

06.03.2024

PHOTONIC CHIP INTEGRATION STRATEGIES FOR MICRO-FLUIDIC CARTRIDGES

:: CSem

:: CSEM

....

Technology Transfer to Industry

n csen

APPLIED RESEARCH

Development of deep technology bricks through public funding

Valorization through direct industry mandates following a full cost model (time and material)

TECH TRANSFER

CSEM AT A GLANCE

We are a public-private, non-profit Swiss technology innovation center

We enable competitiveness by developing and transferring world-class technologies to the industrial sector

FOUNDED

Δ

600 SPECIALISTS in 2023

100.4 MIO TURNOVER in 2022

> 50 VENTURES since 1984

CSem

TECHNOLOGIES IN FOCUS AT CSEM

CSem

TOOLS FOR LIFE SCIENCES

........

7

SENSING???

8

PIC INTEGRATION

CSem

ELECTROCHEMICAL SENSING FOR QUANTITATIVE URINALYSIS

- Urine analysis at the point-of-care
- Glucose, pH and Sodium simultaneously measured
- Easily accessible body fluids: up to 0.6 to 2.6 L of urine a day
- Diagnose and/or monitor several conditions such as pregnancy, kidney
 disorders, or urinary tract infections

Glucose

3.0

2.5

SEM

Sodium

Structured adhesive (tape)

Screen printed electrode sheets Bio-functionalized sensor spots

INTEGRATION OF ELECTRO CHEMICAL SENSORS

SENSECARD LONG TERM METABOLISM MONITORING FOR 3D TISSUES

- Microfluidic sampling
- Small volume sampling
- Compatible with 96-SBS format
- Electrochemical sensing for glucose concentration (0 – 5mM, tunable on request)
- 8 sensor parallel measurement

3D CELL CULTURE MONITORING USING FLEXIBLE MEMBRANE

Moore4Medical

COMPLEMENTARY DIAGNOSTICS PHOTONICS PLATFORM

- Protein signature detection
- Use case: Breast and prostate cancer
- Functionalized PIC integrated in microfluidic sample preparation cartridge
- Integrated sample preparation
- Liquid stored on cartridge
- On cartridge valving

AQUA CULTURE PATHOGEN DETECTION

- Pathogen detection
- Reduction of antibiotics by correct treatment
- Liquid stored on cartridge
- Hybrid PIC with only electrical interface to instrument
- On cartridge heating

PHOTO-SENS

PIC INTEGRATION METHODS

ADHESIVE BONDING APPROACHES

Bond material

- Epoxy
- Acrylate
- Silicone

17

Cyanoacrylate

Curing mechanisms

- UV exposure
- RTV
- moisture
- UV pre-exposure for opaque components

ADHESIVE BONDING APPROACHES

- Bond material
 - Epoxy, acrylate, silicone, cyanoacrylate
- Curing mechanisms
 - UV exposure, RTV, moisture, UV preexposure for opaque components

DISPOSABLE

VS

- Single sterilisation cycle
- and/or single cleaning cycle
- Short term exposure to test fluid
 - Toxicity
 - Impact on signal through leaching
- Leak tight

RE-USABLE

- **Multiple** sterilisation cycles
 - Steam!
- Multiple cleaning cycles
- Multiple exposures to test fluid
- Repeated mechanical loading
- Leak-tight or hermetic

STERILISATION / AUTOCLAVING

- Leak tightness, mechanical function and non-toxicity might be compromised by repeated sterilisation
- Leaks may endanger the operator, the instrument and the electronics

Encapsulation	Many Autoclave cycles (>10)	Few autoclave cycles (2-5)	Many EtO	Single EtO	Corrosive environment	Alcohol cleaning	Diluted NaOH
Tape bonding	x	High risk	Low risk	Low risk	~	Low risk	Unknown
Adhesive bonding	X	High risk	Low risk	~	~	~	Unknown
Metal soldering	Low risk	~	~	~	High risk	~	 ✓
Diffusion bonding (Thermocompression, laser assisted diffusion)	Low risk	~	~	~	~	~	~
Glass soldering*	Unknown	Unknown	Unknown	Unknown	Unknown	✓	Unknown

*Used to create hermetic seals in long-term medical implants (pacemakers etc.)

20

Welcome to our Rubber Chemical Resistance Chart

Here is the rubber compatibility chart that rates all popular rubber materials that comes into contact with various chemicals. Use this rubber chemical resistance chart to make sure that the elastomer or O-ring seal you choose will be compatible with the particular environment. The chemical compatibility of rubber is extremely important as the rubber can degrade rapidly if the rubber material is not compatible with the environment or media that it comes into contact with.

LEGEND: 1 = Satisfactory, 2 = Fair, 3 = Doubtful, 4 = Unsatisfactory, X = Insufficient Data

-	Nitrile	EPDM	Neoprene	SBR	Silicone	Butyl	Polyacrylate	Hypalon	Viton	Polyurethane	Fluorosilicone	Aflas	Kalrez
Abietic Acid	х	х	x	х	x	x	х	x	x	x	x	х	1
Acetaldehyde	3	2	3	3	2	2	4	3	4	4	4	3	1
Acetamide	1	4	1	4	2	2	4	2	3	4	1	2	1
Acetanilide	3	1	1	1	2	1	4	1	3	4	1	х	1
Acetic Acid, 30%	х	1	x	х	x	x	х	x	x	x	x	х	1
Acetic Acid, 5%	2	1	1	2	1	1	4	1	1	4	2	1	1
Acetic Acid, Glacial	2	1	4	2	1	2	4	3	2	4	2	3	1
Acetic Acid, Hot, High Pressure	4	3	4	4	3	4	4	3	4	4	4	3	1
Acetic Anhydride	3	2	2	2	2	2	4	2	4	4	4	2	1
Acetoacetic Acid	3	1	1	1	2	1	4	1	3	4	1	x	1
Acetone	4	1	4	4	4	1	4	3	4	4	4	2	1
Acetone Cyanohydrin	3	1	1	1	2	1	4	1	3	4	1	х	1
Acetonitrile	3	1	x	х	x	x	х	x	1	х	x	1	1
Acetophenetidine	2	4	4	4	х	4	4	4	1	3	2	х	1

A-Bu Bu-Do Do-Le Le-Pa Pa-St St-Z

CSem

STANDARDISATION

- Standardised methods for
 - Leak-tightness testing of assembly (mechanical integrity)
 - Cleaning
 - Measurement of leachates -> polymer trays, adhesive tapes and adhesives
 - Toxicity/cell viability
 - Test fluid

CSem

SOCIETAL AND ECONOMIC IMPACT

:: CSEM

CSem

Discover our Life Science Brochure

FACING THE CHALLENGES OF OUR TIME