
"This is an Accepted Manuscript of an article published by Taylor & Francis in 'Environmental Technology' on 20 April 2017, available online: <u>http://www.tandfonline.com/10.1080/09593330.2017.1313886</u>."

Without prejudice to other rights expressly allowed by the copyright holders, this publication can be read, saved and printed for research, teaching and private study. Any other noncommercial and commercial uses are forbidden without the written permission of the copyright holders.

Technology

ISSN: 0959-3330 (Print) 1479-487X (Online) Journal homepage: http://www.tandfonline.com/loi/tent20

A novel thermally stable heteropolysaccharide based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal

Habib Chouchane, Mouna Mahjoubi, Besma Ettoumi, Mohamed Neifar & Ameur Cherif

To cite this article: Habib Chouchane, Mouna Mahjoubi, Besma Ettoumi, Mohamed Neifar & Ameur Cherif (2017): A novel thermally stable heteropolysaccharide based bioflocculant from hydrocarbonoclastic strain Kocuria rosea BU22S and its application in dye removal, Environmental Technology, DOI: 10.1080/09593330.2017.1313886

To link to this article: http://dx.doi.org/10.1080/09593330.2017.1313886

Accepted author version posted online: 30 Mar 2017.

🕼 Submit your article to this journal 🗗

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tent20

- 1 Publisher: Taylor & Francis & Informa UK Limited, trading as Taylor & Francis Group
- **Journal:** *Environmental Technology*
- **DOI:** 10.1080/09593330.2017.1313886
- 5 A novel thermally stable heteropolysaccharide based bioflocculant from 6 hydrocarbonoclastic strain *Kocuria rosea* BU22S and its application in dye 7 removal
- Habib Chouchane¹, Mouna Mahjoubi^{1,2}, Besma Ettoumi³, Mohamed Neifar¹ and Ameur Cherif¹
- ¹Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
- ¹¹ ²Faculty of Science of Bizerte, University of Carthage, Zarzouna 7021, Bizerte, Tunisia.
- ³Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan,
 20133 Milan, Italy

- 15 Corresponding author: <u>cherif.ameur@gmail.com</u>

5 Abstract

A new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. First, quantitative analysis of hydrocarbon was carried out in order to study the degradation rate of crude oil by BU22S. Gas Chromatography - Flame Ionization Detector (GC-FID) analysis confirmed the highly potential of the strain BU22S in the degradation of n-alkanes. Second, Plackett-Burman experimental design and response-surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ±0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaecharides, 16.36% uronic acid and 2.83% proteins. Thin Layer Chromatography (TLC) analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier Transform InfraRed (FT-IR) analysis revealed the presence of many functional groups hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2-11), temperature (0-100°C), and cations concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes Reactive Blue 4 and Acid Yellow with a decolourization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.

- Key words: *Kocuria rosea* BU22S; crude oil degradation; bioflocculant; Response-surface
 methodology; flocculation activity; dye removal

- 1
- 2
- 3
- 4

5 Introduction

Chemical flocculants are components that stimulate flocculation by aggregation of colloids and other 6 7 suspended particles. They are extensively applied in potable water and industrial wastewater treatment. They have many advantages of being effective in terms of flocculating efficiency and 8 availability. In contrast, they are implicated in various human health problems, they have been 9 reported to be neurotoxic and carcinogenic [1-5,9]. In fact a clear link was demonstrated between 10 aluminum in drinking water and human neurological disorders [1,5,6]. These chemical polymers are 11 also known to be neither biodegradable nor ecofriendly [6]. Hence, because of their detrimental 12 nature, more attention has been given to the use of bioflocculants produced by microorganisms. 13 Therefore, bioflocculants are considered as potentially promising alternative to conventional 14 chemical polymers because of their efficiency, biodegradability, non-toxicity, and non-secondary 15 pollution [7, 8]. Several bioflocculant-producing microorganisms (bacteria, fungi and yeast) have 16 been recently reproted and their bioflocculants have been characterized. They are mostly composed 17 of polysaccharides, proteins, glycoproteins, nucleic acids and lipids. The flocculant produced by 18 Rhodococcus erythropolis [9] is predominantly protein in nature. Bacillus mucilaginosus [10], 19 Proteus mirabilis [11] and Bacillus toyonensis [12] were shown to produce glycoproteins 20 bioflucculants, whereas those of Paenibacillus elgii [13], Serratia ficaria [14] and Klebsiella mobilis 21 [15] are mainly polysaccharides. Some of these biomacromolecules, polysaccharide based-22 bioflocculant draw particular attention especially with regard to wastewater treatment. They have a 23 24 unique structure and some functional properties. They contain ionizable functional groups which 25 enable them to be effective not only in removing suspended solids, heavy metals, dyes, pathogens 26 but also in reducing the turbidity of different types of industrial wastewater effluents [16]. In fact, 27 polysaccharide-based flocculants have been investigated in the treatment of several industrial effluents such as brewery wastewater [14, 17], dying wastewater [13], swine wastewater [9], textile 28 effluents [18] pulp and paper mill effluent [14], poultry wastewater [19], and dairy woolen 29 wastewater [20]. 30

31 Despite these promising features of bioflocculant, several limiting aspects are hampering their
 32 large-scale production and industrial application. Particularly; their low production yield and
 33 restrained flocculating efficiency [21-22]. Consequently, it has become imperative to screen and

identify new bioflocculant-producing strains and investigate strategies for the optimization of
 fermentation conditions to improve bioflocculant production [23-24].

3

Actinobacteria are known as good sources of secondary metabolites of economic importance [25, 4 26]. Among these, Kocuria rosea was screened in previous studies for their potential use in 5 6 numerous biotechnological and industrial applications such as the production of proteolytic enzymes, keratin-hydrolysing proteinases, antibiotics, and biosurfactant [27-30]. However, K. rosea 7 8 remains underexplored and yet hold tremendous promise as source of novel bioflocculant-producing organisms. In the current study, we have evaluated a marine Actinobacteria isolated from 9 hydrocarbon-polluted sediments [28] for crude oil degradation and bioflocculant production. 10 Furthermore, production yield optimization was attempted through manipulation of physicochemical 11 parameters and subsequently, the bioflocculant was characterized through compositional analysis 12 and flocculation activities. In addition, a series of experiments were carried out to study the 13 flocculation activities towards kaolin clay and dyeing solutions. 14

15

16

17

23

1. Materials and methods

1.1. Bacterial isolate and hydrocarbons biodegradation

1.1.1. Bacterial strain

The hydrocarbonoclastic bacterium *Kocuria rosea* strain BU22S (Genebank accession number of 19 16S rRNA sequence; KC152976) was isolated from hydrocarbon contaminated sediments from a 20 refinery harbor of the Bizerte coast in Northern Tunisia. Isolation was performed on mineral medium 21 supplemented with 1% crude oil as the sole carbon source. Stain BU22S showed peculiar 22 characteristics of biosurfactant and emulsification activity [28].

1.1.2. Growth conditions and hydrocabon analysis

Kocuria rosea strain BU22S was tested for the ability to grow in the presence of different hydrocarbons as sole carbon source. Mineral solid medium ONR7a [31] hydrocarbons were inoculated with 100 μ l of strains cultures (OD₆₀₀= 0.5). Incubation was performed at 30°C for 7days.

For hydrocarbon analysis, culture was prepared by inoculating 100 µl of microbial cells into 50 mL
of ONR7a liquid mineral medium [31] supplemented with 1% of crude oil. Incubation was
performed at 30°C for 21 days. The composition of Total Extracted and Resolved Hydrocarbons and
their derivates (TERHCs) were analyzed by high-resolution GC-FID (DANI Master GC Fast Gas
Chromatograph System, DANI Instruments S.p.A.). Index selected for this study were: *n*C17/Pristane (*n*C17/Pr), *n*-C18/Phytane (*n*C18/Ph) in order to evaluate the relative biodegradation of

- *n*-alkanes. The degradation of TERCHs was expressed as the percentage of TERCHs degraded
 compared to negative abiotic control.
- 3 2.2. Production and characterization of bioflocculant

4 2.2.1. Inoculum preparation

5 K. rosea strain BU22S was grown and maintained on a medium containing, (g/l) 10g glucose, 2g

6 NaCl, 0.25g KH₂PO₄, 5g peptone and 0.2g MgSO₄. The pH was adjusted to 8.0. *K. rosea* was grown
7 on this medium at 30°C for 24 hours.

8 2.2.2. Culture conditions for pKr production

9 For the production of the bioflocculant, strain BU22S was cultivated in 250 ml flasks containing 100
10 ml of culture medium. The independent variables such as: glucose, peptone, KH₂PO₄, NaCl, pH,
11 agitation, incubation time and incubation temperature, were varied according to the design of
12 experiments as presented in Table 1.

13 2.2.3. Optimization of pKr production medium by response surface methodology (RSM)

Plakett-Burman (PB) design was used in the present report to identify the components that significantly affected bioflocculant production. It is a successful tool used in several preliminary studies in which the principal objective was to identify those components that can be fixed or excluded in a further optimization process [32]. The PB design was based on the first order polynomial model: (equation 1)

19
$$Y = b_0 + \sum$$

 $Y = b_0 + \sum b_i X_i \tag{1}$

where Y is the estimated target function (i.e., pKr yield) and b_i are the regression coefficients. The 20 contrast coefficient, noted b_0 , was calculated as the difference between the average of measurements 21 made at the high (+) and the low (-) levels of the factors. From the regression analysis of the 22 variables, the significant levels at 95% level ($p \le 0.05$) were considered to have greater impact on 23 pKr production. Seven variables including glucose, peptone, KH₂PO₄, inoculum size, pH, 24 temperature and incubation time were examined in a 16-run trial. The choice of these variables was 25 26 based on previous literature works [33, 34] and preliminary experiments. Each variable was 27 presented in two levels, high and low, with actual levels shown in Table 1. Response value was measured in terms of pKr yield. NemrodW, 9901 software was used to design and analyze the data 28 throughout the experiments. 29

Three factors, glucose concentration (X_1) , peptone concentration (X_2) and incubation time (X_3) were selected from PB design that significantly affected pKr production and were further optimized by RSM. A Box-Behnken statistical design with 3 factors and 3 levels (Table 2) was applied to elucidate the interactions of these variables on the bioflocculant production. The experimental designs are shown in Table 3. The relationship between the response (pKr yield) and the three quantitative variables was fitted by a second-order model in the form of quadratic polynomial equation (2):

6
$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_{11} X_1^2 + b_{22} X_2^2 + b_{33} X_3^2 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{23} X_2 X_3$$
 (2)

- 7 Where *Y* is the pKr production, b_0 is the model constant, X_1 , X_2 and X_3 are the independent variables,
- 8 b_1 , b_2 and b_3 are the linear coefficients, b_{12} , b_{13} , and b_{23} are the cross-product coefficients, and b_{11} ,
- 9 b_{22} and b_{33} are the quadratic coefficients.

10 2.2.4. Quantifying pKr production and flocculating activity

To obtain the purified bioflocculant the fermentation broth was centrifuged to remove the cells by centrifugal separation (12.000 r/min, 20 min). Two volumes of cold ethanol were then added to the supernatant and left overnight at 4°C. The precipitate was dissolved in deionized water (1/10 of initial volume), dialyzed against deionized water and lyophilized to obtain the bioflocculant. The yield was determined on dry weight basis.

The flocculating activity of pKr was measured according to the method reported by Kurane et al. 16 [35] in which Kaolin clay was chosen as the suspended solid. First, 93 mL kaolin suspension (4.0 17 g/L), 5.0 mL CaCl₂ (1%, m/V) and 2.0 mL liquid bioflocculant (were mixed and vigorously stirred 18 (180 r/min) for 2 min and then slowly stirred (80 r/min) for 5 min, and allowed to stand for 5 min. 19 The supernatant absorbance was measured by a spectrophotometer at 550 nm (Analytic Jena 20 21 SPEKOL 2000). The fermentation supernatant was replaced with a culture medium at the same concentration in the control experiment. The flocculating activity (FA, %) was calculated according 22 23 equation (3):

$$FA = (A_0 - A)/A_0 \times 100\%$$
 (3)

25 Where *FA* is the flocculating activity, A_0 and *A* were the absorbance variables at 550 nm of the 26 control and the sample supernatant, respectively

27 2.2.5. Characteristics of pKr obtained from the lyophilized material

Total sugar content of pKr was determined by the phenol-sulfuric acid method using glucose as the standard solution [36]. Protein content was measured by the Bradford method using bovine serum albumin as the standard solution [37]. The content of uronic acid was determined by the sulfuric acid-carbazole method [38] and with D-glucuronic acid as the standard. The analysis of

monosaccharides in pKr was carried out by Thin Layer Chromatography (TLC). The purified pKr 1 (20 mg) was hydrolyzed with 1.5 ml of 2 N trifluoroacetic acid by heating at 110°C for 3 h. The 2 resulting hydrolysate was diluted with distilled water and neutralized with 1 N NaOH solution after 3 cooling at room temperature. The solution was filtered by a membrane filter (0.45 μ m) before 4 analysis. To determine the monosaccharide component of the hydrolysate, TLC was performed on 5 silica gel with methyl-ethyl-cetone/acetic acid/methanol [3:1:1(v/v/v)] as a developing solvent 6 7 system. Developed spots were visualized by immersing the plate in potassium permanganate (3%)/ anhydrous sodium carbonate (4%) [2:1 (v/v)] solution for about 20 seconds following heating of the 8 9 plate. Glucose, galactose, xylose, maltose, lactose and saccharose were used as standards.

10 Fourier transform infrared (FT-IR) spectroscopy of pKr sample was obtained over a wave number

11 range of 400-4000 cm⁻¹ to determine the functional groups (Bruker Vertex 70 FTIR spectrometer).

12 2.2.6. Flocculating properties of pKr

To obtain the optimal concentration of the bioflocculant the effects of pKr concentrations was studied according to Tang et *al.*[39]. pKr was dissolved in ultrapure water to get a 0.066 mg/ml concentration (stock solution). Ten different concentrations were prepared from the stock solution (0.065mg/L, 0.13mg/L, 0.24mg/L, 0.65mg/L, 1.2mg/L, 2.5mg/L, 6mg/L, 11mg/L, 18.8mg/L, 33mg/L) and mixed into Kaolin suspension (4g/L) to test the dosage impact.

The effects of solution pH and temperature on flocculating activity were examined by measuring the 18 19 flocculating activity of the reaction mixture containing the optimal concentration of pKr at specified ranges of pH (2-11); to investigate the thermal stability, a pKr and kaolin suspension mixture was 20 kept for 30 min in a water bath with various temperatures from 0 to 100°C. Furthermore, effect of 21 various cations on the flocculant activity of pKr was determined using the method described above, 22 except that the CaCl₂ solution was replaced by various metal salt solutions. Solutions of KCl, NaCl, 23 MgCl₂, CaCl₂, FeSO₄, FeCl₃ and AlCl₃ concentration is 0.09M were used as cation sources. All the 24 experiments were conducted in triplicate. 25

26 2.2.7. Decolourization of dyeing solutions

The decolourization of dyeing solution was determined by the method described by Li et *al.* [13]. Four dyes Acid Yellow 17 (AY17), Reactive Blue 4 (RB4), Basic Red (BR) and Basic Blue 3 (BB3) were used in this study. Three milliliter pKr solution (500 mg/L) was added into 100 ml dye solution (100 mg/L), and agitated at 150 r/min for 12 hr. After centrifugation at 4000 rpm for 5 min, the supernatant was measured with a spectrophotometer (Analytic Jena SPEKOL 2000). All wavelengths were determined experimentally as the wave with maximal absorbance (400 nm, 595 nm, 524nm and 654 for AY17, RB 4, BR and BB3, respectively). The residual dye concentration was calculated
according to the calibration curve for each dye measured, the percentage of dye removal was
determined according to equation 4:

4

$$DA = (C_0 - C_e)/C_0 \ge 100\%$$
(4)

5 where *DA* was the decolourization activity, C_0 was the initial dye concentration and C_e was the 6 residual dye concentration of the supernatant.

2. Results and discussion

8

7

2.1. Hydrocarbon degradation

Kocuria rosea strain BU22S was selected for this studies basing on its high-rate production of 9 biosurfactant and its emulsification activity [28]. Its phylogenetic position inferred from the 16S 10 rRNA gene sequence is shown in Fig. 1. We tested the ability of the bacterium to grow in presence 11 of different hydrocarbons (Table 4). The results showed that BU22S was able to use different 12 hydrocarbon as only carbon source in solid media. After incubation of 21 days at 28°C, the increase 13 of turbidity of the culture by comparison to the negative control was considered as an indication of 14 the ability of the strain to degrade the crude oil. The data obtained using GC -FID analysis showed a 15 highest rate degradation of ~91% and 85% of n-alkanes and crude oil respectively (Fig. 2). 16 Degradation of almost all n-alkanes (rate of degradation > of 90%) was observed. Shorter *n*-alkanes 17 of C12~C15 were almost completely degraded by BU22S. n-alkanes with a medium length (C16-18 C18) were highly degraded with a rate of degradation $> \sim 70\%$ than long chains (C19-C40) due to 19 their low solubility which inhibits their degradation by bacteria. However, Kocuria, was not 20 classified as Marine Obligate Hydrocarbonoclastic Bacteria (OMHCB), but it is heterotrophic 21 bacteria that can be considered as a potential candidates for application in bioremediation process 22 based on its ability to produce biosurfactant and emulsification activity which facilitate hydrocarbons 23 24 degradation. Capability of Kocuria genus to use hydrocarbons as the only sources of energy and organic carbon was described in other studies [40, 41]. BU22S may find great application in 25 bioremediation of hydrocarbon contaminated environments. 26

27 2.2. Screening of signal factors for bioflocculant production using PB design

The relative significance of seven variables was investigated using PB design (Table 1). The firstorder model equation for predicted bioflocculant production with the factors regardless of their significance was as follows:

31

 $Y = 0.964 + 0.178 X_1 + 0.098 X_2 + 0.014 X_3 - 0.031 X_4 + 0.051 X_5$

32

 $+ 0.036 X_6 + 0.129 X_7$ (5)

where Y was the predicted bioflocculant production, and X_1 , X_2 , X_3 , X_4 , X_5 , X_6 , X_7 were coded values 1 of glucose, peptone, KH₂PO₄, inoculum size, temperature and incubation time, respectively. The 2 analysis of variance (ANOVA) showed that determinant coefficient R^2 of the first-order model and 3 the p-values were 0.924 and 0.0004, which means the model is significant and 92.40 of the total 4 5 variations could be explained by the model. Among these variables, glucose, peptone, and incubation time had significant influence on bioflocculant production according to their P-values (< 0.05, 6 7 significant at 95% level). Glucose, peptone and incubation time showed positive effect on bioflocculant production within the tested range, indicating that bioflocculant production increased 8 with the increased levels of these three factors (Fig. 3). As a result, glucose, peptone, and incubation 9 time were selected to optimize the production of the bioflocculant using RSM. 10

11 2.3. Response surface optimization of pKr production

The experiments were planned to obtain a quadratic model consisting of 12 runs and 5 center points. The range and levels of three independent variables are shown in Table 2, and the Box-Behnken design matrix together with the experimental and predicted bioflocculant data are shown in Table 3. After analyzing the experimental results through multiple regressions, the relationship between pKr production and test variables glucose, peptone and incubation time was related by the following second-order polynomial equation (6):

18

19 pKr = 3.248 + 0.400 (glucose) - 0.020 (peptone) + 0.330 (incubation time) - 0.340 (glucose)² - 0.375 (peptone)² - 0.450 (incubation time)² - 0.488 (glucose) (incubation time) + 0.212 (glucose) 21 (incubation time) + 0.328 (peptone) (incubation time) (6)

22

The analysis of variance for the fitted model (Table 5) showed that the regression sum of squares was statistically significant at the level 99.9% and the lack of fit was not significant. Consequently, the model represents well the measured data. The R^2 and adjusted determination coefficient Adj R^2 values were 0.960 and 0.908, respectively. Indicating a high degree of correlation between the observed and predicted values for the production of pKr. From the R^2 value, it was concluded that only 4 % of the variation for pKr production could not be explained by the model.

The linear coefficients (X₁ and X₃), the quadratic term coefficients (X₂² and X₃²), and the interaction terms (X₁X₂ and X₂X₃) had highly significant effects on pKr production (P < 0.001), followed by the quadratic term coefficients X₁² with significant effect (P < 0.05). Among the significant equation terms, glucose (X₁) showed the most direct proportional relationship with pKr production. Threedimensional response and two-dimensional contour plots are the graphical representations of the equation 4 (Fig. 4). These plots provide a method to visualize the relationship between pKr production and the experimental level of each variable and facilitated the location of the optimum experimental conditions. According to many studies [42-44] a circular contour plot indicates that the interactions between the corresponding variables are negligible whereas an elliptical or saddle plots illustrated greater significance of interaction.

6 The response surface plot and contour plot in Fig. 4A1.A2 shows the effects of the glucose and 7 peptone on pKr yield and their interaction when incubation time was fixed at zero level (3 days). At 8 a higher concentration of glucose and lower concentration of peptone pKr production increased 9 whereas at a higher concentration of glucose and peptone pKr production decreased, which 10 suggested that high concentration of peptone suppressed the biosynthesis of pKr. An elliptic contour 11 plot in Fig. 4A1 was observed, indicating a significant interaction between glucose and peptone for 12 bioflocculant production.

Fig. 4B1.B2 graphed the effects of glucose and incubation time on pKr yield when peptone was fixed at zero level. As bioflocculant is highly synthesized during late exponential growth or in the stationary phase, decrease in incubation time may affect negatively the production. Higher incubation time lower the production of pKr due to the production of certain enzymes, such as saccharases, may act upon polysaccharides, and deteriorating the production formation.

By analyzing the response surface plots and contour representation, the optimal values of tested variables for the highest pKr production $(4.72\pm0.02 \text{ g/L})$ were glucose concentration 15.61 g/L, peptone concentration 6.45 g/L and incubation time 3 days, which was about 3.32-fold increase compared with using the original medium (1.42 g/L).

22 2.4. Verification of optimum conditions

The model predicted that the maximum bioflocculant production was $(4.72 \pm 0.02 \text{ g/L})$. To validate the adequacy of the model equation, three additional verification experiments were carried out under above-mentioned conditions. The mean pKr production was $4.66 \pm 0.04 \text{ g/L}$ that agreed well with the predicted value and indicating the validity of the model. The concentrations of the carbon and nitrogen source of optimum conditions were much lower than the result of Raza et *al.*(48.5 g/L and 10 g/L versus 15.61 g/L and 6.45 g/L) for much yield of bioflocculant (3.44 g/L versus 4.66 g/L) [45].

30 **2.5.** Characteristics of pKr

31 **2.5.1**. Chemical composition analysis of pKr

Chemical analysis showed that the purified bioflocculant was composed of 71.62 % total sugar content, 2.83% total protein content, and 16.36% uronic acid. TLC analysis (Fig. 5) revealed that the polysaccharide fraction of pKr was consisted of two monosaccharides galactose and xylose. This
finding differed from the polysaccharides produced by bacterial strains. Prior to this study, very few
bacterial bioflocculants have been reported to have xylose in their structure. In fact, xylose is rather
common in fungal glycans [13, 46].

5 2.5.2. Functional groups analysis of pKr

Infrared spectrometer (Vertex 70 ATR Bruker Diamant) was used to demonstrate the physical 6 structures and functional groups of pKr. As shown in Fig. 5, the intense absorption peak at 3375 cm⁻¹ 7 8 was characteristic of OH stretching from hydroxyl group, and absorbed water molecules. The absorbance peaks in the 2954-2852 cm⁻¹ region were due to the stretching vibration of CH, CH₂ and 9 CH₃ [47]. Presence of these groups is confirmed by bands at 1377 cm⁻¹[48]. The absorption located 10 at 1741 and 1643 cm⁻¹ was assigned to the C=O stretching of the acetyl group in pKr [49]. The 11 absorption in the 1643 cm^{-1} region of the spectra can be assigned to the COO⁻ and C=C groups [50] 12 and a week peak at 1547 cm⁻¹ could be attributed to NH bending of amides II of osamines, as 13 confirmed by the low amount of protein (2.8%). The absence of a doublet at 1250-1230 cm⁻¹ 14 indicated that no sulfate groups were present in this bioflocculant. The bands within the 1119 -1153 15 cm⁻¹ region were attributed to the vibration of C-O-C bond [49]. The absorption peak at 1074 cm⁻¹ is 16 related to methoxyl groups, typical group of sugar derivatives [51, 52]. The1000–1125 range is 17 characteristic of uronic acid, O-acetyl ester linkage bond [53]. The small absorption band at 876 cm⁻¹ 18 could be associated with β -glycosidic linkages between the sugar monomers [55]. The peaks at 697 19 and 507 cm⁻¹ are the absorption peaks for the aromatic CH bending vibration [54]. 20

In summary, the infrared spectrum confirmed the presence of characteristic peaks for carbohydrates and amides: carboxyl, hydroxyl, methoxyl and amino groups, it can be inferred that pKr is a β type heteropolysaccharide containing some proteins. The bioflocculant participates in the flocculation mainly through available hydroxyl, carbonyl, acetyl and carboxyl groups which induces very high binding capacity.

26 2.6. Effect of dosage, pH, temperature and metal ions on the flocculating activity of pKr

The effects of pKr dosage, pH, temperature and metal ions on flocculating activity were shown inFig. 6.

29 2.6.1. Effect of pKr dosage

The effect of bioflocculant dosage (Fig. 6A) showed that flocculation efficiency of pKr increased from 47.3% to 89.2% with the addition of bioflocculant dose at the range of 0.065 mg/L to 1.2 mg/L. Flocculation decreased to 61.3% with further dose addition to 33 mg/L, indicating that 1.2 mg/L pKr provides optimum flocculation efficiency for Kaolin particles. Fig. 6A also showed that more or less

dose of pKr would deteriorate flocculation. When the pKr is insufficiency it caused inadequate 1 bioflocculant molecules to absorb the suspended kaolin particles, the bridging phenomena cannot 2 effectively form. Unfavorably, more dose of pKr inhibited flocs from forming due to the stronger 3 repulsive forces between them [2, 56, 57]. The relationship between dosage and flocculating rate of 4 pKr was similar to that of the bioflocculants produced by other pure strains [56, 58]. Comparatively, 5 pKr showed lower optimal concentration (1.2 mg/L) which could be attributed to a possible high 6 7 molecular weight of the bioflocculant. In fact, flocculant with high-molecular-weight involves more adsorption points and stronger bridging leading to high flocculation activity. These findings are 8 9 economically desirable.

10 2.6.2. pH stability of pKr

The flocculating properties of the purified bioflocculant were influenced by the system conditions 11 such as pH and temperature. Fig. 6B shows that pKr was quite stable at wide range of pH between 2 12 and 8 and more than 85% flocculation was achieved at this range. The optimal activity of 89.6% was 13 14 observed at pH 7.0. While with pH higher than 8.0 the flocculation rate decreased. According to Yang et al. this may be due to the bioflocculant shows different electric states at different pH and 15 that will affect the flocculation ability [59]. The favorable pH range varies for the bioflocculants 16 produced by different strains. For example, the flocculating activity was over 80.0% in the range of 17 4.0-8.0 for Klebsiella sp. [60], and the optimal pH range was 5.0 to 9.0 for Bacillus mojavensis 32A 18 19 [61], also the flocculating activity was higher than 92.0% in the range of 3.0-8.0 for Bacillus sp. AEMREG7 [62]. Finding out the optimum pH range is a basic step during the flocculation via 20 bioflocculants. Our results demonstrate that pKr is suitable to be applied in acidic (pH2) and neutral 21 matrixes. 22

23 2.6.3. Thermo-stability of pKr

The thermal stability of the bioflocculant depends on its activity ingredients. Many finding indicated 24 25 that the bioflocculants with sugars backbone in the structure were thermostable, while those made of protein or peptide were generally sensitive to heat [9]. After being heated in a water bath for 30 min, 26 27 the flocculation performance of pKr was high and stable at temperature range from 30 to 100°C, within which, the minimum flocculating rate was 85.5% (Fig. 6C). The polysaccharide-backbone 28 29 composition of pKr was assumed to explain the excellent thermal stability of the bioflocculant produced by K. rosea. The thermal stability may be due to the presence of hydroxyl group involved 30 in the formation of hydrogen bonds in pKr structure [63]. However, pKr was less stable than the 31

bioflocculant produced by *Aspergillus flavus* which retained high flocculating activity above 90%
over a temperature range of 10–100°C [58].

3 **2.6.4. Effects of metal ions**

The addition of metal ions to kaolin suspensions during the bioflocculation process is required to 4 induce effective flocculation by cation-dependent bioflocculants, such as bioflocculants produced by 5 Halomonas sp. [64], Micrococcus sp. [8]. Commonly, cations are applied to neutralize the negative 6 charges of cation-dependent bioflocculants and kaolin particles, thereby increasing the adsorption of 7 bioflocculant onto kaolin particles. The effects of cations on the flocculating activity of pKr are 8 similar to the previous studies by Pu et al. on the bioflocculant produced by two strains of Rhizopus 9 sp [65]. It can be seen from Fig. 6D that divalent cations (Mg $^{2+}$, Ca $^{2+}$ and Fe $^{2+}$) were more effective 10 than monovalent (Na⁺and K⁺) and trivalent cations (Fe³⁺ and Al³⁺). The role of bivalent cations is to 11 increase the initial adsorption of pKr on kaolin by decreasing the negative charge on both 12 bioflocculant and particle [66-68]. However, the flocculating rate decreased by approximately 15% 13 to 17% during the addition of monovalent cations respectively. During the experiment, it was found 14 that the flocculating rate was negatively affected by trivalent cations (Fe^{3+} and Al^{3+}). The 15 flocculation efficiency was decreased by 25%. These trivalent cations possibly alter the surface 16 charge of kaolin particles and cover the adsorb sites [14]. The competition of the positively charged 17 particles and less adsorb sites induce the low flocculating activity, explaining the flocculation 18 activity reduction in the presence of Al^{3+} and Fe^{3+} [69]. These findings are consistent with previous 19 studies where several bioflocculants have been shown to be cation-dependent [8, 14, 67]. Interactions 20 of pKr with different cations are very crucial for its application as a bioflocculant material. Indeed 21 future studies should evaluate the best combination of pKr and cations which flocculate suspended 22 particles in real wastewater. 23

24 2.7. Decolourization experiment of the pKr

25 In the flocculation experiments, two anionic and two cationic dyes were used. The results showed that depending on the dye used, pKr exhibited different decolourization activity. The bioflocculant 26 27 had moderate anionic dyes removal ability, with the decolourization rates for RB 4 and AY17 being 28 76.4% and 72.6%, respectively; lower rates were observed when used with cationic dyes for BR and 29 BB3 being 23.4% and 11.2%, respectively. These results suggest that pKr was more effective for anionic dyes than cationic dyes. Similarly, the bioflocculant produced by A. parasiticus was effective 30 for the removal of anionic dyes [68]. Conversely, the bioflocculant produced by P. elgii possesses 31 functional groups that have the ability to decolourize cationic dyes in wastewater. It has a removal 32

rate of 65% for methylene blue and 72% for Red X-GRL. Lower removal efficiencies (< 50%) were 1 obtained when it was used to treat anionic and neutral dyes [13]. As reported by Deng et al. the 2 decolourization ability is related to the size of the dye molecule: bigger molecules adsorbed on the 3 bioflocculant may prevent others from being adsorbed. However, in this study, the removal of the 4 dyes is not consistent with the size (RB4 >AY17 >BR> BB3) [70]. This phenomenon may be 5 attributed to the structure and the complex multi-point adsorption between the dye and pKr 6 7 molecules during the flocculation process. In fact molecules of RB4 contained anthraquinone structure with hydroxyl groups which participate in binding the dye to pKr molecules and could 8 9 explain the obtained decolourization rate.

10 **3.** Conclusions

The Actinobacterial strain K. rosea BU22S was isolated from an hydrocarbon-polluted sediment and 11 found to degrade crude oil and produce the bioflocculant named pKr. The maximum production of 12 about 4.72 ±0.02 g/L was obtained in the optimized medium with glucose at 15.61 g/L, peptone at 13 6.45 g/L, and incubation time of 3 days. This bioflocculant was found to have good thermal stability, 14 require additional cations and was shown to be effective for the removal of some anionic dyes. It was 15 also suitable to be applied in acidic and neutral circumstances. The main active fractions of pKr were 16 found to be polysaccharides consisting of galactose, xylose and glucuronic acid. Multiple functional 17 18 groups present within pKr contributed to its high flocculation efficiency. Although further studies are required to investigate the link between the ability of hydrocarbon degradation and the pKr 19 production, results from this study suggest the potential use of K. rosea in crude oil degradation. 20 Further, pKr bioflocculant constitute a good candidate as useful material for biotechnological 21 processes mainly for environmental bioremediation. 22

23

24 Acknowledgements

The current work was supported by the Ministry of High Education and Scientific Research of the Tunisian Republic, Grant laboratory project LR11ES31 and the European Union in the ambit of projects ULIXES (FP7-KBBE-2010-4,CP-FP-SICA under grant agreement No.266473) and MAD4WATER (Horizon 2020-WATER-5c-2014/2015 research and innovation programme under grant agreement No. 688320)

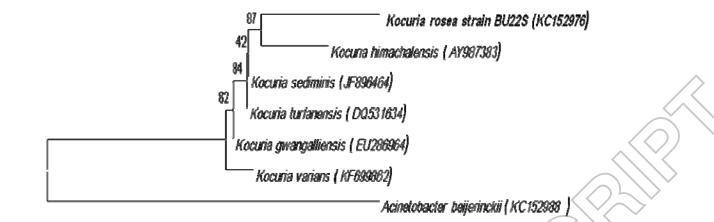
- 30
- 31
- 32
- 33

- 1
- 2
- 3
- 4
- 5

7 **References**

- 8 [1] Banks WA, Niehoff ML, Drago D, Zatta P. Aluminum complexing enhances amyloid-protein
- 9 penetration of blood-brain barrier. Brain Res2006; 1116: 215-221.
- 10 [2] Li Z, Zhong S, Lei HY, Chen RW, Yu Q, Li HL. Production of a novel bioflocculant by Bacillus
- 11 licheniformis X14 and its application to low temperature drinking water treatment. Bioresour.
- 12 Technol 2009; 100: 3650-3656.
- 13 [3] Beland FA. Technical report for experiment No. 2150.05 and 2150.07. Genotoxicity and
- 14 carcinogenicity of acrylamide and its metabolite, glycidamide, in rodents: Two year chronic study of
- acrylamide in B6C3F1 mice and F334 rats. Unpublished study. Submitted to FAO/WHO by the
- 16 United States National Center for Toxicological Research, Jefferson AK, 2010.
- 17 [4] Lee CS, John R, Mei F, Chong C. A review on application of flocculants in wastewater treatment.
- 18 Proc. Saf.Environ. Protec 2014; 92:489-508.
- [5] Tomljenovic L. Aluminum and alzheimer's disease: after a century of controversy, is there a
 plausible link? J Alzheimers Dis 2011; 23: 567-98.
- [6] Matthys C, Bilau M, Govaert Y, Moons E, De HS, Willems JL. Risk assessment of dietary
 acrylamide intake in Flemish adolescents. Food Chem Toxicol 2005; 43: 271-278.
- [7] Xia SQ, Zhang ZQ, Wang XJ, Yang AM, Chen L, Zhao JF, Didier L, Nicole JR. Production and
 characterization of a bioflocculant by *Proteus mirabilis* TJ-1. Bioresour. Technol 2008; 99:65206527.
- [8] Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. Evaluation of the flocculation potential and
 characterization of bioflocculant produced by *Micrococcus sp.* Leo. Appl. Biochem. Microbiol 2014;
 50: 601-608.
- [9] Guo J, Yu J, Xin X, Zou C, Cheng Q, Yang H, Nengzi L. Characterization and flocculation
 mechanism of a bioflocculant from hydrolyzate of rice stover. Bioresour. Technol 2015; 177: 393397.
- [10] Lian B, Chen Y, Zhao J, Henry TH, Zhu L, Yuan S. Microbial flocculation by Bacillus
 mucilaginosus: Applications and mechanisms. Bioresour. Technol 2008; 99: 4825-4831.

- 1 [11] Zhang Z, Xia S, Wang X, Yang A, Xu B, Chen L, Zhu Z, Zhao J, Jaffrezic-Renault N, Leonard
- 2 D. A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of *Proteus mirabilis*
- 3 TJ-1. J. Hazard. Mater 2009 163: 279-284.
- 4 [12] Okaiyeto K, Nwodo UU, Mabinya LV, Okoh AI. Bacillus toyonensis Strain AEMREG6, a
- 5 Bacterium Isolated from South African Marine Environment Sediment Samples Produces a
 6 Glycoprotein Bioflocculant. Molecules 2015; 20:5239-5259.
- 7 [13] Li O, Lu C, Liu A, Zhu L, Wang PM, Qian CD.. Optimization and characterization of
- 8 polysaccharide based bioflocculant produced by *Paenibacillus elgii* B69 and its application in
- 9 wastewater treatment. Bioresour Techno 2013; 134: 87-93.
- 10 [14] Gong WX, Wang SG, Sun XF, Liu XW, Yue QY, Gao BY. Bioflocculant production by culture
- of *Serratia ficaria* and its application in wastewater treatment. Bioresour. Technol 2008; 99: 46684674.
- 13 [15] Wang SG, Gong WX, Liu XW, Tian L, Yue QY, Gao BY. Production of a novel bioflocculant
- by culture of *Klebsiella mobilis* using dairy wastewater. Biochem. Eng. J 2007; 36: 81-86.
- 15 [16] Razali MAA, Ahmad Z, Ahmad MSB, Ariffin A. Treatment of pulp and paper mill wastewater
- with various molecular weight of poly DADMAC induced flocculation. Chem. Eng. J 2011 166:
 529-535.
- 18 [17] Ugbenyen AM, Okoh AI. Characteristics of a bioflocculant produced by a consortium of
- *Cobetia* and *Bacillus* species and its application in the treatment of wastewaters, Applied and
 Environmental Microbiology Research Group 2014 40: 139-144.
- 21 [18] Simphiwe PB, Ademola OO, Balakrishna P. Textile Dye Removal from Wastewater Effluents
- Using Bioflocculants Produced by Indigenous Bacterial Isolates, Molecules 2012; 17: 14260-14274.
- [19] Ghosh M, Ganguli A, Pathak S.'Application of a novel biopolymer for removal of *Salmonella*from poultry wastewater'. Environ. Technol 2009; 30:337-344.
- 25 [20] Patil S, Patil C, Salunke B, Salunkhe R, Bathe G, Patil D.. Studies on characterization of
- 26 bioflocculant exopolysaccharide of *Azotobacter indicus* and its potential for wastewater treatment.
- 27 Appl. Biochem. Biotechnol 2011;163: 463-472.
- [21] Zhao G, Ma F, Wei L, Chua H. Using rice straw fermentation liquor to produce bioflocculants
 during an anaerobic dry fermentation process. Bioresour. Technol. 2012; 113:83-88.
- 30 [22] Okaiyeto K, Nwodo U.U, Mabinya LV, Okoh A. I. Characterization of a bioflocculant
- 31 V produced by a consortium of *Halomonas sp.* Okoh and *Micrococcus sp.* Leo. Int. J. Environ. Res.
- 32 Public Health 2013; 10:5097-5110.


- [23] More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY. Extracellular polymeric substances of
 bacteria and their potential environmental applications. J. Environ. Manag 2014; 144: 1-25.
- 3 [24] Zhang ZQ, Lin BO, Xia SQ, Wang XJ, Yan GM. Production and application of a novel
- 4 bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source,
- 5 Journal of Environmental Sciences 2007; 19: 667-673.
- [25] Dharmaraj S. Marine Streptomyces as a novel source of bioactive substances.World J.
 Microbiol. Biotechnol. 2010; 26 (12): 2123-2139.
- 8 [26] Yuan M, Yu Y, Li HR, Dong N, Zhang XH. Phylogenetic diversity and biological activity of
- 9 Actinobacteria isolated from the Chukchi Shelf Marine sediments in the Arctic Ocean. Mar. Drugs
 10 2014; 12 (3): 1281-297.
- 11 [27] Bernal C, Cairo J, Coello N. Purification and characterization of a novel exocellular keratinase
- 12 from *Kocuria rosea*. Enzyme and microbial technology 2006; 38: 49-54.
- [28] Mahjoubi M, Jaouani A, Guesmi A, Ben Amor S, Jouini A, Cherif H, Cherif A.
 Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites inTunisia: isolation,
 identification and characterization of the biotechnologicalpotential. New Biotechnol 2013; 30: 723-
- 16 733.
- [29] Ettoumi B, Chouchane H, Guesmi A, Mahjoubi M, Brusetti L, Neifar M, Borin S, Daffonchio
 D, Cherif A. Diversity, ecological distribution and biotechnological potential of Actinobacteria
- inhabiting seamounts and non-seamounts in the Tyrrhenian Sea, Microbiol. Res 2016; 186: 71-80.
- [30] Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Marine actinobacterial metabolites:
 current status and future perspectives. Microbiol. Res 2013; 168: 311-332.
- 22
- [31] Santisi S, Cappello S, Catalfamo M, Mancini G, Hassanshahian M, Genovese L, Yakimov MM.
 Biodegradation of crude oil by individual bacterial strains and a mixed bacterial
 consortium. Brazilian Journal of Microbiology 2015; 46:377-387.
- 26 [32] Chen H, Chen X, Chen T, Xu X, Jin Z. Optimization of solid-state medium for the production of
- inulinase by *Aspergillus ficuum* JNSP 5-06 using response surface methodology. Carbohyd. Polym
 2011; 86:249–254.
- [33] Ravella SR, Quiones TS, Retter A, Heiermann M, Amon T, Hobbs PJ. Extracellular
 polysaccharide (EPS) production by a novel strain of yeast-like fungus *Aureobasidium pullulans*.
 Carbohydr. Polym 2010; 82:728-732.

- 1 [34] Li J, Song X, Pan J, Zhong L, Jiao S, Ma Q. Adsorption and flocculation of bentonite by
- 2 chitosan with varying degree of deacetylation and molecular weight. International Journal of
- 3 Biological Macromolecules 2013; 62: 4-12.
- 4 [35] Kurane R, Takeda K, Suzuki T. Screening for and characteristics of microbial flocculants. Agri.
- 5 Biol. Chem 1986; 9:2301-2307.
- [36] Chaplin MF, Kennedy JF. Carbohydrate Analysis. 2nd ed. Oxford University Press; New York,
 NY, USA; 1994.
- 8 [37] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of
- 9 protein utilizing the principle of protein–dye binding. Anal. Biochem 1976; 72: 248-254.
- 10 [38] Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids.
- 11 Anal. Biochem 1973; 54: 484-489.
- 12 [39] Tang W, Song L, Li D, Qiao J, Zhao T, Zhao H. Production, Characterization, and Flocculation
- 13 Mechanism of Cation Independent, pH Tolerant, and Thermally Stable Bioflocculant from
- 14 Enterobacter sp. ETH-2, PLoS ONE 2014; 9: e114591.
- 15 [40] Ramírez-Saad H. Hydrocarbon biodegradation potential of native and exogenous microbial I
- 16 inocula in Mexican tropical soils. Biodegradation of hazardous and special products 2013; 155-178.
- [41] Ahmed RZ, Ahmed N, Gadd GM. Isolation of two Kocuria species capable of growin on
 various polycyclic aromatic hydrocarbons. African Journal of Biotechnology 2010; 9: 3611-3617.
- 19 [42] Muralidhar RV, Chirumamila RR, Marchant R, Nigam PA. Response surface approach for the
- comparison of lipase production by *Candida cylindracea* using two different carbon sources.
 Biochem. Eng. J 2001; 9:17-23.
- [43] Kiran B, Kaushik A, Kaushik CP. Response surface methodological approach for optimizing
 removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chem. Eng. J 2007;
 126:147-153.
- [44] Xu H, Sun LP, Shi YZ, Wu YH, Zhang B. Optimization of cultivation conditions for
 extracellular polysaccharide and mycelium biomass by *Morchella esculenta* As51620. Biochemical
 Engineering Journal 2008; 39: 66-73.
- [45] Raza W, Makeen K, Wang Y, Xu Y, Qirong S. Optimization, purification, characterization and
 antioxidant activity of an extracellular polysaccharide produced by *Paenibacillus polymyxa* SQR-21.
 Bioresour. Technol 2011; 102:6095-6103.
- 31 [46] Coyne MJ, Fletcher CM, Reinap B, Comstock LE. UDP-glucuronic acid decarboxylases of
 Bacteroides fragilis and their prevalence in bacteria. J. Bacteriol 2011; 193: 5252-5259.

- 1 [47] Melo MRS, Feitosa JPA, Freitas ALP, De Paula RCM. Isolation and characterization of soluble
- sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydrate Polymers 2002;
 40:401-408
- 3 49:491-498.
- 4 [48] Pan D, Mei X. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis
- 5 *subsp.* lactis 12. Carbohydrate Polymers 2010; 80: 908-914.
- 6 [49] Ye S, Zhang M, Yang H, Wang H, Xiao S, Liu Y. Biosorption of Cu^{2+} , Pb^{2+} , and Cr^{6+} by a
- 7 novel exopolysaccharide from *Arthrobacterps*-5. Carbohydrate Polymers 2014; 101: 50-56.
- 8 [50] Tremblay L, Alaoui G, Léger, MN. Characterization of aquatic particles by direct FTIR analysis
- 9 of filters and quantification of elemental and molecular compositions. Environ. Sci. Technol. 2011;
 10 45: 9671-9679.
- 11 [51] Zheng Y, Ye ZL, Fang XL, Li YH, Cai WM. Production and characteristics of a bioflocculant
- 12 produced by *Bacillus sp.* F19. Bioresour. Technol. 2008; 99:7686-7691.
- [52] Aljuboori AHR, Idris A, Abdullah N, Mohamad R. Production and characterization of
 abioflocculant produced by *Aspergillus flavus*. Bioresour. Technol 2013;127: 489-493
- 15 [53] Morillo Perez JA, Garcia-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A,
- 16 Monteoliva-Sanchez M. Biosorption of heavy metals by the exopolysaccharide produced by
- 17 Paenibacillus jamilae. World Journal of Micro-biology and Biotechnology 2008; 24:2699-2704.
- 18 [54] Zhang D, Hou Z, Liu Z, Wang T. Experimental research on *Phanerochaete chrysosporium* as
- 19 coal microbial flocculant. Int. J. Min. Sci. Technol 2013; 23:521-524.
- [55] Gomaa EZ. Production and characteristics of a heavy metals removing bioflocculant produced
 by*Pseudomonas aeruginosa*. *Pol*, *J*. *Microbiol* 2012; *61*:281-289.
- [56] Zhang Z, Xia S, Zhao J, Zhang J. Characterization and fiocculation mechanism of high
 efficiency microbial fiocculant TJ-F1 from *Proteus mirabilis*. Coll. Surf. B Biointerfaces 2010;
 75:247-251.
- 25 [57] Yuan SJ, Sun M, Sheng GP, Li Y, Li WW, Yao RS, Yu HQ. Identification of key constituents
- and structure of the extracellular polymeric substances excreted by *Bacillus megaterium* TF10 for
 their flocculation capacity. Environ. Sci. Technol 2011; 45: 1152-1157.
- [58] Aljuboori AHR, Azni A, Hamid I, Rijab H, Yoshimitsu AC, Ibn U, Abubakar BSU.
 Flocculation behavior and mechanism of bioflocculant produced by *Aspergillus flavus*. J. Environ.
 Manag, 2015; 150: 466-471.
- 31 V[59] Yang ZH, Huang J, Zeng GM, Ruan M, Zhou CS, Li L, Rong ZG. Optimization of flocculation
- 32 conditions for kaolin suspension using the composite flocculant of MBFGA1 and PAC by response
- surface methodology. Bioresour. Technol 2009; 100:4233-4239.

- 1 [60] Liu J, Ma J, Liu Y, Yang Y, Yue D, Wang H. Optimized production of a novel bioflocculant M-
- 2 C11 by *Klebsiella sp.* and its application in sludge dewatering. J. Environ. Manag 2014; 26:2076-
- 3 2083.
- 4 [61] Elkady M, Farag S, Zaki S, Abu-Elreesh G, Abd-El-Haleem D. Bacillus mojavensis strain 32A,
- 5 a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresour.
- 6 Technol 2011; 102: 8143-8151.
- 7 [62] Okaiyeto K, Nwodo UU, Mabinya LV, Okoli AS, Okoh AI. Characterization of a Bioflocculant
- 8 (MBF-UFH) Produced by Bacillus sp. AEMREG7. Int. J. Mol. Sci 2015; 16: 12986-13003.
- 9 [63] Ugbenyen AM, Cosa S, Mabinya LV, Okoh AI. Bioflocculant production by Bacillus sp.
- 10 Gilbert isolated from a marine environment in South Africa. Appl. Biochem. Microbiol 2014; 50:49-
- 11 54.
- 12 [64] He J, Zou J, Shao Z, Zhang J, Liu Z, Yu Z. Characteristics and flocculating mechanism of a
- 13 novel bioflocculant HBF-3 produced by deep-sea bacterium mutant *Halomonas sp.* V3a'. World J.
- 14 Microbiol. Biotechnol 2010; 26:1135-1141.
- 15 [65] Pu SY, Qin LL, Che JP, Zhang BR, Xu M.. Preparation and application of a novel
- 16 bioflocculant by two strains of *Rhizopus sp.* using potato starch wastewater as nutrilite. Bioresour.
- 17 Technol 2014; 162: 184-191.
- 18 [66] Zhang J, Liu Z, Wang S, Jiang, P. Characterization of a bioflocculant produced by the marine
- 19 myxobacterium Nannocystis sp. NU-2. Appl. Microbiol. Biotechnol 2002 ; 59: 517-522.
- 20 [67] Prasertsan P, Dermlim W, Doelle H, Kennedy JF. Screening, characterization and flocculating
- property of carbohydrate polymer from newly isolated *Enterobacter cloacae* WD7. Carbohyd.
 Polym 2006; 66: 289-297.
- 23 [68] Liu CS, Guo YD, Zhao D.F. Characteristics and Flocculating Mechanism of a Bioflocculant M-
- 1 Produced by *Enterobacter sp* EP3. Adv Mater Res-Switz 2012; 553: 1482-1485.
- [69] Wu J, Ye HF. Characterization and flocculating properties of an extracellular biopolymer
 produced from a *Bacillus subtillis* DYU1 isolate. Process Biochem 2007; 42: 1114-1123.
- [70] Deng SB. Yu G, Ting YP. Production of a bioflocculant by *Aspergillus parasiticus* and its
 application in dye removal. Coll. Surf. B Biointerfaces 2005; 44: 179-186.
- 29

- ~~
- 32
- 33

0.02

H

Figure 1. Phylogenetic analysis of 16S rRNA gene sequence of bacterial isolate *Kocuria rosea strain BU22S based on*16S rDNA partial sequences. Phylogenetic dendrogram was evaluated by
performing bootstrap analysis of 1000 data sets using MEGA 6.06. 16S rRNA sequence accession
numbers of the reference strains are indicated in parentheses.

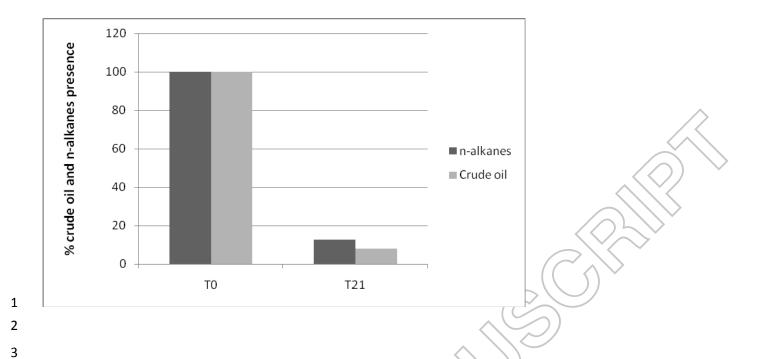
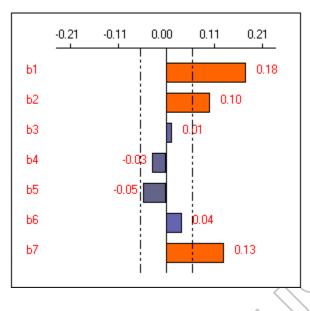
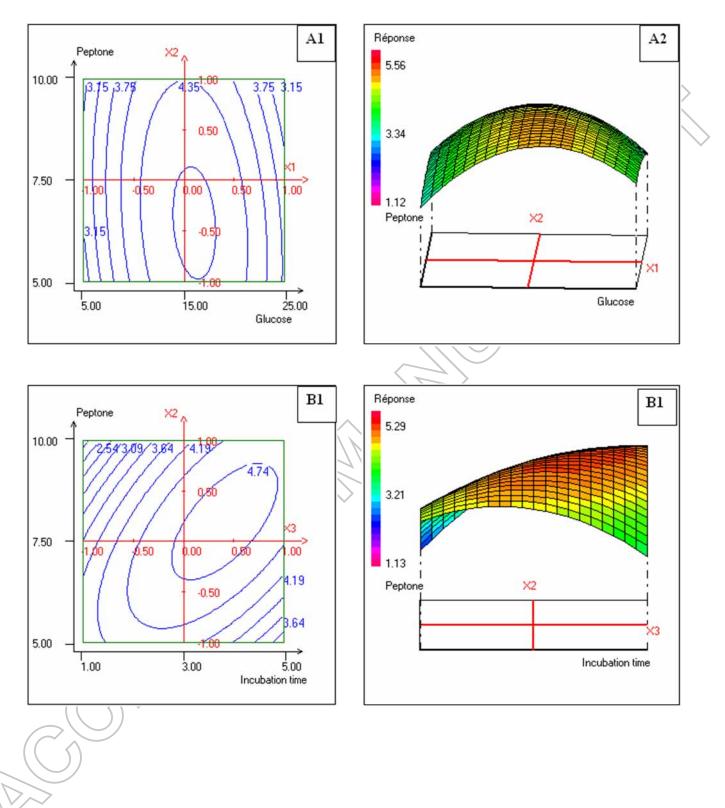




Figure 2. Relative percentage of n-alkanes C12-C40 (dark grey bars) and crude oil (white grey bars)
present in cultures after 21 days (T21) of incubation, data expressed as the percentages compared to
negative abiotic control (T0).

4 Figure 3. Pareto chart of the standard effects of the tested seven factors to pKr production. Glucose,

- 5 peptone, and incubation time were determined to be significant.

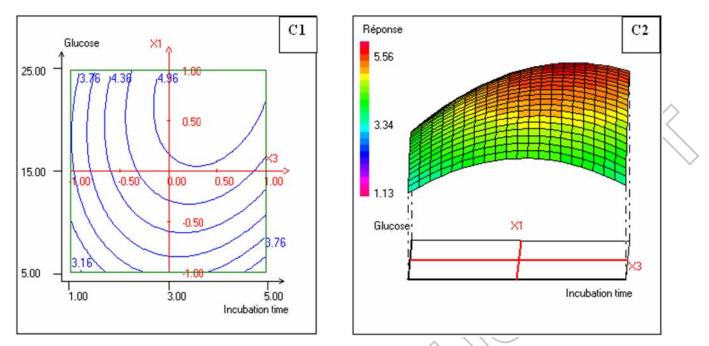
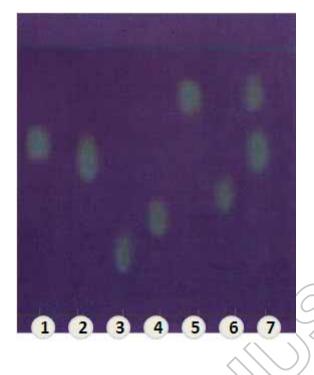
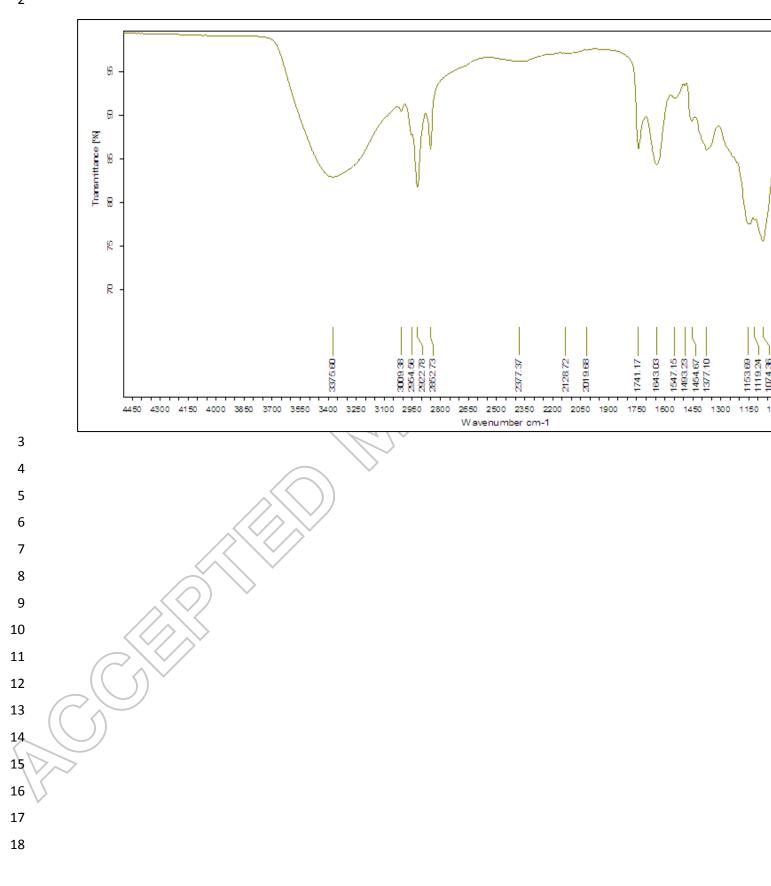
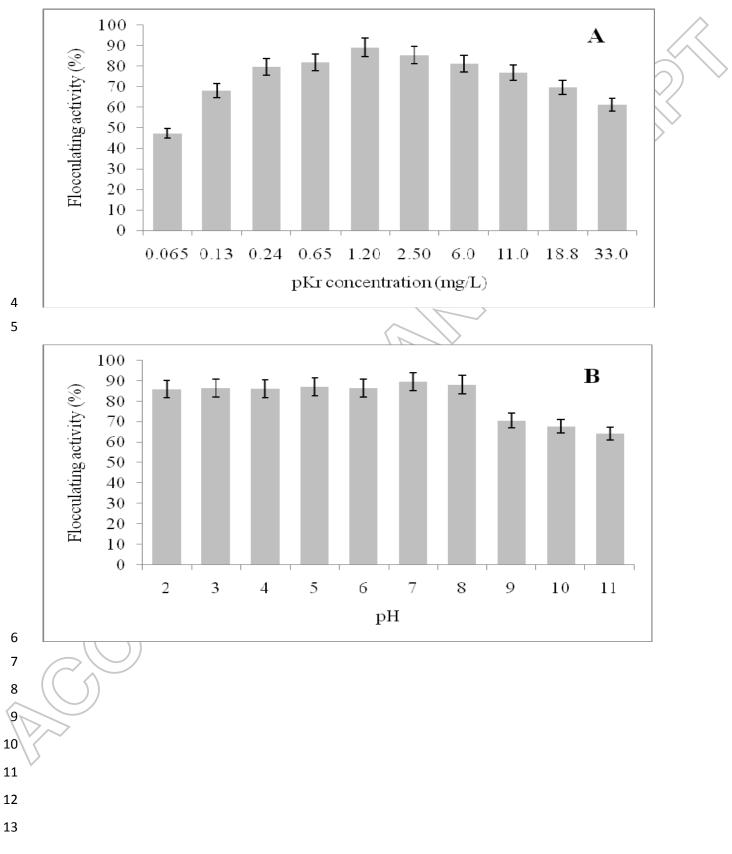




Figure 4. The 2D-contour plots and 3D-response surface of pKr yield (g/L) versus the tested
variables (g/L): glucose and peptone (A1and A2); peptone and incubation time (B1 and B2); glucose
and incubation time (C1 and C2).

- Figure. 5. Thin layer chromatography analysis of monosaccharide's composition of pKr.
- Lane 1: glucose ; lane 2: galactose ; lane 3: lactose; lane 4 :maltose; lane 5 : xylose; lane 6 :
- saccharose. lane 7: pKr
- Development system : potassium permanganate (3%)/ anhydrous sodium carbonate (4%) [2:1 (v/v)]



- Figure 6. FTIR spectrum of pKr. Fourier transform infrared (FT-IR) spectroscopy of pKr sample
 was obtained over a wave number range of 400-4000 cm⁻¹ (Bruker Vertex 70 FTIR spectrometer).

Figure 7. Effect of pKr concentration (A), pH (B), temperature (C), and metal ions (D) on the
 flocculating efficiency of pKr.

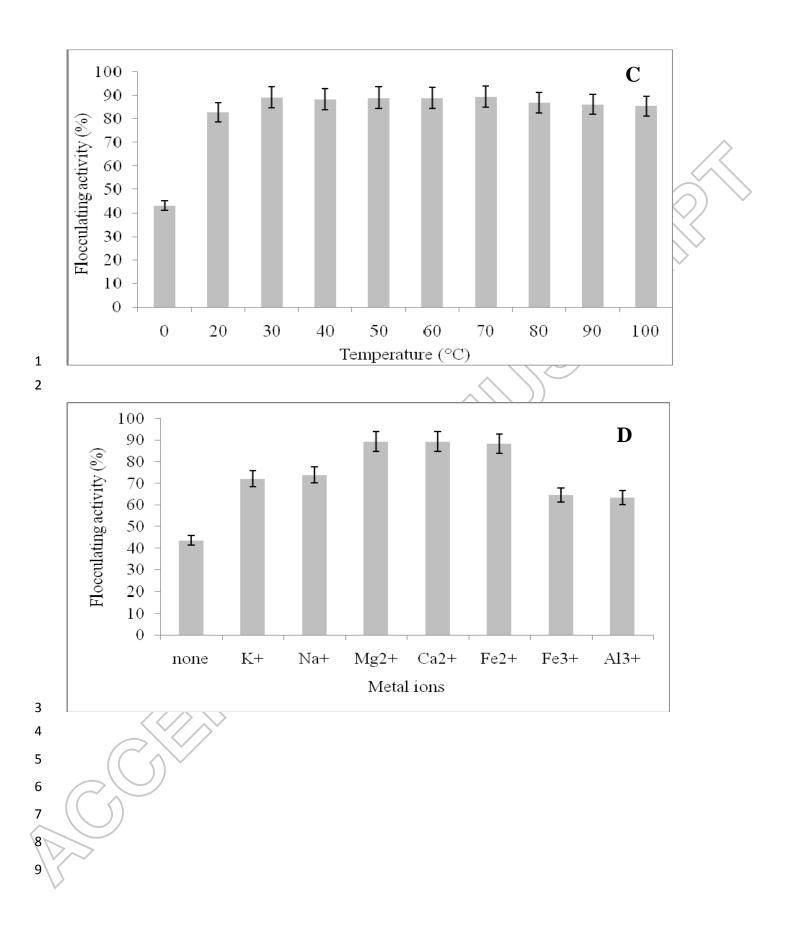


Table 1. Plackett-Burman experimental design for screening significant variables affecting pKr
 production.

Run	glucose	peptone	KH_2PO_4	Inoculum	pН	Temperature	Incubation	pKr yield
	(g/L)	(g/L)	(g/L)	size (%)	1	(°C)	time	(g/L)
							(days)	
1	1(10)	1(7.5)	1(2.5)	-1(0.5)	1(8)	-1(30)	-1(1)	1.12
2	1(10)	1(7.5)	1(2.5)	-1(0.5)	1(8)	-1(30)	-1(1)	1.02
3	-1(5)	1(7.5)	1(2.5)	1(1.5)	-1(6)	1(37)	-1(1)	0.70
4	-1(5)	1(7.5)	1(2.5)	1(1.5)	-1(6)	1(37)	-1(1)	0.95
5	-1(5)	-1(5)	1(2.5)	1(1.5)	1(8)	-1(30)	1(4)	0.78
6	-1(5)	-1(5)	1(2.5)	1(1.5)	1(8)	-1(30)	1(4)	0.65
7	1(10)	-1(5)	-1(2)	1(1.5)	1(8)	1(37)	-1(1)	0.82
8	1(10)	-1(5)	-1(2)	1(1.5)	1(8)	1(37)	(1)	0.89
9	-1(5)	1(7.5)	-1(2)	-1(0.5)	1(8)	1(37)	1(4)	1.00
10	-1(5)	1(7.5)	-1(2)	-1(0.5)	1(8)	1(37)	1(4)	1.03
11	1(10)	-1(5)	1(2.5)	-1(0.5)	-1(6)	1(37)	(1(4))	1.20
12	1(10)	-1(5)	1(2.5)	-1(0.5)	-1(6)	1(37)	1(4)	1.41
13	1(10)	1(7.5)	-1(2)	1(1.5)	-1(6)	-1(30)	1(4)	1.26
14	1(10)	1(7.5)	-1(2)	1(1.5)	-1(6)	-1(30)	1(4)	1.42
15	-1(5)	-1(5)	-1(2)	-1(0.5)	-1(6)	-1(30)	-1(1)	0.60
16	-1(5)	-1(5)	-1(2)	-1(0.5)	-1(6)	-1(30)	-1(1)	0.58

Table 2. Experimental domain of the Box-Behnken design

Variable	Factor	Unit	Center	Step of variation
X_1	Glucose	g/L ~/I	15.0	10.0
$egin{array}{c} X_2 \ X_3 \end{array}$	Peptone Incubation time	g/L days	7.5 3.0	2.5 2.0
				$(())^{\sim}$
				$\langle \rangle$
			$\langle \rangle$	
		<		
		$\langle \cdot \rangle$	\mathbb{N}^{\sim}	
		$\land \lor$	\gg	
		$\sim V/V$		
	<			
		\sim		
/				
	\mathcal{O}			
	\mathbf{N}			
	\sum			
\sim				

Table 3. Experimental conditions of the Box-Benheken design in coded and natural variables and the
 corresponding experimental and estimated responses.

4									\square
-	Run	X_1	X ₂	X_3	Glucose (g/L)	Peptone (g/L)	Incubation time(Days)	Experimental pKr (g/L)	Estimated pKr (g/L)
-	1	-1	-1	0	5.00	5.00	3.00	2.880	2.575
	2	1	-1	0	25.00	5.00	3.00	5.110	5.233
	3	-1	1	0	5.00	10.00	3.00	3.940	3.813
	4	1	1	0	25.00	10.00	3.00	3.250	3.555
	5	-1	0	-1	5.00	7.50	1.00	2.710	2.984
	6	1	0	-1	25.00	7.50	1.00	3,700	3.546
	7	-1	0	1	5.00	7.50	5.00	3.030	3.184
	8	1	0	1	25.00	7.50	5.00	5.290	5.016
	9	0	-1	-1	15.00	5.00	1.00	3.970	4.001
	10	0	1	-1	15.00	10.00	1.00	2.260	2.109
	11	0	-1	1	15.00	5.00	5.00	3.010	3.161
	12	0	1	1	15.00	10.00	5.00	4.650	4.619
	13	0	0	0	15.00	7,50	3.00	5.120	4.810
	14	0	0	0	15.00	7.50	3.00	4.610	4.810
	15	0	0	0	15.00	7.50	3.00	4.680	4.810
	16	0	0	0	15.00	7.50	3.00	4.810	4.810
_	17	0	0	0	15.00	7.50	3.00	4.830	4.810

Table 4. Growth of bacteria with different hydrocarbon in solid medium (+: growth, - no growth)

Strain	Crude oil	Pr	Ph	Ру	Bab	Bph	Na	Car	Oct	Flu	DBT	DBF	Sqa An	
BU22S	+	+	+	+	-	-	+	-	+	+	-	-	$\langle \langle \rangle + \rangle$	

Pr (Pristane),Ph (Phenanthrene), Py (Pyrene), BaP (B(a)Pyrene), Bph (Biphenyl), Na (Naphtalene), Car (Carbazole), Oct (Octadecane), Flu (fluoranthene), DBT (dibenzothiophen) DBF (dibenzofurane), Sqa (squalene), An (Anthracene).

Regression 14.6611 9 1.6220 18.5619 *** Residuals 0.6143 7 0.0878
Validity 0.4609 3 0.1536 4.0063 N.S. Error 0.1534 4 0.0384 Image: Constraint of the second
Error 0.1534 4 0.0384 Total 15.2754 16
***Significant at the level 99.9% N.S.: non significant

 Table. 5. ANOVA for the response surface quadratic model