
Mathematical models and numerical methods for
a capital valuation adjustment (KVA) problem

D. Trevisania, J. G. López-Salasa, C. Vázqueza, J. A. García-Rodrígueza

aDepartment of Mathematics, Faculty of Informatics and CITIC, Campus Elviña s/n, 15071-A Coruña (Spain)

Abstract

In this work we rigorously establish mathematical models to obtain the capital valuation adjustment (KVA)
as part of the total valuation adjustments (XVAs). For this purpose, we use a semi-replication strategy
based on market theory. We formulate single factor models in terms of expectations and PDEs. For PDEs
formulation we rigorously obtain the existence and uniqueness of solution, as well as some regularity and
qualitative properties of the solution. Moreover, appropriate numerical methods are proposed for solving the
corresponding PDEs. Finally, some examples show the numerical results for call and put European options
and the corresponding XVA that includes the KVA.
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1. Introduction

Capital Requirements, also known as regulatory capital, capital adequacy, or capital base is the amount
of capital a bank or other financial institutions are required to hold by its financial regulators. It is usually
defined as a percentage of risk-weighted-assets, and thus depends on the risks attached to the portfolio
of a financial institution; the higher the risks the higher the measure (e.g. formulas contained in [6, 7]).
Throughout history, banks have autonomously set aside capital to be used in periods of crisis. However,
with the introduction of Basel I in 1988, a group of nations officially organized themselves and established
regulations. Subsequently, the world economic crisis in 2008 underscored the inadequacy of Basel II in
force at that time, and this ultimately resulted in the introduction of Basel III in 2011 (see [24, Section
12.1] for a historical evolution of Basel framework). However, while making banks more resilient, these
measures drew their attention due to the increase in operating costs caused by the capital requirements
themselves. Shareholders always ask for higher returns because of the higher risk they bear. While insurance
regulations exist for risk margins (the counterpart of KVA in Solvency II [38]), this problem is not treated
in Basel III. Moreover, contrary to what happens with debt holders, where the return they receive depends
solely on market conditions and can easily be extracted from bond quotes, the return expected by the
shareholders is unknown. Further idiosyncrasies might also occur because each institution might opt for
different methodologies to calculate the requirements, and ultimately, capital management depends on the
single institution. As a consequence, currently, the financial industry might agree on existence, rather than
on a definition of KVA.

Even though all research about KVA agrees in considering a new cost yielding at a certain hurdle rate, for
the aforementioned reasons, actually we cannot identify a unique stream of research around this topic. For
example, the approach initiated in [1] is inspired by regulations used in insurance (see [38, Solvency II]). In [1]
the authors define the KVA in terms of a forward backward stochastic differential equation (FBSDE), which
is obtained by selecting an optimal economic capital policy. Moreover, only market-risk capital is considered
and there is also the idea to treat the KVA as a retained earning. This idea was also proposed in [21], where
a PDE model is obtained by extending the semi-replication arguments of [17] (see also [15, 16, 33]). A similar
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semi-replication argument can then be found in [25], where the KVA is no more a retained earning and so
the entire cost of capital is charged to the client.

The present work mainly follows the approach in [25], although we also present a one-dimensional version
of the PDE model of [21]. Our aims in this work are multiple. In the first place, we want to frame semi-
replication for KVA (and XVAs in general) under a solid and classical market theory. As highlighted in [13],
the approach proposed in [33] (and by the extension also semi-replication) contains mathematical imprecisions
which can be overcome with the theory of markets with dividends (see [20], for example). Accordingly, we
apply this theory to construct the KVA model. We will show that under this approach some remarks about
the lack of arbitrage can be made (see Appendix A). We therefore devote ourselves to studying a single-factor
model with a simplified definition of regulatory capital. In particular, we define capital requirements through
SACCR and the basic approach for CVA capital. We also neglect completely market risk capital (thus FRTB-
capital), under the assumption of a perfectly hedged portfolio. Once the PDE model is thoroughly stated, we
conduct a mathematical analysis for this model by proving well-posedness in a mild sense of the PDE, and
then we deduce some regularity results. We finally propose suitable numerical methods to solve the pricing
problem for European vanilla options. Namely, we mainly discuss an application of the IMEX-LDG scheme
proposed in [39, 40]. Numerical solutions of a system of FBSDE are also considered using the method in
[23]. We finally show and discuss the obtained results.

The article is organized as follows. In Section 2 we establish the mathematical model by semireplication
arguments. Section 3 is devoted to the mathematical analysis of the PDE model to establish the existence
and uniqueness of the solution, as well as its regularity. In Section 4 we describe the proposed numerical
method and Section 5 shows some numerical examples about call and put options pricing. Finally, several
Appendices complete the article.

2. Mathematical modelling

In this part, we present a mathematical framework for European options pricing with XVA in a timeline
[0, T ]. By an economy we mean a triple made of:

i) A probability space (Ω,P,F , {F}t∈[0,T ]) with usual assumptions on the filtration, with P being the
real-world measure.

ii) A couple (Y,D) of stochastic adapted processes, where Y denotes the prices of the assets in the
economy, and D is the so-called cumulative dividend process. Specifically, D represents additional
cashflows caused by holding the assets, so that it can track gains and costs that are not caused directly
by trading.

iii) A set of admissible trading strategies.

In the economy that we consider, the process Y is driven by three sources of risk:

• A one-dimensional Brownian motion W driving the underlying stock S.

• A single-jump process JB that jumps when the firm B defaults.

• A single-jumps process JC that jumps when the counterparty C defaults.

All other market factors, such as interest rates, intensities of default, and the capital hurdle rate are here
assumed to be deterministic. However, the XVA measures here presented can be defined as expectations
under an equivalent martingale measure as in [24]. Under the standard assumption that an equivalent
martingale measure for the economy exists (see [14]), a multi-dimensional PDE model can be then deduced
through the Feynman-Kac representation formula.

Analogously to [4] or [37], for example, we deploy a semi-replication argument that shows that the
XVA-adjusted option price is the solution to a linear or a semilinear PDE, depending on the choice of Mark-
to-Market (MTM) price of the derivative at default. Concerning the notation used here and in the following,
we address the reader to the tables in Appendix C.
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2.1. Asset-dividend dynamics
In our economy, the price of the assets is a multi-dimensional stochastic process Y on [0, T ]. More

precisely, let
Yt = (V̂t, Xt, CAt, (REPOS)t, (REPOC)t, P

B
t,T̄ , Bt,T̄ ), t ∈ [0, T ],

where the components of Yt are defined as follows:

V̂t XVA-adjusted derivative
Xt Collateral-account
CAt Capital account

(REPOS)t = 0 Stock-REPO

(REPOC)t = 0 Counterparty-bond-REPO

dPB
t,T̄ /P

B
t,T̄ = rBt dt− (1−RB

t )dJ
B
t Firm’s own bond

dBt,T̄ /Bt,T̄ = rt dt Riskless account.

(1)

At time t = 0 the σ-algebra is degenerate, thereby the initial conditions Y0 of the above dynamics are not
random. This section aims to characterize the unknown dynamics of V̂ so that the economy does not contain
arbitrages. We denote the cumulative dividend process, i.e. additional cashflows caused by the assets Y as

D = (DV̂ , DX , DCA, DREPOS

, DREPOC

DPB

, DB).

The initial value of the cumulative dividend process is D0 = 0, while its evolution is described in the following
points:

• REPOS represents a repurchase agreement on a single dividend-paying-stock S. By modelling the
stock price S as a geometric Brownian motion

dSt/St = µdt+ σdWt,

the cashflow caused by the REPO is described as

dDREPOS

t = dSt + (γS − qS)Stdt.

Specifically, in a short time, the stock is sold and re-bought, yielding a cashflow of dSt. Furthermore,
on one hand, the holder of the stock is remunerated with a stock-dividend amount γSSt dt, while on
the other hand, a REPO rate of qS is paid as agreed.

• Similarly, REPOC represents a repurchase agreement on a single counterparty bond. So, we have

dDREPOC
t = dPC

t − qCP
C
t dt,

where
dPC

t /PC
t = rCt dt− (1−RC

t )dJ
C
t

models the dynamics of a defaultable counterparty bond. In particular, when JC jumps, the bond
defaults, and its value is reduced to the level given by its recovery rate RC

t , which is generally time-
dependent. An analogous consideration holds for the Firm’s bond PB as indicated in (1).

• DB and DPB

are constant and equal to zero. The riskless account has no additional costs, i.e., it is
dividend-zero. Being positive, it can then be chosen as a numeraire (see 2.2 of [14]).

• The collateral account X is an asset that creates a cashflow due to collateral management and margining
procedures. In this respect, additional details can be found for example in [29] with explicit cashflow
formulas in discrete and continuous time. In this model,

dDX
t = rXt Xt dt− dXt,

that is, margins dXt and interests payments rXt Xt dt are settled in continuous time. It is worth stressing
that this flow is not caused by trading the collateral account, so it applies whenever a portfolio contains
X.
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• The capital account CA represents the regulatory capital amount available at the derivative desk for
funding purposes. In this part, we follow the model in [25], for which the cumulative dividend process
satisfies

dDCA
t = γkkt dt− d(CA)t.

In particular, the amount γkk dt represents the remuneration to shareholders for holding the whole
regulatory capital k. For simplicity, this remuneration is modeled as a continuous flux of dividends,
like the stock. Furthermore, the capital account is

(CA)t = ϕkt ϕ ∈ [0, 1],

i.e., it is equal to a constant ratio of the capital requirement. Other KVA pricing models, such as the
one presented in [22], differ from [25] in the choice of CA and DCA.

• Finally, we associate the derivative V̂ itself with a dividend process

dDV̂ = −ϵHt dJB
t with ϵHt := ∆BV̂ + (1−RB

t )(V̂t −Xt − (CA)t). (2)

Here ∆BV̂ represents the variation of price of V̂ in case of B defaults (see Subsection 2.3). The term
ϵH is known in [17] as “hedging error”. This term is related to the fact that, in practice, hedging own
default is not possible. As a consequence, using risky bonds for funding purposes will always generate
an imperfect hedging of a derivative. The hedging error simply quantifies this imperfection (and from
here, the term “semi-replication”). By imposing dDV̂ = −ϵHt dJB

t we are assuming that this excessive
gain is paid by the firm B in case of default, as it is likely to happen when bankruptcy costs are
considered.

Before we start the semi-replication procedure, we define the gain process G := Y + D along with the
discounted gain process described by

dGB
t = d

(
Yt

Bt

)
+

dDt

Bt
.

We then assume a zero basis for bond-CDS and bond-repo, that is

λC
t =

rCt − qCt
1−RC

t

, λB
t =

rBt − rt
1−RB

t

, (3)

where λC and λB denote the jump-intensity of JC and JB , respectively (i.e., the intensity of default of C
and B, respectively). We highlight that this is equivalent to assuming a zero price of default risk for both B
and C. Indeed, the assets REPOC and PB are in the gain process by the equations

d(REPOC)t + dDREPOC

t = (rCt − qCt )P
C dt− (1−RC

t )P
CdJC

t ,

dPB
t + dDPB

t = rBt PB dt− (1−RB
t )P

BdJB
t .

Therefore, under this assumption, the same components in the discounted gain process have dynamics

(rCt − qCt )
PC
t

Bt
dt− (1−RC

t )
PC
t

Bt
dJC

t , (rBt − rt)
PB
t

Bt
dt− (1−RB

t )
PB
t

Bt
dJB

t ,

and so they describe two P-martingales.

2.2. Pricing by semi-replication
In this part, we deduce the pricing model of V̂ for the economy defined above. In particular, we will

take into account market and default risks, along with funding, collateral, and regulatory capital costs. We
will set a portfolio that perfectly replicates V̂ allowing us to deduce a PDE for pricing purposes. In order
to apply our argument we need to assume the function V̂ = V̂ (t, S, JC , JB) to be regular enough so that
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Itô Lemma for jump-diffusion processes can be applied. We then define a self-financing hedging portfolio θ
containing V̂ . The components in θ are given by

θ := (1,−1,−1, δ, αC, αB , 0). (4)

In particular, the positions in V̂ , the collateral and capital account are 1,−1, and −1 respectively. This
is a requirement that makes the portfolio admissible (see Appendix A). Specifically, the risky derivative
V̂ is attached with a single Credit Support Annex (CSA), and a regulatory capital amount. As a result,
there is only one collateral account and one capital requirement for every derivative V̂ . Furthermore, the
−1 for the two accounts means that these latter are used to finance the derivative. In particular, an amount
V̂0 −X0 − ϕk0 + αBPB is invested at time 0. As the portfolio is self-financing, by (1) the value Πt of the
strategy is

Πt = θt · Yt = V̂t −Xt − ϕkt + αB
t P

B
t . (5)

We set Πt = 0 so that the REPO positions δ and αC
t can replicate V̂ . In particular, the relation

αB
t P

B
t = Xt + φkt − V̂t, (6)

connects the funding position with the value of the collateral, the regulatory capital available to the desk,
and the derivative price. Namely, as long as the right-hand side is positive the bank has a long position in the
account. On the other hand, a negative right-hand side implies a negative cash flow on the funding account
position because of the funding rate attached to the account. This last statement is satisfied if and only if
V̂t > Xt + φkt, i.e., when the value of V̂t exceeds the collateral given the counterparts plus the capital for
funding purposes. In order to simplify the notation, in the following, we will suppress the subscripted time
variable t. For a market having cumulative dividends, the self-financing condition is defined by considering
the entire gain process G. Namely, θ must satisfy (see [20, chapter 6, Sec. K])

dΠ = θ · dG = θ · (dY + dD). (7)

For the dynamics given in Subsection 2.1 we have

dG =



dV̂ − ϵHdJB

rXX dt
γkk dt

dS + (γS − qS)S dt
dPC − qCP

C dt
dPB

0


. (8)

We now substitute (8) and (4) into (7). As dΠ = 0, this leads to

0 = dV̂ − ϵHdJB − rXX dt− γkk dt+ δ(dS + (qs − γS)S dt+ αC(dPC − qCP
C dt) + αBdPB. (9)

Next, we devote some comments about the term in k of the latter expression and analyze its financial
meaning, which embodies the essence and cause of KVA. The presence of the γkk instead of the cost γkφk
means that the whole cost of k is charged to the client. Here and in [25], this does not depend on how much
capital is available to the derivative desk. However, shareholders ask for a return on their entire investment,
while at the same time regulations require blocking some capital inside the institution. This quantity cannot
be used to generate a profit, and thus it becomes a cost. The next step is to eliminate risks inside (9), i.e.,
consider a riskless portfolio.

1. We first apply Itô’s formula for jump-diffusion processes to V̂ (see [32, Ch. 14], for example), and get

dV̂ =
∂V̂

∂t
dt+

∂V̂

∂S
dS +

1

2

∂2V̂

∂S2
d⟨S⟩+∆C V̂ dJC +∆BV̂ dJB

=
∂V̂

∂t
dt+∆C V̂ dJC +∆BV̂ dJB

+ µS
∂V̂

∂S
dt+

1

2
σ2S2 ∂

2V̂

∂S2
dt+ σS

∂V̂

∂S
dW.

(10)
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For β ∈ R we define the differential operator Aβ given by

Aβ := βS
∂

∂S
+

1

2
σ2S2 ∂2

∂S2
. (11)

2. We deduce the hedge ratios, i.e., the amount of δ and αC needed to cancel terms in dW and dJC . This
leads to,

αC =
∆CV

(1−RC)PC , δ = −∂V

∂S
. (12)

3. As far as the risk JB is concerned, the terms containing the jump dJB are

−ϵH +∆BV̂ − αBPB(1−RB).

By using (6) and (2), the previous expression is reduced to

−ϵH +∆BV̂ + (1−RB)(V̂ −X − φk) = −ϵH + ϵH = 0.

As anticipated, the error ϵH in the funding account made of PB is paid back when B defaults.
Theoretically, a zero hedging error can be achieved by using the riskless account B. However, very
often it is not possible to finance risk-free. In this work, we adopt a single-bond financing strategy,
which is the most used for real-world applications. For a discussion on different financing policies, we
address to [17].

4. Since all risks are now hedged we deduce a PDE model by posing the drifts of (9) equal to zero. Indeed,
by (12) and (6) we obtain

0 =
∂V̂

∂t
+

1

2
σ2S2 ∂

2V̂

∂S2
+ (qS − γS)S

∂V̂

∂S
+

rC − qC

1−RC
∆C V̂ − rB(V̂ −X − φk)− rXX − γkk,

that is,

∂V̂

∂t
+A(qS−γS)V̂ = rBV̂ +

qC − rC

1−RC
∆C V̂ + (rX − rB)X + (γK − φrB)k.

By using (3) we finally obtain a general model for V̂ ,{
∂V̂
∂t +A(qS−γS)V̂ = rBV̂ − λC∆C V̂ + (rX − rB)X + (γk − φ rB)k,

V (T, S) = g(S),
(13)

where g denotes the payoff function of the European derivative. The total XVA U is defined through
V̂ = U + V , where V denotes the risk-free derivative, and thus solves the Black-Scholes type PDE{

∂V
∂t +A(qS−γS)V = rV,

V (T, S) = g(S).
(14)

Accordingly, we have that U solves{
∂U
∂t +A(qS−γS)U − rBU = (rB − r)V − λC∆C(V + U) + (rX − rB)X + (γk − φ rB)k,

U(T, S) = 0.
(15)

2.3. PDEs with close-out conditions
In PDEs (13) and (15), the close-out spread ∆CV indicates how the value of the contract changes when

the counterparty defaults. A standard market hypothesis is to set

∆C V̂ = gC(M)− V̂ , (16)
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for a function gC , whose value depends on the mark-to-market (MTM) value of the derivative. In this model
we set

gC(M) := X +RC(M −X)+ + (M −X)−, (17)
where M denotes the MTM value. Specifically, if C defaults and M − X is positive, then B can pledge
the collateral account X, and C pays the remaining (M − X) times the recovery ratio RC . However, if
C defaults and (M − X) is negative, then B has to pay the whole MTM price of the contract. To the
best of our knowledge, in applications M is assumed to be equal to the risk-free value V in CVA and DVA
calculations, while in some cases M = V̂ can also be considered (e.g. [12] about the recursive nature of
FVA). For instance, M = V̂ is imposed for perfectly collateralized derivatives (see for example [29, Equation
(9)]). Therefore, we have that

M = V =⇒ −∆C V̂ = U + (1−RC)(V −X)+,

while
M = V̂ =⇒ −∆C V̂ = (1−RC)(V̂ −X)+.

As a result, for M = V̂ , the PDE (13) is nonlinear and reads as
∂V̂
∂t +A(qS−γS)V̂ = rBV̂ + (qC − rC)︸ ︷︷ ︸

=λC(1−RC)

(V̂ −X)+ + (rX − rB)X + (γk − φ rB)k,

V (T, S) = g(S),

(18)

and the PDE (15) for the XVA is then
∂U
∂t +A(qS−γS)U − rBU = (rB − r)(V −X) + (qC − rC)(U + V −X)+

+(rX − r)X + (γk − φ rB)k,

U(T, S) = 0.

(19)

Analogously, for M = V we obtain the following linear PDE for the derivative price:{
∂V̂
∂t +A(qS−γS)V̂ = (rB + λC)V̂ − λCV + (qC − rC)(V −X)+ + (rX − rB)X + (γk − φ rB)k,

V (T, S) = g(S),
(20)

while the XVA satisfies
∂U
∂t +A(qS−γS)U − (rB + λC)U = (rB − r)(V −X) + (qC − rC)(V −X)+

+(rX − r)X + (γk − φ rB)k,

U(T, S) = 0.

(21)

In particular, a solution of (21) can be expressed in terms of expectation by means of the Feynman-Kac
representation formula (see [32, Ch.9], for example). Namely,

U = −CVA + FBVA − FCVA − CRA − KVA,

which by (3) can be defined as

CVAt(S) = E

[∫ T

t

λC
u (1−RC

u ) e
−

∫ u
t
(rBs +λC

s ) ds(Vu(Su)−Xu(Su))
+ du

∣∣∣St = S

]
,

FBVAt(S) = −E

[∫ T

t

λB
u (1−RB

u ) e
−

∫ u
t
(rBs +λC

s ) ds(Vu(Su)−Xu(Su))
− du

∣∣∣St = S

]
,

FCVAt(S) = E

[∫ T

t

λB
u (1−RB

u ) e
−

∫ u
t
(rBs +λC

s ) ds(Vu(Su)−Xu(Su))
+ du

∣∣∣St = S

]
,

CRAt(S) = E

[∫ T

t

(rXu − ru) e
−

∫ u
t
(rBs +λC

s ) dsXu(Su) du
∣∣∣St = S

]
,

KVAt(S) = E

[∫ T

t

(γk
u − φur

B
u ) e−

∫ u
t
(rBs +λC

s ) dsku(Su, Vu) du
∣∣∣St = S

]
.
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With respect to the acronyms just defined, the CVA is Credit-Value-Adjustment and quantifies the loss under
the possibility the counterparts might default. FBVA and FCVA are adjustments for Funding Benefits and
Costs, respectively. CRA is the Collateral Rate Adjustment and reflects the expected excess of net interests
paid on collateral. Finally, the KVA stands for Capital Value Adjustments and represents the expected cost
of remunerating shareholders because of the cost of capital. Analogous formulas for the case M = V̂ can be
obtained with the solution V̂ and U appearing inside the expectations.

We finally highlight that the collateral X and k have not been defined yet. Concerning X, we set a
partial collateralization

X = γXM, γX ∈ [0, 1].

As far as k is concerned, there is no unique definition. Its definition depends on the type of product considered
and the particular regulatory method that the institution is allowed to use. Under some restrictions, in
Appendix B we will show that the capital requirement generated by a European vanilla option is given by
a function k = k(t, S,M) which is globally Lipschitz in all variables.

2.4. A different approach to the cost of capital
As stated in the introduction, the cost of capital is controversial and so there is no general consensus in

industry about its management. In this part, we briefly present a one-dimensional version of the PDE model
for KVA of [22]. This model differs from the one of [25] in the part concerning the capital account CA, and
so in the cost of capital itself. Specifically, the capital account of this economy is given by

CAt = k− (V̂ − V f ) and dDCA
t = γk(CAt) dt− d(CA)t,

where V f solves the PDE{
∂V f

∂t +A(qS−γS)V f = (rB + λC)V
f − λCg

C + (rX − rB)X,

V f (T, S) = g(S).
(22)

Namely, V f denotes the price of the derivative including counterparty credit risk and funding costs and
benefits. The main idea behind this kind of capital account is that the KVA = V̂ − V f can be accounted
as retained earnings. Since retained earnings are considered as Core Equity Tier 1 Capital (CET1), i.e.,
part of k, the amount the bank needs to get from shareholders might be reduced. We address the reader
directly to [22] and [21] for more details. It is worth stressing that under the approach in [22] shareholders
are remunerated only for the amount CAt = kt − (V̂ −V f ), whereas in the previous model of [25] the whole
capital (including retained earnings) is remunerated.
By keeping the rest of the assets as in Subsection 2.1, the same passages of Subsection 2.2 lead to the
following PDE 

∂V̂
∂t +A(qS−γS)V̂ = γkV̂ + λC(V̂ − gC) + (rX − rB)X

+(γk − rB)(k− V f ),

V̂T (S) = g(S).

(23)

For the choice of the MTM M = V , then U = V̂ − V f = KVA solves{
∂U
∂t +A(qS−γS)U = (γk + λC)U + (γk − rB)k,

UT (S) = 0.
(24)

The counterpart of Subsection 2.3 of this PDE is{
∂U ′

∂t +A(qS−γS)U ′ = (rB + λC)U ′ + (γk − φ rB)k,

U ′
T (S) = 0.

(25)

In particular, when φ = 1 we then have

U(t, S) = exp

(
−
∫ T

t

(γK
s − rBs ) ds

)
U ′(t, S).

Namely, as long as the spread γK − rB is positive then the KVA of Subsection 2.3 is greater than the one in
(24).
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3. Mathematical analysis of the PDE model

In this section we address the mathematical analysis of PDE formulations of the models posed in
Subsection 2.3. With regards to the alternative KVA model in Subsection 2.4, we have already observed
that for deterministic funding rate, its solution is easily inferred from a particular case of (21).
To better frame our problems we notice that all PDEs presented in this work can be classified as either linear
or semilinear parabolic PDE (see for example [34, Ch. 2]). More precisely, we are dealing with PDEs of the
form

∂V̂

∂t
+AβV̂ = F (t, S, V̂ ) (t, S) ∈ [0, T )× (0,∞), (26)

where β = (qS − γS), and Aβ denotes the Black-Scholes operator (11). We remark that when the MTM is
equal to the risk-free derivative price V then the term F is

F (t, S, V̂ ) = (rB + λC)V̂ − λCV + (qC − rC)(V −X)+ + (rX − rB)X

+ (γk − φ rB)k(t, S, V ),
(27)

and thus, it is linear in V̂ (we recall that X = X(V ) and k = k(t, S, V )) and a linear PDE is involved. On
the other hand, for M = V̂ we have

F (t, S, V̂ ) = rBV̂ + (qC − rC)(V̂ −X)+ + (rX − rB)X + (γk − φ rB)k(t, S, V̂ ), (28)

so that F presents also nonlinear terms in V̂ and a semilinear PDE arises.
Alternatively, the aforementioned Cauchy problem can be solved in a viscous sense by considering the

equivalent system of Forward-Backward SDEs
dSt = (qS − γS)St dt+ σSdWt,

−dV̂t = F (t, St, V̂t) dt− Zt dWt, t ∈ [0, T ],

S0 = S, V̂T = g(ST ).

(29)

In any case, we note that the so called driver F is Lipschtitz in V̂ uniformly in (t, S). Moreover, the process
S is a geometric Brownian motion and so classical conditions for well-posedness of (29) are satisfied (see
[30], for example). Furthermore, given that the final condition g is continuous and has polynomial (linear)
growth, a well-known result of [31] shows that the solution V̂ of (29) is a viscosity solution of (26).

3.1. Well-posedness of the PDEs formulation
In this section, we aim to prove the well-posedness of (26) and the regularity of its solution when

nonlinearities in (26) are Lipschitz and the terminal condition has at most linear growth. The proposed
techniques are mainly addressed to the semilinear case included in (26). Although the linear case can be
understood as a particular case of the semilinear one, the mathematical analysis can be straighforwardly
performed in the frame of linear PDEs.

Note that similar results can be found in [3] for the one factor case and in [2] for two factors in XVA models
without considering KVA, in which well-posedness is deduced from the sectorial property of the Laplace
operator (see [26]). Our approach is slightly different, and it takes advantage of the explicit expression of
the semigroup associated to the PDE. Thus, by direct computation on the semigroup, we also obtain some
additional regularity results for the solution.

We start by noting that the solution of the classical Black-Scholes PDE{
∂V̂
∂t +AβV̂ = rV, in QT := (0, T )× R≥0

V̂ (T, S) = (S −K)+,
(30)

satisfies the relation

∥V̂ ∥X := ess sup
(t,S)∈QT

∣∣∣ V̂ (t, S)

1 + S

∣∣∣ < ∞, (31)

9



so that the risk-free value of a European call option grows linearly in S. Accordingly, in order to set up a
Picard iteration with the semigroup of (26) we consider the Banach space

X :=

{
x : [0, T ]× R+ −→ R :

x

1 + S
∈ L∞([0, T ]× R+)

}
(32)

endowed with ∥ · ∥X norm defined in (31).
Next, by introducing Γ(t, S, u, z) to denote the fundamental solution of the differential operator ∂t +Aβ ,

we can consider the mild equation

V̂ (t, S) =

∫ ∞

0

Γ(t, S, T, z)g(z)dz −
∫ T

t

∫ ∞

0

Γ(t, S, u, z)F (u, z, V̂ (u, z)) dz du, (33)

or equivalently,

V̂ (t, S) = E[g(ST )|St = S]−
∫ T

t

E
[
F (u, Su, V̂ (u, Su))|St = S

]
du.

Given the pure probabilistic form of this last expression, this kind of problem has been recently tackled
through a multi-level Picard iteration technique, and convergence was also established in the multidimensional
case (see [37] and references therein).

Here we use this same approach to show the existence and uniqueness of the solution of (33) in (X, ∥·∥X).
For simplicity, we assume β and σ to be constant and work in one dimension. Thus, we have

Γ(t, S, u, z) =
z−1√

2πσ2(u− t)
exp

−

[
ln z

S − (β − σ2

2 )(u− t)
]2

2σ2(u− t)

1z>0. (34)

In the following proof, we use c to denote a general positive constant, whose dependencies will be specified
when it is required. We also adopt the notation

mt,u :=

(
β − σ2

2

)
(u− t), σ2

t,u = σ2(u− t), 0 ≤ t < u ≤ T.

Theorem 1. Let F : [0, T ] × R≥0 × R −→ R, and g : R≥0 → R be Lebesgue measurable and with linear
growth. Suppose that there exists L > 0 such that

|F (t, S, f)− F (t, S′, g)| ≤ L(|S − S′|+ |f − g|) f, g ∈ R, (t, S) ∈ [0, T ]× R≥0. (35)

Then J : X → X

J(x) :=

∫ ∞

0

Γ(t, S, T, z)g(z)dz −
∫ T

t

∫ ∞

0

Γ(t, S, u, z)F (u, z, x(u, z)) dz du (36)

is well-defined, and there exists k ∈ N such that the composition of J k-times, Jk, satisfies

∥Jk(x)− Jk(y)∥X < ∥x− y∥X . (37)

Accordingly, (33) admits a unique solution in X.

Proof. Since F is uniformly Lipschitz in the (S, x) variables it holds

|F (t, S, x)| ≤ c(1 + |S|+ |x|), (t, S, x) ∈ [0, T ]× R≥0 × R, (38)

and so, for x ∈ X there exists c = c(F, T, ∥x∥X) such that

|F (t, S, x(t, S))| ≤ c(1 + |S|), (t, S) ∈ [0, T ]× R≥0. (39)
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Accordingly,

|J(x)(t, S)| =

∣∣∣∣∣
∫ ∞

0

Γ(t, S, T, z)g(z) dz +

∫ T

t

∫ ∞

0

Γ(t, S, u, z)F (u, z, x(u, z)) dz du

∣∣∣∣∣
≤ c

(∫ ∞

0

(1 + z)Γ(u, S, T, z) dz +

∫ T

t

∫ ∞

0

(1 + z)Γ(t, S, u, z) dz du

)
.

Since Γ(t, S, u, z) is the density function of a geometric Brownian motion at time u ≥ t and initial condition
S we get

|J(x)(t, S)| ≤ c

(
(1 + S exp (β(T − t)) +

∫ T

t

(1 + S exp (β(u− t)))du

)

= c

(
1 + S exp (β(T − t)) + (T − t)

[
1 + S

exp (β(T − t))− 1

β(T − t)

])
≤ c(1 + (T − t))(1 + S) ≤ c(1 + S),

(40)

and this proves the well-posedness of J(x). To prove (37) we see that

|J(x)− J(y)|(t, S) ≤
∫ T

t

∫ ∞

0

Γ(t, S, u, z)
∣∣F (u, z, x(u, z))− F (u, z, y(u, z))

∣∣ dz du
≤ c

∫ T

t

∫ ∞

0

Γ(t, S, u, z)|x− y|(u, z)dz du

≤ c∥x− y∥X
∫ T

t

∫ ∞

0

Γ(t, S, u, z)(1 + z)dz du.

(41)

By repeating the computations in (40) we thus obtain

ess sup
S≥0

|J(x)− J(y)|(t, S)
1 + S

≤ c(T − t)∥x− y∥X , (42)

for some c > 0 independent of x, y. The statement now follows by standard induction arguments applied to
(42).

Corollary 1. Under the assumptions of Theorem 1, the mild solution V̂ of (26) satisfies

S

1 + S

∣∣∣∂V̂
∂S

∣∣∣(t, S) ≤ c, (t, S) ∈ [0, T )× R+, (43)

lim
S→∞

∂2V̂

∂2S
(t, S) = 0, t ∈ [0, T ). (44)

Proof. In this proof, we make use of the following well-known Gaussian inequality. Namely, for every
λ0 > λ > 0 and p > 0 there exists a constant c = c(p, λ, λ0) such that(

|x|√
t

)p
1√
2πλt

exp

(
− x2

2λt

)
≤ c√

2πλ0t
exp

(
− x2

2λ0t

)
, (t, x) ∈ (0,∞)× R. (45)

From Theorem 1 the mild equation (33) admits a unique solution with linear growth V̂ . In order to prove
regularity, we differentiate (33) and manage with the semigroup given by Γ. Without loss of generality, we
prove regularity only for the second term of the mild equation (33), and thus we assume g = 0. In order to
prove the existence and regularity of the first derivative we show that∫ T

t

∣∣∣∣∣
∫ ∞

0

∂Γ

∂S
(t, S, u, z)F (u, z, V̂ (u, z)) dz

∣∣∣∣∣du < ∞, (t, S) ∈ [0, T )× R>0.
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For this purpose, by (35) and V̂ ∈ X it is sufficient to show that for every S > 0∫ ∞

0

∣∣∣∂Γ
∂S

(t, S, u, z)
∣∣∣(1 + z) dz du ≤ c(S)√

u− t
, u ∈ [t, T ]. (46)

For z > 0 and S > 0 we have

∂Γ

∂S
(t, S, u, z) =

Γ(t, S, u, z)

Sσt,u

(
ln z

S −mt,u

σt,u

)
. (47)

By replacing (47) in (46) and using the change of variable z = S exp(σt,uy +mt,u) in (46), we obtain

S

∫ ∞

0

∣∣∣∂Γ
∂S

(t, S, u, z)
∣∣∣(1 + z) dz =

1

σt,u

∫ ∞

−∞

exp(−y2

2 )
√
2π

|y|(1 + S exp(σt,uy +mt,u)) dy

≤ c

σt,u

(
1 + S

∫ ∞

−∞

|y| exp(−y2

2 )
√
2π

exp(σt,uy +mt,u)) dy

)

≤ c

σt,u
(1 + S) ≤ c(1 + S)√

u− t
.

(48)

This last relation proves (43), which in turn implies that V̂ is locally Lipschitz in S uniformly in t.
Next, in order to prove the existence of the second derivative we will consider

H(u, z) := F (u, z, V̂ (u, z)).

As F is uniformly Lipscthitz in the two last variables, by (43) we obtain

|H(u, z)−H(u, y)| ≤ cn|z − y|, u ∈ [0, T ], z, y ≥ n−1, (49)

where cn grows linearly with respect to n. In order to deduce the existence of the second derivative for every
S > 0, it is sufficient to prove that

|I| :=

∣∣∣∣∣
∫ ∞

0

∂2Γ

∂S2
(t, S, u, z)H(u, z) dz dz

∣∣∣∣∣ ≤ c(S)√
u− t

. (50)

From a direct computation of
∂2Γ

∂S2
(t, S, u, z) and the change of variable z = S exp(y +mt,u), we obtain

I =
1

S2σ2
t,u

∫ ∞

−∞

exp
(
− y2

2σ2
t,u

)
√
2πσ2

t,u

(
y2

σ2
t,u

− 1− y

σt,u

)
H(u, S exp(y +mt,u)) dy

=
1

S2σ2
t,u

∫ ∞

−∞
G(y, σt,u)H(u, S exp(y +mt,u)) dy := I1 + I2,

(51)

where

I1 =
1

S2σ2
t,u

∫
|y|<n

G(y, σt,u)H(u, S exp(y +mt,u))) dy,

I2 =
1

S2σ2
t,u

∫
|y|≥n

G(y, σt,u)H(u, S exp(y +mt,u)) dy.

(52)

In order to prove (50) for the module of I2, we use the at H(u, z) grows linearly in z and |y| > n. In this
case,

|I2| ≤
c

S2σ2
t,u

∫
|y|≥n

|y|G(y, σt,u)(1 + S exp(y +mt,u)) dy, (53)
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and thus the relation follows by the estimate (45). To estimate I1 we observe that for |y| ≤ n, by (49) and
S > 0 we can find a constant c = c(S, n) such that

|H(u, S exp(y +mt,u))−H(u, S)| ≤ cS | exp(y +mt,u)− 1| ≤ c S|y +mt,u|. (54)

Accordingly,

|I1| ≤ |J1|+ |J2| =
1

S2σ2
t,u

∣∣∣∣∣
∫
|y|<n

G(y, σt,u) [H(u, S exp(y +mt,u)))−H(u, S)] dy

∣∣∣∣∣
+

|H(u, S)|
S2σ2

t,u

∣∣∣∣∣
∫
|y|<n

G(y, σt,u) dy

∣∣∣∣∣.
(55)

The estimate (50) for |J1| follows by (54) and the Gaussian estimate (45). In particular, we obtain

|J1| ≤
c(S)

S
√
u− t

with limS→0+ c(S) = ∞ and c(S) bounded in S > 1. Finally, to bound |J2|, notice that∫ ∞

−∞
G(y, σt,u) dy =

∫ ∞

−∞

exp(− z2

2 )
√
2π

(z2 − 1− z) dz = 0,

and thus

|J2| =
|H(u, S)|
S2σ2

t,u

∣∣∣∣∣
∫
|y|>n

G(y, σt,u) dy

∣∣∣∣∣ = |H(u, S)|
S2σ2

t,u

∣∣∣∣∣
∫
|z|> n

σt,u

exp(− z2

2 )
√
2π

(z2 − 1− z) dz

∣∣∣∣∣.
To estimate the integral, without loss of generality, we can assume σt,u < 1

2 and so

1

2

(
z +

n

σt,u

)
< z <

z2

2
,

{
|z| > n

σt,u

}
⊆ {|z| > n}.

As a consequence,

|J2| ≤
c

S2σ2
t,u

exp

(
− n

2σt,u

)∫
|z|>n

exp
(
−z

2

)
|z2 − 1− z| dz ≤ c

S2

exp(− n
2σt,u

)

σ2
t,u

≤ c

S2 σt,u
,

as the exponential decay of exp(− n
2σt,u

) dominates over σ−2
t,u when u → t+. Indeed such a limit for |J2| is zero.

We highlight that as for the other terms, the constant c = c(S, n) diverges only when S tends to zero. This
proves the existence of the second derivative of V̂ along with (44), and so the proof is now concluded.

Note that (44) will be used to impose the boundary conditions in the computational domain to be defined
for the numerical solution.

4. Numerical method for PDEs

In this section we describe the proposed numerical methods to solve the (non)linear parabolic PDEs
problems, such as PDE (26). As in many problems in finance, in a previous step to the numerical solution,
the initial spatial unbounded domain is truncated to a computational bounded one. For this purpose, we
introduce a large enough fixed value of the asset price S and consider the spatial bounded domain [0, S].
Moreover, we reformulate the previously posed PDE problems (26) with final condition in terms of equivalent
initial PDE problems. For this purpose, we consider the new time to maturity variable τ = T − t.

Next, following the approach contained [40], we combine an IMplicit-EXplicit (IMEX) method for the
time discretization with a Local Discontinuous Galerkin (LDG) method for the spatial discretization. Thus,
we describe the LDG scheme in subsection 4.1, and a couple of IMEX time-marching schemes in subsection
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4.2. LDG methods are suitable for nonlinear problems in conservative form. We address the reader to [19]
for the general theory about LDG, and [8, Part III] for the treatment of schemes with alternating fluxes.
In finance, documented LDG methods combined with explicit Runge-Kutta schemes have been used for
portfolio optimization problems and can be found in [28] and [9]. With respect to IMEX schemes used in
finance, we point out the research developed in the direction of option pricing with jump-diffusion processes.
For this kind of problems, the nonlocal integral term is treated in explicit form, while the diffusion and
advection terms are integrated implicitly. A presentation of different schemes and stability analysis can be
found in [35]. In two spatial dimensions, we can mention the case with stochastic volatility under the Bates
model that is considered in [36]. Further works in dimension two are centered on operator splitting schemes
in order to combine the ADI method with IMEX time integration (e.g. [10, 11, 27]).

4.1. LDG space semidiscretization
After truncating the domain and introducing the new time variable τ = T − t the problem (18) can be

written in conservative form as{
∂τ V̂ + ∂Sf(S, V̂ ) = ∂S

(
a(S)∂S V̂

)
+H(τ, S, V̂ ), (τ, S) ∈ (0, T ]× [0, S̄],

V̂ (0, S) = g(S),
(56)

where 
a(S) = 1

2σ
2S2,

f(S, V̂ ) = (σ2 − β)S V̂ ,

H(τ, S, V̂ ) = (σ2 − β)V̂ − F (T − τ, S, V̂ ),

(57)

and F is defined as in (28). We now display the spatial discretization of (56) along with conditions on the
parabolic boundary

{0} × [0, S̄] ∪ (0, T ]× {0} ∪ (0, T ]× {S̄}.

The initial condition is given by the payoff function g, that is

V̂ (0, S) = g(S), S ∈ [0, S̄]. (58)

On the sides of the boundary, motivated by Corollary 1, for a call option, we impose the condition

V̂ (τ, 0) = 0, ∂SS V̂ (τ, S̄) = 0, τ ∈ (0, T ), (59)

while for a put option we impose

∂SS V̂ (τ, 0) = 0, V̂ (τ, S̄) = 0, τ ∈ (0, T ). (60)

In order to pose the appropriate formulation to apply a discontinuous Galerkin method, we introduce the
new unknown

Q(τ, S) = ∂S V̂ (τ, S), (61)

and the following notation G(S,Q) = a(S)Q. Thus, the second order PDE (56) can be equivalently
formulated in terms of following first-order system:{

∂τ V̂ + ∂Sf(S, V̂ ) = ∂SG(S,Q) +H(τ, S, V̂ ), (τ, S) ∈ [0, S̄]× (0, T ],

Q(τ, S) = ∂S V̂ (τ, S),
(62)

with the same initial condition (58) and boundary conditions (59) or (60).
Next, for the spatial discretization of system (62) with a LDG method, we consider the mesh

Th := {Ij = (Sj , Sj+1], 0 ≤ j < N}

associated to the set of nodes 0 = S0 < S1 · · · < SN = S̄. Let hj := Sj+1−Sj , j = 0, . . . , N −1, and define

hmax = max
0≤j≤N−1

(hj).
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Associated to the previous mesh, we consider the discontinous finite element space of piecewise polynomial
function having degree at most k

Eh := {v ∈ L2([0, S̄]) : v|Ij= vj ∈ Pk(Ij),∀j = 0, . . . , N − 1}.

For the internal product of L2((0, S̄]) we use the notation

⟨v, w⟩ =
∑

0≤j<N

∫
Ij

v(s)w(s) ds =
∑

0≤j<N

⟨uj , vj⟩j ,

and a general element v ∈ Eh has the form

v =
∑

0≤j<N

k∑
i=0

vijΦ
i
j ,

where for each j, {Φi
j , 0 ≤ i ≤ k} is a basis of Pk(Ij). Having the elements of a basis of Eh compact support,

v ∈ Eh can present discontinuities across the edges of the cells. Therefore, there are two traces along the
right-hand and left-hand of each cell, here denoted by v+ and v−, respectively.

For a given τ > 0, the semidiscrete LDG scheme aims to find the numerical solution (v̂(τ, .), q(τ, .)) ∈
Eh × Eh

v̂(τ, .) =
∑

0≤j<N

k∑
i=0

v̂ij(τ)Φ
i
j , q(τ, .) =

∑
0≤j<N

k∑
i=0

qij(τ)Φ
i
j , (63)

such that
⟨∂τ v̂, v⟩j = Dj(q, v) + Cj(v̂, v) +Hj(v̂, v),

⟨q, w⟩j = Kj(v̂, w),
(64)

for each cell Ij and every (v, w) ∈ Eh×Eh. Unless strictly required, to the aim of simplicity in the following
we omit the use of the variables τ and S. In (64), we use the following notation:

Cj(v̂, v) = ⟨f(v̂), ∂Sv⟩j − f̃j+1 v(S
−
j+1) + f̃j v(S

+
j ),

Hj(v̂, v) = ⟨H(v̂), v⟩j ,
Dj(q, v) = −⟨G(q), ∂Sv⟩j +G(q̃j+1) v(S

−
j+1)−G(q̃j) v(S

+
j ),

Kj(u,w) = −⟨u, ∂Sw⟩j + ũj+1w(S
−
j+1)− ũjw(S

+
j ),

(65)

where f̃ , ũ and q̃ are numerical fluxes associated to f, u and q respectively. Although f̃ can be any monotone
numerical flux, in this work we choose the simple Lax-Friedrich flux

f̃j = f̃(v̂(S−
j ), v̂(S+

j )) =
1

2

(
f(v̂(S−

j )) + f(v̂(S+
j ))− αj

(
v̂(S+

j )− v̂(S−
j )
))

, with αj = max
v̂∈Ij

|∂v̂f(v̂)|.

Secondly, for ũ and q̃ an alternating numerical flux has to be considered. The crucial point with the
alternating is that ũ and q̃ have to be chosen from different directions:

A1 Selecting ũ from the left and q̃ from the right, i.e. ũj = u−
j for j = 1, . . . , N and q̃j = q+j for

j = 0, . . . , N − 1. This selection is well-suited for imposing the boundary conditions for call options
written in (59). On the one hand, we force homogeneous Dirichlet boundary conditions at S = 0,
i.e. ũ0 = 0. On the other hand, by enforcing a constant behavior of q in the neighborhood of S̄ i.e
q̃N = qN (S̄ − ε), ε > 0, we impose ∂SS V̂ (S̄) = 0.

A2 Taking ũ from the right and q̃ from the left, i.e. ũj = u+
j for j = 0, . . . , N − 1 and q̃j = q−j for

j = 1, . . . , N . This selection is suitable in order to impose the boundary conditions for put options
reported in (60). Firstly, we force homogeneous the Dirichlet boundary condition at S = S̄, i.e. ũN = 0.
Then, q̃0 = q0(ε), ε > 0, allows to impose ∂SS V̂ (0) = 0.

15



By summing up the variational formulations (64) over all the cells we get the following semidiscrete LDG
in global form

⟨∂τ v̂, v⟩ = D(q, v) + C(v̂, v) +H(v̂, v),

⟨q, w⟩ = K(v̂, w),
(66)

where
C(v̂, v) =

∑
j

Cj(v̂, v),

and similarly for H, D and K. In this work, we consider the orthogonal nodal basis defined by the Lagrange
interpolation polynomial basis over the k Gauss-Legendre quadrature nodes in the interval Ij . Specifically,
for every i, j we consider the canonical ith-Lagrange polynomial ϕi : [−1, 1] → R based on the i-th Gauss-
Legendre quadrature node ξi ∈ [−1, 1]. Let wi denote the weight associated with such quadrature node. By
means of the bijection

Tj : [−1, 1] → [Sj , Sj+1], ξ 7→ Sj+1 + Sj

2
+

hj

2
ξ,

the basis element is defined as Φi
j := ϕi ◦ T−1

j . As an example, we see that under this setting it holds

Hj(v̂,Φ
i
j(S)) =

∫
Ij

H(v̂)Φi
j(S) dS =

hj

2

∫ 1

−1

H (v̂ (Tj(ξ))) ϕ
i(ξ) dξ

≈ hj

2

k∑
i=0

wiH(v̂(Tj(ξi)))ϕ
i(ξi) =

hj

2
wjH(v̂ij).

(67)

The computation for the remaining terms of (65) are left to the reader.
The initial condition V̂0(S) ∈ Eh is taken as an approximation of the given initial solution g(S). In order

to avoid errors due to the projection of the payoff on the described basis, the strike price K must be a node
of the mesh Th. This can be easily achieved by properly selecting S̄, which should be also big enough to
impose ∂SS V̂ (S̄) = 0. Due to the expression of (67), the variational problem (66) can present non-linearities
in v̂. However, solving non-linear equations is avoided by coupling the spatial discretization with the IMEX
time marching scheme. As we will show in the following section, this scheme treats explicitly the terms (67)
and C, while it treats implicitly the remaining terms.

4.2. IMEX time semidiscretization
In this section, we present the fully-discrete IMEX LDG methods. Let

0 = τ0 < · · · < τn < · · · < τL = T

be a uniform mesh of [0, T ] with constant step δ, and let (v̂n, qn) denote (v̂(τn), q(τn)). Given (v̂n, qn), the
scheme produces a numerical solution at the next time level τn+1 through intermediate numerical solutions
denoted as (v̂l, ql). We now provide the main steps required for the second and third-order schemes.

For the second order scheme, for any function (v, w) ∈ Eh × Eh, we consider the LDG method with the
L-stable, two-stage DIRK(2,2,2) IMEX scheme given in [5]. The scheme is defined using the constants

γ = 1−
√
2

2
, κ = 1− 1

2γ
.

The next time level solution (v̂n+1, qn+1) is obtained after solving two linear systems. The first stage system,
defined at the intermediate time τn + δγ is given by{

⟨v̂n,1, v⟩ = ⟨v̂n, v⟩+ δ
[
γD(qn,1, v) + γ(C +H)(v̂n, v)

]
,

⟨qn,1, w⟩ = K(v̂n,1, w),

and subsequently, the next time-level solution is obtained by solving
⟨v̂n+1, v⟩ = ⟨v̂n, v⟩+ δ

[
(1− γ)D(qn,1, v) + γD(qn+1, v)

+κ(C +H)(v̂n, v) + (1− κ)(C +H)(v̂n,1, v)
]
,

⟨qn+1, w⟩ = K(v̂n+1, w).
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Finally, the third-order IMEX scheme is taken from [18], and it is defined emplyoing the constants

γ =
1767732205903

4055673282236
, β1 = −3

2
γ2 + 4γ − 1

4
, β2 =

3

2
γ2 − 5γ +

5

4
,

α1 = −0.35, α2 =
1
3 − 2γ2 − 2β2α1γ

γ(1− γ)
.

The IMEX-LDG scheme consists of solving three stages of linear systems. Namely, at time τn + δγ we have{
⟨v̂n,1, v⟩ = ⟨un, v⟩+ δ

[
γD(qn,1, v) + γ(C +H)(un, v)

]
,

⟨qn,1, w⟩ = K(v̂n,1, w).

Subsequently, at time τn + δ 1+γ
2 we solve

⟨v̂n,2, v⟩ = ⟨v̂n, v⟩+ δ
[
1−γ
2 D(qn,1, v̂) + γD(qn,2, v̂)(

1+γ
2 − α1

)
(C +H)(v̂n, v) + α1(C +H)(v̂n,1, v)

]
,

⟨qn,2, w⟩ = K(v̂n,2, w),

and at the next time step τn + δ
⟨v̂n,3, v⟩ = ⟨un, v⟩+ δ

[
β1D(qn,1, v̂) + β2D(qn,2, v̂) + γD(qn,3, v̂)

+(1− α2)(C +H)(v̂n,1, v) + α2(C +H)(v̂n,2, v)
]
,

⟨qn,3, w⟩ = K(v̂n,3, w).

Finally

⟨v̂n+1, v⟩ = ⟨un, v⟩+ δ
[
β1D(qn,1, v̂) + β2D(qn,2, v̂) + γD(qn,3, v̂)

+ β1(C +H)(v̂n,1, v) + β2(C +H)(v̂n,2, v) + γ(C +H)(v̂n,3, v)
]
,

and hence ⟨qn+1, w⟩ = K(vn+1, w).
In order to ensure the stability of the method we imposed a Courant–Friedrichs–Lewy (CFL) condition

of the form
δ ≤ Chmax

(2k + 1) |σ2 − β| S̄
, (68)

where C ≤ 1 is a positive constant and |σ2−β|S̄ = maxS∈[0,S̄] |(∂V̂ f(S, V̂ )|. Note that this condition implies
that for a given level of refinement in the spatial mesh we must consider a small enough time step. In the
numerical tests, we will consider C = 0.5.

5. Numerical results

The results here presented are related to problems contained in Subsection 2.3 and thus reformulated in
Section 3. We consider a European Call and a Put options, whose price is adjusted with an XVA, including
KVA. All the chosen parameters to define the model are shown in Table 1. In all numerical examples, the

T = 1 year σ = 0.3 r = 0.06 γS = 0
qS = 0.06 RB = 0.7 RC = 0.78 λB = 0.00133
λC = 0.0103 γX = 0.9 rX = 0.07 γk = 0.15
φ = 1 η = 0.08 LR = 0.03 ω = 0.75
α = 1.4 SF = 0.32 σr = 1.5 RW = 0.05

Table 1: Value of all relevant parameters of the KVA-model.

17



N L2-err EOC L∞-err EOC L2-err EOC L∞-err EOC
Put-Linear Put-NLinear

10 5.544e-01 - 2.694e-01 - 5.541e-01 - 2.692e-01 -
20 1.096e-01 2.339 4.260e-02 2.661 1.096e-01 2.338 4.260e-02 2.659
40 2.787e-02 1.975 1.070e-02 1.993 2.787e-02 1.975 1.070e-02 1.993
80 7.036e-03 1.986 2.718e-03 1.978 7.036e-03 1.986 2.718e-03 1.978
160 1.792e-03 1.973 6.939e-04 1.97 1.792e-03 1.973 6.939e-04 1.97
320 4.783e-04 1.905 1.903e-04 1.866 4.783e-04 1.905 1.903e-04 1.866
640 1.055e-04 2.18 4.837e-05 1.976 1.055e-04 2.18 4.837e-05 1.976

Call-Linear Call-NLinear
10 1.592e+00 - 3.410e-01 - 1.602e+00 - 3.436e-01 -
20 2.472e-01 2.687 4.888e-02 2.802 2.471e-01 2.697 4.887e-02 2.814
40 5.354e-02 2.207 1.173e-02 2.059 5.344e-02 2.209 1.174e-02 2.058
80 1.443e-02 1.891 3.000e-03 1.968 1.440e-02 1.892 3.001e-03 1.968
160 3.995e-03 1.853 8.104e-04 1.888 3.986e-03 1.853 8.082e-04 1.893
320 9.255e-04 2.11 1.992e-04 2.025 9.236e-04 2.11 1.992e-04 2.021
640 1.576e-04 2.554 5.095e-05 1.967 1.573e-04 2.553 5.095e-05 1.967

Table 2: Error and empirical order of convergence (EOC) of the LDG-IMEX scheme of the second order. Results for L2 and
L∞ norms are presented for both linear PDE (on the left) and nonlinear PDE (on the right). The considered products are
European Call and Put options solving (26). The solution obtained with 1280 cells is taken as a reference of the solution. In
this example, S̄ = 60 and C = 0.5.

Put-Linear Put-NLinear Call-Linear Call-NLinear
S FBSDE PDE FBSDE PDE FBSDE PDE FBSDE PDE
5 -1.286e-01 -1.266e-01 -1.282e-01 -1.260e-01 -2.593e-02 -2.557e-02 -2.540e-02 -2.555e-02
10 -5.070e-02 -5.004e-02 -5.126e-02 -5.000e-02 -1.124e-02 -1.127e-01 -1.121e-01 -1.123e-01
15 -1.407e-02 -1.395e-02 -1.428e-02 -1.395e-02 -2.598e-01 -2.624e-01 -2.593e-01 -2.615e-01
20 -3.105e-03 -3.016e-03 -3.117e-03 -3.017e-03 -4.517e-01 -4.571e-01 -4.508e-01 -4.555e-01
30 -1.159e-04 -1.134e-04 -1.177e-04 -1.134e-04 -8.680e-01 -8.774e-01 -8.673e-01 -8.742e-01
60 -7.540e-09 -3.066e-09 -7.517e-09 -3.068e-09 -2.101 -2.101 -2.094 -2.093

Table 3: For a given value of S this table shows the value the XVA at t = 0 by solving the PDE or the FBSDE. PDE values
are given by the second-order LDG-IMEX with 1280 spatial cells. Setup of Stratified Monte Carlo algorithm: piecewise linear
approximations on 500 cells of the spatial domain [e−5, e5]. Besides, 10 thousand simulations per cell and 20 time steps were
employed.

results have been obtained with S = 60 for domain truncation. Plots of the XVA and the delta ∆ of the
XVA are presented in Figure 1 and Figure 2, respectively, including the linear and nonlinear cases. These
plots were obtained with N = 640 and C = 0.5. As expected, the total value adjustment is negative, and
its module increases with the moneyness of the product. The numerical computations of ∆ show that our
results are free from spurious numerical oscillations, which is a crucial point in hedging.

Table 2 shows empirical errors and order of convergence in L2 and L∞ norms for different spatial meshes
with C = 0.5, by using a reference solution computed with an enough refined mesh with N = 1280. These
results have been obtained with the second-order LDG-IMEX scheme, for which we recover the theoretical
order of convergence.

A further check of the goodness of our results is done in Table 3. Here we compare the results obtained
by solving the PDE with the ones obtained by solving the corresponding FBSDE. This latter equivalent
formulation is solved through the stratified regression Monte-Carlo algorithm proposed in [23], which is
based on least-squares Monte-Carlo and is very well suited for parallel computing. As expected by the
uniqueness results of Section 3 both methods converge to the same solution. Concerning the difference
between the linear and the semilinear model in the value of the adjustment, it has the order of some basis
points. From Table 3 and Figure 1, we conclude that this difference increases with moneyness.

For a higher-order scheme, Table 4 contains results for the nonlinear PDE of a Put option.
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Figure 1: Plot of the XVA at time t = 0 for Call (above) and Put (below) European options. Both the linear and the nonlinear
case are considered.
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Figure 2: Plot of ∆ at time t = 0 for Call (above) and Put (below) European options. Both the linear and the nonlinear case
are considered.

N L2-err EOC L∞-err EOC
Put-NLinear

10 1.606e-01 - 6.327e-02 -
20 5.097e-03 4.977 2.052e-03 4.947
40 6.648e-04 2.939 3.435e-04 2.578
80 8.501e-05 2.967 4.514e-05 2.928
160 1.090e-05 2.963 5.250e-06 3.104
320 1.444e-06 2.916 6.143e-07 3.095

Table 4: Error and empirical order of convergence (EOC) of the third-order LDG-IMEX scheme. Results for L2 and L∞ norms
are presented. In this example, S̄ = 60 and C = 0.5.
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Appendix A. Admissible strategies and lack of arbitrage

In Subsection 2.1 we introduced the couple (Y,D) describing the prices and additional cashflows of the
assets available in the economy. Then in Subsection 2.2 we deduced a model to price a European derivative
considering risks and costs which are not included in the classic Black-Scholes model. In the construction of a
hedging portfolio θ we impose a single position in the collateral and capital account (see (4)). This condition
for θ is valid in applications; in fact, every derivative can be associated with one collateral account and one
capital requirement. In this part, we want to emphasize the relevance of this constraint from a theoretical
market perspective. We claim that this constraint is necessary for the economy to be arbitrage-free. In the
first place, our model of economy contains a nonzero cumulative-dividend-process D, and a riskless account
B. This latter can be used as a numeraire having zero diffusion. For this kind of economy, in line with [20],
we give the following definition of Equivalent Martingale Measure (EMM).

Definition 1. Let (Y,D) be a couple defined on (Ω,F,P, (Ft)t∈[0,T ])) for which there exists a numeraire B
with zero diffusion. An equivalent martingale measure (EMM) of (D,S) is a probability measure Q equivalent
to P such that

• GB = Y B +DB is a martingale Q martingale, where Y B
t := Yt

Bt
and dDB

t = dDt

Bt
.

• dQ
dP has finite variance.

When D = 0 this definition coincides with the one in the classical reference of [14, Sec 2.1].

Remark 1. For numeraires having diffusion, such as Zero-Coupon-Bond with diffusive short-rate, an
additional term is needed in dDB in the above definition. This is necessary to guarantee a kind of unit
invariance principle.

The assumption that an EMM measure exists is a standard practice in the financial industry. If the
numeraire is bounded, such an assumption guarantees the absence of arbitrages in the space H2(G) of
square-integrable strategies. For a complete definition of this space, we address the reader to [20, Ch. 5-6].
In particular, it contains strategies for which the stochastic integral with respect to the semi-martingale
G := Y +D is well-defined, and portfolios are required to satisfy an integrability condition. However, it is
not hard to see that for the previously described economy, such an EMM measure cannot exist. We notice
that in the differential (8) the gain for the collateral and the capital account might grow at a rate that differs
from the risk-free rate. By taking the account X as an example then

d

(
Xt

Bt

)
+

dDX
t

Bt
=

dXt

Bt
− rt

Xt

Bt
dt+ rXt

Xt

Bt
− dXt

Bt
= (rt − rXt )

Xt

Bt
dt,

which cannot be a martingale wrt any measure Q, unless rt = rXt . The same argument is valid for the
capital account. If there are accounts having different yields in the same economy, the existence of arbitrages
becomes straightforward. To avoid this problem a restriction to the set of admissible strategies is then
required. For (Y,D) as in Subsection 2.1, a trading strategy is an adapted process θ = (θ1, θ2, . . . , θ7). Then
the set of admissible strategies can be chosen as

A := H2(G) ∩ {θ : θ1 + θ2 = θ1 + θ3 = 0} ,

i.e., by imposing that each V̂ is attached to one X and CA.

Proposition 1. Let (Y,D) be as before with the component V̂ in Y solving the general XVA-adjusted price
PDE (13) (whose existence is guaranteed by Corollary 1). Then the economy of couple (Y,D) and admissible
strategies in A is arbitrage-free.

Proof. To the aim of this proof, we recall the definition of hedging error

ϵH := ∆BV̂ + (1−RB
t )(V̂t −Xt − CA)t)

used in the dividend process related to V̂ . In order to prove our statement we make use of an equivalent
auxiliary couple (Y ′, D′). We define Y ′ as

Y ′ := (V̂ −X − CA,REPOS ,REPOC , PB, B)
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and D′ analogously. The gain process is then given by G′ = Y ′ + D′. We notice that for every θ =
(θ1, θ2, . . . , θ7) ∈ A we can associate θ′ = (θ1, θ4, θ5, θ6, θ7) ∈ H2(G′) such that

θ · Y = θ′ · Y ′.

Furthermore, the gain process generated by any θ ∈ A in (Y,D) and the gain of the corresponding θ′ in
(Y ′, D′) are equal as well. As a result in (Y,D) there are no arbitrages in A if and only if in (Y ′, D′) there
are no arbitrages in H2(G). The statement then follows by the Theorem in [20, Ch. 6, Sec. F] once we prove
the existence of an EMM of (Y ′, D′). With regard to the component REPOS of Y , the existence of an EMM
Q is a well-known result under standard assumption on µ and σ. Under this measure, the dynamic of S in
the dividend process dDREPOS

becomes

dSt = (qS − γS)St dt+ σSt dW
Q
t , (A.1)

for a Q-Brownian motion WQ. The fact that Q is an EMM also on the components REPOC and PB follows
immediately by (3), while it is obvious for the riskless account B. It remains to verify that the gain GB is
also a Q-martingale in the component of V̂ −X − CA. In this case, we have

d(G′B
1 )t = d

(
(V̂ −X − CA)t

Bt

)
+

d(DV̂ −DX −DCA)t
Bt

=

=
1

Bt

(
dV̂t − dXt − d(CA)t − rt(V̂t −Xt − (CA)t) dt

)
+

1

Bt

(
−ϵHt dJB

t + dXt − rXt Xt dt+ d(CA)t − γk
t kt dt

)
=

1

Bt

(
dV̂t − rXt Xt dt− γk

t kt dt− ϵHt dJB
t − rt(V̂t −Xt − φkt) dt

)
.

(A.2)

By Itô’s Formula applied to jump-diffusion processes we have

dV̂t =
(
∂tV̂ +A(qS−γS)V̂t

)
dt+∆C V̂tdJ

C
t +∆BV̂t + σSt

∂V̂

∂S
dWQ

t .

It stems from (43) that the last term σSt
∂V̂

∂S
dWQ

t constitutes a Q-martingale. From (13), after some
simplifications we obtain

d(G′B
1 )t =

1

Bt

(
(rBt − rt)(V̂t −X − φkt)− λC

t ∆C V̂t

)
dt− 1

Bt

(
∆C V̂t dJ

C
t + (∆BV̂t − ϵH) dJB

t

)
. (A.3)

We observe that from (2) and (3) we get

(rBt − rt)(V̂t −X − φkt) = λB
t (1−RB

t )(V̂t −X − φkt) = λB
t (ϵH −∆BV̂t),

and thus we have

d(G′B
1 )t =

1

Bt

(
∆C V̂ (dJC

t − λC
t dt) + ∆BV̂t(dJ

B
t − λB

t dt)− ϵHt (dJB
t − λB

t dt)
)
. (A.4)

Since all jumps are compensated with their intensity then G′B
1 is a Q martingale. This proves that G′B is a

Q-martingale and this concludes the proof.

Appendix B. Definition of Capital

In this part, we give some regulatory generalities to compute capital requirements and apply them to
obtain an explicit expression of k for a European Vanilla Option. This section does not cover all the possible
cases contemplated by official regulation, so we readdress the reader to Basel documentation for further
details. In general, capital requirement represents the minimum amount put into place by regulators to
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ensure that the firm does not take on excessive risk. The types of risk are contained in the decomposition of
k itself. Specifically, the requirement that most derivative trades are subject to is divided as follows

k := max (kMR + kCCR + kCVA,kLR) , (B.1)

where kMR, kCCR, kCVA and kLR are called respectively Market-risk, Counterparty credit risk, CVA and
Leverage ratio capital. Each of these risks depends on the regulatory state of the firm and the counterparty’s
probability of default. Furthermore, the characteristics of the contract V̂ are to be considered. Except for
kLR, these components are a percentage of the corresponding risk-weighted asset (RWA). Namely,

kMR = ηRWAMR,

kCCR = ηRWACCR,

kCVA = ηRWACVA,

where η is the capital ratio. This latter represents the minimum percentage of TIER1 and TIER2 capital to
be held by the institution. Its value is given by a supervisory authority but it is commonly set at 8%. Market
Risk Capital is a capital requirement held to offset the risk of losses due to market risk. If the portfolio is
completely hedged against this risk, it can be assumed to be zero. Therefore, in the following, we do not
consider this capital component and set kMR = 0. In particular, our regulatory capital does not take into
account the FRTB capital contained in [7, MAR 33]. We use the Standardised Approach for Counterparty
Credit Risk (SACCR in CRE52 on bis.org) to define a relevant measure called exposure-at-default measure
(EAD). This latter is then used in the computation of the risk-weighted assets. Specifically, we also use the
Standardized approach for counterparty credit risk capital to calculate RWACCR, and we apply the Basic
Approach to compute RWACVA.

Appendix B.1. EAD under Standardised method SACCR
Under SACCR

EAD := α× (RC + PFE). (B.2)

The replacement cost is given by RC := (M −X)+, and the potential future exposure is written as PFE :=
mt × AddOnt. The multiplier mt is given by

mt := min

{
1, 0.05 + 0.095× exp

(
Mt −X

2× 0.95× AddOn

)}
, (B.3)

while AddOn = SF × D, where SF denotes a constant supervisory factor (see [6, CRE 52.72]), and D is
the effective notional D := d×MF × δ. The adjusted notional d is simply the value of the underlying, i.e.
d = S. Assuming a day-count convention with 360 business days, the maturity factor is given by

MF =
√
min((T − t) + 10/360, 1). (B.4)

Finally, the supervisory delta for European Vanilla Options with strike K is

δ =

ϕ
(

log([S+0.01]/[K+0.01])+0.5σ2
r(T−t)

σr

√
T−t

)
Bought Call Option,

−ϕ
(
− log([S+0.01]/[K+0.01])+0.5σ2(T−t)

σr

√
T−t

)
Bought Put Option,

(B.5)

where ϕ denotes the cumulative distribution function of a standard normal random variable, and σr is the
supervisory volatility (see Table [6, CRE 52.72]).

Appendix B.2. Explicit capital formula
We can now define the capital terms of (B.1):

i) The counterparty credit risk RWA is

RWACCR := ω × 12.5× EAD. (B.6)

The constant ω depends on the counterparty’s rating and it can be found in [6, CRE 20].
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ii) To the aim of RWACVA, we need to consider the maturity Mt := min(1, (T − t)), and the risk-weight
RW of the counterparty (see Table 1 [7, MAR 50.16]). Then

RWACVA :=
12.5× 0.65

α
× RW × Mt × EAD × 1− e−0.05×Mt

0.05× Mt
. (B.7)

ii) Differently from other capital components, Leverage ratio capital is the Capital Measure

kLR := Capital Measure = Exposure Measure × LR.

The Leverage Ratio (LR) is a percentage chosen by a regulator of at least 3%. In the concern of the
Exposure Measure, in our case we have

Exp. Measure := max(M, 0) + AddOn, (B.8)

where the AddOn is defined as in Appendix B.1.

Appendix C. Notation

Parameter Description
V̂ The value of the adjusted derivative
V f The value of the derivative considering CVA, DVA, and FVA
V The risk-free value of the derivative
U The value of the adjustment (XVA)
M Mark-to-Market Value of the derivative (MTM)
S Underlying stock
µ, σ Stock growth and volatility
γS Divend yield of the stock
qS REPO rate of S
r Risk-free rate
rB Funding rate on the Issuer bond
λB Intensity of default of PB

rC Yield on the counterparty bond
qC REPO rate of PC

λC Intensity of default of PC

gB Close-out in case of default of the Issuer
gC Close-out in case of default of the counterparty
X Collateral account
rX Yield of X

Parameter Description
k Capital requirement
γk Capital hurdle rate
φ ∈ [0, 1] Amount of k used to fund the position V̂
kMR Market-risk capital
kCCR Counterparty-credit-risk capital
kCVA CVA-capital
kLR Leverage-ratio capital
E Equity financing the position V̂
RE Retained earnings
RWA Risk-weighted-assets
EAD Exposure at default
PFE Potential Future Exposure
RC Replacement cost
AddOn Regulatory Add-On
MF Maturity factor
SF Supervisory factor
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