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Abs&act 

A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS( D) 
correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS (D) is a second- 
order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series 
in which CIS is zeroth order, and the first-order correction vanishes. CIS(D) excitation energies are size consistent and the 
calculational complexity scales with the fifth power of molecular size, akin to second-order Meller-Plesset theory for the ground 
state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS( D) 
is a uniform improvement over CIS. CIS (D) appears to be a promising method for examining excited states of large molecules, 
where more accurate methods are not feasible. 

1. Introduction 

Configuration interaction in the space of all single 
substitutions (CIS) is perhaps the simplest molecu- 
lar orbital theory of excited states with reasonably 
general validity [ l-51. While CIS (or the Tamm- 
Dancoff approximation in nuclear physics [ 6 ] ) has 
been known for decades, efficient direct algorithms 
have only recently been developed [ 51, and the 
method is now becoming widely used. There is some 
debate over the extent of applicability of CIS [ 5,7 1, 
since it is not unusual to find nonsystematic errors of 
0.5 to 1.0 eV or more in vertical excitation energies 
for one-electron transitions [5,7-l 11. Often this level 
of accuracy is an “adequate zeroth-order treatment 
for many of the excited states of molecules” [ 5 1, and 
it is generally attained for excited states that are pri- 
marily one-electron transitions from a single refer- 
ence ground state. For excited states with dominant 

double excitation character, CIS is, of course, an in- 
appropriate theoretical method. 

Much more accurate multireference configuration 
interaction (MR-CI) methods [ 12-161 are often a 
preferred alternative for excited states of small mol- 
ecules, although another promising class of theories 
are excited state coupled cluster methods in the space 
of single and double substitutions [ 17-2 11. CIS rep- 
resents an excited state treatment which is roughly 
analogous to the Hartree-Fock method for ground 
states, since it is inexpensive to apply but yields only 
qualitative accuracy. As such, the question immedi- 
ately arises as to whether there are perturbative cor- 
rections to CIS which might include the leading order 
dynamical correlation effects in a way analogous to 
second-order Marller-Plesset (MP2) theory [ 22-241 
for ground states. Such a method might correct some 
of the quantitative deficiencies of CIS while still per- 
mitting application to reasonably large molecular 
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systems, although excited states that are double exci- 
tations from the ground state could still not be appro- 
priately handled. We note that considerable progress 
has recently been made on the related problem of ob- 
taining perturbative corrections to MR-CI methods 
[25-271. 

By analogy to MP2 theory, which introduces elec- 
tron correlation by coupling the single reference to 
double substitutions [ 241, we anticipate that double 
substitutions from the CIS wavefunction will contain 
the main effects of correlation in the excited state. A 
proposal along these lines was recently made, termed 
the CIS-MP2 method [ 5 1. CIS-MP2 is a correction 
to the total CIS energy of the excited state. By sub- 
tracting the ground state MP2 energy, excitation 
energies in better agreement with experiment than 
CIS are sometimes obtained. CIS-MP2 has been suc- 
cessful at improving the relative energies of valence 
versus Rydberg states for formaldehyde and acetal- 
dehyde [ lo]. However in other cases such as ethyl- 
ene [ 91 and butadiene [ 111, CIS-MP2 does not im- 
prove excitation energies. Furthermore it is 
substantially more complex to apply than the ground 
state MP2 method (the calculations scale as the sixth 
rather than fifth power of molecular size). Even more 
seriously, CIS-MP2 excitation energies are not size 
consistent, as we show in section 2. 

The purpose of this work is to introduce an alter- 
native doubles correction to the CIS method which 
we believe is preferable. We term this new method 
CIS(D), consistent with the notation used to denote 
perturbative triples corrections to ground state sin- 
gles and doubles methods [ 28 1. CIS( D) theory has 
two formal advantages over CIS-MP2. First and 
foremost, it yields excitation energies which are 
strictly size consistent. Second, the calculational 
complexity rises as only the fifth power of molecular 
size, akin to MP2 theory (CIS in the atomic orbital 
basis scales formally as the fourth power of molecular 
size if a fixed number of states are sought, before cut- 
offs). In section 2, CIS-MP2 is briefly reviewed, and 
the resulting excitation energies are shown to be size 
inconsistent. In section 3, the new equations defining 
CIS(D) are presented and shown to be size consis- 
tent. Finally in section 4, a series of calculations of 
singlet excited states are reported at the CIS, CIS- 
MP2, CIS (D) and CCSD levels of theory to assess 

the comparative numerical performance of these 
methods. Our conclusions are presented in section 5. 

2. CIS and the CIS-MP2 correction 

By its very nature the Hartree-Fock single deter- 
minant & is optimized so that the Hamiltonian ma- 
trix elements coupling & to single substitutions @ 
of any occupied spin orbital i to any unoccupied spin 
orbital a are zero [ 241. This is Brillouin’s theorem 
[ 291. Therefore if we seek excited states at a level of 
accuracy roughly comparable to the HF ground state, 
we can diagonalize the singles-singles block of the full 
Hamiltonian. The resulting CIS eigenvalue equa- 
tions are 

(@f]~]U,@,)=wb~, (1) 

where H= H- EHF and w is the CIS excitation en- 
ergy. The operator CJ, generates all single substitu- 
tions @’ from Q0 with amplitudes bf, giving the CIS 
wavefunction, &is, 

ia 

Note that by contrast with U operators and b ampli- 
tudes for excited states, we use T and a for the corre- 
sponding ground state operators and amplitudes. 
With this notation the left-hand side of Eq. ( 1) 
becomes 

=Afb: + C (ajllib)bT , 
ib 

(2) 

where A: is the difference between orbital eigenval- 
ues t, and ei, and (pqllrs) are antisymmetrized two- 
electron integrals in standard notation [ 241. The CIS 
excitation energies w are size consistent [ 5 1, mean- 
ing that excitation energies for a system of two non- 
interacting fragments include the excitation energies 
that would be obtained by considering each fragment 
as a separate system. 

To include electron correlation in the ground state 
in leading order, MP2 theory is frequently employed. 
The only substituted determinants which directly 
couple to a0 are doubles, ejb [24]. They are in- 
cluded by partitioning the full Hamiltonian as 
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H=R’+AV, where F, the unperturbed Hamiltonian, 
is the sum of one-electron Fock operators of which 
the orbitals are eigenvectors. V is the perturbation 
potential due to electron correlation, and A is a for- 
mal expansion parameter, which is set to 1 after terms 
of different order are separated. Performing time-in- 
dependent perturbation theory to second order then 
yields [ 22-241 

EMPZ=(00]V]T2@O) 

= $ &GYijll~~) 7 (3) 

where the ground state double substitution ampli- 
tudes to first order in the correlation perturbation (i.e. 

A) are contained in the T2 operator, 

(4a) 

uij =_ <@~blwo> ab (abllii) 
A e.! 

V 
=-d”b. 

lJ 
(4b) 

The ground state MP2 energy defined in this way is 
size consistent (as is the HF energy of course), mean- 
ing that the energies of noninteracting fragments are 
additive. The evaluation of Eqs. (3) and (4) nomi- 
nally scales as the fifth power of molecular size. 

The CIS-MP2 correction to the CIS excited state 
energy is based on the presumption that similar phys- 
ics holds for the excited state, with two modifications 
relative to MP2 theory. First, double substitutions 
from @ors ( @cIs= Vi@,) gives triple substitutions 
from 0,,, and second, since Brillouin’s theorem does 
not hold we must also include single substitutions 
from @crs (i.e. double substitutions from @,). The 
unperturbed Hamiltonian is defined as the SS block 
of the full Hamiltonian (with CIS eigenvectors and 
eigenvalues), together with the (diagonal) elements 
of F in the DD and TT blocks. The first-order pertur- 
bation is then the SD, ST, DD, DT and TT blocks of 
V. The second-order CIS-MP2 correction to a CIS 
state is then 

+<QicIsI~l~3a3) 9 (5) 

where the first-order perturbation theory values of the 
double and triple substitution amplitudes are con- 
tained in the U2 and U, operators, and are: 

lJ A a.! _ o ’ ZJ 
-CTbC 

b”.k - <@$I VI U,@o> uijk 

IJk - - 
A+=_” =-r-o’ 

(6b) 

?Ik 

The state dependence of the energy correction enters 
through both the CIS amplitudes and the excitation 
energy. We note that while the above partitioning of 
the full Hamiltonian is mathematically logical given 

that CIS excited states are the unperturbed starting 
point, it cannot be given the same physical F+tV 
characterization as ground state Moller-Plesset the- 
ory. In other words, the unperturbed Hamiltonian is 
the SS block of the full Hamiltonian, which includes 
some correlation, and thus V is no longer strictly the 
correlation potential. 

The spin orbital expression for CIS-MP2 may now 
be written as [ 5 ] 

EC’S_MP2 = _ $ 
igb (G$b)2/(A;b-~) 

-h Jk (G$32/(A$%w) 3 (7) 

where the rizb and ii;: arrays have been defined in 
the context of ground state correlation theories [ 28 1, 
and are 

azb= F [ (abllcj)b;- (ub/ci)bf] 

+ F 1 (WliiPi- (Wlij)btl > (8) 

a$= tjkllbc)by+ (j&u)b;+ (jkllub)b; 

+(kilbc)b~+(kilcu)bj’+(killub)b_f+(ijllbc)b~ 

+ (ijllcu)bt+ (ijlub)b;. (9) 

From the second term of Eq. (7), and Eq. (9), the 
scaling of CIS-MP2 with molecular size is sixth or- 
der. Finally, the CIS-MP2 correction to the excita- 
tion energy is given as 

&IS-MP2 _ EC’“MP2 _ EMP2 - (10) 

Neither the correction to the total energy defined 
in Eq. ( 7 ), nor the correction to the excitation energy 
defined in Eq. ( 10) is size consistent. In the language 
of many-body theory [ 301, size consistency is vio- 
lated because Eq. (9) consists of disconnected prod- 
ucts which do not occur in the cluster expansion of 



24 M. Head-Gordon et al. /Chemical Physics Letters 219 (1994) 21-29 

the exact wavefunction. The lack of size consistency 
is also evident from the following counter-example 
for two infinitely separated systems A and B, of which 
one, A, is excited with frequency o in @&is, while the 
other is in its HF ground state. For size consistency, 
the CIS-MP2 correlation energy of the combined sys- 
tem must be equal to the CIS-MP2 energy of A alone, 
plus the ground state MP2 energy of B alone. The lat- 
ter part is not exactly recovered as the CIS excitation 
energy of A, w, affects the amplitudes of all excita- 
tions involving B through the denominator of Eqs. 
(6). Therefore the correlation energy of the fragment 
B which is not-excited depends on the identity (and 
state) of the excited fragment A. Size consistency 
is thus not satisfied, and in the limit as M-GO, a 
supersystem of A and MB systems will exhibit 
wCKSMPZ+ + 0~) for an excitation localized on A. Thus 
the performance of CIS-MP2 for the somewhat anal- 
ogous case of an excitation localized on one func- 
tional group of a large molecule will be poor. 

3. The CIS(D) correction 

To introduce the new doubles correction to CIS, 
we can examine the triples term of CIS-MP2 theory, 
which is responsible for its failure to be size consis- 
tent, and inquire how we might modify it. To gener- 
ate a triple substitution relative to the ground state 
requires that first a single replacement be performed 
to obtain a term of the CIS wavefunction, 
&is= U, QjO. A double substitution involving orbit- 
als which did not participate in the first substitution 
then follows to yield the triple replacement. Cases 
where the orbitals involved in the single substitution 
are promoted again will give rise to an overall double 
replacement relative to the single reference &,, and 
this is treated in the first term of Eq. ( 5 ) or ( 7 ) . 

The fact that the doubles part of the triple substi- 
tution term involves pairs of electrons that are essen- 
tially “inactive” in the electronic excitation suggests 
a simple approximation for that term. We suggest that 
the operator U, in Eq. ( 5 ) can be replaced by a prod- 
uct of operators T,U,, where we use the ground state 
double substitution amplitudes unmodified (i.e. T,) 
since these correspond to pairs of electrons which are 
essentially unaffected by the excitation. This opera- 
tor remains first order in correlation if the first order 

ground state doubles amplitudes from Eqs. (4) are 
employed, and thus the modified correction remains 
second order. More sophisticated theories would al- 
low for some change in the correlation of these “in- 
active” pairs of electrons due to the excitation, as in 
coupled cluster theory for excited states [ 17-2 11. 

The equations defining the new doubles correction 
are thus a simple modification of just the second term 
of Eq. ( 5 ) for the CIS-MP2 correction: 

+<%sI~lT~~,@o). (11) 

The unchanged first term is given by the first term of 
Eq. (7) again, while the second term can be written 
in spin orbital notation as the sum of a disconnected 
and a connected term (the latter denoted by a sub- 
scriptc) [30,31]: 

The VP array has been defined previously, for exam- 
ple in the context of QCISD theory [ 28 ] : 

It is immediately clear that the CIS (D) correction to 
excitation energies takes a particularly simple form, 
because the “disconnected” first term of Eq. ( 12) 
yields the MP2 energy, which cancels the second-or- 
der correction to the ground state. Therefore 

wCIS(D)_ECIS(D)_EMP2 - 

=-t & (z~$‘)~/(A~~-w)+ C bfvf . 
ia 

(14) 

It is straightforward to show that the evaluation of 
each of the terms of the above expression for wCIS(D) 
scales as the fifth power of molecular size, when or- 
dinary canonical orbitals are used. This is one of the 
two key advantages of the new expression relative to 
the CIS-MP2 correction, which scales as the sixth 
power of molecular size. 

Let us establish the size consistency of CIS (D). As 
a preliminary, we note that due to the presence of the 
disconnected term, which yields EMP2 exactly, the 
counter-example we used to demonstrate the size in- 
consistency of CIS-MP2 is now satisfied. More gen- 
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erally, size consistency follows from three facts con- 
cerning the expression for the excitation energy, Eq. 
( 14). First, Eq. ( 14) is connected in the sense that 
both ii$ and v: are given by tensor products rather 
than scalar products, by contrast with the discon- 
nected ri$ intermediate in CIS-MP2. Second, for two 
noninteracting systems, the size consistent CIS 
method gives amplitudes which are localized on one 
system or the other. Third, all integrals and MP2 
doubles are zero, unless all indices are on one system. 
With these facts, it follows that the CIS(D) correc- 
tion to a CIS excitation on one system will be un- 
changed by the presence of another infinitely sepa- 
rated system. This is sufficient for size consistency. 

To this point, we have presented the CIS(D) 
method by hypothesis, and have established two de- 
sirable properties of the resulting equations. How- 
ever the same equations arise from a perturbation ex- 
pansion applied to the CCSD excited state equations. 
In addition to further justifying the form of the 
CIS(D) correction, this connection may be quite 
useful for generating new perturbative approxima- 
tions in the future. The CCSD excited state equations 
can be written in fully connected form as follows [ 32 ] : 

=Wb".b 
ZJ ’ (15b) 

This is an eigenvalue equation of the form Ab=wb 
for the transition amplitudes (b vectors), which are 
also contained in the U operators. Note that the T 
and U operators in the CCSD equations contain con- 
tributions from all orders of perturbation theory, and 
in particular the converged U,, U, and T, operators 
will contain different amplitudes to those used above 
(in particular the CIS U,, MP2, T,, and CIS-MP2 U, 
operators) in our presentation of the CIS( D ) method. 

We seek a second-order approximation to the 
CCSD eigenvalue equation, beginning from a CIS ei- 
genvector, b(O), and transition energy o(O). The ze- 
roth-order response matrix, A(O) is the same as in CIS- 
MP2 theory: the SS block of H, together with the (di- 
agonal) DD block due to F. The first-order matrix, 
A(‘) contains the SD, DS and DD blocks of V. There- 

fore w ( * ) (b (O)tA(’ )b (‘) ) is zero, and the first-order 

eigenvector correction, b(l), is given by Eq. (6a). 
Since connected triple substitutions do not appear in 
the CCSD excited state equations, there is no term 

like Eq. (6b). Due to the presence of T, and T2 prod- 
ucts in the response matrix A defined by Eqs. ( 15)) 
there are also second-order and higher terms in the 
perturbation expansion of A. Ac2’ consists of terms 
that are linear in T2, and zeroth order in T,, since T, 
has a first-order expansion (the MP 1 wavefunction) 
and Vcontributes the other power of A. T, terms do 
not contribute, as they first enter ground state pertur- 
bation theory in the second-order wavefunction due 
to Brillouin’s theorem. The second-order contribu- 
tion to the excitation energy follows as 

,(2,_b’O’tA”‘b’l’+b’O’tA’2’b’O’ - 2 (16) 

which when evaluated with the definitions given 
above yields the two terms of Eq. ( 14). Therefore 
CIS (D) is closely related to the result of the first it- 
eration of the full CCSD equations, and can be justi- 
fied by this perturbation expansion of CCSD. 

4. Comparative calculations 

The CIS (D) excited state equations have been im- 
plemented as extensions to the Titan programs #‘, as 
we have recently done for the CCSD and QCISD ex- 
cited state methods [ 2 1,321. This implementation is 
currently restricted to closed-shell ground states, and 
singlet excited states. It is not designed to exploit the 
potential applicability of CIS( D) to large molecules, 
but rather is intended to assess its promise for such 
purposes. We are presently developing direct algo- 
rithms analogous to those employed in the ground 
state HF [ 331 and MP2 [ 34,351 methods to address 
the large molecule problem. 

The calculations we report here assess the CIS (D ) 
correction by comparison with first the CIS method 
that it is designed to improve upon, second the CIS- 
MP2 method which we anticipate it may be compa- 
rable to, and third the CCSD method which is known 
to yield results within a few tenths of an eV of the 
exact treatment within a given basis set (full CI) [ 18- 

*’ Titan is a set of electronic structure programs written by T.J. 
Lee, A.P. Rendell and J.E. Rice. 
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2 11. The molecules chosen for study are several pro- 
totypical small organic species, ethylene, formalde- 
hyde, acetaldehyde and butadiene, which have been 
the subject of extensive CIS and CIS-MP2 calcula- 
tions [ 9- 111. These represent cases where CIS is a 
qualitatively correct starting point, and thus a useful 
perturbative correction should be expected to im- 
prove the results. For consistency with reported cal- 
culations, we have employed the 6-3 11(2 + ,2 + )G** 
basis [8-l 1 ] for ethylene and formaldehyde, and 6- 
3 11(2 + )G* for acetaldehyde and butadiene. For all 
molecules we have used MP2/6-3 lG* optimized ge- 
ometries, again for consistency. 

The results for the excitation energies to low-lying 
states of these four moiecules are collected in Table 
1. A total of 43 states are included, and the results 
may be summarized as follows. The root mean square 
(rms) deviations between the most accurate method, 
CCSD, and the three more approximate methods, 
CIS, CIS(D) and CIS-MP2 are 1.03, 0.43 and 0.41 
eV, respectively. For comparison, the rms deviations 
of the same three methods relative to experiment are 
0.93, 0.42 and 0.52 eV, while the rms deviation for 
CCSD is only 0.20 eV. Overall CIS( D) does achieve 
its goal of improving markedly on CIS, although its 
performance is not actually uniformly superior to the 
more expensive CIS-MP2 correction. Full CCSD 
theory performs excellently even with a basis set of 
this relatively modest size, and is clearly the pre- 
ferred single reference method when feasible. 

As a general observation, there are no cases in Ta- 
ble 1 where CIS (D) noticeably worsens a CIS result 
relative to either CCSD or experiment. Quite sub- 
stantial corrections to the excited states of formalde- 
hyde and acetaldehyde are qualitatively correct. In 
fact the success of CIS (D) for the lowest excited state 
of these molecules is quite striking. CIS (D) appears 
to overcorrect many of the Rydberg states of formal- 
dehyde and acetaldehyde, while still significantly im- 
proving upon CIS. For ethylene and butadiene, the 
CIS results compare very well with experiment, and 
as one would hope, the CIS (D) corrections are gen- 
erally very small. The uniformity with which CIS (D) 
improves upon CIS suggests that it is a generally val- 
uable addition to a CIS calculation whenever it is fea- 
sible. We will probe the validity of CIS (D) with cal- 
culations on a much wider range of molecules in the 
near future, including triplet excited states. 

By contrast, CIS-MP2 exhibits more erratic behav- 
ior, as has been observed previously [5,9-l 11. In 
some cases CIS-MP2 performs substantially better 
than CIS (D), for example the lower Rydberg excited 
states of formaldehyde and acetaldehyde. However 
in other cases, it is substantially poorer, and indeed 
can be significantly worse than even CIS. Examples 
in this class include virtually all of the states of buta- 
diene, and also ethylene to a less dramatic extent, and 
the lowest excited state of formaldehyde and acetal- 
dehyde. Evidently the failure of CIS-MP2 to be size 
consistent does indeed lead to inconsistent behavior. 

As a final additional test of CIS (D) , we chose to 
perform a preliminary set of calculations on the ver- 
tical excitation energies of the benzene molecule. 
Benzene is widely acknowledged [ 7,19 ] to be a chal- 
lenging test for single reference excited state methods 
because of the significant contribution of double sub- 
stitutions to the low-lying ‘Blu state [ 7 1. Therefore 
CIS yields poor results [ 361 for the relative energies 
of this state and the lowest singlet excited state, ‘B2,,. 
Due to the computational limitations of our pilot 
program, we report results in Table 2 using only the 
small 6-3 1 +G* basis [ 381. This basis lacks the 
Rydberg functions included in the calculations of Ta- 
ble 1, and thus will not accurately describe states with 
Rydberg character. However it is small enough that 
CCSD calculations are feasible, to assess the ade- 
quacy of CIS (D). 

From Table 2, the splitting of the lowest two ex- 
cited states is seriously in error at the CIS level, as 
was already known [ 361. The CCSD method sub- 
stantially improves the splitting, and with further im- 
provement of the basis, this method would come still 
closer to experiment in all likelihood. Remarkably, 
the results obtained with the simple CIS (D) correc- 
tion parallel full CCSD theory very closely, which 
suggests that the principal correlation effects due to 
double substitutions are being captured correctly. 
Apparently this differential correlation effect, while 
large in magnitude, is well described at only second 
order. Calculations with larger basis sets are un- 
doubtedly necessary to draw definitive conclusions 
on the performance of CIS (D) for benzene, but these 
preliminary results are very encouraging motivation 
for such studies. 



Table 1 
Calculations of the excitation energies (in eV ) of selected lower singlet excited states of formaldehyde and ethylene using the 6-3 11(2 + , 
2 + ) G* basis [ 91, and acetaldehyde and butadiene using the 6-3 11(2 + )G* basis [ lo]. MP2/6-3 1 G* optimized geometries [ 9- 111 are 
employed 

Molecule ’ State b CIS CIS(D) CIS-MP2 ’ CCSD * Exp. = 

GH, ‘Bs, (V) 7.13 7.21 7.52 

‘B’s (V) 7.71 7.84 8.14 

‘B’, (V) 7.74 8.04 8.39 

‘B,(V) 7.86 1.86 8.12 

‘As(R) 8.09 8.18 8.42 

‘B,, (V) 8.63 8.69 8.92 

‘A, (V) 8.17 8.80 9.00 

‘BI, (V) 8.93 8.96 9.14 

‘B’,(R) 9.09 9.12 9.31 

‘B’,(R) 9.09 9.18 9.38 

.CzH.,O ‘A” (V) 4.89 4.28 5.27 
‘A’ (R) 8.51 6.13 6.71 
‘A’ (R) 9.22 7.04 7.51 
‘A’ (R) 9.30 7.42 8.00 
‘A” (R) 9.31 6.90 7.37 
‘A’ (R) 9.73 8.50 9.07 
‘A”(V) 9.78 9.34 10.34 
‘A’ (R) 10.19 1.70 8.09 
‘A’(R) 10.26 1.10 8.08 
‘A” (R) 10.31 7.74 8.10 

GH, ‘B,(R) 
‘B, (V) 
‘A, (R) 
‘A. (R) 
‘B, (R) 

:2 :R”; 

‘B:(R) 
‘B,(R) 
‘A,(R) 
‘A.(R) 
‘A,(R) 
‘B, (R) 

CHZO ‘AZ (V) 4.48 3.98 4.58 

‘Bs (R) 8.63 6.44 6.85 

‘A’ (V) 9.36 7.26 7.66 

‘Bs (R) 9.45 8.80 9.19 

‘B’ (V) 9.66 8.12 8.47 

‘A’ (R) 9.66 9.31 9.97 

‘AZ (R) 9.78 7.50 7.83 

‘As (R) 10.61 8.21 8.46 

‘B’ (R) 10.86 8.63 8.94 

‘B’ (R) 10.88 8.52 8.75 

6.11 6.11 6.73 
6.21 6.29 7.00 
6.45 6.44 7.03 
6.61 6.55 7.11 
6.99 7.03 7.58 
7.19 7.19 1.14 
1.22 7.17 1.66 
1.25 1.24 1.74 
7.39 7.40 7.87 
1.45 7.44 7.88 
1.18 1.13 6.15 
1.92 1.86 7.66 
8.05 8.01 8.40 

3.95 
7.06 
7.89 
9.27 
8.00 
9.26 
8.23 
9.07 
9.40 

7.31 
7.96 
8.14 
7.99 
8.34 
8.86 
9.01 
9.18 

4.26 
6.78 
7.49 
7.68 
7.64 

8.39 
8.51 
8.57 

6.20 
6.42 
6.53 
6.61 
1.11 
7.10 
7.31 
1.39 
7.55 
7.61 

4.07 
7.11 
7.97 

8.14 

8.37 
8.88 

7.11 
7.80 
7.60 
8.01 
8.29 
8.62 

9.34 
9.33 

4.28 
6.82 
1.46 
7.15 

8.43 
8.69 

6.22 
5.91 

6.66 
7.07 
7.4 
7.36 
7.62 
7.72 

8.18 
8.21 
8.00 

* Total energies (in au [24] ) for the ground state at the HF, MP2 and CCSD levels for the ground state of each molecule are as follows. 
We list the absolute HF energy, and the correlation energy via MP2 and CCSD. Formaldehyde: Em= - 113.900047, AE-= -0.387019, 
AE -= -0.399209. Ethylene: EHF= -78.055638, AEs,r.2= - 0.332592, AE-u= -0.361424. Acctaldehyde: EHp= - 153.953482, 
AEms= -0.533791, AE-u= -0.557338. Butadiene: Em- - - 154.950804, N&.s= -0.538160, A,!?,,= -0.578345. The correla- 
tion energies are obtained with the frozen core approximation for butadiene, and all orbitals correlated for the other species. 
b The symmetry of the various excited states together with the qualitative description of each state as either valence (V) or Rydberg (R), 
asgiveninrefs. [9-111. 
’ CIS-MP2 excitation energies are taken from the calculations reported in mfs. [ 9- 111. 
d The missing CCSD values are a consequence of seeking only a fixed number of roots in the calculations. The missing values lie higher 
in energy than the highest reported CCSD excitation energy for the given molecule. 
c Experimental excitation energies are taken from the compilations given in refs. [ 9- 111. 
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Table 2 
Vertical excitation energies of benzene, calculated with the CIS, 
CIS(D) and CCSD methods using the 6-31 +G+ basis and the 
frozen core approximation. The geometry employed is the same 
as for the calculations ofref. [7] (CC= 1.395 A, CH= 1.085 A) 

State CIS a CIS(D) b CCSD = Exp. ’ 

‘Bl” 6.08 5.36 5.23 4.9 

‘B,” 6.23 6.76 6.68 6.2 

‘E,, 7.09 6.87 6.84 6.33 

‘AZ” 7.41 7.33 7.32 6.93 

‘Et” 7.7 1 7.42 7.44 6.95 

‘El, 7.87 7.41 7.47 7.0 

B The ground state HF energy is - 230.70620 1 au. 
b The ground state frozen core MP2 correlation energy is 
-0.769235 au. 
‘The ground state frozen core CCSD correlation energy is 
-0.804368 au. 
* Experimental results are taken from ref. [ 371. 

5. Conclusions 

In this Letter, we have introduced a new perturba- 
tive excited state method, CIS( D), that approxi- 
mately corrects CIS for the effect of double substitu- 
tions. It has two principal formal merits relative to 
the CIS-MP2 correction proposed earlier [ 5 ] : 

( 1) The CIS( D) correction is strictly size consis- 
tent, while CIS-MP2 is not. 

(2) The computational complexity of CIS(D) 
scales as only the fifth power of molecular size, while 
CIS-MP2 scales as the sixth power. 

As such CIS(D) appears to be the simplest size- 
consistent doubles correction to CIS. In this sense 
CIS (D) is an excited state analog of MP2 theory for 
ground states. CIS(D) can be justified based on an 
order analysis of the excited state coupled-cluster 
equations carried to second order. This also makes it 
possible to develop higher-order size-consistent cor- 
rections via this formalism. We are currently explor- 
ing such ideas [ 39 1. 

A series of calculations on singlet excited states of 
small and medium sized molecules using CIS, 
CIS( D) and CIS-MP2 have been performed. The re- 
sults were compared to a significantly more accurate 
theory, CCSD, and to experiment. The CIS(D) re- 
sults are a substantial overall improvement relative 
to CIS itself, indicating that the doubles correction is 
moderately effective in cases where CIS is a reasona- 
ble approximation to the state of interest. Prelimi- 

nary CIS(D) results on benzene where correlation 
effects are known to be significant also compare well 
with CCSD. Accordingly CIS(D) appears to be a 
useful level of theory for examining excited states of 
large molecules where more accurate techniques such 
as MR-CI or CCSD methods are not computation- 
ally feasible. 
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