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Note 

Computing the Eigenvalues and Eigenvectors of 
Symmetric Arrowhead Matrices* 

1. INTRODUCTION 

In this paper we will be concerned with the eigenvalue problem for a symmetric 
matrix which is zero except for its main diagonal and one row and column. Such 
problems arise in the description of radiationless transitions in isolated molecules 
[l] and of oscillators vibrationally coupled with a Fermi liquid [63. In these 
applications the order n of the matrix A can be in the thousands. The purpose of 
this paper is to present formulas and efficient algorithms for computing eigenvalues 
and eigenvectors of such matrices. 

Since eigenvalues are invariant under similarity transformations, we can sym- 
metrically rearrange the rows and columns of the matrix at our convenience, and 
we therefore assume without loss of generality that A has been ordered so that the 
nonzero row and column are last. Thus, we consider matrices of the form 

A= 

‘d, 0 0 ... 0 e, 

Od,O... 0 e2 

0 0 d,... 0 e3 
. . . . . : . . . . . . . . 
0 0 0 ... dnel e,,:, 

,e, e2 e3 ... en-, P 

(1.1) 

which we will call (symmetric) arrowhead matrices. By further interchanges, we can 
arrange for the diagonal elements to be ordered so that d, <d, Q . . . <d,- 1. 
Hence, we will consider only ordered arrowhead matrices. 

Since A is symmetric, its eigenvalues may in principle be computed by invoking 
any of a number of standard programs (e.g., the EISPACK programs [S]). However, 
these programs usually begin with an initial reduction of the matrix to tridiagonal 
form, which entails O(n’) operations and O(n’) storage. In this paper we propose 
an alternative which takes advantage of the structure of A: namely, we propose to 
solve the Eq. (2.1) below, which is closely related to the secular equation, for the 
eigenvalues of A. This results in an algorithm which requires only O(n*) computa- 
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tions and O(n) storage. Although the idea is conceptually simple and in fact has 
been used to solve other eigenvalue problems of special structure [2, 3, 5, 71, some 
care must be taken to show that the computation is stable. 

In the next section we will give the basic properties of arrowhead matrices, and 
in the next we will describe how the equation rp,(l) = 0 may be solved. In the last 
section we will discuss the computation of eigenvectors. We point out here that our 
algorithms are completely parallel; the computations for one simple eigenvalue are 
completely independent of those for another. 

2. PROPERTIES OF EIGENVALUES OF ARROWHEAD MATRICES 

We begin by disposing of a special case. If there is a zero in the last column, say 
e, = 0, then the diagonal element d, is an eigenvalue whose eigenvector is the ith 
unit vector. To compute the remaining eigenvalues, we can reduce the size of the 
problem by deleting the ith row and column of the matrix, eventually obtaining a 
matrix for which all elements ej are nonzero. We will call such an arrowhead matrix 
irreducible. 

The basic results on the eigenvalues of arrowhead matrices are contained in the 
following theorem due to Wilkinson [lo, pp. 94 ff]. Here we give a slightly different 
proof that contains results needed to derive our algorithm. 

THEOREM 2.1. Let A be an ordered, irreducible arrowhead matrix of the form 
(1.1). Let 

d,-le,l,...,d,~,-Ie,-,I,p-Clejl 
i i 

and 

d,>max dl+le,I,...,d,~,+le,-,I,p+Cleil . 
i 1 

For i=l,...,n-2 andk>O if 

then d, is an eigenvalue of A of multiplicity k. For each pair of distinct successive 
diagonals di ~ , < di, there is a single eigenvalue ii of A satisfying di- 1 < Ai < di, and 
all such eigenvalues satisfy the equation (pA(IZi) = 0, where 

n-1 

ct?Jjl)=p-A- c 3- 
i=l dipi’ 

(2.1) 

Proof: Let 1,< ... <1, be the eigenvalues of A. By Cauchy’s interleaving 
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theorem [lo, p. 981, the eigenvalues of A interlace the eigenvalues of the matrix 
formed by deleting the last row and column of A, so that 

A, <d, 6&d ... <d,-,<i,,. (2.2) 

By Gerschgorin’s theorem [9, p. 3021, d,, < 2, and I, cd,,. These inequalities 
immediately imply the statements about multiple eigenvalues. 

We will next show that if J. is distinct from the numbers di, then 2 is an eigen- 
value of A if and only if (~~(1) = 0. If 1” is an eigenvalue of A, then det(A - ,?I) = 0. 
If we multiply the first row of this determinant by e,/(d, -2) and subtract it from 
the last row, multiply the second row by e,/(d, -A) and subtract it from the last, 
and so on, we get the equation 

Since this determinant is the product of the diagonals and d, - A # 0, we must have 
~~(2) = 0. Conversely, if ~~(1) = 0, then det(A - RZ) = 0. 

Now assume that di- i < di, where 1 < i < n - 1. Then for I near to but greater 
than dim ,, we have (remember e,- I # 0) 

(2.3) 

For J. near to but less than d,, we have 

(PA(l)Z -x10. 
di - 1 (2.4) 

Therefore, ~~(2) must change sign in the interval (die 1, di), and the point at which 
it does is an eigenvalue. The inequalities (2.2) ensure that the sign changes only 
once in the interval. 

It remains only to show that there is an eigenvalue strictly less than d, and an 
eigenvalue strictly greater than d, ~ 1. If J is near to but less than d, , then 

On the other hand, as 3% + - cc we have cp,(E,) E -2 > 0. Hence q,(l) changes sign 
in (-co, d,). A similar argument shows that ~~(2) has to change sign in 
(4-l, 00). I 

The theorem shows we can lind eigenvalues corresponding to repeated values of 
the diagonal by inspection. The remaining eigenvalues are located strictly between 
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the d;s and satisfy the equation (P,+(A) = 0. Since (Pi is very easy to compute, this 
suggests that we attempt to use a root-finding method to compute the eigenvalues 
of A. We will describe and analyze such a method in the next section. 

3. COMPUTING EIGENVALUES 

In this section we turn to the problem of computing the eigenvalue Ai lying 
between did i and di, assuming these diagonals are distinct. According to (2.3) and 
(2.4), if 1 E (di-i, di) and (~~(2) >O, then 1~ Ai. If (pA(jl) ~0, then L > ;li. This 
suggests that we can compute Li by interval bisection. The following pseudo-code 
gives such an algorithm, computing an interval [b, c] of length at most eps which 
contains li, and the midpoint of the interval as the estimate of the eigenvalue. The 
variable ops is a convergence tolerance, which must be greater than zero, and phi 
is a subprogram that returns the function (Pi. 

a = d(i-1) 

b= d(i) 

while (b-a .gt. eps) 

c = (a+b)/l 

phic = phi(c) 

if (phic .eq. 0) 

a= b=c 

exit 

if (phic .lt. 0) 

b=c 

else 

a=c 

end if 

end while 

lambda = (a+b)/2 
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At each step of this algorithm, the size of the interval (a, b) containing the eigen- 
value is reduced by a factor of two. In other words, the method adds about a bit 
of accuracy per iteration. 

However, we recommend this procedure be used only to find brackets a > die 1 
and b <di for the eigenvalue. Once these brackets have been found, one should 
switch to a combination of the secant method and interval bisection. Although this 
method is complicated, it is available in library subroutine packages (e.g., zeroin in 
the IMSL library). The increased rate of convergence more than justifies the 
trouble. 

There is one simplification which results when there are multiple eigenvalues. If 
diel<d,= ... =di+k<di+k+Ir the terms 

i+k 

c 

ejz 

j=i dj-A’ 

in (2.1) collapse into 

Thus if we strike the rows and columns corresponding to d,, i, . . . . di+ k and replace 
ei by ,/w, the value of (~~(2) is unchanged. When there are many repeated 
eigenvalues, this can result in large savings in the evaluation of q5.,,. 

At the end of the iteration, we have two numbers a and b within eps of each 
other such that phi(a) is nonnegative and phi(b) is nonpositive. However, phi and 
qA are not the same function, since phi is evaluated with rounding error. We now 
show that the effect of this rounding error is negligible. 

We will assume that all computation is done in floating-point arithmetic with 
rounding unit E,+,. Specifically, we will assume that the result of any floating-point 
operation is to return a value that has relative error E,,,. For example, in computa- 
tions to 10 decimal digits, E,,, is approximately lo-“. Under these assumptions, we 
can show (see the Appendix to this paper) that if n > 2, E,+, < 0.001, and nEM < 0.1 
then 

N-W) = (Pi+&.), 

where 

[hi,1 = lhnil < 1.06n leil EM, i= 1 , . . . . n - 1, 

and 

Ih,,l G l.OWlpl + 1J-l )&,w. 

The other elements of H, which depends on 2, are zero. 

581/90/Z-16 
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This result shows that whatever we compute for q(l), it is the same value we 
would have obtained by performing exact calculations with a slightly perturbed 
matrix A”= A + H. Now it can be shown [9, p. 3151 that such a perturbation can 
move the eigenvalues of A by no more than 

IIf4 m = m?x c l&l. I 
i 

Since for our problem 

IlHll m d ‘.06n IPI + IAl + 1 leil 
i 1 

&,+t ” V(A), 

the eigenvalues Ii of A + H satisfy 

I;ij-nil <V(l). (3.1) 

Let us now apply these results to the output a and b of our algorithm. From our 
rounding-error analysis, we have (~~+,(a) 30. Since A + H is an ordered, 
irreducible arrowhead matrix with diagonals di, its ith eigenvalue must be greater 
than or equal to a. It follows from (3.1) that Ji 2 a - q(a). A similar argument 
shows that & < b + r](b). In other words, our algorithm-ither simple bisection or 
the composite method-always returns numbers a and b such that 

Ji E Ca - v(a), b + V(b)1 n (di- 1, di). 

4. COMPUTING EIGENVECTORS 

Next we consider the computation of eigenvectors of ordered, irreducible 
arrowhead matrices (we have already mentioned in Section 2 that if ei = 0, then di 
is an eigenvalue whose eigenvector is the ith unit vector). We will first consider 
eigenvectors corresponding to nonmultiple eigenvalues. Let zi be the eigenvector 
corresponding to ,li, and assume that it has been normalized so that its n th compo- 
nent .zF’ is one. Then it is easily verified from the equation Azi= ;l,zi that the 
remaining components of zi are given by the formulas 

Since dip, < ;li < di, the denominators in these formulas are nonzero. 
The chief difficulty with these formulas is that we must use an approximate eigen- 

value xi in place of the true value, which gives an approximate eigenvector &i. If we 
set 

6,yliJ I&-1,1, 
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then it follows [4] that the sine of the angle between zi and Zi satisfies 

where 11. I( is the usual Euclidean norm. It is easily verified that (A -X,1).?,= 
(0, ..., 0, ~(1~))~. Hence 

Since our algorithm returns intervals containing the eigenvalues, we may obtain a 
lower bound on Sj from their endpoints. 

The eigenvectors zi + , , . . . . zi+ k of an eigenvalue A = dj = di + 1 = . . . = di+ k of mul- 
tiplicity k are zero except for the elements in positions i through i + k. From the last 
row of the equation AZ = lz, we see that these components must satisfy 

eizij) + e. r+lzli:l + ... +ei+kzj2k=0 3 j=i+ 1, . . . . i+k. 

One way to define these vectors is to set 

ei+di+j m =O, . . . . j- 1 
z!jj = ef+ ... +ef+j-1' 

Ii-WI -1, m=j 

0, m =j + 1, . . . . k. 

With this definition, the vectors zj are mutually orthogonal. 

APPENDIX: ROUNDING ERROR ANALYSIS 

The assumptions about our computer arithmetic amount to saying that the 
computed value of a floating point operation, say a + b, is (a + b)( 1 + E), where 
/El G&‘&f. In deriving our bounds we will be faced with expressions of the form 

(1 +&I)(1 +E*)...(l +&j) 
(l+Ej+l)(l +Ej+*)"'(l +Ek)’ 

Eventually, we will replace such expressions by a bound independent of j, and in 
anticipation of this we let (k) be a generic symbol for such an expression. Clearly 
(k)(l) = (k+ 1). 

In evaluating q,(n) we must first compute p - J which gives a value (p - A)< 1). 
Next we must compute ef/(d, - L), which gives e:( 3)/(d, - A). When the latter is 
subtracted from the former, we get 

(p-1)(&g. 
1 
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Computing and subtracting the next term gives 

e:(5) e:(4) 
(p-A)(3)---- 

d,-1 dz-1’ 

When cp is finally evaluated, we have 

b-l)(n)- 

ef(n+2) e:(n+ 1) eL(fV 
d -L - 

1 d2-A - .*’ -d,-I-,I’ 

If we now define 

p”=hn> -4(n)- 1) 

and 

2, = ei( n - i + 3 ) lL2, 

then the entire computation is equivalent to performing exact computations on the 
arowhead matrix 2 formed from B, the Z, and the di. It remains to get bounds on 
the elements of H= A”- A. 

We begin with h,=(p-A)(l- (n)). If sM<O.OO1 and ne,<O.l then’ 

II- (n>l 6 l.O6na,. 

Hence 

Similarly, we may show that 

Ih,l < 11 - (n-i+3)“*/ Jeil 

< I1 - (1 + l.O6(n - i+ ~)E~M)~‘*I lei/ 

l+ 
l.O6(n - i + 3)~~ 

2 )I 
leil 

< l.O6ne, le,l, 

the last inequality holding when n 3 2. 

t This Wilkinson-style inequality can be established as follows. First observe that if E i 0.001, then 
(1 - &)-I < 1 + 40.999. Hence 1 (n) - 1) < (1 + E,/O.‘W)” - 1. Now nln( 1 + ~,/0.999) <n&,/0.999, 
and hence (1 + &,/0.999)” < exp(ns,/0.999) i 1 + (ns,/0.999)[ 1 + PIES exp(ne,/0.999)/1.998], the last 
inequality following from Taylor’s theorem with remainder. The desired inequality now follows from 
evaluating [ 1 + neM exp(ne,/0.99)]/0.999 for nsM = 0.1. 
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