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Abstract 

The approximate 'resolution of the identity' second-order many-body perturbation theory method (RI-MP2) recently 
introduced by Feyereisen, Fitzgerald and Komornicki utilizes a combination of two- and three-center integrals to approximate 
the usual four-center two-electron repulsion integrals. Like the exact MP2, the overall cost of the RI-MP2 method scales 
with the fifth power of the number of basis functions, however the balance of the work shifts in such a way as to make 
the RI-MP2 method particularly well suited for implementation on massively parallel computers. We describe such an 
implementation and examine its parallel performance for several chemical systems. We are able to accurately reproduce the 
exact MP2 binding energy of K + to 12-crown-4 ether in roughly 5% of the time. 

1. Introduction 

The so-called 'resolution of the identity' (RI) ap- 
proach has been exploited in several recent papers 
to simplify the calculation and processing of two- 
electron integrals in the MP2 [ I ] ,  SCF [2], and 
CCSD(T) [3] methods. The [ ]  approach approxi- 
mates the four-center two-electron repulsion integrals, 

1 
(Pql rs) = / Xp (rl)Xq(rl  ) [rl -- r2[ 

× Xr(r2)Xs(r2) dart dar2, (l) 

with combinations of two- and three-center one- and 
two-electron integrals. It is very closely related to the 
fitting of the density commonly used in density func- 
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tional theory [4,5] and to the multiplicative integral 
approximation of Van Alsenoy [6]. 

Pairwise products of the atomic orbital (AO) basis 
functions, {XpXq}, are replaced by linear combina- 
tions of a 'fitting' basis, {at}. If {otl} is the Gaussian 
product theorem (GPT) result of the AO basis {Xp} 
with itself, the substitution is exact, while smaller fit- 
ting bases result in approximations. The success of this 
approach depends on the observation that the GPT-AO 
space is usually nearly linearly dependent and can be 
spanned (or nearly so) by a smaller set of functions 
[7,8]. Such an approximation should work particu- 
larly well for calculations involving large atomic basis 
sets, which provide more redundancy in the GPT-AO 
space and at the same time would provide little spar- 
sity that might normally oe exploited to reduce the 
computational effort. 

If used for all integrals, the [ ]  approximation re- 
duces the amount of data that must be manipulated 
from the O(N 4) four-center two-electron integrals 
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(for N AO basis functions) to just O(N2Nfit) quart- 
tries. Thus as long as the size of the fitting basis, 
N~t, is kept to less than N 2, the RI-MP2 will in- 
volve fewer integrals than the exact MP2. Because this 
method is only recently introduced, little experience 
has been gained in choosing fitting basis sets, but it 
has been suggested that N~t ~ (2-5) × N might pro- 
vide adequate results [9,10], and clearly even Nat 
(10-20) × N offers excellent potential for the RI-MP2 
approach for N of at least 100. 

The RI approach, and RI-MP2 in particular, is espe- 
cially well suited for use on modem massively parallel 
processors (MPPs). Current MPP machines typically 
offer rather limited memory per processor, and low ag- 
gregate I /O bandwidth, both of which can be very re- 
strictive to traditional correlated methods, which must 
manipulate large amounts of data. Utilizing RI approx- 
imations, the amount of I /O that must be performed 
in a disk-based implementation can be reduced by an 
order of magnitude or more, and algorithms can be 
designed to require a limited amount of memory. 

In this Letter, we describe a parallel algorithm for 
the RI-MP2 method suitable for both RHF and UHF 
references and demonstrate the scalability of this ap- 
proach. Our algorithm is formulated to use as little as 
O( N 2) aggregate memory, and O(N 3 ) disk storage, 
putting it closer to an SCF calculation than a tradi- 
tional MP2 in terms of resource requirements. Finally, 
we calculate the binding energy of K + to 12-crown- 
4 ether using a basis of more than 400 functions as 
a demonstration of the speed and efficiency of the 
method relative to the exact MP2. 

2. Theory 

As stated above, the essence of the RI approach is 
the replacement of a basis of pairs of AO basis func- 
tions with a different fitting basis, Several criteria can 
be chosen for optimizing the fitting basis representa- 
tion of the GPT-AO space, resulting in different ex- 
pansions of the four-center ERIs [2], 

¢ lrs) = Cpqt)Sg v .si-) fwrs), (2) 
t,Ud~,W 

(pqb's) = ~.~(pqt)S~' (ulrs), (3a) 
tJ{ 
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(pqlrs) = ~-~(pqlt)S~ I (urs) ,  (3b) 
I,W 

(pqlrs) = ~-~(pqlt) Vt~ I (ulrs) , (4) 

known as the SVS, S, and V approximations respec- 
tively. Observe that all three approximations have the 
same basic form: a two-index quantity multiplied on 
both sides by three-index objects. To avoid redundant 
work later on when the integrals are processed, the 
two-index quantity can be subsumed into the three- 
center integrals in a transformation step, and any of 
the approximations above can be represented schemat- 
ically as 

(pqlrs) = ~ lpqeJt'rs. (5) 
t t 

For the SVS and V approximations, in which both 
of the three-index quantities are of the same type 
(overlaps for SVS, ERIs for V), the symmetry 
of the approximation can be maintained by using 
(S-ll/S-I)1/2 or V -t/2 to transform the fitting basis 
index of both of the three-index integrals [ 3 ]. Since 1 
and J are identical in this case, this is a straightforward 
way to further reduce both the computational cost as 
well as the amount of data that must be manipulated. 

The RI-MP2 equations are obtained by the ~:aight- 
forward insertion of Eq. (5) into the MP2 energy ex- 
pression, 

1 (ialjb) [ (ialjb) - (ib[ja) ] (6) 

i , j , a ,b  

The formula above is presented in spin-orbital form, 
following the usual notation 3. For the case of a UHF 
reference, the resulting equations are 

Eu(2 1 iiat'Yt'jb[liacJt'jb -- libt'Yt'ja] 

i , j , a ,b , t  t 

q,a,B,t' 

l o,, J,,j  [ li ,, J,,j  ] 
+ E e i + e i _ e a _ e ~ "  

i,l,a,b,t' 

(7a) 

(7b) 

(7c) 

3 i and j represent occupied orbitals, a and b virtuals, and the 
ep are the canonical SCF eigenvalues. 
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where i , j ,  a, b represent a spin orbitals and T,j, fi, 
/3 spin. The fitting basis indices, t' are independent 
of spin. It is worth noting that in the UHF RI-MP2, 
all of the three-center integrals are pure spin, and the 
mixed spin four-center integrals are approximated by 
the product of a pure-a integral with a pure-//integral. 
This means that the UHF RI-MP2 manipulates even 
less data relative to its exa~.'t counterpart than the RHF 
version. For RHF references, the three terms shown 
above collapse to a single one, since the a and fl spin 
orhitals have the same spatial component, just as in 
the exact method. 

The RI-MP2 approach has a different distribution of 
the computational costs compared to the exact MP2. 
Taking N~t to be O ( N ) ,  the O(N s) four-index trans- 
formation is replaced by an O ( N  4) three-index trans- 
formation (assuming the fitting basis is also trans- 
formed, as discussed above), while the O(N 4) ex- 
act energy evaluation now becomes O(N 5) due to 
the need to multiply 1 and J to form approximate 
four-center integrals. These differences are well suited 
to the strengths of modern parallel processors. Dis- 
tributed matrix multiplication [ 11-13 ] performs much 
more efficiently than most parallel four-index transfor- 
mation algorithms which have been developed [ 14- 
25], and the reduced number of integrals means disk- 
based implementations can be used much more readily 
than for the exact MP2. 

3. Parallel implementation 

Our parallel RI-MP2 implementation is bas.~ on 
a distributed globally-addressable non-uniform access 
memory programming model. Our 'global array tools' 
(GA) library [26-28] implements this model on a va- 
riety of shared memory and distributed memory MPPs. 
Basic GA routines provide asynchronous read/write 
operations on distributed (global) arrays and provide 
each processor with direct access to the local patch of 
the global array. Building on this base, the GA tools 
offer a variety of basic linear algebra routines mod- 
eled on the widely-used BLAS and LAPACK libraries 
as well as the capabilities of Fortran90. 

The RI-MP2 algorithm maps quite straightfor- 
wardly to the GA model, both in the three-center 
integral transformation and in the energy evaluation. 
The three-index transformation, summarized in Fig. 

! is split into two parts, the first comprising the 
transformation of the two AO basis indices, and the 
second the transformation of the fitting basis index 
with the appropriate two-index matrix according to 
the approximation chosen. In the first part, each node 
generates the raw integrals (ILPlt) or (ttz, t) for the 
unique/zz,, and a subset of t, so that the complete 
space of {t} is distributed across the machine. The 
integrals are directly transformed to the M e  basis, 
(ail t)  or (ait)  and stored in a global array. No inter- 
processor communication is involved in this step, so 
it is completely parallel aside from possible load im- 
balance. The second part of the transformation is a 
distributed matrix multiplication operation, which is 
provided by the (3A library. The transformed integrals 
can be stored in memory (given enough space) or 
written to disk. Disk I /O is also done in parallel, with 
each node writing its subset of the integrals to a pri- 
vate file. tAIthough machine-specific optimizations 
are possible for many platforms, file I/O is currently 
done using only standard Fortran.) Each record holds 
the local subset of t and all virtual orbitals a for a 
given occupied orbital i, consequently the integral 
file must be written and read by the same number of 
nodes. More general solutions are beyond the scope 
of standard Fortran. 

As shown in Fig. 2, the energy ewduation is driven 
by a~ outer loop over pairs of occupied orbitals, ij .  
Integrals lai.e and Jbj.t, are multiplied to produce a 
matrix AaiJ b, which are the approximate four-center in- 
tegrals for this particular/j. In the RHF case, and the 
pure spin UHF terms, the (ia[jb) - ( ibl ja)  term can 
be constructed by taking B ij - A;J - A iff. Denom- 
inators are applied to B ij, and then A ij and B ij are 
contracted in a dot product-like operation to produce 
the pair correlation energy. In this case, all matrices 
and operations are handled in distributed fashion us- 
ing GA library routines. Application of the denomina- 
tors to B ~j occurs in parallel fashion as well, each pro- 
cessor operating on the subset of the matrix which is 
held in local memory and a," ~essed via the GA library. 
All steps following creation of the approximate four- 
center integral matrix A/aJb are mathematically identical 
to the exact method, and apart from differences in data 
distribution could be evaluated with the same code. 

In all phases of the code, blocking or 'stripmining' 
is used to improve performance within the amount 
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_ 1  

Form V w'  

Determine block size for i (occupied orbital) based on available memory 

Loop over blocks of i 

Determine size of buffer available to accumulate raw integrals 

Loop over buffer-loads of AO shell blocks st.s~ 

Fill buffer with integrals (#t, lt ) (t distributed across processors) 

(aul t )  = Cu.(#t, lt ) (i¢,cal matrix multiply) 

(ai l t )  = Gv,(ivl t  ) (local matrix multiply) 

End of sus~ loop 
! 

I a w =  (ailt ')  = (ailt)Vcv ~ (distributed matrix multiply) 

Write Ioit, block to disk 

End of i loop 

Fig. I. RI-MP2 transformation algorithm. Although shown specifically for the 'V approximation', the algorithm remains substantially the 
~ m e  for the others. C are the SCF orbital coefficients. 

Determine block sizes for i and ~ (occupied orbi*.als) based on available memory 

Loop over unique blocks of i j  

Read three-center integral blocks lai,,, and J6j,t, 

Aa+  =/.,,,, × S+j,,, 

B 0 = A+i _ A 6r  

Apply denominators to B ~i 

E~ = A ~ • B it 

End of ij loop 

(local) 

(distributed matrix multiply) 

(data parallel) 

(data parallel) 

(data parallel) 

Fig. 2. RI-MP2 energy evaluation algorithm. 

of memory available. In the integral transformation 
shell triplets of raw integrals are collected into larger 
blocks before calls to BLAS matrix multiplication rou- 
tines are made for the first two steps. Block dimen- 
sions are determined so as to maximize the contraction 
lengths of the matrix multiplications. The transforma- 
tion is also capable of multi-pass operation for in- 
stances where there is insufficiez:t memory for a single 
pass. Stripmining the energy evaluation loops allows 
the distributed matrix multiplication, which produces 
the approximate four-center integrals, to be made as 

large as possible. Also, the number of times the trans- 
formed three-center integrals must be read from disk 
is determined by the number of blocks in the outer 
loop (over i). This can have an important impact on 
the performance of the code. 

As a result of this flexibility with respect to memory 
usage, these algorithms can work with anywhere from 
O(N 2) memory and O(N 3) disk space to a fully in- 
core calculation requiring O(N 3 ) memory. 
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4. K + Binding to 12-Crown-4 Ether 

To demonstrate the potential of this method for a 
sizable calculation, we have chosen to study the bind- 
ing ofK + to 12-crown-4 ether. The basis sets on H, C, 
and O are aug-cc-pVDZ [29,30] without the diffuse 
s of the hydrogen basis to prevent linear dependence 
problems (designated aug-cc-pVL,Z'). The potassium 
basis has been designed in analogy with the Li and 
Na cc-pCVDZ basis sets [31], and is 15s12p2d con- 
tracted to 6s5p2d [32]. Due to limitations of the cur- 
rent integral code in our parallel computational chem- 
istry package, NWChem [33], the []-MP2 calcula- 
tions were carried out using the Cartesian representa- 
tion of the d shells rather than the spherical harmonics 
in which the basis sets were originally optimized, re- 
sulting in AO basis sets of 428, 33, and 461 functions 
for the bare ether, K +, and the complex, respectively. 
For these systems, 12, 5, and 17 core orbitals were 
frozen in all correlated calculations. The correspond- 
ing exact-MP2 calculations were of course calculated 
in the same basis set. All calculations used exact MP2 
optimized geometries obtained with the cc-PVDZ ba- 
sis (using spherical harmonic d shells) [34]. 

The fitting basis was chosen to reproduce the exact 
MP2 binding energy of the cation to the crown ether 
( -44.46 kcal reel -I at this geometry) to within 0.02 
kcal mol- i. The core of the fitting basis is the uncon- 
tracted version of the AO basis, which is augmented 
by additional primitive functions detailed in Table 1. 
These functions were chosen based on combinations 
of exponents of the uncontracted AO functions as sug- 
gested by the Gaus.,~ian Product Theorem. The result 
is fitting basis sets of size 1132, 95, and 1227 for the 
bare ether, cation, and complex. The resulting total en- 
ergies, along with the reference exact MP2 results are 
given in Table 2. 

There are several points that should be made with 
respect to the fitting basis. First, per our stated goal, 
the fitting basis reproduces the binding energy, not the 
individual energies. The individual total energies dif- 
fer from the exact result by approximately !-2 mEh. 
Secondly, in the course of this work, and in separate ef- 
forts focusing explicitly on construction of fitting basis 
sets [ 10] it has become clear that quite a wide range 
of results can be obtained depending on the choice of 
fitting basis. This should not be too surprising given 
that changing the AO basis set in the exact method 

can also effect the results. It is not yet clear whether 
the situation for RI fitting basis sets is better or worse 
than for the AO basis itself in the exact method, but 
there are indications that it will be possible to obtain 
reliable results with efficient (relatively small) fitting 
basis sets systematically derived from the chosen AO 
set [ 10]. Finally, we must note that using the unre- 
fined AO basis as the fitting basis provides generally 
unsatisfactory results. This is significant because the 
majority of electronic structure codes are not designed 
to use more than one basis set in a given calculation, 
so a natural first implementation of [ ]  methods in such 
codes would restrict the fitting basis to be identical to 
the AO basis. In summary, as with any newly intro- 
duced approximation, due caution must he exercised 
to insure that reliable results are obtained. 

Once a suitable fitting basis is found, however, per- 
formance of the []-MP2 method is quite good. Run- 
ning on 70 nodes of the Kendall Square Research 
KSR-2, the []-MP2 calculation on the K+: 12-crown- 
4 complex required 1 530 s compared to 29478 s 
for NWCbem's direct exact MP2 [25]. Even on ten 
nodes, the smallest partition for which this calcula- 
tion could be performed on the KSR, the []-MP2 re- 
quired only 9 967 s. In a study of K +-ether complexes 
by Feller, Apr~t, Nichols, and Bernholdt [ 35 ], K +: 12- 
crown-4 calculations are extended to other geometries, 
and counterpoise corrections for basis set superposi- 
tion error, made feasible by the performance of the 
[]-MP2 method, are included. Feller and co-workers 
conclude that RI-MP2, because of its ability to mimic 
the exact MP2 results, represents the binding energies 
of the complexes more reliably than density functional 
theory calculations. 

5. Parallel performance 

In order to gauge the parallel performance of the 
method, we have carried out calculations on K+: 12- 
crown-4 using three massively parallel machines with 
different architectures, the CrayoT3D from Cray Re- 
sea~'ch, the Intel Paragon, and Kendall Square Re- 
search KSR-2. Key features of these three machines 
are summarized in Table 3. 

The parallel speedup for the K+: 12-crowno4 calcu- 
lation is shown in Fig. 3. As indicated by the error 
bars, repeate~ runs of the same job can give sizable 
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Table l 
Basis functions used to augment the uncontracted AO basis functions in the fitting basis set for the K +: 12-crown-4 binding energy calculation 

Atom Exponents 

s p d f 

H 1.454 1.454 
C 0.0235 0.0202 0.3034, 1.1, 2.5476 1.1 
O 0.0395 0.343 0.5506, 2.370. 4.900 2.370 
K 0.0091 0.0872 0.3490, i.5000, 1.8080 1.8080 

Table 2 
Exact and RI.MP2 total energies for K +, 12-crown-4, and K+:12-crown-4. The AO and fitting basis sets are described in the text 

Molecule Core orbitals Exact MP2 RI-MP2 
frozen (Eh) (Eh) 

K + 5 -599.172243376 -599.172691398 
12,crown-4 12 -613.712329452 -613.713518948 
K + : 12-crown-4 17 - 1212.955581872 - 1212.957180496 

Table 3 
Key characteristics of the massively parallel processors used in this study. Communications performance is described by observed results 
of the basic global array put and get operations, taken from Ref. [28] 

Characteristic Cray-T3D lntel Paragon KSR-2 

CPU 
clock rate (MHz) 
memory per node (MB) 
interconnect topology 
GA remote put 

latency (#s) 
bandwidth (MB/s) 

GA remote get 
latency (ps) 
bandwidth (MB/s) 

DEC Alpha ln~lig60xP propfietaryRISC 
150 50 40 
64 32 32 

3d toms 2dmesh hierarchy of tings 

18 62 36 
II0 20 29 

35 497 37 
32 9.5 28 

variations in timings depending on the load on the 
remainder of the machine and the architecture. The 
Cray-T3D exhibited minimal variation because the in- 
terconnect topology and restrictions to partitions of 2 n 
nodes means that jobs partitions do not share band- 
width on the interconnection network. 

For all three platforms, the algorithm produces 
super-linear speedups over a large range of machine 
sizes. This is primarily due to the fact that each CPU 
applied to the problem brings with it a certain amount 
of local memory and the fact that the algorithm is 
designed to be scalable in both CPU and memory uti- 
lization. Stripmining of the transformation step results 

in fewer passes as memory is increased, which means 
fewer evaluations of the three-center two-electron in- 
tegrals. By efficiently using the additional memory as 
well as processors, the algorithm is able to eliminate 
work that is effectively redundant, resulting in addi- 
tional speedup over that gained solely by applying 
more CPUs. This effect is typical of multi-pass algo- 
rithms in which a significant amount of computation 
must be repeated in each pass. 

Timings of important components of the code, 
shown in Fig. 4, reveal several features of the present 
implementation. Although the transformation is for- 
mally N 4 and energy evaluation (dominated by the 
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Fig. 3. Parallel speedup for the K+:12-cmwn-4 RI-MP2 energy on 
three different MPP platforms, Error bars resulting from the an- 
certainty associated with the load on the remainder of the machine 
were obtained from analysis of repeated runs of the same job. Er- 
ror bars for the Cray-T3D data are too small to be distinguished 
at this scale. 
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Fig. 4. Actual timings of important components of the RI-MP2 
calculation on three MPP platforms. The distributed matrix multi- 
plication is the dominant component of the energy evaluation step. 

distributed matrix multiplication) is N 5, the transfor- 
mation is comparable to, or even more expensive than 
the energy evaluation for this size of system due to a 
larger prefactor in the N 4 step. Clearly although the 
importance of the transformation is reduced relative 
to the exact case, improvements in integral evaluation 
and the transformation itself will benefit the RI-MP2. 
Another feature displayed in Fig. 4 is the disk I/O 
demands of the method, characterized by the time 

required to read the three-center integrals from disk 
during the energy evaluation. Despite rather different 
I /O performance on the three platforms, I /O is 
relatively small component of the overall timing in 
general. At larger processor counts, the total I/O time 
(writing and reading integrals) is as much as 10-20% 
of the overall calculation as a consequence of the rel- 
atively poor scaling in the I /O performance observed 
on all three platforms. In a non-dedicated situation, 
there can also be substantial variation in timings of 
repeated calculations, as shown in the error bars on 
the KSR-2 and Paragon curves. A disk-based exact 
MP2 would require about an order of magnitude more 
data for this calculation. 

6. Conclusions 

We have described a parallel implementation of the 
RI-MP2 method of Feyereisen, Fitzgerald, and Ko- 
mornicki and its application to the binding of K + to 
12-crown-4 ether. The ~ethod is well-suited to the 
strengths of massively parallel computers, and maps 
quite straightforwardly onto a shared non-uniform- 
access memory programming model which is both ef- 
ficient and portable. 

The exact MP2 K+: 12-crown-4 binding energy can 
be reproduced to within 0.02 kcal mol -I by a fitting 
basis less than three times the size of the AO basis in 
roughly 5% of the time required by the exact calcula- 
tion. The parallel performance of the implementation 
is also quite good, as we have demonstrated on MPPs 
with rather different architectures. 
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