
Effective Unsupervised Author Disambiguation
with Relative Frequencies

Tobias Backes
GESIS - Leibniz-Institute for the Social Sciences

tobias.backes@gesis.org

ABSTRACT
This work addresses the problem of author name homonymy in the
Web of Science. Aiming for an efficient, simple and straightforward
solution, we introduce a novel probabilistic similarity measure for
author name disambiguation based on feature overlap. Using the
researcher-ID available for a subset of the Web of Science, we evalu-
ate the application of this measure in the context of agglomeratively
clustering author mentions. We focus on a concise evaluation that
shows clearly for which problem setups and at which time during
the clustering process our approach works best. In contrast to most
other works in this field, we are skeptical towards the performance
of author name disambiguation methods in general and compare
our approach to the trivial single-cluster baseline. Our results are
presented separately for each correct clustering size as we can
explain that, when treating all cases together, the trivial baseline
and more sophisticated approaches are hardly distinguishable in
terms of evaluation results. Our model shows state-of-the-art per-
formance for all correct clustering sizes without any discriminative
training and with tuning only one convergence parameter.

CCS CONCEPTS
• Information systems→ Entity resolution;

KEYWORDS
Author Disambiguation; Probabilities; Agglomerative Clustering
ACM Reference Format:
Tobias Backes. 2018. Effective Unsupervised Author Disambiguation with
Relative Frequencies. In JCDL ’18: The 18th ACM/IEEE Joint Conference on
Digital Libraries, June 3–7, 2018, Fort Worth, TX, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3197026.3197036

1 INTRODUCTION
Documents have authors. This information is almost always avail-
able on a document and in the document’s metadata. However, it
is crucial to distinguish an author name mentioned on a specific
document from the author itself. Usually, the author is referred to by
a string of characters that is given with the document. This concept
introduces two types of ambiguity:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
JCDL’18, June 3–7, 2018, Fort Worth, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5178-2/18/06. . . $15.00
https://doi.org/10.1145/3197026.3197036

(1) Name synonymy: One author is referred to by different strings,
perhaps due to misspelling, language-specificity, different
conventions for name specification, etc.

(2) Name homonymy: One string refers to different authors.
With the the collection size the chance increases that two
authors in the collection have the same name.

In general, both problems have to be addressed simultaneously,
i.e. in a constrained clustering setup. This allows to establish that
for example DOE, J can be DOE, JW or DOE, JH but not both. In
this contribution, we focus on name homonymy and simplify the
problem by considering that all initials are always given (assuming
that DOE, J, DOE, JW and DOE, JH are different persons). In that
case, Author(ship/name) disambiguation decides for a set of author
mentions with the same name, which of them belong to the same
author and which do not. This is a clustering problem over author
mentions. Each cluster is considered an author. More formally:
• For each collection, there is a set N of names name ∈ N
• For each name name , there is a set C (also referred to as a
clustering) of authorsC ∈ C (also referred to as a cluster) and
a set of mentions x ∈ X
• Each author C ⊆ X is a set of mentions x ∈ C
• For each mention x , there is a bag of features f ∈ F (x), each
with a frequency #(f ,x) of occurrence with x

If a name is not disambiguated, we have no information about
the belonging of single mentions. This state can either be expressed
by putting all mentions in the same cluster C = X such that
C = {{x | x ∈ X }}, or by assigning each mention x its own
cluster C = {x}, such that C = {{x} | x ∈ X }. The task of au-
thor disambiguation is then to suggest a system clustering Csys
that is as close to the correct clustering Ccor as possible. In the
training/tuning and evaluation case, we have both Csys and Ccor
present and optimize some evaluation score eval(Csys ,Ccor). We
can safely assume that this score measures the similarity between
the system- and the correct clustering. In practice, we disambiguate
one name at a time. This is referred to as blocking [15], where each
name defines one block, that is a separate problem set.

Many different approaches have been proposed to solve the
problem of author disambiguation. Although it is often not indicated
as clearly, most of these approaches can be viewed within the
framework and terminology described above. Despite the large
number of proposedmethods, we find that a straightforward, simple
and sound, easy-to-implement – yet well performing – baseline is

Figure 1: Author disambiguation problem structure

https://doi.org/10.1145/3197026.3197036
https://doi.org/10.1145/3197026.3197036

still lacking. Existing solutions are either complicated to understand
and implement, require training steps or are based on a number of
rather arbitrary decisions. Normally, performance is not compared
against the most primitive conceivable baseline [9]. Therefore, in
this work, we elaborate on the following research questions:

RQ1 Can we deploy well-behaved, straightforward probabil-
ities to establish a conceptionally simple, fast and reliable
method for author name disambiguation that shows state-
of-the-art performance?

RQ2 How difficult is the problem of author name disambigua-
tion in general and separately for different problem sizes?
How good are the most primitive baselines and how does
our approach compare to them?

We structure the rest of the paper as follows. In section 2, we
review the related work. In section 3, we describe the probabilistic
model that we designed as a proof-of-concept for RQ1. In section
4, we explain the evaluation setup, including simple baselines and
the separation of different problem sizes. This allows us to test
our approach regarding RQ1 and gather insights towards the more
general RQ2. We summarize the most prominent findings regarding
these two research questions in section 5.

2 RELATEDWORK
In this section, we give a brief overview over the most cited litera-
ture on author disambiguation that relates to our approach:

The Problem of Author Disambiguation. Ferreira et al. [2] give an
overview of author disambiguation, distinguish author grouping
(synonymy) vs. author assignment (homonymy) and different types
of features for the latter. Smalheiser and Torvik [11] go into more
detail, but to some extend also concerning their own project; Harz-
ing [6] analyses the top 1% cited academics from Thompson Reuters
Essential Science Indicators and contributes some details of the am-
biguity problem in different languages. She shows that the extent
of ambiguity has a direct influence on the scientific performance
indicators measuring a scientist’s academic output. Strotmann and
Zhao [13] investigate the application of author disambiguation to ci-
tation networks. They show that one of the reasons for researchers
being top-ranked is in fact a lack of author name disambiguation.
Kramer, Momeni and Mayr [7] give an overview of the quantity
of author gold annotation in the Web of Science. They conclude
that the Web of Science researcher-ID used in this paper is a good
source of author identity information, in contrast to other sources.
Milojevic [9] analyzes the accuracy of name blocks built by consid-
ering all available initials of an author (and his last name). On the
small sample used, this accuracy introduces a very high baseline.

Probabilistic Approaches, Topic Models. Han et al. [5] present a
probabilistic Naive Bayes mixture model to disambiguate a small set
of highly ambiguous author names. They compare to K-means and
find that their model performs significantly better. However, they
use a very long product, which can lead to extreme swings and the
EM algorithm, a computationally and conceptionally rather com-
plex method. Tang et al. [14] suggest a general probabilistic model
based on Markov Random Fields to exploit a variable set of features
for author disambiguation. They evaluate their approach on a small

set of highly ambiguous names and compare the results to more ba-
sic clustering techniques, claiming significant improvements. With
~89% F1, their results are indeed impressive, but considerable effort
is required to understand and implement the method. Torvik et
al. [16] present a probabilistic model that compares pairs of au-
thors based on various features such as terms, affiliations or venues.
Torvik and Smalheiser [15] apply an improved version of this previ-
ous approach to the Medline data set and reach ~95% F1 for the one
name reported. Their work is one of the most cited state-of-the-art
methods in this field. Generally speaking, their experience allows
the group to hard-code a lot of knowledge into their methods, but
not all decisions can be easily comprehended by others. Although
they use some probabilities in their formulas, it seems the final
similarities are not normalized. Song et al. [12] present a proba-
bilistic graphical topic model for hierarchical clustering of author
names and compare their approach to other standard clustering
approaches. They find their model performs better than for example
DBSCAN. Although the good performance of ~90% F1 seems to
justify the additional complexity, like Han et al., they introduce long
products and inference steps on a ’detour’ via topic assignments.

The Web of Science, Training Techniques. Like us, Gurney et al.
[4] work on the Web of Science and use a very similar set of fea-
tures. They deploy another group’s method for clustering and the
Taminoto coefficient for similarity. They report F1>90% for a num-
ber of names. Their approach is the onemost similar to our proposal,
but neither does it use feature-specificity nor return probabilities.
Levin et al. [8] present a semi-supervised approach to author dis-
ambiguation on the Web of Science data set. The evaluation of
their approach shows solid performance (but under 90% F1) and
proves that the method scales to very large collections. As they do
pairwise classification of author mentions, they make the problem
harder than it needs to be. Overall, their work is very detailed but
also quite difficult to reproduce. Ferreira et al. [3] present a semi-
supervised classifier evaluated on DBLP and BDBComp data sets.
Their model outperformed the other methods compared. Depend-
ing on supervision and rules, their model introduces a number of
(dataset-specific) parameters. Recently, this group has updated their
method to allow for incremental disambiguation by comparing not
author mentions but mentions to clusters of mentions. [10] This is
very practical but more difficult. In another paper focusing on train-
ing aspects, Culotta et al. [1] present a special similarity function
and combine error-driven sampling with learning-to-rank. They
also give an overview of other training approaches. They find that
their approach can be beneficial in terms of performance. Similar
to Ferreira et al., this approach requires training and uses specific
similarity measures for different feature types.

3 METHOD DESCRIPTION
We intent to define a simple, yet effective probabilistic method for
author disambiguation. Using the blocking paradigm, our method
disambiguates one name at a time. It clusters all mentions of that
name based on features extracted from the collection. We note that
for each mention x , there is exactly one document d(x) in which
this mention appears. However, for each document, there can be
multiple mentions that appear on it.

3.1 Features
Features F (x) assigned to a mention x can be extracted (1) from
d(x) in general or (2) specifically for x on d . In the first case, the
features F (x) are the same as the features F (Ûx) of a mention Ûx that
appears on d as well. In the following, we will distinguish different
feature-types, some of which are unspecific for x and some of which
are specific. We train and test our approach on theWeb of Science, as
it is the major source of scientific documents annotated with actual
author IDs (researcher-ID). The following information is used:

(1) Terms Fterm (x): All words considered relevant in the docu-
ment and their frequency of occurrence in d(x)

(2) Affiliations Faf f (x)): All affiliations given for x on d(x) –
usually just one

(3) Categories Fcat (x): All categories assigned to d(x), where
we consider categories to be relatively general terms picked
from a relatively small vocabulary / thesaurus. The frequency
of one category for a document d is usually 1

(4) Keywords Fkey (x): All keywords assigned to d(x), where we
consider keywords to be relatively specific terms that are
picked from a relatively large vocabulary or onlywith respect
to the current document. The frequency of one keyword for
a document d is usually 1

(5) Coauthornames Fco (x): All names of the coauthors of x on
d(x). Unless more than one author of d have the same name,
the frequencies are 1

(6) Refauthornames Fr ef (x): All author names from documents
d ′ in the collection such that d references d ′. Frequencies
larger than 1 will occur often, for example if multiple docu-
ments by the same author are referenced

(7) Emails Femail (x): All email addresses given for x on d(x) –
usually just a single email address with a frequency of 1

(8) Years Fyear (x): A bag of years f given for d(x). Like Levin et
al. [8], we model #(f ,x) as a Gaussian with the publication
year of x as mean. This models temporal proximity.

While there are many details related to the question of which and
how features are extracted and normalized, the focus of our research
was not to investigate specific features but to develop a method
that can provide satisfying results independent of the exact set of
features and feature-types.

3.2 Agglomerative clustering
We apply a method of agglomerative clustering as we consider it
the most straightforward approach. This means that we start with
the initial state where each mention x is in its own clusterC = {x}.
Then, pairs (C, ÛC) of clusters are merged. If no stopping criterion
is applied, this will ultimately result in a state where all mentions
are in the same cluster C = X . For this reason, we need to com-
pute the score score(C, ÛC) of a pair (C, ÛC) of clusters to be merged.
Furthermore, we deploy a quality limit l , that tells us whether the
score can be considered good or not. In our approach, score(C, ÛC)
is not dependent on the score of any other pair of clusters. Neither
is the quality limit. This means that in each iteration of the clus-
tering process, we merge all pairs (C, ÛC), such that (1) ¬∃ ÜC ∈ C :
score(C, ÜC) > score(C, ÛC) ∧ ¬∃ÝC ∈ C : score(ÝC, ÛC) > score(C, ÛC)
and at the same time, (2) score(C, ÛC) > l . In other words, we evalu-
ate all disjoint pairs (C, ÛC) ∈ C×C; for each of these pairs, we check

Algorithm 1: Our agglomerative clustering (no evaluation)
Input :name with X and C as well as N , #(f), λ, ϵ, l

1 while |C| > 1 do
2 score ← NULL ;
3 foreach (C, ÛC) ∈ C × C do
4 score(C, ÛC) ←

∑
f type λf type · pf type (C | ÛC) ;

5 merдes ← {} ;
6 foreach (C, ÛC) ∈ C × C do
7 if ¬∃ ÜC ∈ C : score(C, ÜC) > score(C, ÛC) and

¬∃ÝC ∈ C : score(ÝC, ÛC) > score(C, ÛC) and
score(C, ÛC) > l then

8 merдes ←merдes ∪ (C, ÛC) ;
9 if |merдes | = 0 then break ;

10 else
11 foreach (C, ÛC) ∈merдes do
12 merдe((C, ÛC)) ;

whether (1) and (2) hold true. If yes, the pair is saved for merging.
See algorithm 1 for a more formal description. At the end of each
iteration, all saved pairs are merged. A new system clustering is
obtained and the next iteration begins. This process converges if
no pairs are saved for merging. For evaluation purposes, we can
continue to merge with moves that are below the limit, but we will
elaborate on this in the experiments section.

3.3 Probabilistic similarity
The main contribution of our approach is the similarity used to
define score(C, ÛC). In the following, we will define and explain the
probability that inspires the score. We say that the score of a pair
of clusters can be seen as their joint probability p(C, ÛC) = p(ÛC,C) =
p(C | ÛC) · p(ÛC). Remember #(f ,x) denotes the frequency of f in the
set F (x) of all features in x (F =

⋃
x ∈X F (x)). Consider #(f ,x) = 0

if f < F (x). We define:

p(C | ÛC) =
∑

(x, Ûx)∈C× ÛC

p(x | Ûx) ·
#(Ûx)
#(ÛC)

p(C) =
∑
x ∈C

p(x)

p(x | Ûx) =
∑
f ∈F

#(f ,x) · #(f , Ûx)
#(f) · #(Ûx)

p(x) =
#(x)
#(�)

#(C) =
∑
x ∈C

#(x) #(x) =
∑
f ∈F

#(f ,x)

#(f) =
∑
x ∈X

#(f ,x) #(�) =
∑
x ∈X

#(x)

To prevent division by zero, we apply addϵ smoothing. This modi-
fies p(C | ÛC), p(Ûx) and p(x | Ûx):

p(C | ÛC) =
∑
(x, Ûx)

p(x | Ûx) ·
#(Ûx) + ϵ

#(ÛC) + |C | · ϵ
p(x) =

#(x) + ϵ
#(�) + |X | · ϵ

p(x | Ûx) =
1

#(Ûx) + ϵ
·
©«©«

∑
f ∈F

#(f ,x) · #(f , Ûx)
#(f)

ª®¬ + ϵ

|X |

ª®¬

3.4 Variations
So far, we have considered the clustering to be fully enclosed in
the current name block. While still treating each name as a sepa-
rate clustering problem, we can say that X is not only the set of
mentions for the current name, but for the entire collection. This
increases #(f), #(�) and obviously |X |. We find that the performance
is considerably better if this approach is taken, which can be ex-
plained with less sparsity for #(f). However, this poses the question,
what the ’collection’ is that we take these counts from. Basically,
we are simply looking for a realistic distribution of the frequency
of features f independent of the mention they occur with. In an
application scenario, this distribution can be taken from the data to
be clustered itself. As #(f), #(�) and |X | are available even for the
data we cluster, in our evaluation scenario, we obtain them from
the union of the training and testing portion.

In our preferred variant, we only use p(C | ÛC) in score(C, ÛC). This
conditional probability does in fact perform much better than the
joint probability. Intuitively, p(C) favours large clusters for merg-
ing, which does not make sense as it introduces a tendency that
reinforces itself. It does not matter that p(C | ÛC) , p(ÛC |C) as merging
is symmetric and the clustering procedure we described above will
simply usemax(p(C | ÛC),p(ÛC |C)) unless there is a third cluster that
matches even better (or the limit is not met). In this case, p(Ûx) is
never applied, so that we do not need #(�). Collecting #(f) over the
entire collection, we then only need the number N of mentions in
the collection. Therefore, X still denotes the set of mentions for
one single name block. Furthermore, we tested a variant where we
replace the sum of products with a maximum of products:

p̃(C | ÛC) = max
(x, Ûx)∈C× ÛC

p(x | Ûx) ·
#(Ûx)
#(ÛC)

Obviously, the value p̃ inspired by single-link clustering is not a
probability anymore. This variant performed slightly different than
the conditional probability.

3.5 Feature-type weights
All the probabilities shown above are obtained separately for each
feature-type. Consider that each probability p should actually be
denoted pf type where f type is either term, aff, cat, key, co, ref,
email or year. For better readability, we drop the subscript where
it is not necessary. We perform a simple linear combination with
feature-type weights λ to obtain the final score:

score(C, ÛC) =
∑

f type

λf type · pf type (C | ÛC)

Ideally, we would like to avoid all training so as to keep our method
as simple as possible. Still, to allow for comparison, weights λ are
trained on the training portion of our data. We sample pairs (x ,C)
and (x , ÛC) such that x ∈ C ∧ x < ÛC ∧ |C | = | ÛC | ∧C ∪ ÛC ⊆ X , where
X is the set of mentions for a single name. All possible values for
|C | = | ÛC | are considered in order to create a more or less realistic
binary classification scenario, where we are asked to assign x to a
correct cluster C or an incorrect cluster ÛC . The classifier (logistic
regression performed well) receives probabilities pf type (x |C) and
pf type (x | ÛC) for each f type together with the class ’correct’ or
’incorrect’. It then learns feature-type weights λf type in order to

var iant ϵ α, β λ ← classifier ← p(x |C)

↓ p(x | ÛC)

results ← clustering ← test ↑

train → sampling

Figure 2: Setup for clustering, evaluation and training λ

optimize the classification outcome. While this is not the same
scenario as the one that the weights are finally applied in, we hope
that nevertheless, we gather some insight into the importance of
single feature-types.

3.6 Convergence
Above, we have introduced a quality limit l on the scores for moves
during clustering. In order to account for different problem sizes
(and corresponding smaller probabilities), we define l as follows:

l = α + |X | · β

where |X | is the number of mentions for the current name. Fortu-
nately, when they are normalized such that

∑
f type λf type = 1, l

is relatively independent of λ. Another pleasant finding was that it
is sufficient to tune one parameter depending on whether we use
the sum-of-products or the maximum-of-products variant. While
we optimize both parameters, results were best if in the first case
β = 0 and in the second α = 0.

3.7 Implementational Details
Our approach as presented in previous sections can be implemented
in an efficient and conceptionally simple way by means of matrix
multiplication. In a first step, we calculate the matrix p(x | Ûx) con-
taining values p(x | Ûx) for all pairs (x , Ûx) ∈ X × X . This is based on
the |X | × (|F | + 1) count matrix #(x , f), the feature count vector
−−−→
#(f), and the mention count vector

−−→
#(x). For smoothing, #(x , f) is

extended by one column ⟨ϵ . . . ϵ⟩T .

p(x | Ûx) = p(x | f) · p(f | Ûx) p(x | f) =
#(x,f)
−−−→
#(f)T

p(f | Ûx) =
#(x,f)
−−−→
#(x)

∀i : #(x , f)i, |F |+1 = ϵ

Here, · denotes matrix multiplication (matrix- or dot product). Dur-
ing each iteration, we calculate the |Csys | × |Csys | matrix p(C | ÛC)
from p(x | Ûx) and the current clustering as a |X | × |Csys | matrix Csys :

p(C | ÛC) = Csys
T
·

(
p(x | Ûx) · p(Ûx |C)

) −−−→
#(C) =

−−→
#(x)T · Csys

p(Ûx |C) =

((−−→
#(x) + ϵ

)
· 1
−−−→
#(C)+ |Csys |ϵ

)
◦ Csys

Here, ◦ denotes component-wise multiplication (Hadamard prod-
uct), ensuring p(x |C) = 0 if x < C . For the max variant, all sums in
the matrix products are replaced by a maximum function.

4 EXPERIMENTAL EVALUATION
In the following we describe the experimental setup used to train,
tune and test our approach. This is also depicted in figure 2.

4.1 Data
We use the Web of Science (WoS) collection as a source of metadata
and annotated authorship information. In a preprocessing step, we
extract features for the feature-types mentioned in the previous
section. We normalize author names as LASTNAME, INITS, where
I, N, I, T, S are all the initials for each first name of the author
mention. Thereby, on the one hand, we make the problem harder
as we drop the full name information (increasing the problem size,
i.e. John Doe = Jack Doe) and on the other we make it simpler as
we treat mentions of the same author where his first names are
given with varying completeness as separate problems (reducing
the problem size, i.e. John Doe , John W. Doe). We extract terms
and their frequency from the title and abstract of the metadata.
Title terms are weighted three times higher than abstract terms.
Some stop words are omitted and all words are lower-cased. Fur-
thermore some basic lemmatization from the Natural Language
Toolkit (NLTK) is applied. Affiliations are already normalized in the
WoS. Categories and keywords are taken as they are in theWoS. Co-
and referenced author names are normalized as described above.
Emails are not normalized, but we plan to lowercase them in the
future. From the publication date, we only pick the year.

After extracting features for the entire WoS with more than 100
million documents, we create a database containing the features
related to each single mention with a researcher-ID. For each name,
we use all the mentions that are given a researcher-ID and we use
all the authors that contain at least one such mention. As stated
earlier, we consider each researcher-ID a distinct author. Names are
ordered randomly and separated into training and testing portions.
We use 25% names for training.

4.2 Test setup
In contrast to work by most other groups, we are specifically in-
terested in evaluating the performance of our model in relation
to the problem size. If this has been done in the literature, it is
usually regarding the number |X | of mentions with the same name
(i.e. in Gurney et al. [4]). However, we sort our name blocks by
the correct number of clusters that would need to be detected in
order to achieve perfect results (the size |Ccor | of the clustering).
We compare a maximum of 1000 names for all |Ccor | ∈ {1..10}.
Of this selection, 25% are used for training. Clustering sizes are
distributed according to Zipf’s law. For the sizes 1 to 4, more than
1000 names are available. See table 1 for exact number of names
for each clustering size. We evaluate our approach for each size
separately. Doing so, we are basically balancing our data in an arti-
ficial way. We find this is necessary, as the Zipf distribution of |C |
leads to a (usually unobserved) preference of models that create
very few clusters. Furthermore, in order to view the actual behavior
of our method, we carefully monitor the development of precision,
recall and F1 measure with each iteration of the clustering process.
We also monitor how the clustering would have continued if there
were no limit l on the score of possible merges. So for each iteration
in the clustering process, we record the following information:

(1) Precision of current system clustering
(2) Recall of current system clustering
(3) Current number of clusters in system clustering
(4) Whether the current iteration is before convergence

|C | 1 2 3 4 5 6 7 8 9 10
∑

train 255 250 250 250 215 139 80 65 43 35 1582

test 767 751 750 750 645 418 242 195 131 106 4749

train+test 1022 1001 1000 1000 860 557 322 260 174 141 6331

all 229653 14108 3630 1657 860 557 322 260 174 141 251362

% used 0.45 7.10 27.55 60.35 100 100 100 100 100 100 2.52

Table 1: The number of names found or used with a correct
clustering size |Ccorr | ∈ {1..10} in the WoS data

During the clustering process, we continuously apply the quality
limit l to merges. Once an iteration is reached where no possible
merge exceeds the limit, the following iterations are only hypo-
thetical and all possible merges are applied if and only if no merge
exceeds the limit. Note that this means that even during hypotheti-
cal iterations, there might be a limit-based selection of merges. As
there is always at least one possible merge, all clusters are finally
merged into one and we can evaluate the development of precision
and recall as well as the point of convergence. This is particularly
interesting if one has certain preferences towards precision or re-
call and would like to find a good stopping point for the clustering
process. Figure 6 shows how we plot the recorded information.

4.3 Evaluation measures
In order to evaluate the performance of our approach, we use two
popular evaluation measures for clustering: (1) pairwise F1 (pairF1)
and (2) bCube. Both measures define precision (P) and recall (R)
when comparing two clusterings Csys and Ccor . F1 is defined as
usual as 2 · P ·RP+R . Except for one aspect, we use the definition by
Levin et al. (2012) [8]:

pairs(C) =
⋃
C ∈C

{{x , Ûx} | x , Ûx ∈ C ∧ x , Ûx}

Ppair F 1 =
pairs(Ccor) ∩ pairs(Csys)

pairs(Csys)

Rpair F 1 =
pairs(Ccor) ∩ pairs(Csys)

pairs(Ccor)

Csys (x) = C ∈ Csys : x ∈ C

PbCube =
1
|X |
·
∑
x ∈X

|Csys (x) ∩Ccor (x)|

|Csys (x)|

RbCube =
1
|X |
·
∑
x ∈X

|Csys (x) ∩Ccor (x)|

|Ccor (x)|

We note that the above shown Ppair F 1 and Rpair F 1 are not defined
if in the first case Csys and in the second Ccor are {{{x} | x ∈ X }}.
Therefore we modify pairs(C) =

⋃
C ∈C {{x , Ûx} | x , Ûx ∈ C}. This

increases the values for pairF1 slightly.
One important question with regard to these evaluation mea-

sures is on which subset of the problem they are applied. It is
understood from the above formula, that there is a distinct preci-
sion and recall value for each clustering problem, that is for each
name. However, one could also consider the pairs to be taken over
the entire test data:

pairscor (N) =
⋃

name ∈N

⋃
C ∈Cname

cor

{{x , Ûx} | x , Ûx ∈ C ∧ x , Ûx}

In that case one would calculate one value of precision and recall
over all correct and incorrect pairs in the test data. From these
two values, F1 could be calculated. If we calculate precision and
recall for each name separately, we have to average over the results
that we get for each single name. This weights each name equally
(independent of the number |X | of mentions with that name). We
can then calculate F1 from the average precision and average recall
over all names. We use this approach to obtain a final score for each
correct number |C | of clusters. We do not report a final score over
all |Ccor | as we aim to establish a more precise evaluation for the
different cases that are possible. However, in table 1 we report the
number of names that were found in the WoS data for each |Ccor |,
from which one can approximate the performance over the whole
collection. As the performance of our approach does not vary to
any relevant extend between using pairF1 or bCube, we show only
plots for bCube.

4.4 Experiments
In our experiments, we use the setup and the measures described
above in combination with different parameters, hyper-parameters
and variants. Our model has the following variants:

(1) within / overall: #(f) only within one name or over all
(2) pc_on / pc_off : using p(C, ÛC) or using p(C | ÛC)
(3) prob / max: sum-of-products or maximum-of-products

As indicated earlier, for most variants, results show that only one
of the two options was worth further investigation. We choose the
following setup based on first experiments on the training data:
(1) overall and (2) pc_off. The difference between (3) prob and max
was not as clear. We decided that the max variant is worth further
investigation but focused mostly on the prob variant as it could be
implemented to run much faster and first results also gave a better
F1 score. Our model has the following (hyper-) parameters:

(1) Smoothing hyper-parameter ϵ
(2) Feature-type weights λ
(3) Convergence parameters α and β

So far, we have tried only one very small smoothing parameter
ϵ = .0001 to avoid division by zero. We train the feature-type
weights over the union of training portions for all clustering sizes
and approximate the results as shown in table 2. This table also
shows all other feature-type weights examined. Observing stopping
size vs. correct size, we tuned the limit parameters in a manual grid-
search on the training data and found that a good choice is to set
α = .0005 for the max variant and β = .000075 for the prob variant.
Our plots include a histogram of the clustering sizes |Ccor | where
the system clustering converged. All plots are given for the training
data as they have been part of the parameter tuning process.

4.5 Results
As mentioned above, we record a number of measurements during
the clustering process in order to understand the behavior of our
method and the effect of different versions, stopping limits and
feature-type weightings. Table 3 shows the final results with tuned
parameters on the test portion. In addition to that, we present our
measurements in two types of plots. Referring to figure 6 as an ex-
ample, we briefly explain how to read the more comprehensive type:

term
aff
cat
key
co
ref

email
year

.15
.2
.18
.03
.2
.12
.1
.02

.12

.03
.1
.2
.02
.15
.18
.2

.125

.125

.125

.125

.125

.125

.125

.125

1
0
0
0
0
0
0
0

. . .

0
0
0
0
0
0
0
1

0
.143
.143
.143
.143
.143
.143
.143

. . .

.143

.143

.143

.143

.143

.143

.143
0

0
0
0
0
.5
.5
0
0

.2
0
.2
.2
.2
0
0
.2

train opp. unif. select leaving-one-out author doc.

Table 2: Feature-typeweights considered in our experiments

The y-axis displays the interval [0, 1], onto which precision, recall
and F1 are mapped. The x-axis gives the number of clusters in a
clustering iteration. For a single block, clustering starts somewhere
on the left of the plot with very low recall and maximal precision.
As the process continues to merge clusters, recall increases and
precision decreases. Over all blocks, we see the same development,
but averaged for each problem size (standart deviation shown). In a
perfect method, precision would remain constant until the correct
number of clusters, shown as a solid vertical line, is reached. In fig-
ure 6, we see that for themax variant, F1 peaks exactly at this point,
while a bit later for the prob variant. For both variants, the empirical
stopping size (our method does not know the correct number of
clusters) for |C | = 5 peaks where F1 is maximal. The offset of this
empirical distribution is tuned with the stopping parameters α and
β . We can see in figure 7 that there is still room for improvement
of the stopping limit l , as for |C | = 10 our method generally stops
later than it should.

As preliminary tests on the training data clearly favour one
combination of variants and the stopping parameters are easily
tuned for to these two options, the most interesting comparison is
between different feature-type weightings. As a first choice, trained
weights from the classifier are used and give satisfying results (see
fig. 3). Themax variant performs worse in terms of F1, but precision
is higher (see fig. 4). Detailed plots (fig. 6) of the clustering process
suggest that the prob variant can sometimes gain relatively much
recall in early stages of the clustering, while the max variant has
particularly regular behavior with smaller deviations from themean.
It is also interesting to see that the max variant is able to gain the
maximal F1 at the correct number of clusters, while the prob variant
achieves higher values of F1 (due to better recall) but peaks at a
clustering size larger than the correct one. The average maximum
recall (’max rec.’) at perfect precision (which is independent of the
stopping parameters) shown in figures 3 and 4 is much higher with
the prob variant, which supports the notion that the prob variant
has its strengths in a high recall. On the other hand, the average
maximum precision (’max prec.’) at perfect recall is slightly higher
for themax variant, suggesting that in general it can keep precision
higher until the end. We also show precision and F1 for the baseline
of putting all mentions into the same cluster (’base prec.’ and ’base
f1’). Obviously, recall is 1 here.

The trained feature-type weighting is contrasted with a uni-
form weighting of feature-types. Results are almost identical as
can be seen in figure 10, suggesting that equal weighting of all
feature-types is a good choice. However, this does not mean that
feature-type weighting has no influence on the performance. In

1 2 3 4 5 6 7 8 9 10 |C | |C | 1 2 3 4 5 6 7 8 9 10

bC
ub

e

100 95 95 96 97 96 94 96 95 94 P

tr
ai
ne
d

α
=
0

pr
ob

β
=
.0
00
07
5

tr
ai
ne
d P 100 95 95 96 96 96 94 95 94 93

pa
ir
F1

98 93 93 92 91 90 91 91 90 89 F F 99 94 93 92 92 91 92 92 91 90
97 91 90 88 86 85 87 87 86 84 R R 97 92 92 89 88 87 90 89 88 87
100 95 95 97 97 97 95 96 96 95 P

un
ifo

rm

un
ifo

rm P 100 95 95 96 97 96 94 96 94 94
98 93 93 92 90 90 90 90 89 89 F F 99 94 93 92 91 91 91 91 90 91
97 91 90 87 84 84 85 85 83 84 R R 97 92 91 89 86 85 88 87 85 87
100 96 96 97 96 95 92 92 91 88 P

tr
ai
ne
d

α
=
.0
00
5

m
ax

β
=
0 tr
ai
ne
d P 100 96 96 97 96 95 92 90 89 87

96 92 91 91 90 90 89 89 89 88 F F 97 92 92 92 90 90 89 88 88 88
93 88 87 86 84 85 87 86 87 88 R R 94 89 88 87 84 85 87 86 86 89
100 96 96 97 96 95 92 92 91 88 P

un
ifo

rm

un
ifo

rm P 100 96 96 97 96 94 91 91 89 87
96 92 91 91 89 90 89 89 88 88 F F 97 92 92 91 89 89 89 85 87 88
92 88 87 86 83 85 86 86 85 88 R R 93 89 87 86 83 85 87 88 84 89

Table 3: Results of the tuned method on the test portion, using bCube and pairF1 measure

order to investigate the influence of feature-type weighting, we
test an ’opposed’ weighting where the feature-type with the previ-
ously smallest weight is assigned the previously biggest weight, the
feature-type with the previously biggest weight is assigned the pre-
viously smallest weight, and so on (see table 2). Results are clearly
worse (see fig. 5), which shows that feature-type weighting is not
completely irrelevant (in the sense that there are also counterpro-
ductive weightings). Furthermore, we use feature-type weighting
to investigate the effect of single feature-types by on the one hand
leaving them out (setting their weight to zero) and on the other
using them exclusively (setting all others to zero). This analysis
shows that most feature-types can be dropped (if they are the only
one to be dropped) with the exception of co-authors (see fig. 11) and
ref-authors. It is therefore interesting to see the results if only these
two feature-types are used (see fig. 12). Performance is solid. The
most important coreference indicators are co-author names, which
might even be used alone (see fig. 9) . In a last experiment, we also
test a weighting that selects only basic features of the document
d(x) (no features associated with the author mention x itself and
no referenced authors). Results (fig. 13) are acceptable: F1 is not as
good as before, but precision is high.

4.6 Discussion
A direct comparison of our experimental results to those obtained
by other researchers is not possible. In fact such a comparison
would almost certainly not be fair as evaluation results depend
heavily on so many different factors that reproducibility is close to
impossible under normal circumstances:

(1) Dataset: size, distribution of authors, version of data set,
domain, availability of features, completeness of author name
specification, hand-selected?, quality and amount of gold-
annotation

(2) Blocking scheme: average size of blocks, unassigned names,
overlapping blocks?

(3) Evaluation measure: general choice of measure, micro/macro
average?, recall only inside block?, pair- or element-wise
comparison?, counting pairs of equal mentions?, evaluated
for different problem sizes?

It is therefore more than desirable to have a benchmark dataset with
a framework that distinguishes clearly between data, annotation,
blocking, disambiguation and evaluation. As a such benchmark is

not available at a realistic scale like the Web of Science, we pro-
mote the paradigm to evaluate different problem sizes (number of
clusters that need to be found) separately. This makes our results
relatively robust against changes to many (not all) of the above
mentioned factors. Unfortunately, this kind of evaluation can not
be referenced from other publications that have worked on the Web
of Science. Therefore, we base the assessment of the AD method
proposed in this work on the fact that we were able to achieve
results of more than 90% F1 for problem sizes of at least ten au-
thors, which we find promising. Closely related work by Levin et
al. [8] or Gurney et al. [4] does not report much higher values even
though they do not separate the problems sizes so rigorously –
which generally improves the results. However, we must note that
Levin et al. cluster blocks of surname and first initial, while we use
all initials. Therefore, they work with much larger problem sizes,
which is computationally challenging and leads to more realistic
estimation of recall, even if measured only within blocks. We hope
that reporting results for individual problem sizes minimizes these
distortions in the comparison.

5 CONCLUSIONS
In the following, we briefly summarize the main findings of our re-
search: The best variant is using p(C | ÛC) instead of p(C, ÛC)with #(f)
over the whole collection. Using maximum-of-products instead of
sum-of-products constitutes a serious alternative. There are some
hints that it might be even more precise (’max prec.’ is slightly
higher). Certainly, it runs significantly slower in our implementa-
tion, which is whywe have not yet fully investigated potential gains
of fine-tuning this variant. When tuning an appropriate stopping
parameter, our method can deliver state-of-the-art results although
being conceptionally simple. Even though feature-type weights
learned in the classification scenario are quite heterogeneous, when
applied in the clustering application, they do not perform better
than uniformly distributed weights. We view this as a benefit of
our model, as its score works well independent of any training.
We hypothesize that the probabilities filter out unspecific features,
thereby implicitly controlling feature weighting without any dis-
criminative training. The stopping criterion needs to be tuned on
some training set, but it is only a single variable per variant that
needs to be fitted. This quality limit does remarkably well at find-
ing an appropriate number of clusters to converge. Leaving out

one feature-type at a time in the clustering score, we find that co-
author names are the most important features. Apart from this, our
method’s performance is not dependent on the presence of specific
feature-types. For example, a weighting where only the co-author
names and the referenced author names are used performs well.
Recording the results for each system clustering size |Csys | sepa-
rately allows to precisely monitor the behavior of the clustering
process. The plots created in this work also allow tuning precision
vs. recall. This might be particularly interesting for digital libraries,
as they might prefer precision over recall. Separate evaluation for
each correct clustering size |Ccor | shows how high the baseline of
putting all mentions in a single cluster is for the frequent cases of
|Ccor | = 1 or |Ccor | = 2. We conclude that, with larger problems
not separated, an approach could easily be considered satisfying
although only approximating this primitive baseline.

ACKNOWLEDGMENTS
This work was supported by the EU’s Horizon 2020 programme
under grant agreement H2020-693092, the MOVING project.

REFERENCES
[1] Aron Culotta, Pallika Kanani, Robert Hall, Michael Wick, and Andrew McCallum.

2007. Author disambiguation using error-driven machine learning with a ranking
loss function. In Sixth International Workshop on Information Integration on the
Web (IIWeb-07), Vancouver, Canada.

[2] Anderson A Ferreira, Marcos André Gonçalves, and Alberto HF Laender. 2012. A
brief survey of automatic methods for author name disambiguation. Acm Sigmod
Record 41, 2 (2012), 15–26.

[3] Anderson A Ferreira, Adriano Veloso, Marcos André Gonçalves, and Alberto HF
Laender. 2010. Effective self-training author name disambiguation in scholarly
digital libraries. In Proceedings of the 10th annual joint conference on Digital
libraries. ACM, 39–48.

[4] Thomas Gurney, Edwin Horlings, and Peter Van Den Besselaar. 2012. Author
disambiguation using multi-aspect similarity indicators. Scientometrics 91, 2
(2012), 435–449.

[5] Hui Han, Wei Xu, Hongyuan Zha, and C Lee Giles. 2005. A hierarchical naive
Bayes mixture model for name disambiguation in author citations. In Proceedings
of the 2005 ACM symposium on Applied computing. ACM, 1065–1069.

[6] Anne-Wil Harzing. 2015. Health warning: might contain multiple personalities
- the problem of homonyms in Thomson Reuters Essential Science Indicators.
Scientometrics 105, 3 (2015), 2259–2270.

[7] T. Kramer, F. Momeni, and P. Mayr. 2017. Coverage of Author Identifiers in Web
of Science and Scopus. ArXiv e-prints (March 2017). arXiv:cs.DL/1703.01319

[8] Michael Levin, Stefan Krawczyk, Steven Bethard, andDan Jurafsky. 2012. Citation-
based bootstrapping for large-scale author disambiguation. Journal of the Ameri-
can Society for Information Science and Technology 63, 5 (2012), 1030–1047.

[9] Staša Milojević. 2013. Accuracy of simple, initials-based methods for author
name disambiguation. Journal of Informetrics 7, 4 (2013), 767–773.

[10] Alan Filipe Santana, Marcos André Gonçalves, Alberto HF Laender, and Ander-
son A Ferreira. 2017. Incremental author name disambiguation by exploiting
domain-specific heuristics. Journal of the Association for Information Science and
Technology 68, 4 (2017), 931–945.

[11] Neil R Smalheiser and Vetle I Torvik. 2009. Author name disambiguation. Annual
review of information science and technology 43, 1 (2009), 1–43.

[12] Yang Song, Jian Huang, Isaac G Councill, Jia Li, and C Lee Giles. 2007. Effi-
cient topic-based unsupervised name disambiguation. In Proceedings of the 7th
ACM/IEEE-CS joint conference on Digital libraries. ACM, 342–351.

[13] Andreas Strotmann and Dangzhi Zhao. 2012. Author name disambiguation: What
difference does it make in author-based citation analysis? Journal of the American
Society for Information Science and Technology 63, 9 (2012), 1820–1833.

[14] Jie Tang, Alvis CM Fong, Bo Wang, and Jing Zhang. 2012. A unified probabilistic
framework for name disambiguation in digital library. IEEE Transactions on
Knowledge and Data Engineering 24, 6 (2012), 975–987.

[15] Vetle I Torvik and Neil R Smalheiser. 2009. Author name disambiguation in
MEDLINE. ACM Transactions on Knowledge Discovery from Data (TKDD) 3, 3
(2009), 11.

[16] Vetle I Torvik, Marc Weeber, Don R Swanson, and Neil R Smalheiser. 2005. A
probabilistic similarity metric for Medline records: A model for author name
disambiguation. Journal of the American Society for information science and
technology 56, 2 (2005), 140–158.

Figure 3: Results for trained weights λ;using prob variant

Figure 4: Results for trained weights λ; usingmax variant

Figure 5: Results for opposed weights (compare figure 3)

http://arxiv.org/abs/cs.DL/1703.01319

Figure 6: The clustering process visualised for trained weights λ; comparingmax and prob variant; |C | = 5

Figure 7: The clustering process visualised for trained weights λ; comparingmax and prob variant; |C | = 10

Figure 8: Selecting only terms as features; results and details of the clustering process for |C | = 5

Figure 9: Selecting only co-authors as features; results and details for |C | = 5

Figure 10: Results for uniform weights (compare figure 3)

Figure 11: Leaving out co-authors (compare figure 3)

Figure 12: Only co- and referenced authors (compare fig. 3)

Figure 13: No author-specific features (compare figure 3)

	Abstract
	1 Introduction
	2 Related work
	3 Method description
	3.1 Features
	3.2 Agglomerative clustering
	3.3 Probabilistic similarity
	3.4 Variations
	3.5 Feature-type weights
	3.6 Convergence
	3.7 Implementational Details

	4 Experimental evaluation
	4.1 Data
	4.2 Test setup
	4.3 Evaluation measures
	4.4 Experiments
	4.5 Results
	4.6 Discussion

	5 Conclusions
	References

