intensity, burst duration, and inter-burst duration of all transcriptional bursts found in a particular

cell trace were then averaged to obtain the transcriptional burst metrics of that cell. Activity ratio was quantified by dividing the num-

ber of time points classified as belonging to a burst by the total number of time points in the cell trace.

Light-delivery system
Hardware

Optogenetic stimulation was done with a DMD projector (DLP LightCrafter 4500, Texas Instruments) mounted on an optical table,

together with the necessary optical elements to focus the emitted light at the focal plane of the microscope’s objective. A schematic

of the setup, together with a list of components is provided in Figure S1A and Table S3, respectively. The light intensity at the spec-

imen and the blue-light spectra is shown in Figure S1B.

Projection image correction

The light-delivery system was aligned to the microscope camera prior to the start of each experiment. This procedure consists of

finding the correspondence betweenDMDprojector pixels and camera pixels. The knowledge of thismapping is required to precisely

target with light the cells in the field-of-view. The calibration procedure is described in Figure S6B.

Fabrication of microfluidic device
The microfluidic chip, adapted from Frey et al. (2015) was fabricated as described. The chip is a single layer poly(dimethylsiloxane)

(PDMS, Sylgard 184, Dow Corning, USA) device, attached to a cover glass (thickness: 150 mm, size: 24 mm x 60 mm).

Modeling
Two-state gene expression model

We model transcription using a two-state promoter model (Kepler and Elston, 2001; Peccoud and Ycart, 1995; Raser and O’Shea,

2004), as described in Figure 3D.

The model used to obtain Figures 5A and 5B, has been extended by replacing reaction rates kON and kOFF by Hill functions depen-

dent on active TF abundance (Figure S4B), as our results suggest that the two parameters are influenced by the concentration of the

regulator (Figures 3C and 3D). The fraction of active transcription factor depends on the input u(t) given to the system. Additionally,

extrinsic variation is introduced into themodel by assigning different total amounts of transcription factor, TFtot, to each cell. TF abun-

dance is drawn from a Gaussian distribution (parameters m and s specified in Table S4), and is set to remain constant for the duration

of the experiment. As the external input u(t) determines the fraction of active TF, cells with more TFtot will present a stronger response

to a given input.

For the closed-loop simulations, the light input u(t) was updated every 2 min (the measurement frequency used in the feedback

control experiments). For population control, the readouts of all simulated cells were averaged and fed into a common controller,

while single-cell control was simulated by creating an integral controller for each cell trace. To simulate the 2 min delay between
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measurement acquisition and light input update present in the actual experiments, we added a delay to the closed-loop simulations.

The controller output u(t-2) was applied at time t.

All parameters used in simulations are found in Table S4, and were obtained through manual fitting of the transcription metrics

obtained experimentally.

Mechanistic gene expression model

The model introduced in Figures 6C and 6D was simulated with rates kr = 40 and koff = 1.08 min-1, while kon was varied over a range

of values. Each simulation was run for a duration of 90 min (model time), the same duration as the experimental data (Figure 2A).

The simulation results were processed to extract the number of nascent RNAs present in each cell trace at 2 min intervals. These

simulated cell traces were then analyzed in the same way as the experimental data in order to extract the burst metrics of each

simulated cell.

Stochastic simulations

All simulations were performed with MATLAB (MathWorks), using the Random Time Change (RTC) algorithm (Rathinam et al., 2010).

Description of control algorithms
To regulate the number of nascent RNAs to a desired constant reference value, we used integral feedback controllers (Franklin et al.,

2015) both for single-cell and population control. In integral control, the input applied to the controlled system is proportional to

the integral of the output error. In our experiments, the controller output (applied blue light intensity) is updated once a new output

measurement becomes available, and is held constant between measurement times.

More specifically, given the system output at measurement time tk , yðtkÞ, and the desired output reference value yref , the error

eðtkÞ= yref � yðtkÞ is formed and the controller output, IðtkÞ is defined as IðtkÞ = KI

Pk
n= 1eðtnÞ, where KI denotes the controller gain.

By adjusting this parameter, the controller can be tuned to respond more or less aggressively to output deviations from the desired

reference. In our experiments, the controller gain was chosen throughmanual tuning and kept the same for the two control strategies.

Due to the fact that negative inputs have no physical meaning and the DMD projector output has an upper power limit, the applied

input to the system at time tk , uðtkÞ is given by

uðtkÞ=maxðminðIðtkÞ;1Þ;0Þ;
where 1 corresponds to the maximum (scaled) light intensity that the DMD projector can provide.

In the case of single-cell control, yðtkÞ and uðtkÞ correspond to the output and applied input of a single cell respectively, since each

cell is controlled by a separate integral controller. For population control, the individual cell outputs over the cell population are pooled

together and averaged. The computedmean is then fed to a single integral controller which computes one common input for all cells.

It is a well-known fact in automatic control theory that in a stable deterministic feedback loop containing an integral controller, the

steady-state system output will be equal to the reference value (Franklin et al., 2015). This can be easily seen by the fact that IðtÞ will

stop changing only when the error converges to zero. This analysis is applicable in the case of population control, where the

population mean is the controlled output and follows deterministic dynamics.

When the controlled system is stochastic (as in the case of single-cell feedback), provided the closed-loop system converges to a

unique stationary distribution (the equivalent of a unique stable equilibrium point for deterministic systems) then the output mean

should again be equal to the reference. In the opposite case, the average error would be non-zero and the controller output would

not be stationary.
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Supplementary Figures 

 
  



Figure S1. Details on the DMD-based experimental setup for photostimulation, related to 

Figure 1. 

(A) Schematic of optical setup. Light-path from the DMD projector (blue) to the microscope 

sample plane. The epifluorescence light-path from the fluorescence light source (green) to the 

sample plane follows the same path as the light from the DMD projector after beam splitter BS1. 

L1 and L2 are biconvex lenses (f=25.4mm, f=100mm respectively). L2 is mounted on a support 

that allows its displacement along the axis parallel to the light-path, for fine-tuning of the image 

focus. ND is a neutral density filter (optical density of 1.3 for single-cell control, optical density of 

2 for all other experiments). The two beam splitters (BS) have a light transmission of 50% in the 

visible range. All components are listed in Table S3. 

(B) Specifications of light delivery system. (i) Spectrum of light emitted by the DMD projector. 

The spectrum of blue light emitted by the DMD projector was measured at the sample plane by 

an Ocean Optics USB2000+ spectrometer (Ocean Optics, USA). (ii) Intensity of light at the 

sample plane as a function of projected image intensity. Blue light was displayed by the DMD 

projector onto the sample plane, and its intensity quantified using a S170C microscope slide 

power sensor, together with a PM100USB power meter (Thorlabs). The blue light intensity 

measured through the power meter (orange) ranged from 0.01mW/cm2 11.3mW/cm2. The light 

reflected from the sample plane back to the microscope camera was also measured by 

quantifying the average pixel value (blue line). The two approaches show a good correlation. 

Therefore, light reflected back to the microscope camera can be used to estimate the intensity 

of light during experiments. (iii) Homogeneity of light intensity across the field of view, and ability 

to regulate light intensity. The light intensity dictated by the population-level feedback in 

experiment Figure S4E (orange) is plotted together with the average amount of light reflected by 

the cells (blue line). Whiskers span from the 5th to the 95th percentile of the distribution of light 

reflected by the cells. The average light intensity seen by the cells closely tracks the controller 

output, and the variations in light intensity received by the cells are small. Therefore, the light 

delivery system can faithfully transmit instructions from the controller to the cell population. 

(C) Patterned illumination of a dense yeast micro-colony. Image corresponding to Figure 1D, 

where selected cells (marked by a blue outline) are targeted with light in order to form the 

number “10”. This image was captured after 10 min of blue-light illumination, and is composed 

of maximal intensity projection of 5 fluorescent images (Cy3) spanning 3µm in the z-axis. Cells 

targeted by light change during the time-course experiment, due to cell movement and cell 

segmentation errors (see Video S1). 

  





Figure S2. Calibration of nascent RNA counts by smFISH, related to Figure 1 and 2. 

(A) Representative microscopy image of the smFISH experiment. Cells were grown under blue 

light illumination (420 µW/cm2) for 2 hour and smFISH was performed with CY3 labeled probes 

complementary to the PP7 stem-loop. Grayscale: phase contrast / cell boundaries (smoothed 

using a median filter), blue: DAPI channel (maximum intensity z-projection), red: CY3 channel 

(maximum intensity z-projection). 

(B) Light-dependent induction of transcription requires the expression of VP-EL222 and the 

presence of its cognate binding sites in the target promoter. The transcriptional response of 

multiple strains was characterized by growing cells in the dark for 20 min (grey) and 

subsequently under blue light exposure for 40 min (blue; same light intensity used in Figure 2A, 

red line). Strains contain the following modifications but are otherwise equivalent to DBY96, the 

strain used for most experiments in this study (see Methods for details on strain construction). 

ΔBS expresses the reporter gene under control of the CYC180 sequence without EL222 binding 

sites. ΔVP-EL222 is deleted for VP-EL222. ΔEL222 and ΔVP16 are based on ΔVP-EL222 and 

expresses NLS-VP16 and NLS-EL222, respectively. We reintroduced the VP-EL222 construct 

into ΔVP-EL222 to show that the lack of transcriptional response is specific to the VP-EL222 

deletion (“Recovered”). The transcriptional response of the cells was measured in 2 min 

intervals with the image acquisition and image processing pipeline described in the Methods. 

The number of nascent RNAs per cell were averaged over all cells and frames for each 

condition, in order to obtain the mean nascent RNA count under no light exposure (grey bar), 

and under blue light exposure (blue bar). Data represent the mean and s.d. of two independent 

experiments.    

(C) Comparison of the transcriptionally active cell fraction in a smFISH (purple) and a live-cell 

(blue) experiment. For technical reasons, smFISH experiments were performed in culture tubes 

(see Methods) making the direct adjustment of corresponding light intensities between the two 

types of experiments challenging. The figure shows results for illumination conditions under 

which the cellular response is comparable for both smFISH and live-cell experiments. The 

distributions of nascent RNA measurements of these experiments is used for the calibration 

shown in (E) and (F).  

(D) Fluorescence intensity of single cytoplasmic spots corresponding to individual mRNA 

molecules. 3110 spots were identified and quantified in cells illuminated for one hour with blue 

light (210 µW/cm2). Under these conditions, single mRNAs can be readily identified due to their 

low copy numbers per cell. The median spot intensity is marked in the plot and was used for the 

calibration of nascent RNA counts for smFISH experiments.  

(E) Distribution of nascent RNA counts quantified by smFISH for cells grown under blue light 

illumination (420 µW/cm2) for 2 hours.  

(F) Distribution of nascent RNA count extracted from live-cell (top) and smFISH (bottom) 

experiments shown in (B), in logarithmic scale. The distribution of live-cell measurements has 

been scaled to match the quantiles of the smFISH distribution. In this manner, fluorescence 

measurements in live cells can be translated to absolute nascent RNA counts. Nascent RNA 

counts lower than 10 as quantified by smFISH were excluded from this analysis, as that is the 

detection limit determined for the live-cell quantification. The full nascent RNA count distribution 

quantified by smFISH is shown in (D).  



(G) Quantile-quantile plot from the live-cell and smFISH distributions shown in (E). The 

quantiles of the nascent RNA count distributions from live-cell and smFISH measurements are 

plotted against each other. The approximate linearity between the plotted variables indicates 

that the two distributions have a similar shape. The slope of line indicates the proportionality 

constant between the fluorescence units from the live-cell measurements and the total nascent 

RNA counts from the smFISH experiment.  



 



Figure S3. Analysis of transcriptional dynamics, related to Figure 2 and Figure 3. 

(A) Time-lapse microscopy of transcription activation. Representative images (RFP channel) 

showing the initial transcriptional response of cells exposed to constant blue light. Time before 

or after the start of illumination is shown above the individual images. Fluorescent spots, 

corresponding to nascent RNAs at the transcription site, are marked by white arrowheads. The 

insets show a close-up of the cell marked with red in the main image. This cell shows nascent 

RNA accumulation 2 min after illumination.  

(B) Sensitivity of burst metrics to the model parameters. A stochastic model of transcription (top) 

is used to evaluate the influence of model parameters on burst intensity, burst duration, inter-

burst duration, activity ratio, and burst frequency (number of bursts per min). Model parameters 

are varied one at a time by increasing their nominal value by 50%, or decreasing it by 50%. 

(C) Effect of light intensity on burst frequency. Data corresponding to Figure 2A. (Top) Cells 

were exposed to constant blue light of high (red) or low (orange) intensity. The burst frequency, 

defined as number of transcriptional bursts per minute, was calculated for each cell trace and 

then averaged over all cells exposed to a given light intensity. Whiskers indicate s.d. of two 

independent experiments. (Bottom) Simulations of the 2-state promoter model described in B, 

where kon is increased and koff is decreased for the high light intensity condition (red). 

(D) Evaluation of photobleaching during time-lapse experiments. Mean relative fluorescence 

intensity over time of cells under high (red) or low (blue) light intensity. Fluorescence intensity of 

each cell was quantified with CellX (Dimopoulos et al., 2014). Average fluorescence was 

normalized by the fluorescence at the second timepoint.  

(E) Demonstration of throughput capabilities of the experimental platform. A large number of 

cells (676) was exposed to four pulses of high intensity blue light (top). The transcriptional 

response of each cell was quantified over the whole experiment (bottom). The average nascent 

RNA count per timepoint is shown. 

(F) Transcriptional response to constant light. Data corresponding to Figure 2A. (Top) Cells 

were exposed to constant blue light of high (red) or low (blue) intensity. (Bottom) Average 

nascent RNA count of the cell population, with each line representing data from an independent 

experiment (47 and 171 cells for low intensity light, 47 and 56 for high intensity light). The color 

tonality of the lines changes slightly to be able to differentiate the different experiments. 

(G) Transcriptional response to a sequence of light pulses. Data corresponding to Figure 2B. 

(Top) Cells were exposed to pulses of low (blue) and high (red) intensity blue light with a 

duration and an interpulse interval of 10 min. (Bottom) Average nascent RNA count of the cell 

population, with each line representing data from an independent experiment (342, 117 and 494 

cells for low intensity light, 226, 51 and 324 cells for high intensity light). The color tonality of the 

lines changes slightly to be able to differentiate the different experiments. 

  



 



Figure S4. Further details on feedback experiments, related to Figure 4 and 5. 

(A) Time-averaged transcriptional response varies among cells. Histograms of the time-

averaged transcriptional response of cells exposed to low intensity light (top), or high intensity 

light (bottom) for 90 min (Figure 2A). 

(B) Extended stochastic model of transcription. Equations used to extend the stochastic model 

presented in Figure 3D (Methods). Parameter values are found in Table S4 

(C) Simulation comparing the ability of single-cell control and population control to reduce 

differences in transcriptional output between cells. The extended stochastic model is used to 

simulate the time-averaged transcriptional response of cells under population control (red) or 

single-cell control (blue). (Left) Thin lines are single-cell time-averages. (Right) Distribution of 

time-averaged nascent RNA counts over the experiment duration for each cell. 

(D) Density approximation of the distribution of each burst metric, extracted from cells under 

population-level feedback (orange) or single-cell feedback (blue). Mean burst intensity, mean 

burst duration, mean inter-burst duration, and activity ratio were extracted from each cell trace. 

The histogram of these four metrics was then smoothed using a kernel smoothing function to 

obtain the shown distributions. 

(E) Comparison of population and single-cell integral feedback control. Data corresponding to 

Figure 4B, and Figure 5. (Top) The nascent RNA count averaged over all cells at each timepoint 

is plotted against time (thick lines, 44 and 88 cells for population control, 98 and 114 cells for 

single-cell control). Blue lines correspond to single-cell control experiments with weak (dark 

blue) or strong (light blue) feedback gain. Red lines correspond to the mean behavior of cells 

under population control. The dashed black line indicates the pre-specified target nascent RNA 

count common for all experiment. (Bottom) Average input given to the cells at each timepoint. 

(F) Single cell control tracks constant references. Data corresponding to Figure 4C. (Top) The 

nascent RNA count averaged over all cells at each timepoint is plotted against time (thick lines, 

70 cells for the lowest setpoint, 114 cells for the intermediate setpoint, 104 cells for the highest 

setpoint). Dashed lines indicate the pre-specified target nascent RNA count for each 

experiment. (Bottom) Average input given to the cells at each timepoint. 

(G) Changes in single-cell feedback gain do not affect transcription dynamics of the controlled 

cells. Mean burst intensity, mean burst duration, mean inter-burst time, and activity ratio were 

extracted from each cell trace. Mean and CV2 of each of these metrics were computed for the 

two controller gains used in this study. The mean and standardized variance of all burst metrics 

are approximately equal for the two controller gains. Thus, pooling cell traces under single-cell 

control with feedback gains in this range does not influence our analysis of transcription 

dynamics. 

(H) Computer simulations of single-cell and population control using the two-state promoter 

model without extrinsic noise cannot reproduce the experimental observations. Model 

predictions made for population control (left side, red color) and single-cell control (right side, 

blue color) on the relationship between the different burst metrics. Each dot corresponds to 

statistics calculated from a single cell trace. (Top) The mean burst intensity of each cell is 

plotted against the cell’s activity ratio. Color intensity indicates mean burst duration. (Bottom) 

The mean burst duration of each cell is plotted against the cell’s inter-burst length. The model 

simulations do not reproduce the negative correlation between these two burst metrics observed 



experimentally for population control (Figure 5B). Color intensity is proportional to the local 

density of dots in the plot. 



 
  



Figure S5. Details of FRAP experiments, related to Figure 6. 

(A) Schematic representation of mScarletI-VP-EL222 recruitment to an array of 80 binding sites.   

(B) Recruitment of mScarletI tagged VP-EL222 upon 4 min of blue light illumination (performed 

using a 5 sec light pulse every 30 sec). Representative fluorescence microscopy images are 

shown for strains containing the binding site array and expressing either mScarletI tagged VP-

EL222 (top) or its mutant AQTrip (middle). Further, a control experiment using a strain without 

binding sites is shown (bottom). Time is indicated relative to the end of the illumination period. 

Fluorescent foci are marked with red arrowheads. The data shows the prolonged presence of 

fluorescent foci for VP-EL222-AQTrip resulting from the stabilized photoactivated state. This 

mutant was used during FRAP experiments to avoid dark-state reversion. 

(C) Non-normalized example data for FRAP experiment of a single cell. Fluorescence 

microscopy images (mScarletI) are shown (top). Time is indicated relative to the photobleaching 

event. Regions used to quantify the spot (red circle) and background fluorescence for 

normalization (green circle) are indicated in the first image. The mean fluorescence over time of 

pixels in these regions are shown (bottom). Regions were adjusted manually between 

timepoints. 

(D) Normalized FRAP data of the single cell shown in C. Mean fluorescence of the spot area 

was divided by the mean fluorescence of the control.  

(E) Schematic representation of the ODE model used to analyze the FRAP experiment. The 

model describes the binding and unbinding of fluorescent and dark VP-EL222 (VPELfluor, 

VPELdark) to its binding sites (BS) with rate kon and koff. Photobleaching is modeled by converting 

Complexfluor to Complexdark (representing BSs bound by either fluorescent or dark VP-EL222) to 

match the relative fluorescence derived from experimental spot data pre- and post-bleaching. 

(F) Evaluation of FRAP model parameters. Parameters kon and koff  were varied and the 

logarithm of the sum of squared errors between model and data (see Figure 4B) is plotted. A 

further unknown parameter is the initial condition for VPELfluor. By measuring integrated 

fluorescence values in the spot area and comparing it to the value of the whole cell, we find that 

the spot area makes up for 5% of the total cellular fluorescence. This results in an estimated 

copy number of 1600 molecules for VPELfluor, assuming that all binding sites of the array are 

bound. Due to this number being a rough estimate, we evaluated how the initial conditions of 

VPELfluor (indicated above the respective plots) affect the estimated value of koff. We found that 

koff changes less than 15% for an 8-fold change in VPELfluor initial conditions, indicating that the 

results of the analysis are not very sensitive to the initial condition of VPELfluor. 

(G) Comparison of observed burst intensity and inter-burst duration to model predictions. 

Stochastic simulations of the model shown in Figure 6C were used to obtain the relationship 

between activity ratio and inter-burst duration (left), and between activity ratio and burst intensity 

(right). Simulation results are represented by solid lines, while points indicate the mean and 

SEM of experimental data. The experimental data was obtained by binning cell traces from 

Figure 2A according to their activity ratio, and then computing the average burst intensity and 

inter-burst duration for cells in each bin. The parameter kc determines the rate of the first TF 

binding event (kon’ = kon / kc), with greater values of kc indicating a smaller binding affinity. 

  



 
  



Figure S6. Calibration of light delivery system and nascent RNA quantification, related to 

STAR Methods 

(A) Distortions present in the images projected onto the microscope sample plane. (i) Scale and 

shift. Three circles are projected onto the sample plane. The projected image (blue) is scaled 

and shifted when imaged at the sample plane (gray). (ii) Barrel distortion. A checkers pattern is 

projected onto the field of view (gray). The bottom of the image is warped, as indicated by the 

red line. (iii) Perspective distortion. A square shape is projected onto the sample plane. The 

image captured (gray) shows the distortions introduced to the square, which appears as a 

trapezoid. (iv) Vignetting (uneven illumination). Uniform light intensity is projected onto the field 

of view. When imaged (gray), pixel intensity decreases as a function of the distance to the 

image center. 

(B) Software alignment of light delivery system. An automated routine for the removal of 

distortions described in A is run at the start of every experiment. First, a regular grid of points is 

projected onto the field of view (1), and is imaged (2). The coordinates of the projected points 

are extracted and compared to the original image (3). If both sets of points match, the procedure 

is finished. Else, a function that maps DMD projector pixels to camera pixels is fit, its inverse 

applied to the original grid of points, and the procedure restarted at step (1). After distortions (i)-

(iii) have been compensated, the vignetting effect is removed. An image of uniform intensity is 

projected, and the element-wise inverse of the captured image is used as a correction matrix.  

(C) Workflow for nascent RNA quantification. A z-stack of fluorescent images spanning 3µm is 

taken in order to capture the cells’ active transcription sites, which might lie at different z-

positions inside the nucleus. Each image is passed through the nascent RNA quantification 

pipeline. First, background fluorescence is removed (1). Then, a rectangular box around each 

cell is used to crop the image. A 2D gaussian function sitting on a tilted plane is fitted to the 

pixel intensity profile of the cropped image (2). The volume of the fitted function is used as the 

spot intensity, proportional to the number of nascent RNAs. As this procedure is applied to 

every cell, non-transcribing cells will get assigned a positive number of nascent RNAs. To 

correct for this, we pass features from the fitting routine to a binary classifier (3), which decides 

whether the analyzed cell is actively transcribing or not. In the latter case, nascent RNA count is 

set to 0.  



 

Supplementary Table 1. Plasmids used for strain construction, related to STAR methods. Promoters are 

represented by ‘pr’, terminators are represented by ‘term’. 

Plasmid Backbone Insert Source 

pDB58 pKERG105 ACT1pr-VPEL222-CYC1term Manuscript 

under review 

pDB96 pDZ306 GLT1-5xELbs-CYC180pr-24xPP7SL this study 

pDB97 pRG205 MET25pr-tdPCP-NLS-tdmRuby3-CYC1term this study 

pDB81 pKERG105 80-EL-BS-Array this study 

pDB145 pKERG106 ACT1pr-mScarletI-CYC1term this study 

pDB146 pKERG106 ACT1pr-mScarletI-VPEL222(AQTrip)-CYC1term this study 

pDB147 pKERG105 ACT1pr-NLS-VP16-CYC1term this study 

pDB148 pKERG105 ACT1pr-NLS-EL222-CYC1term this study 

 

 

Supplementary Table 2. Strains used in this study, related to STAR methods. Promoters are 

represented by ‘pr’, terminators are represented by ‘term’. 

Name Genotype Source 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Euroscarf 

BY4742 MATalpha his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Euroscarf 

DBY41 BY4741, LEU2::ACT1pr-VPEL222-CYC1term(pDB58) manuscript 

under 

review 

DBY80 DBY41, GLT1prΔ::HIS3-5xELbs-CYC180pr-24xPP7SL(pDB96) this work 



DBY91 BY4742, URA3::MET25pr-tdPCP-NLS-tdmRuby3-CYC1term(pDB97) this work 

DBY96 DBY80 mated with DBY91 this work 

DBY132 BY4741, GLT1prΔ::URA3MX-CYC180pr-24xPP7SL, LEU2::ACT1pr-

VPEL222-CYC1term 

this work 

DBY133 BY4741, GLT1prΔ::HIS3-5xELbs-CYC180pr-24xPP7SL(pDB96), 

LEU2::ACT1pr-NLS-URA3MX-CYC1term 

this work 

DBY134 DBY91, LEU2::ACT1pr-VPEL222-CYC1term(pDB58) this work 

DBY135 DBY91, LEU2::ACT1pr-NLS-VP16-CYC1term(pDB147) this work 

DBY136 DBY91, LEU2::ACT1pr-NLS-EL222-CYC1term(pDB148) this work 

DBY138 DBY132 mated with DBY91 this work 

DBY139 DBY133 mated with DBY91 this work 

DBY140 DBY133 mated with DBY134 this work 

DBY141 DBY133 mated with DBY135 this work 

DBY142 DBY133 mated with DBY136 this work 

DBY30 BY4742, LEU2::80-EL-BS-Array(pDB30) this work 

DBY144 DB30, URA3::ACT1pr-mScarletI-VPEL-CYC1term(pDB145) this work 

DBY145 DB30, URA3::ACT1pr-mScarletI-VPEL(AQTrip)-CYC1term(pDB146) this work 

DBY146 DBY4741, URA3::ACT1pr-mScarletI-VPEL(AQTrip)-

CYC1term(pDB146) 

this work 

  

 



Supplementary Table 3. Optical components composing the light delivery system, related to STAR 

methods. All parts were bought from Thorlabs, with the exception of the beam splitters (AHF 

analysentechnik, Germany) 

 Part Number Item Description Quantity 

 

Lenses LB1761-A Bi-Convex Lens 1" f = 25.4mm 1 

LB1630-A Bi-Convex Lens 2" f = 100mm 1 

 

Lense 

mounting 

LCP01/M 60 mm Cage Plate 2 

CP02 30 mm Cage Plate 2 

 

 

 

 

 

Cage 

mounting 

ER8-P4 Cage Assembly Rod 8" 4 

ER3-P4 Cage Assembly Rod 3" 4 

LCP02/M 30mm to 60mm Cage Plate Adapter 1 

TR150/M Optical Post L = 150mm 2 

UPH100/M Universal Post Holder L = 100mm 2 

Neutral 

density 

filter 
NE20B 25 mm Absorptive ND Filter Optical Density: 2 1 

NE13B 25 mm Absorptive ND Filter Optical Density: 1.3 1 

Beam 

splitter F21-000 50R/50T beam splitter 2 

 

  



Supplementary Table 4. Parameter values for the stochastic gene expression model, related to STAR 

methods. Time units are minutes, abundance units are molecular counts. 

Parameter Value 

kr 40 

kON 0.06 

kOFF 0.15 

µ 1 

σ 0.5 

kmU 0.2 

a 0 

rmaxON 5 

kmON 0.2 

b 0.3 

rmaxOFF 0.27 

kmoff 0.05 
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