
SimPoint-Based Microarchitectural Hotspot &
Energy-Efficiency Analysis of RISC-V OoO CPUs

Odysseas Chatzopoulos† Maria Trakosa† George Papadimitriou† Wing Shek Wong§ Dimitris Gizopoulos†

†University of Athens, Greece, {od.chatzopoulos | mariatrak | georgepap | dgizop}@di.uoa.gr
§Intel, Austin, Texas, wing.shek.wong@intel.com

Abstract—Building on the flexibility of open-source RISC-V-
based CPU designs at the register-transfer level (RTL) we deliver
a characterization study that is not feasible on commercial CPUs.
We identify the major power-consuming hardware structures by
focusing on SonicBOOM’s out-of-order (OoO) microarchitecture
across three design points of increasing aggressiveness. By intro-
ducing and employing the SimPoint methodology on a diverse
set of workloads, we shed light on the relationship between
microarchitecture and energy efficiency of BOOM, which is the
highest-performance CPU design in the public domain. Our
analysis highlights the Branch Prediction and the Instruction
Scheduler Units as the most power-intensive components. We
evaluate the energy efficiency (performance per watt) of the three
design configurations of BOOM and conclude that the smallest
of the three OoO cores, while being the slowest, prevails. The
proposed experimental flow can be used to evaluate any CPU
design using arbitrarily large workloads due to the effective use
of the SimPoint methodology we introduce in Chipyard - in our
case offering a 45-fold reduction of simulation time. Our find-
ings, encompassing 8 key takeaways, can assist microprocessor
designers in optimizing energy efficiency by addressing major
power contributors.

I. INTRODUCTION

Microarchitecture plays a crucial role in determining the
power consumption of a processor or a computer system [1].
Power consumption is a significant concern in modern com-
puting devices due to limitations in battery life, energy
efficiency requirements, and the need for thermal manage-
ment [2]. Power consumption in modern microarchitectures is
a multidimensional issue influenced by various factors beyond
microarchitecture design, including workload characteristics,
system-level design decisions, cooling solutions, and software
optimizations [3]–[5]. Among the above factors, microarchi-
tectural decisions profoundly impact power consumption, and
striking a balance between power expenditure and performance
is a key challenge in modern computing system design. By
measuring and optimizing microarchitecture choices, designers
can contribute to energy-efficient solutions that align with
the growing demand for sustainable and power-conscious
technologies [6], [7].

In the era of energy-efficient computing, power modeling,
and estimation has emerged as a critical aspect of processor
design. With the growing popularity of the RISC-V instruction
set architecture (ISA), understanding the combined perfor-
mance and power implications of microarchitectural choices
on RISC-V cores becomes increasingly vital. Having insights
into how microarchitecture affects power consumption allows

designers to make optimized decisions when designing RISC-
V cores (and likely infer the impact of similar decisions on
other ISAs and CPUs). Power estimation can be performed
at all stages of the design process, from early pre-RTL
performance modeling down to post-place-and-route (post-
PnR) power estimation. In this study, our focus is RTL power
estimation that achieves both high accuracy (compared to pre-
RTL modeling on performance simulators) and relatively high
speed and flexibility (compared to post-PnR). RTL power
estimation encompasses assessing both dynamic and static
(leakage) power. Quantifying the power consumption of in-
dividual components and their interactions enables designers
and computer architects to identify power-hungry parts of the
processor design (hot spots), bottlenecks, and opportunities for
optimization in the next processor generations.

Previous studies have focused on power consumption in
computer systems [8], including studies on power estimation
techniques [9], power models [10], and energy-efficient mi-
croarchitectural optimizations [6]. However, to the best of
our knowledge, a comprehensive understanding of the direct
effect of microarchitecture on energy efficiency has not been
presented in the literature. Such knowledge is crucial for
guiding the design and development of future systems, as
it provides insights into the trade-offs between performance
and power consumption, enabling informed decision-making
during the design process.

This paper builds on top of a publicly available OoO
RISC-V CPU (SonicBOOM) [11] and aims to bridge this
gap by presenting an in-depth exploration of the impact of
microarchitecture on energy efficiency. We delve into the
intricate microarchitectural design choices and their effects on
power consumption profiles. By employing a diverse set of
workloads and leveraging state-of-the-art power measurement
techniques and tools, we aim to provide a comprehensive un-
derstanding of how various microarchitectural configurations
impact performance and power consumption. Through this
investigation, we seek to shed light on the relationship between
microarchitecture, power consumption and performance and
contribute to the ongoing efforts to optimize energy efficiency
in modern microarchitectures.

In this paper, we make the following contributions:
1) We present a detailed register-transfer level (RTL)

power and performance estimation flow for three distinct
BOOM configurations. Using this flow, we analyze the
total CPU core power across thirteen microarchitectural

components with fine granularity, accomplished through
an end-to-end integration of commercial EDA (Elec-
tronic Design Automation) and open-source tools.

2) We assess the impact of microarchitecture on CPU
power consumption for the three different configurations
of the open-source RISC-V BOOM core.

3) We extend Chipyard’s [12] checkpointing infrastructure
to support the SimPoint [13] methodology. This allows
us to evaluate on average 2 orders of magnitude larger
workloads than previous studies [14].

4) We present 8 key takeaways from our analysis of how
each of the microarchitectural components we consid-
ered contribute to the power consumption of the entire
microprocessor core. Future processor designs could ex-
ploit these insights to further improve energy efficiency
without compromising their performance.

5) Finally, we present the performance-per-watt ratings for
all BOOM configurations utilized in this study. Our
evaluation results demonstrate that while the smaller
BOOM design yields notably lower performance (on
average 1.6× lower IPC) compared to the largest BOOM
design for the considered workloads, it significantly
outperforms in energy efficiency, delivering higher per-
formance per unit of power (on average 52% higher).

II. BACKGROUND

CPU design engineers employ power estimation and mea-
surement techniques throughout the chip design process, from
pre-RTL power modeling1 to post-PnR power estimation. As
we descend to lower levels of abstraction, the accuracy of
power estimation increases, while simulation throughput, flex-
ibility, and ease-of-use decrease. This paper emphasizes RTL
power estimation, as it offers a good trade-off among accuracy,
performance, and flexibility, enabling us to accurately evaluate
the impact of microarchitecture on chip power consumption.
In this section, we provide a brief description of each power
estimation abstraction level.

A. Pre-RTL Power Estimation

There are several pre-RTL power estimation tools targeted
at multicore microprocessors [16], [17], memory-arrays [18]
and domain-specific accelerators [19], [20]. These tools use
software models of varying complexity to estimate the power
consumption of these designs. For example, McPAT [16]
includes a wide range of models including in-order and out-
of-order cores, networks-on-chip, shared caches, integrated
memory controllers, and multiple-domain clocking. Such mod-
els combined with performance simulators allow engineers
to perform quick design space exploration very early in the
design process. Although these models are fast and easy to use,
their accuracy is quite limited. For example, McPAT reports
an average power estimation error of 21% among 4 different
processor configurations [16].

1Early in the design phase and before the actual RTL design, typically using
performance models on microarchitectural simulators, e.g., gem5 [15].

B. RTL Power Estimation

RTL power estimation tools [21] use the actual RTL design
source to estimate chip power consumption. All three major
EDA companies, Cadence, Synopsys, and Siemens have de-
veloped such tools, namely Cadence Joules [22], Synopsys
Primepower [23] and Siemens PowerPro [24]. For this study,
we use Cadence Joules, although all these tools share similar
workflows. Specifically, the workflow of Cadence Joules is
enumerated below:

1) As shown in Fig. 1, initially both RTL source (Ver-
ilog [25], SystemVerilog [26], VHDL [27]) and Process
Design Kit (PDK) library files (Liberty, LEF) [28] are
read by the tool. The RTL source is elaborated and
saved in a database to be used in the Design Mapping
(Synthesis) and Stimulus (Trace File) Processing stages.

2) During the technology mapping stage, a rough synthe-
sized netlist is created by implementing the arbitrary
RTL constructs with actual library standard cells (the
”Synthesis” box in Fig. 1). This process is much faster
than an actual full-chip synthesis step. Joules takes into
account the PDK liberty files that contain timing, area,
and power specifications of standard cells and constraint
files that define the desired clock frequency and other
important design constraints.

3) Trace files from RTL simulators are used to determine
the toggle rate of each signal in the design. Joules can
accept a variety of trace file formats ranging from a few
Megabytes to hundreds of Gigabytes of data, depending
on workload length and design complexity.

4) Finally, power estimation is performed by first generat-
ing an appropriate clock tree and then using the mapped
netlist in conjunction with the calculated toggle rate
of each signal to determine the Leakage, Internal, and
Switching power of the design.

C. Post-Synthesis Power Estimation

Post-synthesis power estimation tools, instead of using the
RTL source as input, rely on an already synthesized netlist.
Since the synthesized netlist is the actual netlist used as input
for the place-and-route step, the results of power estimation
are more accurate. Nevertheless, interconnect and placement
information is still missing, thus limiting the fidelity of the
results. In our study, the decrease in throughput was not
justified by the relatively modest improvement in accuracy.

Synthesis

Trace File
Read

Power
Estimation

RTL
Elaboration

RTL Source

Joules

PDK Files Constraints
File

Fig. 1. Cadence Joules power estimation flow.

D. Post-Place-and-Route Power Estimation

The PnR steps transport the chip design from the logical
domain to the physical one. A floorplan is used to create
a foundation defining the dimensions of the chip and the
placement of any hard macros such as SRAMs and special
analog cells. Subsequently, all standard cells are placed within
the specified floorplan and finally, nets (wires) are routed to
connect all the standard cells. Post-PnR tools use this final
representation of the chip in the physical domain to calculate
power, taking into account the interconnect and actual place-
ment of cells inside the chip. Although this method yields
highly accurate results, the significant decrease in throughput
along with the need to create a floorplan for each design we
want to analyze, renders it unsuitable for our study.

E. Power Dissipation Sources

The power dissipation sources in a digital CMOS inte-
grated circuit [21] are: Leakage (Static) Power, Internal (Short
Circuit) Power and Switching Power. Leakage power is a
consequence of MOSFETs not completely turning off. This
is due to a variety of effects including sub-threshold leakage,
junction current, and gate tunneling. RTL power estimation
tools calculate the system leakage power by summing the
leakage power of each system cell as characterized by library
vendors in the liberty files. State-based modeling, i.e., cell
leakage power being based on cell state, is supported by all
major tool vendors. Internal power is the power consumed
within the boundaries of the cell. It is attributed to momentary
short-circuit currents that occur between the power supply and
ground, as well as power consumed in internal nets due to
charging and discharging of internal capacitance. Switching
power is consumed when charging or discharging the load
capacitance at the output of a cell during logic changes. This
load capacitance is the sum of the gate and net capacitance on
the driven output. The switching power is directly proportional
to the capacitance, the net toggle rate, and the square of
operating voltage.

III. TOOLS, MODELS, FRAMEWORKS

To evaluate the effects of microarchitecture on-chip power
consumption, we employ a set of both open-source and com-
mercial tools. These tools enable fast design space exploration
of different microprocessor configurations, providing us with
metrics such as performance, area, and energy efficiency. In
this section, we describe these tools and their interoperability.

A. Chipyard

Chipyard [12] is a widely-used, open-source framework
designed at the University of California, Berkeley that enables
the design and evaluation of full-system hardware using an
agile development approach. Chipyard contains an extensive
collection of tools and libraries that facilitate the integration
of open-source and commercial tools for the development,
simulation, and implementation of complex Systems-on-Chip
(SoCs). Multiple configurable components can be combined
to create a complete SoC which can be verified through

both FPGA-Accelerated RTL simulation (FireSim [29]) and
Software RTL simulation, as well as pushed through an
automated VLSI design flow that can produce tape-out ready
GDSII files. Chipyard’s configurable RTL generators rely on
the Chisel hardware construction language [30]. Chisel designs
are first converted to FIRRTL (Flexible Intermediate Repre-
sentation for RTL). Since Chipyard supports three main flows
namely: Software RTL Simulation, FPGA Accelerated RTL
Simulation, and automated VLSI design (HAMMER [31]) it
relies on FIRRTL [32] transforms to produce suitable Verilog
code for each target. This enables designers to write RTL once,
being agnostic of the target platform, and making the entire
design process much more streamlined.

B. SonicBOOM

BOOM [33] (Berkeley Out-of-Order Machine) is the state-
of-the-art, open-source, OoO RISC-V core developed at the
University of California, Berkeley. It is written in Chisel
and is highly parameterized, allowing for fast design-space
exploration and optimization for a wide range of target ap-
plications. In this study, we are using the 3rd generation of
BOOM called SonicBOOM [11], which is the latest BOOM
release with a variety of performance improvements. Fig. 2
presents a microarchitectural diagram of the BOOM core.
The BOOM pipeline is composed of ten logical stages [34]:
Fetch, Decode, Register Rename, Dispatch, Issue, Register
Read, Execute, Memory, Writeback, and Commit. However,
in SonicBOOM, certain stages are combined or overlapped to
optimize performance.

L1 Instruction
Cache

Brach Predictor BTB
RASI-TLB

Fetch Buffer

Decoder

Renaming Allocate Logic Commit

Reorder Buffer (ROB) IN
T R

egister File

FP Issue
Queue

Mem Issue
Queue

Int Issue
Queue

Store Queue
Load Queue

L1 Data CacheMSHR D-TLB

ALU

ALU

CSRs

RoCC

ALU

Mul

Div

FDiv

FMul

Branch

AGU

Store
Data

FP
 R

eg
is

te
r

Fi
le

Front-End Instruction
Decode Unit

Execution
Unit

Load-Store
Unit

Fig. 2. SonicBOOM microarchitecture. Different background colors show the
distinct major units of the core.

C. ASAP7

ASAP7 [28] is a 7-nm predictive process design kit (PDK).
It was developed in collaboration with Arm Ltd. for aca-
demic use. The kit is based on the assumptions for the 7-
nm technology node and is not tied to any specific foundry
for manufacturing. The ASAP7 library contains all necessary
collateral, including 4x scaled physical pin and blockage
views, sample GDSII [28] and Open Access schematic/symbol
views, LVS netlists, and parasitic extracted (PEX) cell netlists
for circuit simulation. The library includes 106 combinational
logic cells, 17 flip-flops (both scan and non-scan), six latches,
and three integrated clock gaters with varying drive strengths.

D. Verilator

Verilator [35] is a powerful tool in the domain of hardware
description and modeling, specifically a high-performance
simulator for the Verilog hardware description language
(HDL). It is renowned for its speed, reputed as the fastest
open-source simulator for Verilog HDL [36]. It accepts synthe-
sizable Verilog, as well as some system Verilog and synthesis
assertions, and compiles them into a standalone C++ or
SystemC model that can be incorporated into larger software
simulations. As a tool, Verilator is primarily used for syn-
thesizable digital logic designs and has a special emphasis
on enabling fast simulation. From an adoption perspective,
Verilator has been widely used in both academia and industry.
Its ability to handle complex and large designs, combined with
its high speed and adaptability, makes it an attractive choice for
hardware engineers and researchers. Many significant designs,
including open-source processor designs like CVA6 [37],
ROCKET [38], and BOOM [11], have utilized Verilator for
their simulation and verification tasks.

E. SimPoint

SimPoint [39] is a sophisticated performance analysis tool
designed for evaluating and understanding the behavior of
computer programs, particularly those executed on large-scale
computing systems. Developed to handle the complexity of
modern processors and applications, SimPoint aids researchers
and engineers in pinpointing representative “simulation points”
within the execution of a program. These simulation points

capture the essential characteristics of the program’s behavior,
enabling a more efficient and manageable analysis of its
performance. By intelligently selecting a subset of these simu-
lation points, SimPoint significantly reduces the computational
resources required for detailed simulations while maintaining
a high degree of accuracy. This makes it a valuable tool for
optimizing software and hardware systems, facilitating the
identification of critical bottlenecks, and ultimately enhancing
the overall efficiency of complex computing environments. In
Section IV-A, we delve into the challenges associated with
integrating SimPoints into RTL-power analysis and detail the
strategies employed to overcome them.

IV. EXPERIMENTAL RESULTS & ANALYSIS

Our experimental flow is aligned with previous work [14]
and is shown in Fig. 3 and Fig. 4.

A. Experimental Setup

We first select the target Chipyard System-on-Chip (SoC)
configurations 1 . These, feature three distinct BOOM se-
tups: MediumBOOM (2-wide core), LargeBOOM (3-wide
core), and MegaBOOM (4-wide core), as detailed in Table I.
The configurations encompass the entire chip, including the
BOOM core, caches, and peripherals, designed as customiz-
able, Chisel-based generator IP blocks 2 . Through a system-
atic build process, these Chisel-based designs are transformed
into Verilog representations 3 . Subsequently, Verilator 4
converts the target Verilog into a fast, multithreaded, cycle-
accurate simulator 5 , capable of generating cycle-by-cycle
signal traces for the entire chip.

Executing the benchmarks/SimPoint checkpoints (the gen-
eration of SimPoint checkpoints is explained below) 6 on our
fast multithreaded simulator results in the generation of a trace
file for each one 7 . These trace files, along with the target
Verilog RTL code produced in a previous step, are provided
to Cadence Joules 8 . Additionally, the ASAP7 PDK library
files 9 and the HAMMER-generated TCL script 10 —which
orchestrates the Joules power-estimation flow as outlined in
Section II-B—are included in the input. To investigate the
impact of microarchitecture on power consumption, a con-
sistent clock rate is employed across all three BOOM config-

SoC
Configuration

RTL Generators

Caches Peripherals

RTL Build Process

Target
Verilog

RTL
Simulation

TCL Script ASAP7 PDK

Benchmark
\ SimPoints

Trace FileExport .csv
Files

Parsing

Joules
Multithreaded Fast Sim

C/C++

Fig. 3. The experimental flow used in this study for RTL power modeling and evaluation.

urations; consequently, the microarchitectures differ in their
IPC (instructions per cycle). The designated clock frequency
for our designs is 500MHz, which is consistent with previous
studies [14], [40] that use the ASAP7 PDK. The power
consumption results from Joules are parsed and processed,
allowing for fine-grained analysis of the power consumption
of the target BOOM configurations 11 .

We employ eleven diverse benchmarks derived from the
MiBench [41] and Embench [42] suites, with hundreds of
millions of dynamic instructions each, as shown in Table II.
To facilitate the analysis of extensive workloads, particularly
in the context of RTL evaluation studies, which typically
focus on workloads of less than a few million instructions
due to prohibitively slow simulation times and trace file
sizes (as observed in studies like [14]), we introduce and
employ the SimPoint methodology in Chipyard. By employing
SimPoints, we completed our experiments in slightly over
2 days, achieving a 45× speedup compared to the over 3-
month execution time that would have been necessary without
considering trace file size and processing time constraints.

As shown in Fig. 4 integrating SimPoints into our workflow
involves utilizing the gem5 [15] simulator. This simulator is
leveraged to generate the essential basic block vectors (BBVs)
needed by the SimPoint algorithm. These BBVs characterize
each program interval (i.e., SimPoint size chunks of the pro-
gram) containing information about the frequency of execution
of all the static basic blocks. This program profile produced
by gem5 is then input into the SimPoint executable, which
calculates the SimPoints representing the different phases
of the workload. For each chosen SimPoint, we create an
appropriate architectural checkpoint using Spike [43], a RISC-
V ISA simulator.

To load and execute the derived SimPoints, we utilize
Chipyard’s recently added feature of architectural checkpoint-
ing. Employing a custom version of the testbench driver,
we execute the SimPoint checkpoints in the target BOOM
configuration. Before executing the SimPoint code, a warm-up
period is allowed to mitigate inaccuracies resulting from the
cold cache memories and branch predictor. This entire process
is automated and executed using a Python script. Table II
provides a breakdown of information, including instruction
count, SimPoint interval size, and the number of SimPoints

TABLE I
BOOM CONFIGURATIONS USED IN THIS STUDY.

uArch Parameter Medium Large Mega
Fetch/Decode/Issue Width 4/2/4 8/3/5 8/4/8
Int / Mem / FP IQ Entries 20/12/16 32/16/24 40/24/32
Int / Mem / FP EXUs 2/1/1 3/1/1 4/2/2
Int Regs 80 100 128
Int RF Rd Ports 6 8 12
Int RF Wr Ports 3 4 6
FP Regs 64 96 128
FP RF Rd Ports 3 3 6
FP RF Wr Ports 2 2 4
ROB Entries 64 96 128
L1 I$ Size / Associativity 16KB / 4 32KB / 8 32KB / 8
L1 D$ Size / Associativity 16KB / 4 32KB / 8 32KB / 8
Load / Store Queue Size 16 / 16 24 / 24 32 / 32
Branch Predictor TAGE TAGE TAGE
BTB Entries 256 512 512

BBVs Spike Checkpoints

Fig. 4. Steps to generate checkpoints based on the SimPoint algorithm results.

considered. In this study, all the results presented rely on the
execution of the highest-ranked SimPoints (the specific count
for each benchmark is detailed in Table II). These SimPoints
provide at least 90% program coverage ensuring high accuracy.
The SimPoint size to program dynamic instructions ratio we
use in this study is on average 1:300 compared to 1:20000
in prior studies analyzing the SPEC2006 benchmarks [44]–
[46]. The larger the ratio, the less SimPoints are needed to
reach adequate coverage. However, our workflow is entirely
configurable and capable of accommodating any quantity and
scale of SimPoints.

B. Power Consumption Analysis per Component

Fig. 5, Fig. 6 and Fig. 7 show the power consumption of
each of the 13 hardware components considered in this study
across all eleven workloads for the three BOOM configu-
rations, as described in Section IV-A. As shown in Fig. 7,
the Integer Register File is the second largest contributor of
power in the MegaBOOM configuration, having the highest
consumption of any component in the Sha benchmark. Its
average power consumption across all workloads is 4.83mW,
which accounts for 12% of the total BOOM tile power (the
BOOM tile contains the core and the L1 cache memories).
However, as shown in Fig. 5, Fig. 6 (i.e., the MediumBOOM
and the LargeBOOM, respectively), the power of the Integer
Register File is significantly lower than the MegaBOOM
configuration. In the LargeBOOM configuration (see Fig. 6),
the power usage is 0.72mW on average, which is only 2.95%
of the total BOOM tile power. Similarly, in the MediumBOOM
configuration (see Fig. 5), the power consumption of the
Integer Register File is further reduced to nearly 0.27mW or
2% of the BOOM tile power. The higher power consumption in
the MegaBOOM configuration can be attributed to two main
factors: (1) the higher number of physical integer registers
in the MegaBOOM configuration and (2) the bypass network,
which exhibits non-linear growth based on the number of read
and write ports. In the MegaBOOM configuration, there are
12 read ports and 6 write ports, resulting in a larger bypass
network. In comparison, the LargeBOOM configuration has
8 read ports and 4 write ports, while the MediumBOOM
configuration has 6 read ports and 3 write ports (see Table I).

TABLE II
BENCHMARK INSTRUCTIONS, SIZE & NUMBER OF SIMPOINTS.

Benchmark Suite Interval # Simpoints Instructions
Basicmath (Bmath)

MiBench

1M 2 364,758,047
Stringsearch (StSear) 1M 2 136,360,766
FFT 1M 1 266,217,322
iFFT 1M 1 266,643,273
Bitcount (BC) 1M 3 495,204,057
Qsort 1M 1 22,868,929
Dijkstra (Dijk) 1M 3 227,879,044
Patricia (Patr) 2M 2 154,589,629
Matmult (MxM)

Embench
1M 1 516,885,284

Sha 1M 3 111,029,722
Tarfind 2M 1 1,220,430,895

0.0

1.0

2.0

3.0

4.0

5.0

Branch
Predictor

L1 Data
Cache

Integer
Rename Unit

Load Store
Unit

Integer Issue
Unit

Reorder
Buffer

FP Rename
Unit

L1 Instruction
Cache

Integer
Register File

Memory Issue
Unit

Fetch Buffer FP Issue Unit FP Register
File

m
W

Basicmath Bitcount Dijkstra FFT FFTrev Matmult Patricia Qsort Sha Stringsearch Tarfind

Fig. 5. Power consumption per hardware structure for the MediumBoom across all eleven benchmarks.

0.0

2.0

4.0

6.0

8.0

10.0

Branch
Predictor

L1 Data
Cache

Integer Issue
Unit

Integer
Rename Unit

Load Store
Unit

FP Rename
Unit

Reorder
Buffer

L1 Instruction
Cache

Integer
Register File

Memory Issue
Unit

FP Issue Unit Fetch Buffer FP Register
File

m
W

Basicmath Bitcount Dijkstra FFT FFTrev Matmult Patricia Qsort Sha Stringsearch Tarfind

Fig. 6. Power consumption per hardware structure for the LargeBoom across all eleven benchmarks.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Branch
Predictor

Integer
Register File

Integer Issue
Unit

L1 Data
Cache

Integer
Rename Unit

Load Store
Unit

FP Rename
Unit

Reorder
Buffer

Memory Issue
Unit

FP Register
File

L1 Instruction
Cache

FP Issue Unit Fetch Buffer

m
W

Basicmath Bitcount Dijkstra FFT FFTrev Matmult Patricia Qsort Sha Stringsearch Tarfind

Fig. 7. Power consumption per hardware structure for the MegaBoom across all eleven benchmarks.

Key Takeaway #1: The power consumption of the Integer
Register File varies significantly across different BOOM
configurations (MediumBOOM, LargeBOOM, and Mega-
BOOM). This is attributed to the varying number of
registers but more importantly the varying number of read
and write ports that non-linearly affect the size of the
bypass network.

Regarding workload sensitivity, it is evident that the power
consumption of the integer register file exhibits considerable
variation across the eleven benchmarks. The IRF power con-
sumption is highly correlated with IPC. The Sha benchmark
that achieves the highest IPC across the 3 configurations has
the highest IRF power consumption by a large margin.

The Floating Point Register File demonstrates a deficient
power consumption across all benchmarks, except for FFT,
iFFT and Qsort in both the MediumBOOM and LargeBOOM
configurations. On average, it consumes 0.05mW and 0.08mW,
accounting for only 0.4% and 0.3% of overall power con-
sumption respectively. This is naturally expected since no
other benchmarks utilize FP registers. However, in the case
of MegaBOOM, as illustrated in Fig. 7, substantial power
consumption in the floating point register file can be observed
across all benchmarks (1.18mW on average), with an expected
surge at the aforementioned FP-intensive workloads. This
power, on FP-free workloads, almost entirely stems from static
logic power and can be attributed to the large bypass network
resulting from the increased access ports in the MegaBOOM
configuration, as shown in Table I.

Key Takeaway #2: The FP register file has very low
power consumption in the two smaller BOOM config-
urations with expected spikes in FP-heavy workloads.
In MegaBOOM, in contrast, static power consumption
significantly increases. This is due to the extended (2×)
number of read and write ports.

The Integer Rename Unit ranks as the fifth-largest contrib-
utor to power consumption in the MegaBOOM configuration,
the fourth-largest in LargeBOOM and the third-largest in
MediumBOOM. On average, across all the workloads, it con-
sumes 0.95mW in MediumBOOM, 1.57mW in LargeBOOM,
and 2.5mW in MegaBOOM. These values correspond to 7.2%,
6.4%, and 6.2% of the total power consumed by the BOOM
tile, respectively. Its power consumption highly depends on
the workload being executed, with the Sha and Bitcount
consistently exhibiting the highest power consumption across
all three BOOM configurations. This is anticipated because
these two benchmarks exhibit the highest IPC, thereby exerting
considerable stress on the integer pipeline.

The Floating Point Rename Unit plays a significant role
in power consumption across all BOOM configurations. On
average, it consumes 0.6mW in MediumBOOM, 1.29mW in
LargeBOOM, and 2.16mW in MegaBOOM. These values rep-
resent 4.5%, 5.3%, and 5.4% of the total power consumed by
the BOOM tile, respectively. Surprisingly, although only three
benchmarks utilize FP registers, the Floating Point Rename
Unit does not follow the same power consumption pattern as
the FP Register File, described earlier. This may be attributed
to the creation of a new allocation list initialized to zero for

every executed branch instruction [34]. The allocation list is
a new copy of the free list, so upon a branch misprediction,
the processor can revert the state of the free list. Consequently,
constant register writing occurs throughout program execution,
even when no floating-point instructions are being executed.

Key Takeaway #3: Even with minimal use of FP registers,
the Floating Point Rename Unit shows a surprisingly high
power consumption trend across various BOOM configu-
rations. This mismatch between structure usage and power
identifies an opportunity for redesigning the allocation
and initialization mechanisms within the unit. This might
involve exploring more efficient ways to manage the
allocation list, possibly by minimizing the constant register
writing when no floating-point instructions are executed.

BOOM employs a three-way distributed scheduler design,
where different units are responsible for issuing different types
of instructions. The Integer Issue Unit handles integer instruc-
tions, the Memory Issue Unit handles memory instructions,
and the Floating Point Issue Unit handles FP instructions.

Among these units, the Integer Issue Unit exhibits the
highest power consumption across all BOOM configurations,
as shown in Fig. 5, Fig. 6 and Fig. 7. On average for all
benchmarks, the Integer Issue Unit consumes 0.83mW in
MediumBOOM, 2.08mW in LargeBOOM, and 4.4mW in
MegaBOOM. These values correspond to 6.3%, 8.6%, and
10.9% of the total power consumed by the BOOM tile,
respectively. The Integer Issue Unit demonstrates significant
workload sensitivity, as its power consumption is highly cor-
related with queue occupancy. Programs with high integer ILP
(i.e., many integer instructions that do not have dependencies
with each other) will result in lower issue queue occupancy
since integer instructions won’t have to wait to be executed
and thus issued immediately to the execution units. While the
issue rate will be higher most of the issue queue entries will
be empty minimizing power consumption of the issue select
and wake-up logic.

A clear illustration of this behavior is observed when
comparing the Dijkstra and Sha workloads. Dijkstra, despite
having lower IPC, exhibits much higher power consumption
in the Integer Issue Unit compared to Sha. Conversely, Sha
achieves the highest IPC out of all workloads but demonstrates
lower power consumption in the Integer Issue Unit. To better
demonstrate queue occupancy, we present fine-grained power
measurements for each integer issue queue slot for the two
workloads in Figure 8. In Dijkstra, all issue slots show notable
power consumption, indicating high queue occupancy, whereas
in Sha, only a few slots exhibit significant power consumption
(i.e., the queue remains mostly empty with few slots being
utilized systematically).

The Memory Issue Unit represents the component with
the second-highest power consumption among the distributed
scheduler units. On average for all benchmarks, it consumes
0.26mW in MediumBOOM, 0.62mW in LargeBOOM, and
1.3mW in MegaBOOM. This accounts for 2%, 2.5%, and

0.00

0.05

0.10

0.15

0.20

0 3 6 9 12 15 18 21 24 27 30 33 36 39

P
o

w
er

 [
m

W
]

Issue Slot

Sha Dijkstra

Fig. 8. Power consumption per issue slot of Dijkstra and Sha benchmarks
for the MegaBOOM configuration. Each dot represents one of the 40 integer
issue slots of the integer issue unit.

3.2% of the total BOOM tile power consumption, respectively.
For the same reason as the Integer Issue Unit, the Memory
Issue Unit also exhibits high sensitivity to different workloads.
Dijkstra and Stringsearch consistently demonstrate the highest
power consumption across all three BOOM configurations.
These observations suggest that due to a higher proportion
of memory instructions, these two benchmarks significantly
drive the power consumption of the Memory Issue Unit.

Key Takeaway #4: Among the three distributed scheduler
units, the Integer Issue Unit stands out as the highest
power consumer. Collectively, these scheduler units repre-
sent the second-highest power consumption, trailing only
behind the branch predictor across all three configurations.
This positions them as a primary focus for optimization
efforts.

The Floating Point Issue Unit consumes the lowest
power among the distributed scheduler units. On average
for all benchmarks, it consumes 0.17mW in MediumBOOM,
0.39mW in LargeBOOM, and 0.74mW in MegaBOOM con-
figurations. These values represent a small portion of the
overall power consumed by the BOOM tile. However, for the
FFT, iFFT workloads, in which there is significant floating-
point activity, we observe higher power consumption for
the Floating Point Issue Unit compared to all other bench-
marks. Specifically, in both the FFT and iFFT workloads, the
power consumption is as high as 0.27mW in MediumBOOM,
0.74mW in LargeBOOM, and 1.3mW in MegaBOOM.

Key Takeaway #5: The deployment of collapsing queues
in the BOOM issue units [47] enhances queue utilization
but sacrifices energy efficiency due to frequent register
writes per cycle (as presented in [48]). Analyzing the
performance-power trade-offs across different implemen-
tations could potentially enhance the energy efficiency of
the BOOM distributed scheduler.

The Reorder Buffer (ROB) plays a crucial role in out-of-
order CPUs, including BOOM. BOOM implements register
renaming with a merged register file [49], which is the typical

implementation in most modern CPUs [50]–[52]. Therefore,
instruction data is stored in the register file rather than in the
ROB, which makes the ROB size significantly smaller. This
architectural decision is reflected in the power consumption
of this reduced-size ROB. On average for all benchmarks,
the ROB consumes 0.61mW in MediumBOOM, 1.08mW in
LargeBOOM, and 1.57mW in MegaBOOM configurations.
These values account for 4.6%, 4.4%, and 3.9% of the total
power consumed by the BOOM tile, respectively. In terms of
workload sensitivity, the power consumption of the ROB varies
significantly across different benchmarks, although not to the
same extent as the issue units. The workload-specific behavior
remains consistent across all three BOOM configurations.

Key Takeaway #6: Introducing adaptive ROB sizing
changes (along the lines of [48], [53]) based on workload
characteristics can help optimize power consumption. For
instance, workloads with more or longer instruction de-
pendencies might benefit from a slightly larger ROB size
to avoid stalls, thereby improving performance without
substantially increasing power consumption.

The Branch Predictor is the primary contributor to power
consumption across all three BOOM configurations. It aver-
ages 3.34mW in MediumBOOM, 7mW in LargeBOOM, and
7.6mW in MegaBOOM. This accounts for 25.3%, 28.8%,
and 18.8% of the total power consumption per BOOM tile,
respectively. As shown in Fig. 6 and Fig. 7, the branch
predictor exhibits similar average power consumption across
benchmarks in these two BOOM configurations. This sim-
ilarity arises from both configurations having Branch Tar-
get Buffers (BTBs) of the same size, while MediumBOOM
utilizes a BTB half the size (see Table I). Notably, the
predictor’s power consumption significantly varies depending
on the executed workload, resulting in substantial differences
among benchmarks. Compared to a prior study utilizing the
Gshare branch predictor [14], TAGE consumes an average of
2.5× more power across all BOOM configurations.

Key Takeaway #7: The branch predictor stands out as the
primary contributor to power consumption across all three
BOOM configurations. Compared to previous studies [14]
using the Gshare predictor, TAGE consumes on average
2.5× more power. This makes the BP a prime target
for optimization and warrants a detailed study of the
performance-power trade-off between TAGE and GShare
in BOOM.

The power consumption of the Fetch Buffer is relatively
low. On average for all benchmarks, it consumes 0.22mW
in MediumBOOM, 0.31mW in LargeBOOM, and 0.36mW
in MegaBOOM. The Fetch Buffer serves as a container for
instructions retrieved from the instruction cache. During the
Decode Stage, instructions are retrieved from the Fetch Buffer
and undergo decoding. Subsequently, the necessary resources
are allocated for each instruction. If certain required resources

are unavailable, a stall occurs, temporarily halting the process
until the required resources become available. We believe that
the power consumption of the Fetch Buffer is sensitive to the
workload being executed due to these stalls.

The Load Store Unit (LSU) is a significant contributor to
the total BOOM tile power consumption. In MediumBOOM,
on average across all benchmarks, it consumes 0.84mW, in
LargeBOOM 1.3mW and MegaBOOM 2.2mW. This accounts
for 6.3% of the total BOOM tile power consumption in Medi-
umBOOM and 5.4% in both LargeBOOM and MegaBOOM.
The LSU exhibits very high workload sensitivity similar to
that of the issue units, with the workload-dependent behavior
being consistent across the three BOOM configurations.

The L1 Data Cache emerges as a significant contributor
to power consumption in all three BOOM configurations,
ranking as the second-highest contributor. It averages 1.13mW
in MediumBOOM, 2.24mW in LargeBOOM, and 4.34mW
in MegaBOOM, accounting for 8.5%, 9.2%, and 10.8% of
the total power consumed by the BOOM tile, respectively.
Notably, despite the identical data cache size and associativity
in the LargeBOOM (Fig. 6) and MegaBOOM (Fig. 7) con-
figurations, they exhibit distinct power consumption levels.
This difference is attributed to the MegaBOOM configuration’s
inclusion of two memory execution units, facilitating more
concurrent data cache accesses and doubling the Miss Status
Handling Registers (MSHRs) compared to LargeBOOM. The
data cache’s power consumption strongly correlates with the
executed workload, directly influenced by the access pattern
specific to each benchmark. This workload-driven behavior
remains consistent across all three BOOM configurations.
Remarkably, the Matmult and Tarfind benchmarks demonstrate
the highest power consumption in relation to the data cache.

Key Takeaway #8: While additional memory execution
units and expanded MSHRs may enhance performance by
enabling a larger number of concurrent cache accesses,
they come with a trade-off in increased power. Architects
might need to explore ways to fine-tune or dynamically
manage the size of these resources based on workload
characteristics to reduce power consumption without com-
promising performance.

The L1 Instruction Cache, on average across the bench-
marks, consumes 0.36mW in MediumBOOM, while for Large-
BOOM and MegaBOOM configurations, it consumes 1.06mW.
These values represent 2.7%, 4.3%, and 2.6% of the total
power consumption of the BOOM tile, respectively. Interest-
ingly, the power consumption of the instruction cache remains
almost identical in both the LargeBOOM and MediumBOOM
configurations. This similarity may be attributed to the caches
having the same size, associativity, and number of MSHRs
(Miss Status Handling Registers). The L1 instruction cache is
the least impacted component by the workload being executed.
Across all configurations, the variation in power consumption
between different benchmarks is negligible. This may be
attributed to the cache’s consistent and regular access pattern,

receiving reads every cycle of program execution. The fetch
buffer plays a significant role in this by decoupling instruction
fetching from execution. This contributes to a constant flow of
instructions and maintains the cache’s regular access pattern.

Highlighting the specific components that consume the most
power in a CPU (like Branch Prediction and Integer Rename
Units) provides clear targets for optimization. Future designs
could focus on these areas to improve energy efficiency with-
out compromising performance. Understanding which compo-
nents significantly contribute to power consumption enables
designers to make informed trade-offs. For instance, they
might choose to optimize specific units while accepting a
marginal increase in power consumption in others, depending
on the overall performance gains achieved.

C. Contribution of Microarchitectural Components

Fig. 9 shows the power consumption percentage of the
components we considered for each of the three configurations
of BOOM that were analyzed. In the case of MegaBOOM, the
considered components consume 85% of the total power of
the BOOM tile. The BOOM tile comprises the BOOM core
and L1 caches. For the LargeBOOM and the MediumBOOM
configurations, this percentage decreases to 81% and 73%,
respectively. This decrease can be attributed to the fact that
most of the components we considered, such as the register
files, issue units, and ROB, undergo size variation in these con-
figurations. In contrast, the remaining components (Execution
Units, Decoding logic, Fetch Target Queue, etc.) of the tile
experience considerably smaller variation. The observation we
made provides valuable insight: the BOOM tile predominantly
consumes power through 13 specific components. Enhance-
ments in the power efficiency of these components can have
a significant positive impact on its overall power efficiency.

D. Instructions per Cycle (IPC)

IPC denotes the number of instructions executed or com-
pleted per clock cycle, directly impacting CPU efficiency and
speed. Enhancing IPC is pivotal for CPU designers, enhancing
overall performance by executing more instructions in parallel.
It crucially impacts single-threaded task performance by en-
abling faster software execution. IPC varies based on workload
and applications, impacted by diverse instruction latencies and
dependencies. The complexity of instructions and microarchi-
tecture efficiency determine their impact on achieved IPC. To
this end, in this subsection, we show the IPC, calculated using
the SimPoint methodology, for all benchmarks and BOOM
configurations used in this study. Fig. 10 shows the IPC

Other
27%

Analyzed
73%

MediumBoom

Other
19%

Analyzed
81%

LargeBoom

Other
15%

Analyzed
85%

MegaBoom

Fig. 9. Analyzed component contribution to the full chip for all configurations.

0

1

2

3

4

Bm
at
h BC Di

jk
FF
T

iFF
T
M
xM Pa

tr

Qs
or
t

Sh
a

St
Se
ar

Ta
rfi
nd

AV
G

IP
C

Medium Large Mega

Fig. 10. Instructions per Cycle (IPC) for each benchmark (x-axis) and all
three BOOM configurations (MegaBoom, LargeBOOM, MediumBOOM).

we measured across all 11 of our benchmarks for the three
different BOOM configurations we considered. Tarfind has
the lowest IPC in all three configurations, and Sha has the
highest. The Sha benchmark has a lot of inherent ILP and
can utilize the issue width of all three designs efficiently. We
can see that the IPC is 1.83, 2.6, and 3.5 in MediumBOOM,
LargeBOOM and MegaBOOM configurations. This is close
to the theoretical maximums these BOOM configurations
could reach since they have a decode width of 2, 3 and 4
respectively. While IPC is a good metric of performance,
nowadays performance per watt (i.e., energy efficiency) is
becoming much more important.

E. Performance per Watt

Performance per watt is a metric used to measure the
efficiency of a system or device by assessing its performance in
relation to the power it consumes. It is commonly used in the
context of computer systems, processors, graphics cards, and
other electronic devices where energy efficiency is important.
Typically expressed as a ratio or a figure of merit, such as
instructions per cycle per watt (IPC/W), these measurements
illustrate the amount of work or computational capability
achievable per unit of electrical power consumed. The impor-
tance of performance per watt has increased significantly in
recent years due to the amplified demand for energy-efficient
computing systems. With power consumption emerging as a
limiting factor in numerous applications, enhancing perfor-
mance per watt has become a pivotal objective for hardware
manufacturers. Fig. 11 shows the performance-per-watt values
for all BOOM configurations and benchmarks. Notably, in
8 out of 11 benchmarks, the MediumBOOM configuration
excels. However, in the Matmult, Stringsearch, and Tarfind
benchmarks, LargeBOOM takes precedence. While boasting
the best absolute performance, MegaBOOM significantly sac-
rifices more power to achieve it.

V. RELATED WORK

Power consumption studies: Natarajan et al. in [54] em-
ploy a performance and power model specific to the Alpha
21264 processor, aiming to evaluate the energy and iden-
tify any inefficiencies caused by misspeculation and over-
provisioning. They found that flushed instructions contribute
to around 6% of the overall energy consumption, whereas
over-provisioning imposes an average tax of 17%. Tiwari
et al. in [55] present an overview of power consumption

0

20

40

60

80

100

Bm
at
h BC Di

jk
FF
T

iFF
T
M
xM Pa

tr

Qs
or
t

Sh
a

St
Se
ar

Ta
rfi
nd

AV
G

IP
C
/W

Medium Large Mega

Fig. 11. Performance per Watt for each benchmark (x-axis) and all three
BOOM configurations (MegaBoom, LargeBOOM, MediumBOOM).

concerns specifically related to Intel CPUs. They outline the
primary factors contributing to the growing emphasis on low-
power design and briefly discuss system and benchmarking
considerations, as well as the sources of power consumption
in high-performance CPUs. They also highlight previously
implemented techniques on real designs. Brooks et al. in [1]
present the utilization of energy-enabled performance sim-
ulators during the initial stages of design and explore the
emerging paradigms in processor design to provide insights
into their inherent power-performance characteristics.

Power modeling and simulation tools: Power modeling
and simulation tools play a crucial role in understanding and
evaluating the power consumption of microarchitectures. Zhai
et al. in [17] present McPAT-Calib, a microarchitecture power
modeling framework for modern CPUs, which combines in-
ternal improvements and ML calibration to McPAT [56] to
enhance (1) modeling accuracy and (2) the lack of support for
advanced technology nodes of McPAT. Varma et al. in [57]
developed a power estimation tool that is efficient, precise,
and applicable to various performance estimation frameworks.
They propose a methodology designed for system designers
who are constructing systems using established components
such as processors, caches, buses, peripherals, etc. Zaman et
al. in [58] use SimPoints in a cross-layer power-estimation
framework. They do not perform design space exploration and
do not use highly advanced power-estimation tools like Ca-
dence Joules but rely on McPat for their power measurements.
Finally, Xu et al. in [59] use SimPoints in RTL simulations
but for the purposes of performance analysis.

VI. CONCLUSION

We presented an in-depth exploration of the impact of
microarchitectural configurations on energy efficiency (i.e.,
power consumption and performance) using the state-of-the-
art RISC-V based out-of-order CPU design (SonicBOOM).
Through our RT-level investigation, we demonstrate how mi-
croarchitectural design choices significantly influence power
consumption profiles. By assessing the power consumption
of three different configurations of the SonicBOOM design
and evaluating the effects of thirteen major microarchitectural
components, we gained insights into the relationship between
microarchitecture and power consumption. Furthermore, our
performance per watt evaluations showed that, despite pro-
viding lower performance, smaller RISC-V designs exhibited

higher performance per watt ratios (i.e., are more energy effi-
cient). These findings have important implications for system
designers and computer architects, as they can now make
informed decisions to optimize energy efficiency in modern
microarchitectures. Our extension of Chipyard’s infrastructure
to support SimPoints can benefit the entire community by
enabling the performance and power analysis of vastly larger
workloads than ever before.

ACKNOWLEDGMENTS

We want to thank the anonymous reviewers for their useful
comments. This work was supported by research gifts from
Intel and AMD, as well as the European Union’s Horizon
Europe research and innovation programme under grant agree-
ments No 101097224 (REBECCA), No 101093062 (Vitamin-
V), and No 101070238 (NEUROPULS). Views and opinions
expressed are however, those of the authors only and do
not necessarily reflect those of the European Union. Neither
the European Union nor the granting authority can be held
responsible for them. This work was also supported by the
Hellenic Foundation Research and Innovation (HFRI) project
VEMER.

REFERENCES

[1] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyukto-
sunoglu, J. Wellman, V. Zyuban, M. Gupta, and P. Cook, “Power-aware
microarchitecture: design and modeling challenges for next-generation
microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–44, 2000.

[2] P. Koutsovasilis, C. D. Antonopoulos, N. Bellas, S. Lalis, G. Papadim-
itriou, A. Chatzidimitriou, and D. Gizopoulos, “The impact of cpu
voltage margins on power-constrained execution,” IEEE Transactions
on Sustainable Computing, vol. 7, no. 1, pp. 221–234, 2022.

[3] G. Papadimitriou and D. Gizopoulos, “Characterizing soft error vulner-
ability of cpus across compiler optimizations and microarchitectures,”
in 2021 IEEE International Symposium on Workload Characterization
(IISWC), 2021, pp. 113–124.

[4] D. Gizopoulos, G. Papadimitriou, A. Chatzidimitriou, V. J. Reddi,
B. Salami, O. S. Unsal, A. C. Kestelman, and J. Leng, “Modern hardware
margins: Cpus, gpus, fpgas recent system-level studies,” in 2019 IEEE
25th International Symposium on On-Line Testing and Robust System
Design (IOLTS), 2019, pp. 129–134.

[5] G. Papadimitriou, A. Chatzidimitriou, D. Gizopoulos, V. J. Reddi,
J. Leng, B. Salami, O. S. Unsal, and A. C. Kestelman, “Exceeding con-
servative limits: A consolidated analysis on modern hardware margins,”
IEEE Transactions on Device and Materials Reliability, vol. 20, no. 2,
pp. 341–350, 2020.

[6] Khubaib, M. A. Suleman, M. Hashemi, C. Wilkerson, and Y. N. Patt,
“Morphcore: An energy-efficient microarchitecture for high performance
ilp and high throughput tlp,” in 2012 45th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2012, pp. 305–316.

[7] A. Gamatie, G. Devic, G. Sassatelli, S. Bernabovi, P. Naudin, and
M. Chapman, “Towards energy-efficient heterogeneous multicore archi-
tectures for edge computing,” IEEE Access, vol. 7, pp. 49 474–49 491,
2019.

[8] S. Shankar and A. Reuther, “Trends in energy estimates for comput-
ing in ai/machine learning accelerators, supercomputers, and compute-
intensive applications,” in 2022 IEEE High Performance Extreme Com-
puting Conference (HPEC), 2022, pp. 1–8.

[9] J. Coburn, S. Ravi, and A. Raghunathan, “Power emulation: a new
paradigm for power estimation,” in Proceedings. 42nd Design Automa-
tion Conference, 2005., 2005, pp. 700–705.

[10] A. Radovanovic, B. Chen, S. Talukdar, B. Roy, A. Duarte, and M. Shah-
bazi, “Power modeling for effective datacenter planning and compute
management,” IEEE Transactions on Smart Grid, vol. 13, no. 2, pp.
1611–1621, 2022.

[11] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom: The
3rd generation berkeley out-of-order machine,” in Fourth Workshop on
Computer Architecture Research with RISC-V, vol. 5, 2020.

[12] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar, H. Liew,
A. Magyar, H. Mao, A. Ou, N. Pemberton et al., “Chipyard: Integrated
design, simulation, and implementation framework for custom socs,”
IEEE Micro, vol. 40, no. 4, pp. 10–21, 2020.

[13] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1–28, 2005.

[14] O. Chatzopoulos, G. Papadimitriou, W. S. Wong, and D. Gizopoulos,
“Energy efficiency of out-of-order cpus: Comparative study and microar-
chitectural hotspot characterization of risc-v designs,” in 2023 IEEE
International Symposium on Workload Characterization (IISWC), 2023,
pp. 216–220.

[15] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,
M. Andreozzi, A. Armejach, N. Asmussen, B. Beckmann, S. Bharadwaj,
G. Black, G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillon, L. Chen,
N. Derumigny, S. Diestelhorst, W. Elsasser, C. Escuin, M. Fariborz,
A. Farmahini-Farahani, P. Fotouhi, R. Gambord, J. Gandhi, D. Gope,
T. Grass, A. Gutierrez, B. Hanindhito, A. Hansson, S. Haria, A. Harris,
T. Hayes, A. Herrera, M. Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang,
R. Jeyapaul, T. M. Jones, M. Jung, S. Kannoth, H. Khaleghzadeh,
Y. Kodama, T. Krishna, T. Marinelli, C. Menard, A. Mondelli,
M. Moreto, T. Mück, O. Naji, K. Nathella, H. Nguyen, N. Nikoleris,
L. E. Olson, M. Orr, B. Pham, P. Prieto, T. Reddy, A. Roelke,
M. Samani, A. Sandberg, J. Setoain, B. Shingarov, M. D. Sinclair,
T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish, I. Vougioukas,
W. Wang, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon, and
Éder F. Zulian, “The gem5 simulator: Version 20.0+,” 2020. [Online].
Available: https://arxiv.org/abs/2007.03152

[16] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings of
the 42nd annual ieee/acm international symposium on microarchitecture,
2009, pp. 469–480.

[17] J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu, “Mcpat-calib:
A risc-v boom microarchitecture power modeling framework,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 42, no. 1, pp. 243–256, 2022.

[18] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[19] S. Rogers, J. Slycord, M. Baharani, and H. Tabkhi, “gem5-salam:
A system architecture for llvm-based accelerator modeling,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 471–482.

[20] O. Chatzopoulos, G. Papadimitriou, V. Karakostas, and D. Gizopoulos,
“Enabling design space exploration of risc-v accelerator-rich computing
systems on gem5,” RISC-V Summit Europr 2023, June 2023.
[Online]. Available: https://riscv-europe.org/media/proceedings/posters/
2023-06-08-Odysseas-CHATZOPOULOS-abstract.pdf

[21] H. Ranjitha, S. Hiremath, and S. G. Langadi, “Rtl power estimation:
Early design cycle approach for soc power sign-off,” in 2018 3rd IEEE
International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT). IEEE, 2018, pp. 480–484.

[22] Cadence, “Cadence joules,” https://www.cadence.com/en
US/home/tools/digital-design-and-signoff/power-analysis/
joules-rtl-power-solution.html, accessed: 2023-12-06.

[23] Synopsys, “Synopsys primepower,” https://www.synopsys.com/
implementation-and-signoff/signoff/primepower.html, accessed: 2023-
12-06.

[24] Siemens, “Siemens powerpro,” https://eda.sw.siemens.com/en-US/ic/
powerpro/, accessed: 2023-12-06.

[25] D. Thomas and P. Moorby, The Verilog® hardware description lan-
guage. Springer Science & Business Media, 2008.

[26] S. Sutherland, S. Davidmann, and P. Flake, SystemVerilog for Design
Second Edition: A Guide to Using SystemVerilog for Hardware Design
and Modeling. Springer Science & Business Media, 2006.

[27] P. J. Ashenden, The designer’s guide to VHDL. Morgan Kaufmann,
2010.

[28] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[29] S. Karandikar, H. Mao, D. Kim, D. Biancolin, A. Amid, D. Lee,
N. Pemberton, E. Amaro, C. Schmidt, A. Chopra et al., “Firesim: Fpga-
accelerated cycle-exact scale-out system simulation in the public cloud,”
in 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 29–42.

[30] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Proceedings of the 49th Annual Design
Automation Conference, 2012, pp. 1216–1225.

[31] E. Wang, “Hammer: A platform for agile physical design,” Master’s
thesis, EECS Dept, UC Berkeley, 2018.

[32] P. S. Li, A. M. Izraelevitz, and J. Bachrach, “Specification for the firrtl
language,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-9, 2016.

[33] K. Asanovic, D. A. Patterson, and C. Celio, “The berkeley out-of-order
machine (boom): An industry-competitive, synthesizable, parameterized
risc-v processor,” University of California at Berkeley Berkeley United
States, Tech. Rep., 2015.

[34] T. R. of the University of California, “RISCV-BOOM Core Documen-
tation,” https://docs.boom-core.org/en/latest/index.html, accessed: 2023-
12-06.

[35] W. Snyder, “Verilator: Open simulation-growing up,” DVClub Bristol,
2013.

[36] ——, “Verilator 4.0: open simulation goes multithreaded,” in Open
Source Digital Design Conference (ORConf), 2018.

[37] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner, F. Zaruba,
and L. Benini, “Openpiton+ ariane: The first open-source, smp linux-
booting risc-v system scaling from one to many cores,” in Workshop on
Computer Architecture Research with RISC-V (CARRV), 2019, pp. 1–6.

[38] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,
C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The
rocket chip generator,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2016-17, vol. 4, 2016.

[39] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and
B. Calder, “Using simpoint for accurate and efficient simulation,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 318–
319, 2003.

[40] J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu, “Mcpat-calib:
A microarchitecture power modeling framework for modern cpus,” in
2021 IEEE/ACM International Conference On Computer Aided Design
(ICCAD), 2021, pp. 1–9.

[41] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the fourth annual IEEE
international workshop on workload characterization. WWC-4 (Cat. No.
01EX538). IEEE, 2001, pp. 3–14.

[42] [Online]. Available: https://www.embench.org/
[43] B. Keller, “Risc-v, spike, and the rocket core,” Berkeley Architecture

Group, 2013.
[44] A. A. Nair and L. K. John, “Simulation points for spec cpu 2006,” in

2008 IEEE International Conference on Computer Design, 2008, pp.
397–403.

[45] K. Ganesan, D. Panwar, and L. K. John, “Generation, validation and
analysis of spec cpu2006 simulation points based on branch, mem-
ory and tlb characteristics,” in Computer Performance Evaluation and
Benchmarking: SPEC Benchmark Workshop 2009, Austin, TX, USA,
January 25, 2009. Proceedings. Springer, 2009, pp. 121–137.

[46] M. Choi, T. Fukuda, M. Goshima, and S. Sakai, “An inductive method
to select simulation points,” IEICE TRANSACTIONS on Information and
Systems, vol. 99, no. 12, pp. 2891–2900, 2016.

[47] T. R. of the University of California, “RISCV-BOOM Core Documen-
tation: The Issue Unit,” https://docs.boom-core.org/en/latest/sections/
issue-units.html, accessed: 2023-12-06.

[48] D. Folegnani and A. Gonzalez, “Energy-effective issue logic,” in Pro-
ceedings 28th Annual International Symposium on Computer Architec-
ture, 2001, pp. 230–239.

[49] A. Gonzalez, F. Latorre, and G. Magklis, Processor Microarchitecture:
An Implementation Perspective. Morgan & Claypool Publishers, 2010.

[50] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: New microarchitecture code-named skylake,” IEEE Micro,
vol. 37, no. 2, pp. 52–62, 2017.

[51] K. Yeager, “The mips r10000 superscalar microprocessor,” IEEE Micro,
vol. 16, no. 2, pp. 28–41, 1996.

[52] M. Clark, “A new ×86 core architecture for the next generation of
computing,” in 2016 IEEE Hot Chips 28 Symposium (HCS), 2016, pp.
1–19.

[53] M. Choi, J. H. Park, and Y.-S. Jeong, “Revisiting reorder buffer
architecture for next generation high performance computing,” J.
Supercomput., vol. 65, no. 2, p. 484–495, aug 2013. [Online].
Available: https://doi.org/10.1007/s11227-011-0734-x

[54] K. Natarajan, H. Hanson, S. Keckler, C. Moore, and D. Burger,
“Microprocessor pipeline energy analysis,” in Proceedings of the 2003
International Symposium on Low Power Electronics and Design, 2003.
ISLPED ’03., 2003, pp. 282–287.

[55] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez,
“Reducing power in high-performance microprocessors,” in Proceedings
of the 35th Annual Design Automation Conference, ser. DAC ’98.
New York, NY, USA: Association for Computing Machinery, 1998, p.
732–737. [Online]. Available: https://doi.org/10.1145/277044.277227

[56] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, ser. MICRO 42. New York, NY, USA:
Association for Computing Machinery, 2009, p. 469–480. [Online].
Available: https://doi.org/10.1145/1669112.1669172

[57] A. Varma, E. Debes, I. Kozintsev, P. Klein, and B. Jacob, “Accurate
and fast system-level power modeling: An xscale-based case study,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, may 2008. [Online].
Available: https://doi.org/10.1145/1347375.1347378

[58] M. Zaman, M. M. Shihab, A. K. Coskun, and Y. Makris,
“Cape: A cross-layer framework for accurate microprocessor power
estimation,” Integration, vol. 68, pp. 87–98, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926018305376

[59] Y. Xu, Z. Yu, D. Tang, G. Chen, L. Chen, L. Gou, Y. Jin, Q. Li, X. Li,
Z. Li, J. Lin, T. Liu, Z. Liu, J. Tan, H. Wang, H. Wang, K. Wang,
C. Zhang, F. Zhang, L. Zhang, Z. Zhang, Y. Zhao, Y. Zhou, Y. Zhou,
J. Zou, Y. Cai, D. Huan, Z. Li, J. Zhao, Z. Chen, W. He, Q. Quan,
X. Liu, S. Wang, K. Shi, N. Sun, and Y. Bao, “Towards developing high
performance risc-v processors using agile methodology,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2022, pp. 1178–1199.

