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Abstract. Collaborative self-supervised learning has recently become
feasible in highly distributed environments by dividing the network lay-
ers between client devices and a central server. However, state-of-the-art
methods, such as MocoSFL, are optimized for network division at the
initial layers, which decreases the protection of the client data and in-
creases communication overhead. In this paper, we demonstrate that
splitting depth is crucial for maintaining privacy and communication ef-
ficiency in distributed training. We also show that MocoSFL suffers from
a catastrophic quality deterioration for the minimal communication over-
head. As a remedy, we introduce Momentum-Aligned contrastive Split
Federated Learning (MonAcoSFL), which aligns online and momentum
client models during training procedure. Consequently, we achieve state-
of-the-art accuracy while significantly reducing the communication over-
head, making MonAcoSFL more practical in real-world scenarios4.

Keywords: Federated learning · Self-supervised learning · Contrastive
learning

1 Introduction

Collaborative learning techniques allow multiple participating parties to jointly
train models without compromising the confidentiality of their private data, mak-
ing them increasingly popular [28,31,33,38,24]. Among these techniques, Feder-
ated Learning (FL) [28] stands out as the most prevalent framework. In FL, the
learning task is solved by a federation of participating devices (which we refer
to as clients) coordinated by a central server. Each client has a local training
dataset (unseen by the server) and computes an update to the current global
model maintained by the server (only this update is communicated). Moreover,
a part of the model can be trained on the server side, resulting in a setup called
Split Federated Learning (SFL) [31].

4 Our codebase is available at https://github.com/gmum/MonAcoSFL

ar
X

iv
:2

40
6.

08
26

7v
1 

 [
cs

.L
G

] 
 1

2 
Ju

n 
20

24

https://github.com/gmum/MonAcoSFL
https://github.com/gmum/MonAcoSFL


2 Marcin Przewięźlikowski, Marcin Osial, Bartosz Zieliński, and Marek Śmieja

Federated learning has exhibited considerable success in supervised learning
tasks [28,10,32]. However, the assumption of full labeling may sometimes be im-
practical due to the challenges and expertise required for accurate labeling [27].
That is why more practical methods focus on unlabeled data [37,38], combin-
ing FL with classic self-supervised learning (SSL) [16]. A notable example is
MocoSFL, which is based on Split Federated Learning (SFL) and Momentum
Contrast (MoCo) [17,24].

MocoSFL can achieve good accuracy with relatively low memory require-
ments and can support a large number of clients. However, it was optimized
for network division at the initial layers (one or three layers on client devices),
which has certain disadvantages. First, it decreases the protection of the client
data (Figure 2). Secondly, it increases communication overhead (information
transferred between clients and server), as shown in Figure 1.

In this paper, we delve into the relationship between communication over-
head and the splitting point. We identify the optimal splitting point and highlight
the poor performance of MocoSFL when aligned with it. As a remedy, we in-
troducing Momentum-Aligned Contrastive SFL (MonAcoSFL). In contrast to
MocoSFL, which synchronizes only the online client models during the training,
MonAcoSFL also synchronizes their momentum models. This change is crucial
because it prevents the divergence of online and momentum models and reduces
confusion during training (see Figure 5).

Through extensive experiments, we empirically confirm that the synchro-
nizing scheme of MocoSFL indeed creates misalignment between its online and
momentum models, which is not the case in MonAcoSFL. Crucially, we show that
when training mobile-friendly architectures split at deeper, more communication-
efficient points, MonAcoSFL improves over the performance of MocoSFL [24] by
a significant margin, confirming its practicality.

Our contributions can be summarized as follows:

– We analyze the practical trade-off in communication efficiency of split feder-
ated learning and show that MocoSFL performs poorly for the most optimal
splits.

– We re-think model synchronization in MocoSFL and introduce MonAcoSFL,
which reduces the divergence between online and momentum clients at each
synchronization step.

– We present an extensive experimental study and confirm that MonAcoSFL
maintains high performance even when applied to deeper splits of the back-
bone model, increasing its practical applicability to real-world scenarios.

2 Related work

Federated learning (FL) [28,36,26,25] is a method of training models across mul-
tiple decentralized entities or devices while keeping the data localized, without
the need to send it to a centralized location [28]. Models are individually trained
and then aggregated by a global server, ensuring data privacy by sharing only
model parameters among clients. The seminal FedAVG algorithm [28], which
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Fig. 1: Communication overhead and accuracy for MocoSFL and MonAcoSFL
depending on the splitting depth. In this example, the minimal communication
overhead is obtained for dividing the model into 11 and 7 layers on the client and
server sides, respectively. For such an optimal case, the accuracy of MocoSFL
drops significantly, in contrast to the accuracy of MonAcoSFL. Notice that com-
putational overhead consists of forward and backward propagation (marked as
blue) and parameter synchronization (marked as orange).

conducts a straightforward weighted averaging of clients’ model weights, remains
a solid foundational framework for numerous approaches [37,38,23]. One of the
most important variants of FL is Split Federated Learning (SFL), which involves
storing a part of the trained model on a centralized server, reducing the com-
putational overhead of clients at the cost of additional communication overhead
due to sending latent vectors from clients to the server [31]. In addition, SFL
creates a trade-off between the clients’ energy consumption and privacy [22].

Self-supervised learning (SSL), a pivotal development in unsupervised rep-
resentation learning, shines particularly in its joint-embedding form within the
realm of computer vision [8,9,17,4]. This approach leverages contrastive learning
[3,29] to modulate similarity and disparity among augmented views. To prevent
trivial solutions, such methods often rely on substantial memory banks, like
MoCo [17,12], or necessitate large batch sizes as observed with SimCLR [11], to
amass a significant number of meaningful negative examples. On the other hand,
non-contrastive methods such as BYOL [16] do not require negative examples
in their objectives, yet still require large batch sizes during training [16,13,9]. A
common architectural component of several popular SSL approaches is the main-
taining of "momentum" models to achieve asymmetry of representations [17,12,14,9,2].

Early attempts at deploying the SSL methods in Federated setting have grap-
pled with the complexity of data diversity [5] and addressed key privacy consid-
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erations [34]. Methods like FedU [37] utilize the BYOL framework for federated
SSL, while FedEMA [38] refines this by adaptively updating client networks with
insights from the global model’s trends. However, the above methods cannot be
scaled beyond cross-silo settings, involving up to 100 client devices. Li et.al.
demonstrate the key ingredients of scaling SSL to highly distributed cross-client
environments (as many as 1000 clients) in the form of MocoSFL – a combination
of MoCo and the Split Federated Learning paradigm [24].

3 Preliminaries

In this section, we first describe the problem of federated learning in a self-
supervised regime and its challenges. Then, we recall the MocoSFL [24], a re-
cently published method, which we use as a basis for our MonAcoSFL.

3.1 Federated self-supervised learning

Problem statement. In this paper, we tackle the problem of federated self-supervised
learning. It considers multiple participating devices (called clients) and a cen-
tralized server that collaboratively trains a single model based on data gathered
by the former. However, the devices are prohibited from sending their raw data
to the server e.g. for privacy reasons. Instead, the training is conducted in a
federated learning manner, where each client trains a copy of the model on its
local data and periodically synchronizes it with other clients. Another assump-
tion is that data gathered by the devices do not contain labels. Thus, the model
must be trained by optimizing a self-supervised objective. After the training,
the resulting model can be finetuned to the target tasks using labeled data and
distributed to all participating devices.

Split federated learning (SFL) [28] is a practical approach to federated learning,
which splits the model into client and server parts. For a formal definition, let
us define N as the number of participating clients and fϕi

as a copy of model fϕ
stored by the i-th client parametrized by ϕi. Furthermore, let fϕ be composed
of two parts fs

ϕs ◦f c
ϕc , where ϕ = ϕs∪ϕc, f c

ϕc is distributed among client devices,
and fs

ϕs is stored on a centralized server. There are multiple copies of f c
ϕc but

only one version of parameters5 ϕs.
Client models start with the same initial parameters (ϕc

1 = ϕc
2 = · · · = ϕc

N )
and are trained in two phases:

1. Optimization of ϕc
1, ..., ϕ

c
N , ϕs w.r.t. to training objective L.

2. Synchronization of ϕc
1, ..., ϕ

c
N by overwriting each ϕc

i with ϕ̂c =
∑N

i=0

ϕc
i

N
.

5 Note that FL is a special case of SFL where f = fc, whereas a situation where
f = fs is equivalent to regular training on a single device.
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Each client processes only its local data during the optimization step, which
leads to increasingly diverging ϕc

1, ..., ϕ
c
N . That is why the synchronization step

is required.
In standard Federated learning, the communication is limited to transferring

parameters for model synchronization. In SFL, we must also transfer from clients
the activations of f c (for forward propagation by the server) and their gradients
w.r.t. to L from the fs residing on the server (for backpropagation in local
models).

Self-supervised learning (SSL) is a paradigm of learning representations with-
out data labels [1,4]. Currently, the prevalent approaches to SSL are the joint-
embedding architectures [17,12,11,16,9,2], where model f learns by optimizing
contrastive objectives. Formally, let x′,x′′ be two augmentations of a sample
x ∼ X. Contrastive objectives enforce the similarity of f(x′) and f(x′′) while
avoiding trivial solutions, i.e., producing identical embeddings of unrelated data
samples. For this purpose, most joint-embedding methods [11,9] use objective
functions requiring large batch sizes.

Due to the large-data requirements and the computational overhead associ-
ated with the contrastive objectives, deploying SSL methods in highly distributed
Federated environments is challenging in practice [37,38,24].

3.2 Momentum contrastive split federated learning

Momentum Contrastive Split Federated Learning (MocoSFL) [24] addresses the
practical challenges of deploying SSL methods in distributed environments by
combining SFL [31] with Momentum Contrastive Learning (MoCo) [17] method.

Similarly to MoCo, the contrastive objective of MocoSFL is calculated with
InfoNCE [29] based on the memory of embeddings M :

LInfoNCE(z
′, z′′,M) = −log

exp(z′ · z′′/τ)
exp(z′ · z′′/τ) +

∑
zM∈M exp(z′ · zM/τ)

(1)

where z′ = fϕ(x
′), z′′ = fEMA(ϕ)(x

′′), x′ and x′′ are two augmentations of a
single data sample, and zM denotes the embeddings stored in the memory M
(after each training step, M is updated with z′′ in a first-in-first-out manner).
Moreover, ϕ are parameters of the online model, and EMA(ϕ), being the expo-
nential moving average of ϕ, are parameters of the momentum model. Because
MocoSFL operates in the SFL setup, each client contains its version of parame-
ters ϕc

i and EMA(ϕc
i ), and there is one version of parameters ϕs and EMA(ϕs)

on the server. Similarly, the memory M is also maintained by the server.
To our best knowledge, MocoSFL is the only SSL method operating in a

challenging cross-client federated learning with over 100 clients, each contribut-
ing as few as 250 data samples from different distributions [24]. It is possible
by using a large memory of negative examples from all clients, which minimizes
the detrimental effect of potentially small batch sizes of individual clients [7,11]
and reducing the chance of overfitting to any individual client distribution [35].
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Moreover, relegating most model layers and the contrastive objective to the
server reduces the computational burden on the clients [31].

4 MonAcoSFL: Momentum-Aligned Contrastive Split
Federated Learning

In this section, we first describe the limitations of MocoSFL and show that
its performance deteriorates using higher split layers (see Section 4.1). Then, we
analyze the source of this deterioration and introduce MonAcoSFL as a proposed
solution (see Section 4.2).

4.1 Limitations of MocoSFL

The main limitation of MocoSFL is a drop in performance when splitting the
network at the higher layers. In consequence, it can be effectively used only with
a few layers on the client side. It leads to two crucial concerns. First, sending
representations (activations) from low layers makes the model more sensitive to
data leakage and attacks such as the Model Inversion Attack (MIA) [15]. Second,
low-layer representations are much larger than those returned by higher layers,
which increases communication overhead. Below, we describe those problems in
detail.

Privacy concerns caused by sending representations from low layers is illustrated
in Figure 2. One can observe that representations of low ResNet18 [18] layers
highly resemble the respective input data, in contrast to the activations from the
higher layers. In fact, in principle, models that learn perceptive features (such
as MoCo) do not retain reconstructive features in their high representations [4].
Thus, in SFL, increasing the number of layers on the client side reduces the
privacy risks associated with broadcasting network representations.

Communication overhead. Network architectures used in mobile devices, such as
ResNet [18] or MobileNet [30], progressively downsample the spacial dimensions
of representations obtained from successive layers while simultaneously increas-
ing their channel dimensions. As a result, the overall representation size decreases
with network depth, and the communication in the SFL optimization phase re-
quires less bandwidth. However, more layers on client devices require exchanging
more parameters during the SFL synchronization phase, which translates to a
larger bandwidth. Therefore, a trade-off exists between those two communica-
tion overheads, as illustrated in Figure 3 with an optimal split in the higher
layers.

Deteriorated performance for higher split layer. Based on the above considera-
tions, it is evident that choosing a larger splitting depth can be attractive due
to privacy and efficiency reasons. Thus, a natural question arises – how does
splitting depth affect the performance of MocoSFL? To answer this, we
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Input images 1 3 5 7 9 11 13 15 17

Text

Activations of layer

Fig. 2: Activations obtained from successive layers of untrained ResNet-18 for
a sample ImageNet image. One can observe that representations of low layers
highly resemble the respective input data, increasing the privacy risks associated
with broadcasting network activations.

benchmark its performance on the CIFAR-10 dataset [20] for 5, 20, and 200
clients, following the experimental setup of [24] (see Section 5.1) and report the
results in Figure 4 6. Surprisingly, for higher split layers, we observe a catas-
trophic deterioration in the accuracy of the trained models.

To summarize, pretraining mobile-friendly architectures with MocoSFL with
a splitting depth larger than 7 is unreliable, and using a lower splitting depth
poses concerns to privacy and communication overhead.

4.2 MonAcoSFL

Before providing our solution to the limitations of MocoSFL, we will first out-
line the main reason behind them. For this purpose, let us analyze the MocoSFL
training procedure in detail. As we described in Section 3.1, client models start
with the same initial parameters ϕc

1 = ϕc
2 = · · · = ϕc

N . However, during train-
ing, they move away from one another due to different local datasets, and they
must be periodically synchronized to stabilize the training. Like in regular SFL
schemes, MocoSFL synchronizes only the online client models. However, such
rapid modification of online parameters breaks the underlying assumption of
MoCo that respective online and momentum models encode similar representa-
tions at all times, which is essential for minimizing the contrastive objective [17].
We illustrate this phenomenon on the left side of Figure 5. This problem grows
with the increased splitting depth because more parameters become misaligned,
which explains the decrease in performance.

To overcome this limitation, we propose Momentum-Aligned Contrastive
SFL (MonAcoSFL) presented on the right side of Figure 5. It ensures the align-
ment of respective online and momentum client models by synchronizing the

6 Note that Li et. al. [24] evaluate MocoSFL only with split layer set to 1 or 3.
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of resolution 224 × 224 are processed, and 10 synchronizations of parameters.
Moreover, the blue bars correspond to communication in the optimization phase,
and the orange bars correspond to parameter synchronization.
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Fig. 4: Accuracy of MocoSFL drops significantly with increased splitting depth
regardless of the number of clients. Here, presented for CIFAR-10 [20].

respective client momentum models whenever the online models are synchro-
nized, i.e. by overwriting momentum model of each client with:

̂EMA(ϕc) =

∑N
i=0 EMA(ϕc

i )

N

Note that since EMA(ϕc
1), . . . , EMA(ϕc

N ) are the EMAs of the individual
ϕc
1, . . . , ϕ

c
N , their average always corresponds to the EMA of the average value

of the online parameters (ϕ̂c), i.e: ̂EMA(ϕc) = EMA(ϕ̂c).

5 Experimental investigation

In this section, we experimentally evaluate MonAcoSFL and compare it with
MocoSFL, a recent state-of-the-art method in self-supervised federated learn-
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synchronization of parameters. The difference between MocoSFL and MonA-
coSFL lies in the synchronization procedure that, in the case of MonAcoSFL,
ensures that both online and the momentum models remain aligned, preserving
their ability to optimize the contrastive objective.

ing. We evaluate both models using classification accuracy on downstream tasks
and verifying the privacy of clients data. Finally, we experimentally analyze the
alignment of online and momentum models in MoCo framework. For a fair com-
parison, we closely follow the experimental setup of Li et.al. [24].

5.1 Experimental setup

Hardware We simulate the distributed environment of MocoSFL and MonA-
coSFL on a single machine that hosts the client and server models and runs
all of them on a single NVidia A100 GPU. We conduct experiments on mobile-
friendly ResNet18 [18] and MobileNetV2 [30] backbones.

Data We conduct our experiments on CIFAR-10 and CIFAR-100 [20] datasets.
We divide the samples equally between the clients to simulate the situation where
each client has access to only a small part of the data. We assume a challenging
setting where the data is not Independent and Identically Distributed (non-
IID) between the client devices. Namely, we assign for each client images from
randomly chosen 2 (for CIFAR-10) or 20 (for CIFAR-100) classes.

Number of clients We compare MocoSFL and MonAcoSFL in both cross-silo (5
or 20 clients) and cross-client (200 clients) settings. To our knowledge, MocoSFL
is the only previous self-supervised federated method able to scale to the cross-
client setting. We synchronize the models on client devices 10 times per training
epoch, which amounts to synchronizing the model every 1000, 250, and 25 en-
countered images for the 5, 20, and 200-client settings, respectively. We adjust
the client-side batch size and client sampling ratio accordingly in order to keep
the server-side batch size at around 100. For example, in the 5-client setting,
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the batch size is 20 and all clients are used at each training epoch, whereas in
the 200-client setting, we use a random choice of 100 clients in each epoch and
therefore each client has a batch size of 1.

SSL model We use the MoCo-v2 [12], where the backbone is succeeded by a
2-layer MLP projector network with a hidden size of 1024 [11,6], discarded after
SSL pretraining. The server maintains a memory M of 6000 negative embed-
dings, implemented as a First-In-First-Out (FIFO) queue. After each training
step, the queue is updated with the momentum model embeddings of the most
recent mini-batch of samples. We train MocoSFL for 200 epochs, with the SGD
optimizer, with an initial learning rate of 0.06, 0.9 momentum, and 0.0005 weight
decay. The learning rate is scheduled throughout the training according to the
cosine scheduler.

Evaluation After each epoch, we perform the k-NN validation of the model
using 20% of the validation dataset. K-NN validation is the standard method
of evaluating self-supervised representations during their training [21,24]. After
training, we use the model which achieved the best k-NN performance. We mea-
sure the final performance of the model using the widely used linear evaluation
protocol [11,16,38,21,24]. Namely, we attach random liner layer to the frozen pre-
trained backbone and train only this layer on the labeled dataset for 100 epochs,
with a batch size of 128 and the Adam optimizer [19] with initial learning rate
of 0.001 and cosine learning rate scheduler.

5.2 Accuracy performance

Figure 6 presents the accuracy of MonAcoSFL and MocoSFL in the cross-silo
(5 or 20 clients) and cross-client (200 clients) settings on the ResNet architec-
ture [20]. Although both models decrease the accuracy with increasing splitting
depth, this decrease is much smaller in MonAcoSFL than in MocoSFL. In the
most communication-efficient splitting point (layer 11-13), the difference between
MonAcoSFL and MoCoSFL exceeds 30 percentage points of accuracy. An even
stronger advantage of MonAcoSFL is confirmed on the MobileNet backbone, see
Figure 7. In the case of 20 clients, MonAcoSFL improves the accuracy of Mo-
CoSFL by more than 40 percentage points starting from 3th to 15th cut layer
on the CIFAR-10 dataset.

5.3 Privacy Evaluation

We next compare the privacy-preserving capabilities of MonAcoSFL and Mo-
CoSFL with a Model Inversion Attack (MIA) [15]. We assume that the attacker
has access to 1% of the training data and trains a decoder for reconstructing
images from client model embeddings. We train the decoder with the MSE loss
and Adam optimization with a learning rate of 0.001 over 50 epochs and a batch
size of 32. We perform an attack on ResNet-18 networks pretrained on CIFAR-
100 dataset with 20 clients and varying cut-layers. The attack is conducted
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Fig. 6: Linear evaluation of MocoSFL and MonAcoSFL on ResNet18 architec-
ture. MonAcoSFL maintains the accuracy with increasing cut-layers, whereas
the performance of MocoSFL rapidly deteriorates.
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Fig. 7: Linear evaluation accuracy on MobileNetV2 backbone trained with Mo-
coSFL and MonAcoSFL. There is significant discrepancy between MonAcoSFL
and MoCoSFL at every splitting depth.

without pre-training or employing additional privacy-enhancing techniques like
TAResSFL [24].

We compare the original and reconstructed images in terms of MSE in Fig-
ure 8b, where a higher MSE indicates better privacy protection. We find that
for cut-layers 1-13 the attacks on MocoSFL and MonAcoSFL yield similar re-
construction errors, with the errors of attacks on MonAcoSFL being larger by a
small margin. The MSE remains relatively stable for layers 1-7 and increases for
layers 9-17, indicating greater privacy of embeddings of these cut-layers. In lay-
ers 15-17, MocoSFL achieves larger attack MSE than MonAcoSFL. We attribute
this to the fact that the representation of MocoSFL trained with these cut-layers
is in general of much worse quality (which results in lower accuracy, see Figure
6) and, as a side-effect, encodes less information about the data. Concluding,
using deeper cut-layers (9-13) is not only more efficient from the computational
point of view but also increases the protection of client data.
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(a) Images reconstructed by the attacker
at different layers following MIA on both
MocoSFL and MonAcoSFL.
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Fig. 8: MIA attack on ResNet-18 models trained with MocoSFL and MonA-
coSFL. Deeper splits provide better protection of client data. Both methods
achieve similar levels of privacy protection.

5.4 Analysis of models alignment

To empirically verify that MonAcoSFL indeed preserves the alignment of online
and momentum model parameters, we measure it throughout the training. We
define the average misalignment of online and momentum parameters as their
average absolute difference i.e.:

N∑
i=0

|ϕc
i − EMA(ϕc

i )|
N · dim(ϕc)

, (2)

where N denotes the number of clients and dim(ϕc) is the dimension of client
model parameters.

We plot in Figure 9 the misalignment values for 1500 initial training steps
(out of approximately 50000) of ResNet18 trained on CIFAR-100 by 20 clients,
MocoSFL and MonAcoSFL, with split at the 11th layer. Throughout the first 125
steps, both methods display similar misalignments. However, during parameter
synchronizations, the difference between the online and momentum models in
MocoSFL rapidly increases by an order of magnitude. On the other hand, in
MonAcoSFL, the misalignment of momentum and online models does not change
significantly throughout the training.

6 Conclusion

In this paper, we conducted an in-depth analysis of MocoSFL – the state-of-the-
art method for Federated Self-Supervised Learning [24]. We found that the qual-
ity of this method deteriorates in privacy-preserving and communication-efficient
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Fig. 9: A comparison of average misalignment of online and momentum client
models in the initial steps of training for MonAcoSFL and MocoSFL (lower is
better). We mark with blue lines the steps at which the parameter synchroniza-
tion is performed (every 125 steps). In MocoSFL the misalignment grows rapidly
during parameter synchronizations, whereas in MonAcoSFL it remains an order
of magnitude smaller, resulting in a more stable training.

settings and identified that the reason for this is its synchronization scheme,
which leaves the participating online and momentum models misaligned. We
addressed this problem by introducing Momentum-Aligned contrastive Split
Federated Learning (MonAcoSFL) and showed that it significantly improves the
performance of MoCoSFL, especially under communication-efficient conditions.

From a theoretical perspective, our solution is centered on the correct syn-
chronization of online and momentum models of self-supervised learners deployed
in distributed environments. Given that the online/momentum model pairs are a
staple of several modern SSL approaches [16,9,2], our findings can be applicable
in federated learning of various SSL methods other than MoCo [17]. From the
practical perspective, MonAcoSFL is the first Federated self-supervised method
to achieve good results using deeper cut layers, providing efficient communication
between clients and server and better protection of client data.

Ethical implications

In this work, we focus on improving the existing Federated self-supervised ap-
proaches in regimes where data privacy and communication efficiency are of
concern. Our findings can lead to reducing the risks of data leakages when de-
ploying Federated self-supervised learning algorithms in real-world scenarios.

Acknowledgements

This research has been supported by the flagship project entitled "Artificial Intel-
ligence Computing Center Core Facility" from the Priority Research Area Digi-
World under the Strategic Programme Excellence Initiative at Jagiellonian Uni-
versity, and by the Horizon Europe Programme (HORIZON-CL4-2022-HUMAN-
02) under the project "ELIAS: European Lighthouse of AI for Sustainability",
GA no. 101120237. The research of Marcin Przewięźlikowski was supported by



14 Marcin Przewięźlikowski, Marcin Osial, Bartosz Zieliński, and Marek Śmieja

the National Science Centre (Poland), grant no. 2023/49/N/ST6/03268. The re-
search of Marcin Osial was supported by National Science Centre (Poland) grant
number 2023/50/E/ST6/00469. The research of Marek Śmieja was supported by
the National Science Centre (Poland), grant no. 2022/45/B/ST6/01117. The re-
search of Bartosz Zieliński was supported by National Science Centre (Poland)
grant number 2022/47/B/ST6/03397. Some experiments were performed on
servers purchased with funds from a grant from the Priority Research Area
(Artificial Intelligence Computing Center Core Facility) under the Strategic Pro-
gramme Excellence Initiative at Jagiellonian University. We gratefully acknowl-
edge Polish high-performance computing infrastructure PLGrid (HPC Center:
ACK Cyfronet AGH) for providing computer facilities and support within com-
putational grant no. PLG/2023/016303.

References

1. Albelwi, S.: Survey on self-supervised learning: Auxiliary pretext tasks and con-
trastive learning methods in imaging. Entropy 24(4) (2022). https://doi.org/
10.3390/e24040551, https://www.mdpi.com/1099-4300/24/4/551

2. Assran, M., Duval, Q., Misra, I., Bojanowski, P., Vincent, P., Rabbat, M., LeCun,
Y., Ballas, N.: Self-supervised learning from images with a joint-embedding pre-
dictive architecture. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 15619–15629 (June 2023)

3. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximiz-
ing mutual information across views. Advances in neural information processing
systems 32 (2019)

4. Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A.S., Shekhar, S., Goldstein, T.,
Bordes, F., Bardes, A., Mialon, G., Tian, Y., Schwarzschild, A., Wilson, A.G.,
Geiping, J., Garrido, Q., Fernandez, P., Bar, A., Pirsiavash, H., LeCun, Y., Gold-
blum, M.: A cookbook of self-supervised learning. ArXiv abs/2304.12210 (2023),
https://api.semanticscholar.org/CorpusID:258298825

5. van Berlo, B., Saeed, A., Ozcelebi, T.: Towards federated unsupervised represen-
tation learning. In: Proceedings of the third ACM international workshop on edge
systems, analytics and networking. pp. 31–36 (2020)

6. Bordes, F., Balestriero, R., Garrido, Q., Bardes, A., Vincent, P.: Guillotine reg-
ularization: Why removing layers is needed to improve generalization in self-
supervised learning. Transactions on Machine Learning Research (2023), https:
//openreview.net/forum?id=ZgXfXSz51n

7. Bulat, A., Sánchez-Lozano, E., Tzimiropoulos, G.: Improving memory banks for
unsupervised learning with large mini-batch, consistency and hard negative mining.
In: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 1695–1699 (2021). https://doi.org/10.1109/
ICASSP39728.2021.9414389

8. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsuper-
vised learning of visual features by contrasting cluster assignments. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neu-
ral Information Processing Systems. vol. 33, pp. 9912–9924. Curran Associates,
Inc. (2020), https://proceedings.neurips.cc/paper_files/paper/2020/file/
70feb62b69f16e0238f741fab228fec2-Paper.pdf

https://doi.org/10.3390/e24040551
https://doi.org/10.3390/e24040551
https://doi.org/10.3390/e24040551
https://doi.org/10.3390/e24040551
https://www.mdpi.com/1099-4300/24/4/551
https://api.semanticscholar.org/CorpusID:258298825
https://openreview.net/forum?id=ZgXfXSz51n
https://openreview.net/forum?id=ZgXfXSz51n
https://doi.org/10.1109/ICASSP39728.2021.9414389
https://doi.org/10.1109/ICASSP39728.2021.9414389
https://doi.org/10.1109/ICASSP39728.2021.9414389
https://doi.org/10.1109/ICASSP39728.2021.9414389
https://proceedings.neurips.cc/paper_files/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf


A deep cut into Split Federated Self-supervised Learning 15

9. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the International Conference on Computer Vision (ICCV) (2021)

10. Chen, C., Zhou, J., Zheng, L., Wu, H., Lyu, L., Wu, J., Wu, B., Liu, Z., Wang, L.,
Zheng, X.: Vertically federated graph neural network for privacy-preserving node
classification. In: International Joint Conference on Artificial Intelligence (IJCAI).
pp. 1959–1965 (2022)

11. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: III, H.D., Singh, A. (eds.) Proceed-
ings of the 37th International Conference on Machine Learning. Proceedings of
Machine Learning Research, vol. 119, pp. 1597–1607. PMLR (13–18 Jul 2020),
https://proceedings.mlr.press/v119/chen20j.html

12. Chen, X., Fan, H., Girshick, R.B., He, K.: Improved baselines with momentum
contrastive learning. CoRR abs/2003.04297 (2020), https://arxiv.org/abs/
2003.04297

13. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 15750–15758 (June 2021)

14. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision
transformers. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV). pp. 9640–9649 (October 2021)

15. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that ex-
ploit confidence information and basic countermeasures. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security.
p. 1322–1333. CCS ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2810103.2813677, https://doi.org/10.
1145/2810103.2813677

16. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Do-
ersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., kavukcuoglu,
k., Munos, R., Valko, M.: Bootstrap your own latent - a new approach to self-
supervised learning. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin,
H. (eds.) Advances in Neural Information Processing Systems. vol. 33, pp. 21271–
21284. Curran Associates, Inc. (2020), https://proceedings.neurips.cc/paper_
files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf

17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2020)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2016)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2017)
20. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
21. Lee, H., Lee, K., Lee, K., Lee, H., Shin, J.: Improving transferability of rep-

resentations via augmentation-aware self-supervision. In: Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances in Neural
Information Processing Systems. vol. 34, pp. 17710–17722. Curran Associates,
Inc. (2021), https://proceedings.neurips.cc/paper_files/paper/2021/file/
94130ea17023c4837f0dcdda95034b65-Paper.pdf

22. Lee, J., Seif, M., Cho, J., Poor, H.V.: Exploring the privacy-energy consumption
tradeoff for split federated learning (2024)

https://proceedings.mlr.press/v119/chen20j.html
https://arxiv.org/abs/2003.04297
https://arxiv.org/abs/2003.04297
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677
https://proceedings.neurips.cc/paper_files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f3ada80d5c4ee70142b17b8192b2958e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/94130ea17023c4837f0dcdda95034b65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/94130ea17023c4837f0dcdda95034b65-Paper.pdf


16 Marcin Przewięźlikowski, Marcin Osial, Bartosz Zieliński, and Marek Śmieja

23. Lee, R., Kim, M., Li, D., Qiu, X., Hospedales, T., Huszár, F., Lane, N.D.:
Fedl2p: Federated learning to personalize. In: Thirty-seventh Conference on Neu-
ral Information Processing Systems (2023), https://openreview.net/forum?id=
FM81CI68Iz

24. Li, J., Lyu, L., Iso, D., Chakrabarti, C., Spranger, M.: MocoSFL: enabling cross-
client collaborative self-supervised learning. In: The Eleventh International Con-
ference on Learning Representations (2023), https://openreview.net/forum?id=
2QGJXyMNoPz

25. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: Fedbn: Federated learning on
non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623
(2021)

26. Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: Feddg: Federated domain gener-
alization on medical image segmentation via episodic learning in continuous fre-
quency space. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 1013–1023 (2021)

27. Makhija, D., Ho, N., Ghosh, J.: Federated self-supervised learning for heteroge-
neous clients (2023), https://openreview.net/forum?id=bNPth9YMqZ

28. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.:
Communication-Efficient Learning of Deep Networks from Decentralized Data. In:
Singh, A., Zhu, J. (eds.) Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54,
pp. 1273–1282. PMLR (20–22 Apr 2017), https://proceedings.mlr.press/v54/
mcmahan17a.html

29. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018)

30. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.: Mobilenetv2: Inverted
residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 4510–4520. IEEE Computer Society,
Los Alamitos, CA, USA (jun 2018). https://doi.org/10.1109/CVPR.2018.00474,
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00474

31. Thapa, C., Mahawaga Arachchige, P.C., Camtepe, S., Sun, L.: Splitfed: When fed-
erated learning meets split learning. Proceedings of the AAAI Conference on Arti-
ficial Intelligence 36(8), 8485–8493 (Jun 2022). https://doi.org/10.1609/aaai.
v36i8.20825, https://ojs.aaai.org/index.php/AAAI/article/view/20825

32. Wu, C., Wu, F., Lyu, L., Qi, T., Huang, Y., Xie, X.: A federated graph neural net-
work framework for privacy-preserving personalization. Nature Communications
13(1), 3091 (2022)

33. Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., Gao, Y.: A survey on federated
learning. Knowledge-Based Systems 216, 106775 (2021). https://doi.org/https:
//doi.org/10.1016/j.knosys.2021.106775, https://www.sciencedirect.com/
science/article/pii/S0950705121000381

34. Zhang, F., Kuang, K., Chen, L., You, Z., Shen, T., Xiao, J., Zhang, Y., Wu, C., Wu,
F., Zhuang, Y., et al.: Federated unsupervised representation learning. Frontiers of
Information Technology & Electronic Engineering 24(8), 1181–1193 (2023)

35. Zhang, F., Kuang, K., You, Z., Shen, T., Xiao, J., Zhang, Y., Wu, C., Zhuang, Y.,
Li, X.: Federated unsupervised representation learning (2020)

36. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning
with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

37. Zhuang, W., Gan, X., Wen, Y., Zhang, S., Yi, S.: Collaborative unsupervised vi-
sual representation learning from decentralized data. In: IEEE/CVF International
Conference on Computer Vision (CVPR). pp. 4912–4921 (2021)

https://openreview.net/forum?id=FM81CI68Iz
https://openreview.net/forum?id=FM81CI68Iz
https://openreview.net/forum?id=2QGJXyMNoPz
https://openreview.net/forum?id=2QGJXyMNoPz
https://openreview.net/forum?id=bNPth9YMqZ
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/CVPR.2018.00474
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00474
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1609/aaai.v36i8.20825
https://doi.org/10.1609/aaai.v36i8.20825
https://ojs.aaai.org/index.php/AAAI/article/view/20825
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://www.sciencedirect.com/science/article/pii/S0950705121000381
https://www.sciencedirect.com/science/article/pii/S0950705121000381


A deep cut into Split Federated Self-supervised Learning 17

38. Zhuang, W., Wen, Y., Zhang, S.: Divergence-aware federated self-supervised learn-
ing. In: International Conference on Learning Representations (2022), https:
//openreview.net/forum?id=oVE1z8NlNe

https://openreview.net/forum?id=oVE1z8NlNe
https://openreview.net/forum?id=oVE1z8NlNe

	 A deep cut into Split Federated Self-supervised Learning 

