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Context

The North Atlantic is important as:

A crucial site of deep water formation

* A connection between the Arctic and other water bodies
* A home of incredible ecosystems
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Looking at the large scale: The AMOC
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The AMOC is
made up of many
moving parts. We
can monitor
some of these
both in the
present and in
the past.
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Is the AMOC slowing down?
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Records from ocean sediments
Context for modern change
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What can we
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Labrador Sea density and the western boundary

a Simulated density changs b Labrador Sea density
AMOC at 26° N
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Sortable Silt
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“Relation of sortable silt grain size to
deep-sea current speeds: Calibration
of the ‘Mud Current Meter” (McCave,
Thornalley & Hall, 2017, Deep Sea
Res.)

Proxy for vigour of near-bottom
currents. Calibrations suggest linear
relationship between SS and flow
speed.
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Does sortable silt relate to AMOC?

Variability of inferred flow speed
of DWBC (56JPC) over last 130
years compares well with modern
observations of:

-Deep Labrador Sea density [from
Yashayaev]

-Subpolar gyre upper ocean heat
content (12 yr lag) [EN4 data]

-Tsub AMOC fingerprint (12 yr
Iag) [from Joyce and Zhang 2010; WODO09
data]
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Weakening of AMOC since 1850 AD
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Shift to weaker flow at ~1850 AD;
seen in both 56JPC and 48JPC
(replication). ~15-20% faster flow
pre-Industrial.

- Prior to 1850 AD, AMOC
predominantly in ‘strong’ mode,
comparable t01990s (when

deep convection occurred in
the Lab Sea).
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What can we learn from mud 2: Temperature
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Temperature records from the western margin

A (AMOC -ve) - (AMOC +ve), Threshold +/- 3 Sv
50N
40N 1

BOW 70W 60W S0W

32 24 A6 08 0 0.8 16 24 iz
SST difference ('C)

This study; Joyce and
Zhang, 2010; Keigwin &
Pickart, 1999:; Wharton
student project

www.eu-atlas.org

400 800 1200 1600 2000

Lad i)
(=] (=]

% N. pachyderma (s)
.
=

L ' H

MC13

| ¥

% N. pachyderma (s)
8 3 o

g

400 #00 1200 1600

Age AD

ATLAS GA 2018

5 3
(s} euwapiyaed N %

i
et
(=1

(s) euvapdyaed %



ATLAS GA 2018

$atlas

o . . Y . B IRV R T, IR TR SN
Basin-wide temperature W Adanic she Th s
warm i : 1 3?
change W AL
o » B
. w0
4 8E
70N ,5°
23
b ~
: —~ 4 -3
60N £ ] Subsurface Nr SPG |
@ g 37 |
33 ] ‘ |
@wn 27
[ o |
50N - S8 .4 ; Uy ’\] l
EE 1,:'. =N § HH l’“ \l m j cold
s o)/ \I/ LAl il l‘|“ I ‘*H
& 7/ \/ ‘ " |L "
40N | A4 T
G 4 __;5
30N +— : — — : 2 I
s80W 70W 60W 50W 40W 30W 20w 10W 0 g’_‘ Ly B
| I I I I [ 1T e z2 i z
06 <05 -4 03 -02 02 03 04 05 06 5 T
e . ' ® [05 ©
& 2 o stronger 3 05 8
g _1_- ITsub AMOC proxy 1 L
= 4 ¥ o O
< 2 weaker &

www.eu-atlas.org




ATLAS GA 2018

$atlas

So what do we think we know?

 The AMOC is weakening, and will likely continue to weaken.

» Paleocean records suggest that the AMOC has been weakening
since 1850, by about 20%. (Thornalley et al. Nature, this Thursday!)

» Observed temperature trends also suggest a weaker AMOC since
the late 1800s, with a 16% decrease since 1950. (Caesar et al.
Nature, this Thursday!)
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What does all this mean?

1) What is the relevance of current ocean state to
assessing existing/past coral presence/connectivity?
2) It looks like centennial oceanic trends have been very
important. More important than decadal-multidecadal

cycles?

3) The data imply that some models may be too stable in
their AMOC representation.

4) What implications does this have for future projections

of connectivity?
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Opportunities

1) The Atlantic Ocean may have already undergone changes
similar to those we might expect in the coming decades.

2) Can we use existing collections/new collections to try and
understand how ecosystems have reacted on these
relatively short timescales?

3) Our extended records may allow better comparison of
broad physical oceanography with known changes in coral
mound occurrence and growth.
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