
 Deliverable 5.1

Distributed attestation,
identity and threat sharing

enablers – Rel. A.

DRAFT – Pending approval by the Smart Networks and Services Joint Undertaking (SNS JU)

Contact Us
privateer-contact@spacemaillist.eu

PRIVATEER has received funding from the Smart Networks and
Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation programme
under Grant Agreement No. 101096110

PRIVATEER

Deliverable 5.1

Distributed attestation,
identity and threat sharing
enablers – Rel. A.

Deliverable Type
Report

Month and Date of Delivery
May 20th 2024

Work Package
5 Leader

UBITECH
Dissemination Level
Public Authors

Anna Angelogianni, Nikos Fotos,
Thanassis Giannetsos, Manos
Kalotychos, Stefanos Vasileiadis (UBI)

Programme Contract Number Duration Starting Date
Horizon Europe 101096110 36 months January 2023

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 3 of 124

Contributors
Name Organization
Stella Dimopoulou NCSRD
Pedro Sousa, António Pinto, Pedro Pinto INESC TEC
Ilias Papalamprou, Dimitrios Danopoulos, Dimosthenis
Masouros, Dimitrios Soudris

ICCS

Anna Angelogianni, Nikos Fotos, Thanassis Giannetsos,
Manos Kalotychos, Stefanos Vasileiadis

UBITECH

Reviewers
Name Organization
Ilias Papalamprou, Dimitrios Danopoulos, Aimilios
Leftheriotis, Dimosthenis Masouros

ICCS

Pedro Sousa, António Pinto INESC TEC

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 4 of 124

Copyright and Disclaimer
This document may not be copied, reproduced or modified in whole or in part for any
purpose without written permission from the Editor and all Contributors. In addition
to such written permission to copy, reproduce or modify this document in whole or
part, an acknowledgement of the authors of the document and all applicable portions
of the copyright notice must be clearly referenced.

The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The reader uses the
information at his/her sole risk and liability. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the
European Union or SNS JU. Neither the European Union nor the granting authority can
be held responsible for them

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 5 of 124

Version History
Version Date Modifications
1.0 20/05/2024 Final version

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 6 of 124

List of Acronyms
Acronum Description
AA Attestation Agent
ΑΚ Attestation Key
ALTO Application-Layer Traffic Optimization
ACA-Py Aries Cloud Agent Python
B5G Beyond 5G
BFT Byzantine fault tolerance
CA Consortium Agreement
CIPs Cloud Infrastructure Providers
CIV Configuration Integrity Verification
CTI Cyber Threat Intelligence
DID Decentralized Identifier
DLT Distributed Ledger Technology
DSP Digital Signal Processing
eSE embedded Secure Element
EVM Ethereum Virtual Machine
FPGA Field Programmable Gate Array
GA Grant Agreement
IdM Identity Management
IoT Internet of Things
KRPE Key Restriction Usage Policy Engine
KRUP Key Restriction Usage Policies
LoA Level of Assurance
LoT Level of Trust
MNO Mobile Network Operator
NEF Network Exposure Functions
PDP Policy Decision Point
PEP Policy Enforcement Point
PL Programmable Logic
PoA Proof of Authority
PoT Proof of Transit
PoW as Proof of Work
PUF Physical Unclonable Function
RoT Root of Trust
RR Revocation Registry
RTM RoT for Measurement
RTR RoT for Reporting
RTS RoT for Storage
SCs Smart Contracts
SCB Secure Context Broker

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 7 of 124

SGX Software Guard Extensions
SSI Self-Sovereign Identity
SLA Service Level Agreement
SGX Software Guard Extensions
TC Town Crier
TCB Trusted Computing Base
TEE Trusted Execution Environment
TSP Telecommunication Service Providers
TTP Trusted Third Party
URI Uniform Resource Identifier
VC Verifiable Credential
VFs Virtual Function(s)
VNFs Virtual Network Function(s)
VP Verifiable Presentation
VPE Verifiable Policy Enforcer
W3C World Wide Web Consortium
ZKP Zero Knowledge Proof

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 8 of 124

Executive Summary
Beyond 5G (B5G) technologies are currently undergoing substantial transformations
as new functionalities emerge and new challenges arise. As we move towards the
implementation of 6G technology, it becomes evident that strong security measures
are necessary. A particularly interesting concept is Zero Trust. This concept operates
under the assumption that no entity can be inherently trusted, and therefore all
entities are required to provide evidence of their trustworthiness (i.e., correct
functioning). By adopting the concept of Zero Trust, Mobile Network Operators
(MNOs) may mitigate the risks posed by both external and internal threats, thus
improving their overall cybersecurity posture. Zero Trust is crucial for defending
against the dynamic threat landscape as well as the diverse systems and environments
envisaged in B5G use cases. To adhere to this notion, a strict approach to security is
crucial. Hence, apart from the more traditional threat intelligence approaches,
PRIVATEER is further focusing on the development of attestation mechanisms across
the network continuum.

To promptly identify and address any deviations from the expected configuration,
MNOs, Cloud Infrastructure Providers (CIPs), or Telecommunication Service Providers
(TSPs) can implement strong attestation mechanisms, operating both at a remote and
a local level. This enables the mitigation of risks related to unauthorized modifications
that could result in data breaches or service disruptions. To achieve greater
protection, attestation mechanisms should extend to further support runtime
configuration integrity verification, apart from the traditional secure bootup. Towards
this direction, PRIVATEER designs include the attestation of the correct configuration
of edge accelerators (i.e., FPGAs) as well as the enabling of the ongoing monitoring
and evaluation of the integrity of both the virtualised services as well as the entire
containers throughout their entire operational lifecycles. The aforementioned designs
further support different Levels of Assurance (LoAs) in accordance with existing
standards. These levels define the verification levels achieved for each service or
infrastructure component.

Identity verification, authentication, and authorization are also essential for allowing
only entities with the appropriate attributes to access a service or information related
to the level of trustworthiness evidence. Self-Sovereign Identity (SSI) represents a
progression from user-centric identity, allowing users to have complete control over
their own identity without the need for a central authority. Towards this direction,
blockchain technologies are leveraged in PRIVATEER both in regard to identity
management as well as trustworthy data exchange as it pertains to trustworthiness
evidence, leveraged for Trust Assessment. Blockchain by design offers a transparent
and auditable means for information exchange, apart from confidentiality and
integrity protection. one of Zero Trust

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 9 of 124

Furthermore, the EU's 6G vision for the next generation of telecommunications places
great importance on privacy, implementing the necessary measures to provide
advanced security while upholding privacy. To adhere to the privacy requirements,
PRIVATEER adopts Zero Knowledge Proofs-based schemes, which provide a verifiable
means to assert the configuration integrity of a virtualised service without revealing
any details regarding the exact evidence that was obtained. Additionally, a Trust
Exposure Layer is proposed to harmonise the acquired information, giving access to
external (to the infrastructure) parties strictly to information regarding the level of
trust. Finally, Searchable Encryption mechanisms are further leveraged in Cyber
Threat Intelligence search operations, for protecting critical infrastructures by
conducting searches over encrypted data.

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 10 of 124

Table of Contents
1 Introduction .. 13

1.1 Document structure ... 14

2 Security & identity management components within PRIVATEER architecture .. 15

2.1 Overview of the PRIVATEER architecture .. 15

2.1.1 PRIVATEER Layers and Functionalities ... 15

2.1.2 PRIVATEER Flows.. 21

2.2 User Roles .. 27

2.3 Functional specifications .. 27

3 Runtime Attestation for varying Levels of Assurance(s) in virtualised
environments ... 44

3.1 State Of The Art ... 44

3.1.1 System Configuration Integrity Verification as a crucial enabler for trust
assessment ... 44

3.1.2 Attestation of Virtualised Infrastructure Configuration 46

3.1.3 PRIVATEER’s Innovation in Runtime Attestation 48

3.2 Protocol description ... 49

3.2.1 PRIVATEER Security Probe ... 49

3.2.2 Service Lifecycle Management .. 51

3.2.3 CIV High-Level Overview .. 53

3.3 Plan for development .. 56

4 Attestation in edge accelerators .. 57

4.1 State Of The Art ... 59

4.1.1 Single tenant .. 59

4.1.2 Multi-tenant ... 60

4.1.3 PRIVATEER’s Innovation in Edge Accelerator Attestation 61

4.2 Protocol description ... 61

4.3 Plan for development .. 65

5 Blockchain for secure data exchange of trustworthiness evidence 66

5.1 State Of The Art ... 68

5.1.1 Smart Contracts ... 68

5.1.2 Consensus Algorithms .. 68

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 11 of 124

5.1.3 Access Control Mechanisms .. 70

5.1.4 Blockchain platforms ... 70

5.1.5 PRIVATEER’s Innovation in Blockchain .. 72

5.2 Protocol description ... 73

5.2.1 Building Blocks ... 73

5.2.2 PRIVATEER Blockchain Infrastructure High-level Design and Flows
mediated through Town Crier .. 80

5.2.3 PRIVATEER Smart Contracts for Trustworthiness Evidence
Management .. 83

5.3 Plan for development .. 87

6 Distributed Identity Management .. 89

6.1 State Of The Art ... 89

6.1.1 Decentralized Identifiers (DIDs) ... 91

6.1.2 Verifiable Credentials (VCs) and Verifiable Presentations (VPs) 91

6.1.3 PRIVATEER’s Innovation in Identity Management............................... 92

6.2 Protocol description ... 93

6.3 Plan for development .. 95

7 Privacy-preserving CTI sharing ... 96

7.1 State Of The Art ... 98

7.1.1 Searchable Encryption ... 98

7.1.2 Decentralization ... 101

7.1.3 PRIVATEER’s Innovation in CTI ... 103

7.2 Protocol description ... 103

7.2.1 Set Up ... 104

7.2.1 MISP Data Sync .. 105

7.2.2 Shared Index .. 107

7.3 Plan for development .. 111

8 Conclusions ... 113

9 References .. 115

Glossary .. 123

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 12 of 124

List of Figures
Figure 1 - PRIVATEER's Distributed attestation, identity and threat sharing enablers
Architectural Overview .. 17
Figure 2 - PRIVATEER Join and Runtime Attestation Phase ... 55
Figure 3 - Overview of hardware accelerators security attacks along with possible
countermeasures ... 58
Figure 4 - Architecture of Edge Accelerator and external Attestation server setup ... 62
Figure 5 - Suggested RA protocol for the security of Hardware Accelerators 64
Figure 6 - PRIVATEER Blockchain Infrastructure Conceptual Architecture 74
Figure 7 –System Architecture of TownCrier ... 76
Figure 8 - Trustworthiness Evidence Management Mediated through Town Crier 82
Figure 9 - Self-Sovereign Identity Diagram and Flow... 93
Figure 10 - Set Up ... 105
Figure 11 - Peer Validation ... 106
Figure 12 - MISP Data Sync .. 107
Figure 13 - Shared Group Set Up ... 108
Figure 14 - Secret Key Generation ... 109
Figure 15 - Shared Index Update ... 110
Figure 16 - CTI Internal Architecture ... 112

List of Tables
Table 1 - PRIVATEER Distributed attestation, identity and threat sharing enablers
Functional Specifications ... 29
Table 2 - Blockchain types overview .. 67
Table 3 - Comparative analysis of different Hyperledgers .. 71
Table 4 - PRIVATEER Blockchain mechanisms towards advanced security 72
Table 5 - Smart Contract Functions in PRIVATEER ... 83
Table 6 - SGC Trust Chain Data Structure .. 85
Table 7 - Trust Policy Data Structure ... 86
Table 8 - Trustworthiness Evidence Object Data Structure ... 87
Table 9 - Actual Trust Level Data Structure ... 87

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 13 of 124

1 Introduction
In the rapidly evolving landscape of B5G technologies, novel functionalities emerge
along with new challenges. While protocol designs emphasize security, the dynamic
nature of cyber threats demands continuous adaptation and enhancement of the
existing protective measures. As we transition to 6G, the imperative for robust
security measures becomes even more evident. These measures refer not only to the
offered services but also to the infrastructure where these services are deployed.
Modern systems are envisioned to adhere to the Zero Trust notion. This notion is
based on the assumption that no entity can be inherently trusted; hence, all entities
must provide proofs over their trustworthiness and correct operation. By adopting
Zero Trust principles, organizations can minimize the risks caused by insider threats
and enhance overall cybersecurity posture.

In the context of B5G systems, Zero Trust becomes instrumental in protecting against
evolving cyber threats and safeguarding critical assets across distributed and
heterogeneous environments. However, achieving Zero Trust-based security requires
a multifaceted approach. Ensuring the integrity and resilience of both the services as
well as the underlying infrastructure is paramount for safeguarding against
sophisticated cyber threats that exploit vulnerabilities in interconnected services or
even interconnected networks. As such, a comprehensive approach to security is
essential, encompassing both remote and local attestation to verify the configuration
integrity of virtualized services, Virtual Functions (VFs), Virtual Network Functions
(VNFs), and the underlying heterogeneous infrastructure spanning from the core site
to the edge. This integrity verification process should extend beyond secure bootup,
covering runtime configuration as well, which allows continuous monitoring and
assessment of system and network integrity throughout their operational lifecycles.
Aligning with established standards such as those articulated by ETSI, the
establishment of different Levels of Attestation (LoAs) becomes crucial, defining the
accomplished verification levels for each service or infrastructure component.

By implementing robust attestation mechanisms at both remote and local levels,
Mobile Network Operators (MNOs), Cloud Infrastructure Providers (CIPs), or
Telecommunication Service Providers (TSPs) can promptly identify and address any
deviations from the expected configuration. This proactive approach mitigates the risk
of unauthorized modifications which could lead to data breaches, or service
disruptions, thereby enhancing the overall security posture of the network
infrastructure.

Furthermore, identity verification, authentication and authorization is another crucial
aspect in this regard, ensuring that only actors (i.e., including both users and/or
services) possessing the correct attributes can gain access to a service or information
regarding the level of trust or the trustworthiness evidence. Self-sovereign identity

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 14 of 124

(SSI) is the next step beyond user-centric identity according to the European
Commission 1. Compared to centralized identity verification and authentication
schemes, SSI enables the user’s sovereignty and control over its identity, creating user
autonomy, without the need of a central party that could be a single point of failure,
while providing the ability to use an identity across multiple locations. Towards this
end, the exploration of Decentralized IDentities (DID) by PRIVATEER, as specified by
the W3C, presents a modern, decentralized, and lightweight alternative to established
authentication methods. This innovative approach, encompassing DIDs, verifiable
credentials (VCs), and verifiable presentations (VPs), extends beyond individuals to
institutions and devices within the Internet of Things (IoT) ecosystem, further
enhancing the security and trustworthiness of digital interactions.

Simultaneously, privacy stands as a significant pillar of the EU’s 6G vision for the next
generation of telecommunications. Fostering security measures that protect all actors
involved, including users, services, or even the entirety of the underlying
infrastructure, while preserving privacy, is pivotal. This focus on privacy underscores
the essence of preserving individual autonomy and data confidentiality in the evolving
digital landscape. Within this multifaceted ecosystem, privacy assumes a pivotal role,
extending its relevance beyond end-users to encompass all engaged stakeholders. By
embedding privacy as a fundamental principle, 6G endeavours to foster trust,
transparency, and accountability, thereby ensuring the ethical deployment of future
telecommunications technologies. Towards the direction of safeguarding privacy,
Zero Knowledge Proofs enable verification of the configuration integrity of Virtual
Functions (VFs) or Virtual Network Functions (VNFs) without the need to disclose
specific details of the extracted evidence. By leveraging Zero Knowledge Proofs,
organizations can authenticate the integrity of system components while preserving
sensitive information, thereby enhancing privacy and confidentiality in the verification
process.

1.1 Document structure
The rest of the document is structured as follows: Chapter 2 provides the architectural
details over the WP5 as it pertains to its components, the internal structure and
communication flows, along with the functional specifications. Chapters 3, 4, 5, 6 and
7 detail on the runtime attestation for virtualised services and containers, attestation
in edge accelerators, blockchain for exchange of trustworthiness evidence, distributed
identity management and privacy-preserving CTI sharing components respectively.
Lastly, Chapter 8 draws the conclusions.

1 https://joinup.ec.europa.eu/collection/ssi-eidas-bridge

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 15 of 124

2 Security & identity management
components within PRIVATEER
architecture

2.1 Overview of the PRIVATEER architecture
An overview of the consolidated PRIVATEER architecture as it pertains to the
distributed attestation, identity and threat sharing enablers is illustrated in Figure 1.
The overall PRIVATEER architecture follows the notions of the HEXA-X flagship project
[1] definitions, offering though security and privacy extensions for dynamic and
evidence-based trust assessment. It shall be noted that the proposed framework is
designed to remain agnostic to the specific orchestrator technology employed,
ensuring flexibility and compatibility across various infrastructures and environments.

2.1.1 PRIVATEER Layers and Functionalities

The depicted architecture is separated into different layers.

The infrastructure/asset layer is the fundamental level that consists of the physical
equipment and assets necessary for the system to function (i.e., infrastructure
elements). This layer comprises a wide array of devices, such as IoT devices, servers,
switches, and routers, among others. The servers offer the hosting environment for
the virtualized microservices and containerized applications that form the core of the
PRIVATEER ecosystem. Among this hardware, Field Programmable Gate Arrays
(FPGAs) are included for efficiently supporting applications such as Digital Signal
Processing (DSP), Deep Learning, etc. Furthermore, these servers may incorporate
hardware-enabled Trusted Execution Environments (TEEs), such as Intel SGX, to
establish secure and isolated execution environments known as enclaves. TEEs ensure
that critical workloads operate within a restricted and isolated space, inaccessible to
other software running on the same host.

This capability significantly enhances the system's security by safeguarding against
unauthorized access and ensuring the integrity of essential processes and data.
Essentially, the hardware-enabled TEEs provide the Root of Trust (RoT) capabilities
within PRIVATEER, facilitating the secure execution of critical binaries. In PRIVATEER,
Gramine2 is leveraged, as the trust anchor, for instantiating all newly developed secure
life-cycle management controls, within secure enclaves, in a lightweight manner. The
Gramine technology was chosen because it has the ability to convert a software binary

2 https://gramineproject.io/

https://gramineproject.io/

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 16 of 124

into a trusted equivalent that runs in a separate environment. This conversion can be
done without making any updates to the code and without impacting its dependencies
on other parts of the software stack. In essence, it enables the execution of any binary
file within a secure and isolated environment known as an enclave. This technology is
a recent development that falls under the established SGX TEE technology. In
conjunction with Gramine, enclave-cc is utilised for the launching of confidential
containers.

Examining the Intel SGX-enabled servers, which provide the hardware-enabled TEE,
there is a clear distinction between processes executed in the “trusted” and
“untrusted” domain within the Security Probe. The “trusted” part of the Security
Probe incorporates the attestation-related tasks as well as the validation of the active
key restriction usage policies. It shall be noted that the “trusted” part further provides
the Secure APIs, exposing an interface to the untrusted world. This interface will serve
as a focal point for future research efforts focused on exporting attestation results,
including attestation evidence for specific trust properties (e.g., integrity), directly
from the trusted world. As mentioned in the D2.2 [2], the Attestation Agent residing
with the Security Probe (i.e., the Prover) conforms to a zero-knowledge based scheme,
ensuring the configuration state of the microservice by exporting a proof of
correctness that includes, the key restriction usage policies instead of the traces. This
proof of correctness is received by the Secure Oracle that acts as the Verifier. The
protocol is challenge-based, with the Verifier initiating the process with a nonce. This
approach avoids the disclosure of unnecessary information, adhering to the privacy-
preserving notions of PRIVATEER.

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 17 of 124

Figure 1 - PRIVATEER's Distributed attestation, identity and threat sharing enablers Architectural Overview

On the other hand, the “untrusted” part of the Security Probe encompasses the eBPF
tracer3 which collects the configuration integrity traces during runtime (i.e., from
routines and services), and the Microservice Agility which is communicating with the
Orchestrator and the Secure Oracle. This communication is expected to facilitate

3 https://ebpf.foundation/

https://ebpf.foundation/

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 18 of 124

secure updates from the Orchestrator to the Security Probe, without requiring the
latter to be re-enrolled. This feature, planned for integration in the platform's Release
B, enables seamless updates such as the inclusion of updated versions of the
Attestation Agent or the introduction of new components in the Security Probe. It shall
be noted that apart from the Security Probe, attestation services are also supported
by the FPGA devices, to ensure authenticity and integrity of the binary.

Moving to the network control plane layer, this is where the deployment of
virtualized microservices and containerized applications occurs. Servers designated
for hosting microservices may be positioned either at the edge or the cloud side of the
network, depending on specific application requirements and the desired proximity to
end-users or data sources. PRIVATEER employs tailored attestation mechanisms
designed explicitly to verify the integrity and authenticity of these services, comparing
their runtime measurements to predefined reference values. This process ensures
that the deployed services operate as anticipated, thereby strengthening trust in the
system among users and stakeholders. Hence, in addition to the monitoring and
attestation functions provided by the Security Probe for both the container and the
underlying infrastructure, μProbes are deployed within the containers to ensure the
configuration integrity of the containerized application. These μProbes are equipped
with their own set of components, including eBPF tracers in the untrusted world, as
well as Attestation Tracer, Attestation Agent, Key Management System, and Secure
APIs in the trusted part. As a result, they independently collect configuration integrity
traces, sign them with their respective attestation keys, and transmit them to the
Security Probe for verification. This setup implies that the Security Probe not only
reports its own attestation results but also incorporates the attestation results from
the μProbes. More information regarding the Secure Launching of a container is
elaborated in Section 2.1.2.1 of the present deliverable.

It shall be clarified that the Security Probe and the μProbe serve distinct, yet
complementary roles within the PRIVATEER platform's security architecture. The first,
the Security Probe, operates at the container level, encompassing components like the
Microservice Agility, the Attestation Agent, the Key Restriction Usage Policy Engine and
the Verification Service. Its primary function is to ensure the integrity and security of
the containerized environment, facilitating runtime attestation of the entire container
and enforcing security policies. The μProbe, on the other hand, is tailored for individual
microservices executed within the containers, providing a finer-grained approach to
security monitoring and attestation. The combination of the two components provides
a holistic security framework, safeguarding both the containerized environment and
microservices against threats and unauthorized modifications.

The secure and seamless deployment process of the microservices is supported by the
Orchestrator. The latter receives service and security requirements from the Service
Provider (SP). Additionally, the Orchestrator receives Cyber Threat Intelligence (CTI)

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 19 of 124

information through the Security Orchestration, Automation and Response (SOAR)
element and can thus apply Security controls. It then translates these high-level
requirements into concrete security characterizations, determining the specific
security controls to be applied. For instance, it may decide to deploy the service with
a Security Probe installed to offer runtime attestation. This process results in the
creation of an Interpretable Manifest and Privacy Service Level Agreements (SLAs),
which outline the security measures and performance expectations for the service
based on both its characteristics and the underlying network and infrastructure. The
Orchestrator's decision-making is driven by the goal of optimizing resource allocation
to ensure that the necessary security enablers are provided as required for the
execution of the service, thereby meeting performance and security objectives.

With direct access to all resources within the infrastructure, the Orchestrator will be
empowered in the Release B of the PRIVATEER platform to perform updates related
to the Security Probe. This includes adding or removing internal modules within the
Security Probe and updating their versions, such as the Attestation Agent. It is
important to note that in the Release A of the PRIVATEER platform, updates regarding
the Security Probe are not executed during runtime. Instead, the container needs to
be relaunched to introduce an updated Security Probe.

Furthermore, the Orchestrator initiates the construction of a smart contract that is
published to the ledger via the Security Context Broker (SCB) and the Secure Oracle,
ensuring transparency and immutability. This smart contract includes the agreed
Privacy SLA between the Orchestrator and the Service Provider, as well as information
related to network awareness (i.e., service graph chain). Additionally, the Orchestrator
notifies the LoT assessment component upon the successful deployment of a new
service, initiating the process of creating Trust Policies and uploading them to the
ledger.

The Level of Trust (LoT) Assessment is the component responsible for defining the
Trust Policies for a specific service graph chain and performing the trust evaluation.
More specifically, each service may require a different set of parameters, from specific
trust sources. Therefore, it is imperative to define a Trust Policy based on the LoT
Assessment, which will subsequently be made available on the ledger, through the
Security Context Broker (SCB) and the Security Probe.

The Security Context Broker (SCB) facilitates the construction of smart contracts for
the Secure Oracle, providing the list of attributes, the Privacy SLA and the service graph
chain topology as received from the Orchestrator, as well as the Trust Policies as
received from the LoT Assessment component. It further facilitates the querying of
the ledger on behalf of the LoT Assessment component and the Orchestrator.

It shall be noted that if the service graph chain is modified then a new Trust Policy and
smart contract shall be constructed by the Orchestrator and the Security Context

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 20 of 124

Broker through the Secure Oracle respectively. For auditability purposes the new smart
contract will include a pointer to the old smart contract.

The Secure Oracle operates with the support of a Trusted Execution Environment
(TEE); thus, acts as an integral part of the PRIVATEER Trusted Computing Base (TCB).
As such, it is inherently considered a trusted component within the system. The
Secure Oracle performs multiple tasks. Firstly, it receives and validates attestation
reports generated by the Security Probes, ensuring the authenticity of the information
provided. Additionally, the Secure Oracle is responsible for generating smart
contracts, which contain comprehensive information required for trust assessment
processes. These smart contracts, dedicated to specific services, include essential
information such as i) Privacy Service Level Agreements (SLAs), ii) the service graph
chain, iii) trust policies, iv) trust parameters (including signed attestation reports), v)
access control attributes, and vi) pointers to off-chain storage for failed attestation
evidence. To uphold the integrity of these smart contracts, they are hashed and signed
with the Secure Oracle's private key, allowing any entity accessing the Ledger to verify
their authenticity using the Secure Oracle's public key. Whenever the LoT Assessment
accesses information stored in the Distributed Ledger Technology (DLT), through the
SCB, for conducting a new trust evaluation, the outcome of this assessment can be
incorporated into the smart contract. This integration occurs through communication
between the LoT Assessment component and the Secure Oracle, allowing for the
seamless inclusion of the evaluation result within the smart contract. The LoT and the
Orchestrator may access the DLT through the Security Context Broker.

It shall be noted that PRIVATEER further leverages Distributed Ledger Technology
(DLT) for identity management. More specifically the concept of Self-Sovereign
Identity (SSI) through Decentralized Identifiers (DIDs) is adopted in PRIVATEER,
offering to individuals' ownership and control over their digital identities. DIDs provide
a decentralized, tamper-proof method for verifying individuals' identities. These
identifiers are stored on the Ledger, a distributed database that maintains a
transparent and immutable record of all transactions and identity-related activities.
Moreover, PRIVATEER incorporates the use of Verifiable Credentials (VCs), which are
digitally signed documents that attest to the authenticity of specific identity attributes
or claims. VCs enable individuals to prove their identity or qualifications to third
parties without disclosing unnecessary personal information. The issued VCs are
securely stored within the trusted boundaries of a secure wallet, which may be hosted
by a trusted Service Provider or a User or an MNO.

Additionally, each component collecting and reporting information to the Ledger,
through the Secure Oracle, in the form of a Verifiable Presentation (VP). These
components that report information to the DLT include i) the Privacy-aware
orchestrator reporting the Privacy Index, ii) the Security Probe reporting the
attestation result, iii) the Proof of Transit (PoT) controller reporting the result from the

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 21 of 124

PoT, iv) the CTI reporting the threats and v) the SLAs as reported by the Orchestrator.
In both cases (i.e., external and internal users and components) the entity that acts as
the credential verifier is the SCB.

Lastly, PRIVATEER offers a Trust Exposure Layer, which guarantees the preservation
of privacy, while allowing external entities, such as Mobile Network Operators
(MNOs), users, or Service Providers to access specific data from the Ledger. More
specifically, the Trust Exposure Layer ensures that the information provided to
external entities is strictly limited to the trust state of a service, including information
such as the trust property (i.e., integrity) along with the level of trust. Details, such as
the exact evidence collected which may leak information regarding the underlying
infrastructure, or service graph chain, are removed, protecting privacy without
compromising the ability of external entities to assess the trustworthiness of the
microservices. This harmonisation mechanism ensures that strictly relevant and
necessary information is shared with external parties, harmonizing the information for
safeguarding privacy; hence, effectively mitigating relevant risks.

2.1.2 PRIVATEER Flows

The PRIVATEER flow can be separated into phases. Please note that Secure Enrolment
of the devices/assets is considered out-of-scope for PRIVATEER. Additionally, the
Security Probe comes with pre-installed eBPFs and attestation capabilities; thus, in
Release A of the PRIVATEER platform, it cannot be altered during runtime. If this stack
requires modification, this means that the whole container has to be modified and
relaunched.

2.1.2.1 Secure Launching of a Confidential Container, Verification of (Confidential)
Container Workload & Container Binding

To ensure the proper operation of the edge-based framework and its services, it is
essential that the containers are launched securely by the Orchestrator. It shall be
noted that PRIVATEER seeks to adhere to the Confidential Container (CoCo) paradigm.
In this regard, enclave-cc is utilized for launching confidential containers.

The Orchestrator determines whether to deploy a confidential or legacy container
based on the specific security, service, privacy, and trust requirements provided by
the Service Provider (step 1) (i.e., through an intent). These requirements reflect the
service’s needs, achieving a balance between performance and security. Evidently, not
all containers should adhere to the same criteria. Therefore, these requirements serve
as a basis for the service characterization. The service characterization process
involves the translation of these high-level requirements into concrete security
descriptions, which consider not only the service requirements but the infrastructure
capabilities and imminent threats as well (step 2). Insights regarding the threats arrive

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 22 of 124

to the Orchestrator from the Cyber Threat Intelligence (CTI) component, through the
Security Orchestration, Automation, and Response (SOAR) system. For instance, based
on these requirements and threat assessments, the Orchestrator may opt to deploy
services on SGX-enabled servers.

Both legacy and CC-enabled image files are accommodated for deployment
opportunities at the edge. Leveraging the Registry, the Orchestrator accesses
containerized service images, network-oriented microservices and Confidential
Computing (CC)-enabled services (e.g., Gramine TEE Overlay) for deployment (step 3).
The integration of a TEE Gramine Overlay is essential for deploying CC-enabled
services, facilitating the creation of a service manifest file atop an .sgx version,
generated through enclave-cc. This .sgx version establishes an overlay layer of the
Gramine-enabled image on a standard image file, leveraging Intel SGX hardware to
initiate confidential containers. PRIVATEER's adoption of Gramine as its TEE
underscores its commitment to security, with "Gramine-enabled image" emblematic
of the secure conversion of legacy containers.

The translation of requirements into characterizations culminates in the creation of
an Interpretable Manifest, facilitated by the Manifest Interpretation component. This
Manifest serves as a comprehensive set of configuration rules/actions, delineating the
parameters necessary for deploying the microservice. It encompasses performance,
security, trust, and privacy considerations, along with network and infrastructure
capabilities (steps 2 and 4). Within the Interpretable Manifest, details such as
container size, bandwidth, network dependencies, and specific security requirements
for CC-enabled images are specified.

Concurrently, the Orchestrator's SLA Manager formulates and transmits the Privacy
SLA to the Service Provider, encompassing crucial information pertaining to
performance, security, trust, privacy parameters, as well as network and
infrastructure capabilities. This agreement entails all details that may facilitate the
Service Provider in determining whether to proceed with deploying the service (step
5). Upon agreeing to the deployment of the service, the Interpretable Manifest is
transmitted to the Kubernetes Key Management System in order for the latter to
initiate the secure launching of the container, leveraging the infrastructure assets
(step 6). It shall be noted that the Registry is enhanced with the images of the
containerized applications as well as the Key Restriction Usage Policies. These policies
do not solely refer both to the containerized applications but may further extend to
the infrastructure assets (step 7).

Typically, in the case of a legacy container, the Kubernetes key Management System
releases the Kubernetes key upon deployment for authenticated communication with
the Master Node, without any prior verification regarding the correctness of the
deployed container. PRIVATEER provides an extension as it pertains to the Kubernetes
Key Management, by offering verification of the container prior to the release of the

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 23 of 124

Kubernetes key and certificate. This verification is conducted on the edge side. The
node receives the application manifest (i.e., either for a legacy or a gramine-enabled
confidential container) and a challenge (step 8).

The node, after deploying the service, calculates the MR Enclave Reference Value
Measurement and signs it with the MR Enclave Key. Likewise, the challenge is signed
by the deployed μProbe, leveraging its attestation key. This signature guarantees the
container’s authenticity, which is crucial in complex and multi-tenant environments
where several instances of the same application may be instantiated; hence
identification of the specific container that sends the attestation-related information
is needed. The signed MR Enclave Reference Value Measurement along with the
signed challenge is sent to the Kubernetes Key Management System, located in the
Orchestrator for validation (step 9). This attestation key may be generated prior or
during the launching of the container. More details on the attestation are available in
Chapter 3.

The Orchestrator knows the expected MR Enclave Reference Value Measurement for
the specific node as well as the public part of the attestation key, hence it can validate
the signature. If the received information is successfully verified, then the Kubernetes
Key Management System releases the (Kubernetes) Key (i.e., asymmetric keypair)
bound to the attestation key of the μProbe (step 10). The presented certificate is
bound to the container's unique attestation key, preventing unauthorized usage.

It shall be noted that a similar process is followed during the enrollment of the
infrastructure element (i.e., SGX-enabled server) to the Orchestrator. More specifically
the Security Probe residing in the SGX enabled sever is bound to the rest of the
infrastructure (i.e., Orchestrator) through its own attestation key. This process is
elaborated in Chapter 3.

Moreover, it shall be clarified that updating the Security Probe in Release A involves
re-enrolment. In the Release B, the PRIVATEER platform will be enhanced with the
capability to update the software stack of the infrastructure element without the need
to re-enrol (i.e., which involves recreating the key to re-enrolling the infrastructure
element). This feature could be specifically interesting for the case of inter-domain
service continuity.

2.1.2.2 Definition of Trust Policy and update

After successfully deploying a service, the Orchestrator notifies both the Security
Context Broker (SCB) and the LoT Assessment component (step 11). This notification
further includes information from the Orchestrator regarding the agreed Privacy SLA
and the service graph chain topology. The latter is needed in order be aware of the
exact trust sources that need to be queried in order to acquire the evidence. The LoT

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 24 of 124

Assessment utilizes this notification to craft a tailored Trust Policy for the deployed
service. This Trust Policy encompasses various parameters necessary for assessing the
trustworthiness of the service, including the privacy index, Proof of Transit (PoT),
attestation results, and Cyber Threat Intelligence (CTI) data. Apart from the
parameters, the Trust Policy includes information regarding the periodicity (i.e., how
often to query the data) and the trust relationships (i.e., based on the service graph
chain). This Trust Policy is sent to the SCB (step 12).

The SCB is tasked with building a smart contract per service and defining the list of
attributes. Nevertheless, the SCB which cannot directly upload a contract to the
Ledger. This task is handled by the Security Probe. The Security Probe is the entity
responsible for constructing and executing the (new) smart contracts. Hence, the
smart contract including the Trust Policy, along with the rest of the information
received from the Orchestrator such as the Privacy SLA and the service graph chain
topology information is transmitted to the Ledger via Security Probe. The Orchestrator
can use this Trust Policy-related information to initiate the attestation process. Should
any updates be required to the Trust Policy, the LoT Assessment must accordingly
update the smart contract.

2.1.2.3 Extraction of runtime attestation evidence from the Security Probe and
μProbe for the LoT Assessment

The Orchestrator leverages information from the Ledger to determine whether
attestation data is required for the trust assessment of a particular service, along with
the periodicity at which this data should be obtained. This critical information is
included within the Trust Policy field of the smart contract, providing clear guidelines
for when and how attestation should be conducted to ensure the configuration
integrity of the deployed services, the containers or even the underlying
infrastructure. By accessing this data from the Ledger, the Orchestrator can effectively
manage the attestation process; thus, maintaining the overall trustworthiness of the
system.

The Orchestrator triggers the attestation process by sending a challenge to the
Security Probe(s), that participate in the service graph chain for the specific service
and more specifically its Attestation Agent(s) (step 13). This communication is further
specifying which binary should be attested. Along with the challenge, the Orchestrator
sends the Key Restriction Usage Policy. The latter is leveraged by the Security Probe
to verify the responses from the μProbe(s). Each Security Probe and μProbe that
participates in the specific service graph chain reports separately.

In the example of Configuration Integrity Verification (CIV), the Attestation Agent
residing in the Security Probe is tasked with verifying the integrity of the container. To
accomplish this, the eBPF Tracer initiates the capturing of traces. The tracer consists

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 25 of 124

of two parts: one executed in the untrusted domain and another in the trusted
domain. Hence, the traces are captured by the untrusted domain and signed by the
trusted domain. Once the traces are collected and signed, they are transmitted to the
Attestation Agent to initiate the integrity verification process.

In parallel, the Key Restriction Usage Policy Engine applies Key Restriction Usage
Policy, which was configured during the enrolment of the infrastructure element.
These Key Restriction Usage Policies seal the usage of the attestation key to a new
configuration state. For example, the by the Key Restriction Usage Policy defines the
attestation by proof (instead of attestation by quote) scheme, chosen for conforming
with the Zero Trust notion. Moreover, the Verifiable Policy Enforcer (VPE), as part of
the Key Restriction Usage Policy Engine (KRPE), monitors the status of the versions
running on both the Attestation Agent and the Key Restriction Usage Policy Engine. It
ensures that these components remain active and up to date, detecting any instances
where they may have become obsolete.

Moreover, the Security Probe will send the challenge to the μProbe(s) in order for the
later to verify the integrity of a specific binary, as it pertains to the containerised
application configuration (step 14). Following a similar rational, as performed in the
Security Probe, the eBPF Tracer initiates the capturing of traces. Once the traces are
collected and signed, they are transmitted to the Attestation Agent to initiate the
integrity verification process. The result, meaning the signed challenge with the
Attestation Key of the μProbe is sent to the Security Probe for verification (step 15).

The result of the attestation process can be provided either by the Microservice Agility
to the Secure Oracle or directly by the trusted part of the Security Probe through the
Secure APIs. Nevertheless, the provision of such TEE Device Interface Security Protocol
(TDISP) extensions is still under research by PRIVATEER.

The result of the entire attestation process, covering both the Security Probe and the
μProbe, along the collected evidence is transmitted from the Security Probe to the
Secure Oracle (step 16). It shall be clarified that the collected evidence is available to
the ledger specifically for the cases where attestation has failed. The Secure Oracle
verifies the signature of the received information from the Security Probe and includes
the attestation report to the smart contract dedicated to the specific service. All
evidence is available to the Ledger in a common Verifiable Presentation (VP) format
(step 17). In instances where attestation fails, the raw information is stored off-chain
for efficiency, with pointers to this external storage maintained on the Ledger. The LoT
can then access the acquired information data through the Ledger to perform a new
assessment (step 18), leveraging the SCB. Details on the exact operation of the LoT
are available in D4.1 [3] .

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 26 of 124

2.1.2.4 Attribute-based Access to the Ledger

Access to specific information on the ledger is regulated through Attribute-based
Access Control (ABAC), ensuring that only entities possessing the correct attributes
can access particular information. Furthermore, the information stored in the off-
chain storage is encrypted using Attribute-based Encryption (ABE), providing
protection against unauthorised access. The list of this attributes is defined by the
Security Context Broker (SCB), who disseminates to the Secure Oracle in order to be
included in the smart contract. The SCB further acts as the verifier, meaning that
whenever an entity (i.e., either internal or external to the network) requests access to
certain information leveraging a set of attributes that it possesses, it is the SCB that
will verify whether the attributes possessed by the entity are indeed the correct ones
to access the specific information. These attributes may be encapsulated within a
Verifiable Presentation (VP).

2.1.2.5 Harmonization of Evidence for External Entities and Issuance of DIDs

The information exchanged in the Ledger (i.e., including the evidence available in the
off-chain storage) may contain sensitive information about the infrastructure that
should not be accessible to external entities. These entities could include end-users,
other Mobile Network Operators (MNOs), or even the Service Provider that provided
the service under assessment. To address this concern and provide an enhanced
privacy-preserving solution, PRIVATEER introduces the Trust Exposure Layer. This
layer implements harmonization mechanisms to conceal information that is not
relevant for external entities, thereby preventing the leakage of crucial infrastructure
details.

The Trust Exposure Layer serves as a protective barrier, controlling the information
exposed to external entities accessing data from the Ledger. Its role is to ensure that
only essential and non-sensitive information is made accessible. For instance, details
pertaining to the service graph chain should remain private and not be disclosed to
external parties. Instead, a summarized trust score reflecting the entirety of the
service graph chain should be provided, offering a comprehensive yet abstracted view
of the trustworthiness of the services involved. Through the Trust Exposure Layer,
PRIVATEER maintains a delicate balance between transparency and privacy, allowing
external entities to access essential information for trust-related decision-making
while safeguarding sensitive infrastructure details (step 19). This privacy-preserving
mechanism further enhances confidence in the system among users and stakeholders.

To access this information, external entities must have previously obtained a
Decentralized Identifier (DID) issued through the Ledger, specifically dedicated to
Identity Management. This DID serves as the foundation for creating a Verifiable
Credential (VC), which is then used to generate a Verifiable Presentation (VP). The VP

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 27 of 124

encapsulates the necessary attributes required to access specific information related
to trust within the Ledger. By leveraging these cryptographic mechanisms, entities can
securely present their credentials and prove possession of the correct access rights,
without disclosing any further information, thus maintaining the sovereignty of their
identity. The VCs and VPs are stored within the entity’s wallet.

2.2 User Roles
In the context of this deliverable, it is essential to define the set of user roles that are
provisioned so as to flesh out the necessary functional specifications of WP5 activities
and facilitate the description of each artefact in the upcoming sections. The main user
roles presented in this deliverable are presented below:

• Mobile Network Operator (i.e., Infrastructure Provider): These are the
organizations responsible for the orchestration and management of the
virtualized infrastructure where various services will be deployed. They further
decide on the type of security controls and built-in security capabilities of them
infrastructure and employ orchestration techniques for the optimal
deployment strategy of all services to not violate any requirements as
described in the Service level Agreements (SLAs).

• Service Provider: These are organizations that are responsible for offering the
b5G/6G services, to be deployed as part of the underlying software stack, but
also the auxiliary processes (deployed on a virtualized infrastructure such as
the MEC) for supporting the better and more scalable execution of a specific
service. The role of a Service Provider can also be taken by the developer of a
security analytics solution (e.g., such as the AI-based anomaly detection from
WP3) for equipping the PRIVATEER framework with runtime risk indicator
capabilities that facilitate the decision-making process of the orchestrator with
respect to the deployment of a service graph chain.

• End users: As end-users engage with various services and applications, their
user equipment (UE) interacts with the network, leveraging Network Exposure
Functions (NEFs) to access crucial insights into the capabilities and summarized
trustworthiness data of service providers and underlying resources. For
instance, when an end-user seeks to connect to a specific service, their UE may
query NEFs to obtain trust-related data, such as the resources or security
measures implemented within the service chain.

2.3 Functional specifications
This specification introduces the functional specifications in the context of the WP5
activities. These specifications stem from the requirements that need to be satisfied
from the various actors – namely, Mobile Network Operators, Service Providers, End

D5.1 – Distributed attestation, identity & threat sharing enablers –Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 28 of 124

Users etc. In addition, this table presents the component-oriented functional
specifications which, in turn, are further broken down into sub-specifications
stemming from the associated internal components of each artefact. Specifically, the
first 6 specifications (i.e., F.S.1-F.S.7) characterize the user-oriented functional
specifications. Subsequently, F.S.8-F.S.13 refer to the specifications related to the
Privacy-aware Orchestrator, while the next three (i.e., F.S.14, F.S.15, and F.S.16)
capture the LoT assessment requirements. It needs to be noted that for these
artefacts, only the WP5-related specifications have been mentioned. Next, a detailed
analysis of all the specifications pertaining to the WP5 tasks is presented: from the
PRIVATEER DLT (i.e., Security Context Broker specifications: F.S.17-F.S.18, Secure
Oracle: F.S.19-F.S.21, and Trust Exposure Layer: F.S.37), up to the Identity
Management component (i.e., F.S.22-F.S.24), the CTI sharing (i.e., F.S.25-F.S.27), and
the attestation mechanisms: both in the far edge devices (i.e., F.S.28-F.S.30), but also
in the data/network plane (i.e., F.S.31-F.S.36).

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 29 of 124

Table 1 - PRIVATEER Distributed attestation, identity and threat sharing enablers Functional Specifications

ID As a(n) ... I want to be able to
...

So that I can ... Description

F.S.1 Service Provider
/ End user /
Mobile Network
Providers

securely store the
necessary keys,
certificates, and
decentralized
identifiers

Have access to secure IdM
mechanisms.

Securely storing cryptographic keys, certificates, decentralized identifiers (DIDs),
verifiable credentials (VCs), and other sensitive credentials is essential in
PRIVATEER. The adoption of the Hyperledger ARIES wallet provides a
comprehensive solution, ensuring confidentiality, integrity, and availability. By
integrating with ARIES, the end users achieve robust protection, meeting privacy
requirements and instilling trust among stakeholders.

F.S.2 Service Provider
/ End user /
Mobile Network
Providers

provide verifiable
evidence on my
identity in a
privacy preserving
manner

get secure access into aggregated
trust summaries

The user/service provider should leverage Verifiable Credentials to disclose proof
of ownership of the necessary attributes that grants access to the information
stored to the DLT. In this flow, the Secure Context Broker (SCB) authenticates and
authorizes the actors, who provide a W3C Verifiable Presentation (VP) with the
Identification Management component-issued attributes that they want to disclose
to the SCB. The SCB acts as a verifier and checks for the validity of the W3C VP -
including its revocation status. Subsequently, a fine-grained attribute-based access
control mechanism is used to validate whether the request is authorized (i.e., has
the correct attributes) to access the requested information from the DLT.

F.S.3 Service Provider provide the service
container images,
configuration and
service
requirements

enable the orchestrator to deploy
the service in the MNO
infrastructure according to the
service level agreement (SLA)

A manifest encompasses broader details about the deployment, operation, and
management of a service within a B5G/6G network. It associates the service
requested by the Service Provider with the characteristics of the MNO
infrastructure resources. Service container images are included in the
orchestrator’s registry by the related service providers. If instructed by the service
requirements, the service container images are launched in secure and isolated
enclave processes once their correct state is verified. These interpretable manifests
allow orchestrators to deploy the service using the required resources. This includes
the decision on whether the service (or part of it) should be deployed in a TEE-
enabled environment where containerized applications can leverage the
capabilities of the μProbe. This implies that the applications are deployed in
infrastructure elements that possess a Security Probe to perform the necessary
attestation mechanisms and secure software updates. Finally, through these
interpretable manifests, the orchestrator can derive the required level of assurance

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 30 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

to be attained by the service graph chain. This information is also used to select the
necessary key restriction usage policies to be enforced by the assets comprising the
service topology. The enforcement of the key restriction usage policies is
intrinsically linked with the necessary attestation tasks that should be supported by
the service topology to monitor the Level of Assurance. The enforcement and
evaluation of the key restriction usage policies and - consequently – the attestation
tasks are carried out by the orchestrator.

F.S.4 Service Provider have access to an
immutable version
of the SLA
associated with the
associated,
deployed service

ensure that its clauses and
conditions cannot be tampered
with and enable all B5G/6G
components have access to a
common ground truth.

Once a service is deployed by an orchestrator, the agreed SLA between the Service
Provider and the respective MNO is published to the DLT. Specifically, for each
deployed service the orchestrator triggers – through the SCB - the creation of
dedicated smart contracts responsible for expressing the SLA in an immutable and
auditable way. This enables other PRIVATEER components – and authorized
B5G/6G components – to access the SLA so as to perform their operation. For
instance, the access to the SLA is essential for carrying out the LoT estimation as it
provides all the necessary information with respect to the required trustworthiness
level that a service needs to attain. For this purpose, it is crucial to have an
immutable version of the Service Level Agreement to avoid any tampering.

F.S.5 Service Provider monitor the
aggregated trust
summary of the
service graph chain
(through exposed
trust summaries)

measure and verify the SSLA-Trust
conformance.

Service providers have access to the respective aggregated trust summary
pertaining to their service graph chains. Through their interface with the SCB,
authorized service providers can consume trust state information reported in the
DLT, without disclosing anything about the MNO’s topology. Apart from the service
providers, trust information is also consumed by the respective orchestrators so as
to make the necessary decisions for ensuring the adherence of the SLA. In the
context of the LoT estimation, this can be translated into ensuring that the actual
level of trust is greater than the minimum accepted level of trust (i.e., required level
of trust). Eventually, this could result in the construction of a new interpretable
manifest by the orchestrator to respond (e.g., update the deployment) to the new
LoT estimation results. Such a reaction might be related to the enforcement of
additional security controls to the service graph chain to ensure the trustworthiness
of the corresponding service.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 31 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

F.S.6 Mobile Network
Operator (MNO)

access inter-
domain trust-
related information

evaluate the trustworthiness of
another domain without breaching
its privacy

In the context of a multi-domain service graph chain, it is essential that participating
MNOs can acquire aggregated trust-related information about each other’s
infrastructure. In this context, it is critical that the exchange of information is
realized in a privacy-preserving manner – i.e., without disclosing anything about the
actual intra-domain topology. To address this issue the plan is to build on top of
existing standardized approaches for exposing network capabilities, such us
through the definition of Network Exposure Functions [4]. Following the paradigm
of the use of Application-Layer Traffic Optimization (ALTO) [5] protocol as a
Network Exposure Function [6], the plan is to evaluate the extension of a NEF
towards exposing aggregated trust results associated with the underlying network.
This responsibility is carried out by the Trust Exposure Layer which is part of the
Privateer DLT. Hence, in scope of this functionality, harmonization techniques are
to be examined to ensure that no topology information is disclosed along with the
trust guarantees of a domain.

F.S.7 Mobile Network
Operator (MNO)

provide trust
guarantees about
the MNO
infrastructure

participate in service graph chains
spanned across multiple domains
(service continuity)

As an MNO I need to expose capabilities and events to third-party authenticated
and authorized Application Functions (AF). This would enable the MNO to host
services that might span across multiple domains as instructed by the Service
Provider’s requirements. PRIVATEER envisions to enhance the information shared
with NEFs so as to include aggregated trust information in a privacy-preserving
manner. The trust results are reported by the Level of Trust (LoT) estimation of a
service while the harmonization is carried out by the Trust Exposure Layer. For
enabling the LoT estimation, the MNO needs to provision the collection of
trustworthiness evidence. Such evidence may be static ones such as the verification
of the correct configuration of the nodes comprising a service graph chain, but also
dynamic evidence collected during runtime. The latter type, involves among others:
Proof of Transit evidence, attestation evidence, Cyber-Threat Intelligence sharing.

F.S.8 Privacy-aware
Orchestrator

certify the
infrastructure
elements and
spawned
containers

provide proofs pertaining to the
secure launch of the resources that
host a specific service

Each service graph chain is deployed in a set of containers (i.e., application
containers NFVs) deployed within infrastructure elements. To be able to ensure
that the service has been securely deployed in this environment, a set of guarantees
need to be made beforehand so as to ensure that both the infrastructure elements
(e.g., server node added in the MNO’s cluster of resources) and the spawned

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 32 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

participating in a
service graph chain

containerized applications have been securely launched. Concerning the
infrastructure elements that need to deploy TEE-enabled workloads, they are
equipped with a Security Probe, while the respective containerized applications are
deployed with their own μProbe. These probe components provide the attestation
mechanisms to securely attest to the correct state of the associated entities -
infrastructure element or containerized application - both during initialization (e.g.,
secure bootup), but also during runtime phase (e.g., configuration integrity
verification). For these attestation mechanisms to be accepted a set of
requirements need to be attained during initialization of the elements. First and
foremost, the attestation mechanisms require a set of attestation keys that are
securely stored and used by each infrastructure element and containerized
application. These attestation keys need to be certified by the orchestrator so as to
ensure the authenticity of the associated attestation data and to provide a proof
that the orchestrator has verified the correct launch of each Security Probe and
μProbe. Section 3 describes in detail all the necessary details pertaining to the setup
and execution of the PRIVATEER attestation schemes.

F.S.9 Privacy-aware
Orchestrator

have re-
programmability
capabilities in the
available resources

manage the supported security
controls that can be employed in
the underlying infrastructure

The feature of re-programmability is of paramount importance in the
parameterization of the infrastructure, especially in the case of configuring the
security controls deployed in the infrastructure. This configuration of the resources
is achieved through Security Probe(s), and specifically through the Microservice
Agility component of the Security Probe(s) (see Figure 1). This allows the
orchestrator to configure the security controls supported by the deployed
containerized applications. Of course, in the event of an update in the containerized
applications, the container needs to be re-launched to put the new key restriction
usage policies in effect. Two main examples of such configurations with respect to
the enforced security control consist of: i) upgrading the security controls for bug
fixing and/or introducing new attestation capabilities, and ii) installing new eBPF
functionalities for capturing new threats through the collection of specific
application/container traces. Regarding the former type, enhanced security
mechanisms (e.g., monotonic counters) are going to be evaluated to ensure that no
rollback of updated security controls can take place to downgrade the security

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 33 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

posture of a microservice. Finally, through the Microservice Agility layer it is
possible for the orchestrator to trigger the collection of attestation evidence to
monitor the Level of Assurance of the service graph chain, as dictated by the service
requirements.

F.S.10 Privacy-aware
Orchestrator

launch workloads
and containerized
applications across
multiple resources
in an isolated and
secure manner

ensure the confidential execution
of the deployed service graph
chains

The use of confidential containers addresses this functional specification as they
provide confidentiality and integrity for data, especially for runtime data.
Confidential containers use hardware-based Trusted Execution Environments (HW-
TEE) for resource isolation, data protection, and remote attestation. In the context
of PRIVATEER, we leverage the enclave-cc project4 which offers a process-based
confidential container solution through Intel SGX [7]. The adoption of confidential
computing lifts the trust assumptions that Service Providers need to have for the
MNOs and the underlying infrastructure. Specifically, it is ensured that the client
images are deployed in a confidential and tamper-evident manner (i.e., encrypted
and/or signed images cannot be intercepted or corrupted by MNOs). In parallel, the
workload data is managed in a confidential manner within the isolated environment
(i.e., enclave process) without enabling MNOs to acquire access to the deployed
data.

F.S.11 Privacy-aware
Orchestrator

get an updated
view of the trust
state of the
running edge
services

make an informed decision about
the deployment of the service
graph chain in the underlying
resources

The Orchestrator is responsible for the management of the correct deployment of
the services as characterized by the SSLAs between the MNO and the corresponding
Service Providers. Hence, they need to get as much insight as they can in order to
make informed decisions about the optimal (i.e., in terms of resource management)
and secure (i.e., in terms of threats in the infrastructure) usage of the underlying
resources. The runtime assessment of the trustworthiness of a deployed service
constitutes a crucial input that the orchestrator needs to consider when assessing
the status of the service with respect to the SSLA. Hence, PRIVATEER should
facilitate the adoption of a robust Level of Trust Assessment framework as
presented in D4.1. On top of that, PRIVATEER needs to ensure the auditability and

4 https://github.com/confidential-containers/enclave-cc

https://github.com/confidential-containers/enclave-cc

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 34 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

traceability of such trust related information which adds additional trust guarantees
to the orchestrator.

F.S.12 Privacy-aware
Orchestrator

get real-time,
trustworthy
anomaly detection
events from the
edge accelerators

make an informed decision about
the deployment of the service
graph chain in the underlying
resources

The AI-based security analytics inference operation takes place at the edge
accelerator devices deployed in the MNO infrastructure. This enables the detection
of any event that differs from the normal behaviour of the traffic within the domain.
The use of such edge accelerators (e.g., FPGA boards) opens a set of attacks that
need to be addressed to ensure the trustworthiness of the reported events. As
further elaborated in Section 4 set of common attack vectors is mitigated using
configuration integrity attestation mechanisms.

F.S.13 Privacy-aware
Orchestrator

deploy the key
restriction usage
policies deployed
in each
containerized
service (deployed
in the edge)

enable local attestation schemes
where provers can provide
attestation evidence if they are at a
correct state

Based on the manifest and the SSLA managed by the Orchestrator the necessary
requirements for the level of trust are derived. These requirements are further
translated into key restriction usage policies that need to be enforced in the assets
of a service graph chain. This allows the infrastructure resources to attest to the
correct state of their underlying Security Probe stack, to ensure that only provers
with the expected set of components (e.g., eBPF tracer, Attestation agent,
Verifiable Policy Enforcer as part of the Key Restriction Usage Policy Engine (KRPE)).
The enforcement of such policies enables the adoption of a robust attestation
scheme that enables verifiers to validate the correctness of provers’ state in a zero-
knowledge, distributed and scalable manner (e.g., Swarm Attestation scheme). In
the context of PRIVATEER, the attestation schemes are configured by the
Orchestrator. Once the Security Prove collects attestation evidence, these are
forwarded to the Secure Oracle for verification before being sent to the DLT. From
the prover’s side the attestation process is configured via the Microservice Agility
Layer which in turn triggers the Attestation Agent, residing in the trusted world of
the Security Probe of each infrastructure element. The Attestation Agent is also
responsible to collect – if requested – any attestation evidence coming from the
deployed μProve in the containerized applications.

F.S.14 Level of Trust
assessment

retrieve evidence
from various trust
sources in a

evaluate the expected and actual
level of trust for the associated
service and trust property (i.e.,
integrity)

PRIVATEER ensures the availability of evidence coming from all the trust sources,
for the calculation of the actual level of trust of a service are provided. Even though
trust sources may share their evidence directly with the LoT estimation, they could
be also persisted through the Privateer DLT. This could enable traceability and

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 35 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

verifiable and
secure manner

auditability characteristics or even contribute to historical analysis by authorized
entities. For instance, having trustworthiness evidence persisted to the DLT enables
the construction of a reputation metric for the trustworthiness of a service. In
parallel, having (failed) attestation evidence reported to the DLT may enable
authorized entities (e.g., MNOs) to identify new vulnerabilities for the deployed
services and resources.

F.S.15 Level of Trust
assessment

compute and
report the level of
trust estimation for
a specific service
over a time
window

Inform all interested parties about
the trustworthiness of the deployed
service

The LoT estimation computes information reported in a secure and verifiable
manner through the monitoring service graph chain. This is accomplished through
the Secure Oracle that is responsible for reporting all incoming trustworthiness
evidence (e.g., attestation evidence) to the DLT. For a specific time, window, the
LoT estimation collects all associated information for a specific service and
calculates the actual trust level. This information is posted back to the Secure Oracle
to amend the information uploaded in the smart contract. These level of trust
results are then available to all authorized entities. On the one hand the
orchestrator consumes this information from the DLT in the context of its decision-
making process pertaining to the deployment of the service. On the other hand,
end users, service providers and MNOs consume aggregated results of the LoT
estimation to assess the trustworthiness of the underlying infrastructure and/or
deployed service.

F.S.16 Level of Trust
assessment

Keep track of
evolution of the
service graph chain
for a particular
service

enhance the information associated
with a specific service in the
context of the trust assessment
estimations and for auditability
purposes

Once the orchestrator has deployed a new service, the associated LoT assessment
component gets notified about the deployed service graph chain. This enables
construction of the necessary trust policies for the corresponding service, including
the trustworthiness evidence that needs to be collected during runtime. Based on
the decision-making process of the responsible orchestrator, the service graph
chain is subject to change in the event of new functionality being included in the
service or the re-evaluation of the deployment setup for performance and/or
security reasons. This introduces the responsibility to the LoT assessment to update
the enforced trust policies as well as ensure the association of existing information
(e.g., trust results, trustworthiness evidence) with the new service graph chain. The
LoT assessment is responsible for managing the update of the trust policies, but it
is the Secure Oracle that should provide the necessary provenance metadata (i.e.,

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 36 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

including the necessary pointers) so that the smart contract for the new service
graph chain points to the existing information pertaining to the older service graph
chains of the same service.

F.S.17 Secure Context
Broker (SCB)

enforce access
control policies for
accessing the
information stored
on DLT

support the conditional access to
data for entities that have the
necessary attributes

In an intra-domain environment, the SCB provides the interface for Service
Providers and MNOs to access the information stored to the DLT. Of course, only
authenticated, and authorized entities can access the resources to the DLT.
Specifically, the SCB authenticates requests that possess valid W3C VPs issued by
the Identity Management component. From the W3C VP, the SCB extracts the
presented attributes and uses its ABAC mechanism to decide whether the request
has access to the intended data. Finally, as mentioned in Section 5, the PRIVATEER
DLT distinguishes between on-chain and off-chain storage depending on the type
of information. The decision of whether a piece of information is stored on-chain
may depend on various factors, one of which is the size of the payload. In the case
of attestation evidence, it might be optimal to store it off-chain and maintain the
necessary integrity and authenticity checks on-chain to ensure that the off-chain
data cannot be tampered with. Of course, on-chain and off-chain storage needs to
be protected to ensure that only entities with the necessary attributes can access
their data. For this purpose, the adoption of Attribute-Based Encryption
mechanisms is considered in the context of the Secure Oracle functionalities (see
F.S.17). The list of attributes used for the ABE mechanisms need to be stored
unencrypted in a public channel.

F.S.18 Secure Context
Broker (SCB)

receive
notifications about
the deployment of
a new service

trigger the instantiation of the
necessary smart contracts in the
DLT

When a new service is deployed by the orchestrator, a notification is sent to both
the SCB and the LoT Assessment. The latter creates the trust policy (e.g., set of trust
sources, required trust level) and forwards it to the SCB. This set of information –
i.e., the deployment notification and the trust policy – enable the SCB to initiate the
creation of the necessary smart contracts to monitor the SLAs and trustworthiness
level of the deployed server. More information pertaining to the smart contracts is
reported in Section 5.

F.S.19 Secure Oracle store
trustworthiness
evidence, SSLAs

ensure the integrity of the
associated information

To avoid putting excessive trust to centralized entities, PRIVATEER envisions to
leverage Distributed Ledger Technologies to deploy smart contracts for the
execution and/or storage of trust-related information. For each service there is a

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 37 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

and trust results, in
an immutable,
interoperable, and
auditable way

dedicated smart contract for storing information such as the privacy SLA between
the MNO and Service Provider, as well as for storing the LoT results.
Trustworthiness evidence is also expected to be stored in the DLT, too. Since it is
crucial to check the integrity of all the ingress data to the DLT, a Secure Oracle
component is needed. Having a Secure Oracle (see Chapter 5) verifying the
incoming evidence from various trust sources, increases the trustworthiness of the
data to be used by the LoT estimation. Finally, when it comes to ensuring
interoperability and verifiability of the reported evidence to the PRIVATEER DLT
from the various trust sources, the use of W3C Verifiable Presentations is adopted.
The aim is to express the reported trustworthiness claims in an interoperable
fashion. The abstract data model for the expression of trustworthiness claims could
be expressed using the IETF’s standardized YANG data model specification [8], the
details of which are to be presented in D5.2 [9].

F.S.20 Secure Oracle encrypt
information stored
in the DLT

Protect the stored data from
unauthorized access

When data are sent to the secure oracle to be stored in the DLT, it is possible that
part of it may be stored off-chain. Such is the case of the trustworthiness evidence
where it is appropriate to be persisted in an off-chain persistent storage, mainly for
performance purposes. Hence the Secure Oracle provides the Attribute-Based
Encryption (ABE) mechanisms to protect persisted payload. In addition to that, to
ensure the integrity of the encrypted data, a pointer is stored in the smart contract
(i.e., on-chain).

F.S.21 Secure Oracle get real-time
notifications about
any changes in the
Level of Assurance
(LoA) regarding the
service graph chain

get an updated view of the
trustworthiness level of the
deployed service

The Orchestrator is aware of the services’ characteristics and requirements as
expressed by the SLA. Hence, it is responsible for triggering – through the
Microservice Agility layer - the Security Probe of those infrastructure elements
where the intended service graph chain is deployed. The aim is to monitor specific
trust properties (e.g., integrity) and measure the Level of Assurance (LoA) of the
corresponding service graph chain. This monitoring is realized thanks to the
Attestation Agent component deployed in the infrastructure elements (Security
Probe) but also in the Attestation Agents in the μProbe (containerized application).
This attestation evidence is sent to the Secure Oracle that verifies them and reports
them to the DLT, should a change in the Level of Assurance is detected. This report
is taken into account in in the context of the LoT estimation.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 38 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

F.S.22 Identity
Management
component

provide a
decentralized
identity
management
solution in a
privacy preserving
manner

allow the authentication of service
providers and other stakeholders to
the PRIVATEER cloud infrastructure

Based on this requirement, PRIVATEER envisions to adopt the Hyperledger Indy [10]
for the Identity Management Component. Hyperledger Indy is a Distributed Ledger
Technology (DLT) specifically designed for DID management. Within Indy
Hyperledger, it is possible to manage digital identities in a secure, privacy-
preserving, and interoperable manner.

F.S.23 Identity
Management
component

issue verifiable
credentials that
showcase the
identity and the
attributes of an
entity, while
supporting
revocation
capabilities

enable the authentication and
authorization of entities (e.g.,
service providers) to the PRIVATEER
ecosystem

For the Identity Management component to function as an issuer of W3C Verifiable
Credentials (VCs), it needs to possess robust capabilities in credential issuance and
management. Hence, the use of Hyperledger Indy is adopted as a Decentralized
IDentity Management component. This entails the ability to generate and sign VCs
in accordance with the W3C standard, ensuring their validity and integrity. The
Identity Management component should have a mechanism for securely storing
private keys used for signing credentials, implementing best practices in
cryptographic key management to prevent unauthorized access. Furthermore, it
should support the creation and customization of credential schemas to define the
structure and content of VCs issued by the system. Additionally, the Identity
Management component should incorporate efficient revocation mechanisms to
invalidate issued credentials promptly, enhancing security and trust within the
ecosystem. With these comprehensive capabilities, the Identity Management
component can effectively act as an issuer of W3C VCs, providing trusted and
verifiable digital credentials while ensuring robust revocation processes.

F.S.24 Identity
Management
component

provide a client
wallet for the
verifiable
credential holders
that allows for the
secure storage and
selective disclosure
of the associated
attributes

ensure a secure authentication and
authorization framework where all
the necessary credentials are
secure stored and presented in a
privacy-preserving fashion

The adoption of Hyperledger ARIES wallet offers a powerful suite of capabilities
crucial for secure credential management. The wallet provides a secure storage
element for cryptographic keys and enabling seamless management of DIDs.
Additionally, it facilitates the secure storage of verifiable credentials (VCs), ensuring
their confidentiality and integrity. With ARIES, users can leverage selective
disclosure verifiable presentations (VPs), enabling controlled and privacy-
preserving sharing of credentials as needed.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 39 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

F.S.25 CTI sharing
entity

run in a
decentralized
mode

ensure that the CTI is highly
available and does not constitute a
single point of failure

The CTI Sharing proxy API must not rely entirely on one server for data exchange,
and as such, each entity should host their own shared index which synchronizes
with the other entities whenever a change happens.

F.S.26 CTI sharing
entity

protect the cyber
threat information
collected from the
various domains

control the access and ensure that
only authorized users have access
only to the intended parts of the
CTI information

The CTI Sharing proxy API allows for better information control through the creation
of these shared groups, which have different policies. This also entails the
generation of a new shared secret key between all entities participating in the
group whenever it is updated (someone joins or leaves).

F.S.27 CTI sharing
entity

protect the
identity of the
domain of the
reported CTI-
related
information

ensure confidentiality among the
parties of the same shared group

The CTI Sharing proxy API relies on a reverse index to exchange information
confidentially and securely. This entails being able to read, update and write to this
index.

F.S.28 Edge accelerator
device

have access to a
secure element for
storage,
measurement, and
reporting

support remote attestation
operations for verifying the correct
state of the device during initial
configuration

Many efforts have focused on the development of Root of Trust provisions in low-
end devices. To address such resource constraints, various proposals have focused
on the inclusion of Physical Unclonable Functions (PUFs) to facilitate the secure
generation of cryptographic keys to be used in scope of attestation protocols; even
though it is not offering secure storage capabilities, it is possible to reconstruct the
attestation key in a secure and unclonable fashion [11] [12]. In the context of
PRIVATEER, the aim is to provide an integrity attestation protocol for ensuring that
edge accelerator devices (i.e., FPGA devices) are loaded with the expected kernel
applications in a confidential manner (see Section 5).

F.S.29 Edge accelerator
device

to protect the FPGA
bitstream deployed
in the edge device

ensure confidentiality of the FPGA
configuration information,
especially in multi-tenant
environment

Use of encryption techniques for application’s bitstream, that contains the
configuration for the hardware accelerators. This prevents unauthorized users
accessing the code and thus mitigating reverse engineering attempts.

F.S.30 Edge accelerator
device

acquire a
certification about
the application
(i.e., AI accelerator

Avoid any malware updates and
insertion of malicious circuits.

Remote attestation protocols are employed to verify the integrity of the users and
the deployed code, as well as the attestation service running on the hardware
accelerator.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 40 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

kernel) running on
the device as well
as the attestation
service

F.S.31 Attestation
Server in edge
accelerator
devices

Obtain the
necessary
reference
(expected) values
for the application
and device
configuration
running on the
edge accelerators

Verify the attestation evidence
reported by the edge accelerator
devices

Regarding the integrity of the application, the reference values are uploaded by the
developer of the accelerator to the attestation server, prior to uploading the
application to the hardware accelerator

F.S.32 Attestation
Service in edge
accelerator
devices

securely extract
fresh attestation
evidence

attest to the correct state (device
and application) of the edge
accelerator device

Responsible for generating the attestation report. Random nonces as well as PUF
responses are going to be utilized, to enhance the security by providing robust
encryption keys and avoid replay attacks. It is also important to verify the integrity
of the attestation service.

F.S.33 Attestation
Agent in
containerized
application and
infrastructure
elements

capture static and
dynamic
attestation
evidence

provide attestation evidence to
prove the correct state of the
application both during design
phase (i.e., bootup), but also during
runtime

The attestation agent is a crucial component for both the Security Probe and the
μProbe. It provides the prover’s entry point for participating to attestation
protocols and proving its correct state. It is responsible for the collection of the
necessary attestation evidence – e.g., through the invocation of the corresponding
tracing mechanism – as well as the invocation of the policy enforcement checks to
locally attest to the correct state and, eventually, sign the attestation evidence. In
PRIVATEER a robust configuration integrity verification mechanism is presented
that allows containerized applications to provide runtime guarantees about the
integrity and the correct configuration of the underlying system. To provide robust
and scalable attestation framework, the μProbe Attestation Agents report their
attestation evidence to the respective Security Probe Attestation Agent of the
infrastructure element where they are deployed. Subsequently, once the Security
Probe verifies the collected μProbe traces, it includes its own traces and reports
them to the verifier located at the Secure Oracle. Another challenge that is

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 41 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

investigated in the context of PRIVATEER is the ability to bind the attestation
evidence with a specific enclave-cc instance of a containerized application (see
Section 2.1.2.1). This is crucial in the context of B5G/6G landscape, especially given
the replicated deployment of the same containerized applications (i.e., Kubernetes
pod) across multiple resources.

F.S.34 Attestation
Agent in
containerized
application and
infrastructure
elements

provide zero-
knowledge
evidence about the
configuration
integrity of the
deployed
application and the
container

attest to the correct configuration of
the prover entity without disclosing
any type of the attested attributes.

One crucial performance challenge of the configuration integrity attestation
schemes is the size of the configuration information that needs to be shared with
the verifier. On top of that, in the cases where the verifier is not necessarily trusted,
this poses a privacy risk as the evidence collected in scope of attestation protocols
may lead to software/firmware disclosure attacks. One key improvement that is
employed in the context of the PRIVATEER attestation mechanisms (see Section 3),
is to provide trustworthiness evidence in a zero-knowledge manner, while enabling
the verifier to validate the correctness of the prover’s state without getting
information about the underlying deployment and configuration details. Of course,
the reporting of the evidence to the DLT by the Security Probe Attestation Agent
(i.e., through the Secure Oracle) should be performed in a verifiable and
interoperable manner through the adoption of the W3C Verifiable Presentations.

F.S.35 Verifiable Key
Restriction
Usage Policy
Enforcer in
infrastructure
elements

provide guarantees
that the correct key
restriction usage
policy is enforced

enable the modification/update of
policies while ensuring the
obsoletion of older policies

Based on input coming from the Security Orchestration and Automation Response
(SOAR) element and other sources, the orchestrator may trigger the update of the
employed security controls in the underlying infrastructure. Such security controls
may involve the update of the installed Security Probe software stack (e.g., binary
of the Attestation Agent). This communication is achieved through the Microservice
Agility component. Such an action leads to a change of the configuration of the TEE.
As a result, the already-enforced Key Restriction Usage Policy may no longer be
valid. Such policies provide enhanced authorization mechanisms to the Prover's
Attestation Key if and only if the respective protection policies, that are deployed
as part of the underlying Root of Trust (i.e., in this case Gramine and Intel SGX), are
satisfied. As mentioned in Section 3, part of the research explorations is to evaluate
the security control updates coming from inter-domain orchestrators in the context
of service continuity. In such cases, the Security Probe, through the Verifiable Key

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 42 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

Restriction Usage Policy Enforcer needs to ensure the validity of such requests and
ensure that the correct key restriction usage policy is in place.

F.S.36 Tracer in
containerized
application and
infrastructure
elements

securely measure
and report runtime
evidence of the
application to be
assessed

attest to the correct state of the
prover containerized application
during runtime

The Attestation Tracer is an integral part of the PRIVATEER attestation mechanisms
both in the Security Probe and the μProbe (i.e., lighter version of the Security Probe
attestation tracer). It is invoked by the respective Attestation Agent element for
collecting runtime traces which attest to the correct state of the container. In the
context of PRIVATEER, we plan to leverage the eBPF tracing capabilities. Leveraging
the re-programmability offered by the eBPF framework, it is possible to define the
necessary tracing capabilities for capturing specific traces as demanded by the
Orchestrator. Depending on the request for attestation evidence, an eBPF tracer
could be implemented to provide Configuration Integrity Verification (CIV), Control
Flow Integrity (CFI), or even Network Flow Attestation (NFA) related evidence. The
development of eBPF tracer applications imply that the collection of traces is
deployed in the untrusted host – i.e., not within the TEE. Nevertheless, the signing
of the traces and the enforcement of the associated key restriction usage policies
are executed within the trusted world to ensure the trustworthiness with respect
to the key restriction usage policy enforcement and the signing of the attestation
evidence on the prover’s side. To minimize the threat vectors due to the collection
of the traces in the untrusted world, a research exploration is envisioned so as to
evaluate the development of a secure set of APIs that report attestation evidence
from within the trusted world. This could be achieved through the extension of the
TEE Device Interfaces as specified in the TEE Device Interface Security Protocol
(TDISP) [13].

F.S.37 Trust Exposure
Layer

harmonize the
trust-related
information
concerning the
underlying domain
infrastructure

share to authorized MNOs and end
users about trust-related
information to inter-domain service
graph chains in a privacy-preserving
fashion

Providing network exposure functions (NEFs) for exposing network capabilities is a
crucial – and standardized – aspect in the context of B5G/6G architectures.
PRIVATEER envisions to enhance NEFs enabling the inclusion of trust guarantees as
part of the exchanged information. However, this exchange is not possible to be
performed directly from the DLT, since this opens a wide spectrum of privacy
concerns – especially in multi-domain use cases. For this purpose, a specific layer,
namely the Trust Exposure Layer, is envisioned to sit between the DLT and inter-
domain authorized users (e.g., MNOs) in an effort to provide trust-related

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 43 of 124

ID As a(n) ... I want to be able to
...

So that I can ... Description

information in a privacy preserving. The Trust Exposure Layer, which is part of the
Privateer DLT solution, should provide the necessary harmonization and
aggregation mechanisms to ensure that the shared trust-related information
cannot disclose any information about the exact topology of the underlying
infrastructure.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 44 of 124

3 Runtime Attestation for varying
Levels of Assurance(s) in
virtualised environments

To conform to the Zero Trust notion, as priorly described, the trustworthiness of
virtualised functions, systems, and their associated services should be attained.
According to the International Standardization Organization, trustworthiness is the
“ability to meet stakeholders’ expectations in a verifiable way”. While integrity
verification is a pivotal aspect of trustworthiness, it is important to note that it is just
one of the characteristics of trustworthiness, as defined in ISO/IEC TS 5723:2022 [14].
Other characteristics may include accountability, accuracy, authenticity, availability,
controllability, security, privacy, quality, reliability, resilience, robustness, safety,
transparency, and usability, according to the stakeholder’s/landscape’s requirements.
PRIVATEER considers integrity verification through attestation as one of the
trustworthiness characteristics used for the trust assessment. More information on
the characteristics and the quantification methodology followed by the PRIVATEER’s
trust assessment framework is available in D4.1 [3].

More specifically, the trustworthiness of a device can be established when it
consistently operates in the expected manner for its intended purpose [15]. To ensure
effective runtime configuration integrity verification, it is imperative to collect
accurate system measurements, during the actual operation. These measurements
serve as evidence, indicating whether any tampering has occurred compared to a
predefined "correct state". Through this ongoing collection and comparison of the
collected runtime measurements with the established baseline, potential threats can
be promptly identified and addressed, allowing for proactive responses to security
incidents. This evidence can be also defined as traces, while they are signed by the
attestation key (AK).

3.1 State Of The Art
3.1.1 System Configuration Integrity Verification as a crucial enabler for

trust assessment

Evidently, it is crucial for these traces/measurements to be collected and verified in a
secure manner, providing to any requesting party verifiable and trustworthy evidence
over the system’s operation. To ensure this, such capabilities should be integrated into
the underlying Root of Trust (RoT). The RoT, as defined by the Global Platform, serves

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 45 of 124

as a computing engine, code, and potentially data, all co-located on the same
platform, providing essential security services. It has several types of
implementations. More specifically, it can be supported by a Trusted Execution
Environment (TEE) or an embedded Secure Element (eSE). Three types of RoT may
exist in a trusted platform: i) a RoT for measurement (RTM), ii) a RoT for reporting
(RTR) and iii) a RoT for storage (RTS). The baseline for a RoT is to support secure
storage (i.e., RTS). To enable the runtime attestation of platform integrity,
measurement capabilities (RTM) are indispensable for generating and collecting
measurements, while storing and reporting capabilities (RTS and RTR) are further
necessary to provide evidence regarding any potential tampering with these
measurements [16].

Towards collecting and verifying evidence in a provenly secure manner, a Trusted
Computing Base (TCB) may be leveraged, providing the RoT capabilities needed for
protecting data in transit and data in rest. The TCB is essentially a set of computer
system components tasked with ensuring security. It comprises various security
mechanisms and processes, including hardware, software, and firmware-based ones,
that enforce security policies and manage the system's lifecycle. These components,
including secure boot processes, cryptographic modules, access control mechanisms,
authentication systems, secure storage mechanisms, and integrity measurement
mechanisms, work together to protect the system from unauthorized access,
modification, or exploitation. It is imperative for the TCB to consistently adhere to
expected behaviour to avoid jeopardizing the overall security of the target system. The
Trusted Computing Group (TCG) has played a pivotal role in standardizing remote
attestation protocols, ensuring interoperability and compatibility across different
platforms and vendors.

The objective of PRIVATEER is to establish a flexible TCB that may be expanded
dynamically. This is accomplished by utilizing a modern Trusted Execution
Environment (TEE) that allows for the dynamic addition of components during
runtime. These components are safeguarded by the TEE, hence enabling the
expansion of the TCB. The TEE offers, in essence, a secure environment for critical
services such as computations and safety-critical binaries, separating the “trusted”
with the “untrusted” worlds of the host; thus, serving as a RoT. In addition to the
expansion capabilities offered by the TEE, another rationale behind choosing it for
executing certain tasks is the need for a minimised TCB. The TCB often includes the
operating system and most of the hardware (e.g. memory and storage). Minimising
the TCB can be achieved by reducing the TCB’s trust assumptions on software; thus,
removing the operating system out of the TCB. A minimized TCB reduces the risk of
software bugs and errors, which could potentially disrupt the operation of critical
services; hence, the TEE ensures that critical binaries will be timely and securely
executed within its trusted boundaries.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 46 of 124

Furthermore, PRIVATEER’s Attestation Framework expands its scope by verifying the
correct configuration of the virtualised environments including VFs, VNFs where
services are instantiated, in real-time, through local attestation guided by key
restriction policies to support privacy-preservation. The proposed attestation scheme
is based on the zero-knowledge proof paradigm, ensuring that the Prover can provide
evidence of its correct configuration state without revealing any identifiable
information to the Verifier. To prevent unintentional disclosure, the Prover sends a
proof of correctness, including the fulfilment of key restriction usage policies, instead
of the actual traces. This approach aims to provide privacy-preserving features for
various application domains. The protocol is challenge-based, with the Verifier
initiating the process by sending a nonce, and the Prover providing a signature using
its confidential Attestation Key. The secure enrolment phase ensures privacy-related
restrictions are considered from the initiation of operation, facilitating the provision
of suitable key material and key restriction usage policies. These policies do not permit
the usage of the key if the state is not correct. This approach aims to capture both
security and privacy requirements for various application domains.

3.1.2 Attestation of Virtualised Infrastructure Configuration

Virtualization techniques and containerisation demonstrate growing popularity,
particularly in cloud computing and 5G infrastructures, improving services by
enhancing resource management, thereby optimizing speed, availability, and latency.
Even though Trusted Computing has provided essential assurances for the secure
execution of critical tasks, ensuring the integrity and trustworthiness of systems and
data, the offered protection is not directly applicable to virtualised infrastructures and
containers. It becomes evident that the security assurances provided by Trusted
Computing should be extended to further protect virtualised infrastructures, which
have become increasingly prevalent in modern computing environments. Such an
extension would involve developing specialized runtime security controls for trust and
security, tailored to the unique characteristics and requirements of virtualized
infrastructures.

Recognizing this gap, efforts are underway to extend Trusted Computing's security
assurances to virtualized environments. One notable initiative is the Cloud Native
Computing Foundation's (CNCF) Confidential Containers (CoCo) project. CoCo
leverages hardware platforms like Trusted Execution Environments (HW-TEE) to
enable confidential computing in cloud-native environments, ensuring data security
at the pod-level. The CoCo project leverages established and developing hardware
security technologies including Intel SGX (Software Guard Extensions), Intel TDX, AMD
SEV, and IBM Z Secure Execution, along with novel software frameworks, to safeguard
data in use. Following this approach, unauthorized access or modification of
applications and data is successfully prevented, providing resource isolation, data
protection, and remote attestation. Confidential Containers enable protection against

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 47 of 124

tampering with the infrastructure where the container is instantiated, and executed,
allowing both secure bootup and secure (runtime) service execution, based on the
underlying RoT. These assurances further represent the infrastructure’s capabilities
based on security controls, enabling as a result the Level of Trust assessment for the
specific virtualised infrastructure, as discussed in ISO/IEC TS 5723:2022 [14].

ETSI has provided a classification that could be leveraged for mapping the extracted
traces from virtualised infrastructures to specific Levels of Assurance (LoA) [17]. The
scale uses 0-5, with a higher number indicating higher trust. PRIVATEER will leverage
this classification to determine the appropriate scaling for its virtualized
infrastructure.

• LoA 0: refers to the state of lacking any sort of integrity verification.
• LoA 1: involves verifying the integrity of the local hardware and virtualization

platform (hypervisor) using signatures throughout the boot process and
application loading. No evidence of integrity is provided. The integrity status is
determined based on the platform state once the boot and application load
operations have completed.

• LoA 2: Enhancing LoA 1 by including the verification of the integrity of the
hardware and virtualization platform through remote attestation. Boot time
and application load time measurements are being examined.

• LoA 3: expands on LoA 2 by incorporating the verification of VNF software
packages at the local level, using signatures. It is necessary to verify signatures
for all packages that are loaded when the VNF starts up, as well as when new
packages are loaded (i.e., during the VNFCI boot and VNFCI application
loading).

• LoA 4: involves the inclusion of remote attestation for the of VNF software
packages. VNFCI boot time measurements and application during runtime
measurements should be used.

• LoA 5: In addition to LoA 4, this includes the remote integrity verification of
the infrastructure network, as well as the virtualization layer and VNF software
packages, during runtime.

o LoA5a refers to the use of remote attestation for infrastructure
network remote verification, in addition to the checks required by LoA
4.

o LoA5b refers to the use of remote attestation for run-time integrity
state remote verification of virtualisation layer and VNF software
packages, in addition to the checks required by LoA4.

Although Confidential Containers offer a reliable foundation for securing
containerized applications, it is important to acknowledge that assessing the security
levels of containers presents challenges in virtualized environments.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 48 of 124

Remote Attestation of containers has been suggested through various methodologies,
including "Container- Linux Integrity Measurement Architecture (IMA)". This method
evaluates the integrity of each container on a platform using container PCRs. However,
it has limitations, such as not authenticating closed containers and facing challenges
when a container is stopped or restarted. Privacy for container measurements relies
on a shared secret between the host system and the Verifier, but the protocol for
securely disseminating this confidential information is not explicitly specified. In [18]
the Keylime framework is leveraged to support a modified IMA, demonstrating low
latency and independence from containerization technology.

In [19] a solution is proposed to address the security monitoring needs of lightweight
cloud infrastructures. This solution leverages remote attestation to verify the software
integrity of cloud applications throughout their lifecycle. The solution employs widely
used technologies and frameworks, such as the Linux Integrity Measurement
Architecture (IMA), the OpenAttestation platform, and the Docker container engine.

It becomes evident that conventional security techniques such as remote attestation,
which were originally developed for physical systems, may have constraints when
used in completely virtualized environments. In addition, specific security solutions
may not be easily accessible in lightweight virtualization configurations. Despite these
challenges, lightweight virtualization is gaining attention due to its inherent flexibility
and minimal overhead. Therefore, this topic continues to be an area of interest for
ongoing research.

3.1.3 PRIVATEER’s Innovation in Runtime Attestation

PRIVATEER introduces an innovative approach by adopting a local attestation scheme
instead of traditional remote methods, alongside privacy-preserving techniques such
as zero-knowledge proofs, specifically attestation by proof rather than attestation by
quote. However, to effectively verify configuration integrity, the extracted traces must
undergo validation against predefined reference values and policies. One challenge in
this context is supporting policy updates while ensuring that the version running in the
relevant components is the most recent. To address this challenge, PRIVATEER
introduces a novel functionality called the Verifiable Policy Enforcer (VPE) as part of
the Key Restriction Usage Policy Engine (KRPE), detailed further in Section 3.2.1. The
scope of the runtime attestation scheme is to ensure the configuration integrity of the
VFs and VNFs. PRIVATEER will further research container attestation methodologies.

On the implementation aspects, the core of this framework relies on the use of a Root
of Trust (RoT) and more specifically a hardware-enabled Trusted Execution
Environment (TEE) named Gramine5. Gramine uses the Intel SGX technology to

5 https://gramineproject.io/

https://gramineproject.io/

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 49 of 124

protect software running on untrusted hosts. The TEE allows for a minimised and
extensible TCB, as previously explained, while Gramine offers a lightweight
environment for supporting secure and isolated enclaves with ease of porting to
different OSes, and process migration. Leveraging this TCB, PRIVATEER securely and
verifiably collects infrastructure traces for attestation, with all critical security services
anchored to the RoT instantiated within the Gramine TEE.

3.2 Protocol description
3.2.1 PRIVATEER Security Probe

The PRIVATEER’s Security Probe in order to be instantiated, leverages the extension
routines of the underlying TEE, which are designed to support: i) the Key Management
System, ii) the Key Restriction Usage Policy Engine, iii) the Attestation Tracer, iv) the
Attestation Agent.

i) Key Management System: responsible for the secure generation, storage, and
management of cryptographic keys. Emulating similar key management
systems used in well-established Root of Trust (RoT) i.e. TPMs, where the
cryptographic keys are compliant with the NIST standards and enable
enhanced authorization access mechanisms through Key Restriction Usage
Policies.

ii) Key Restriction Usage Policy Engine (KRPE): offers one of PRIVATEER’s core
novelties, enabling the local attestation. Local attestation offers the option to
a Prover to attest to the integrity of its configuration and behavioural state to
a Verifier without divulging implementation details. This is realized through the
use of policy-restricted attestation keys, which exclusively generate signed
attestation attributes when a node's compliance is confirmed by the local
Attestation Agent. The KRPE supports a collection of logical equations
formulated from these assertions. In this context, the KRPE processes hash
digests of inputs via logical ports to determine the validity of a live Key
Restriction Usage Policy. To seamlessly integrate the KRPE into PRIVATEER's
Security Probe(s) and μProbe(s), it is conceptualized as a child process initiated
by the device's Key Manager. This setup ensures that the KRPE operates
entirely within the Trusted World (enclave), maintaining communication
integrity between the Key Manager, which handles key authorization requests,
and the KRPE itself. Moreover, PRIVATEER's Security Probes’ and μProbes’
configuration mandates that entity creators or administrators define the set of
actions permissible before an action is classified as "completed."
The PRIVATEER’s KRPE further supports the Verifiable Policy Enforcer (VPE)
functionality. The VPE is responsible for validating the Key Restriction Policy
Engine (KRPE)'s current version and preventing potential attackers from having

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 50 of 124

multiple obsolete policies active. It ensures that outdated policies are
identified and characterized as obsolete, preventing unauthorized or outdated
ones from affecting the system's security posture. It monitors the correctness
of software versions executed by the Tracer and the Attestation Agent within
the enclave. If these versions are successfully verified, the VPE authorizes the
enforcement of a specific key restriction usage policy. Such authorization is
feasible through the use of a signing key that is injected to the VPE component
from the SCB. The injected VPE key is also bound with an appropriate Key
Restriction Usage Policy, indicating that the VPE component is in a correct
configuration state and that the Tracer and Attestation Agent are executing
the expected software version.

iii) Attestation Tracer: It consists of two parts: one operating in the untrusted or
normal world, and the other running in the trusted world where the Tracer's
secret key is securely stored. In the untrusted world, the Tracer continuously
monitors processes and routines executed within each container or device,
fetching new traces to collect essential information for attestation methods
utilized in PRIVATEER, ensuring integrity. Its primary function is to capture and
calculate the hashes of configuration properties from safety-critical untrusted
processes and routines, thereby aiding in integrity verification. Although the
monitoring in the untrusted world falls outside the TCB, a portion of the
Tracer's execution occurs in the trusted world, within the TCB. This protected
part encompasses cryptographic operations, including decoding raw security
measurements, calculating real-time configuration hashes, and generating
digital signatures over the configuration hash using the secret key. Once
collected, the traces are signed by the Tracer in the trusted world and
transmitted to the Key Manager to facilitate necessary operations.

iv) Attestation Agent (ΑΑ): The Attestation Agent exposes Trusted Execution
Environment (TEE) Device Interfaces based on the TDISP protocol [13], which
provide runtime system measurements capturing the current device's
configuration and operational state. These interfaces ensure the integrity of
monitored traces even in the case of a compromised host. The Attestation
Agent's role in providing authentic traces and ensuring secure exchange of
these measurements is fundamental to the overall security and
trustworthiness of the system. As PRIVATEER moves towards a zero-trust
architecture, the trust assumptions are minimized. Two types of interfaces
exposed by the Attestation Agent are Hardened-TDIs and Softened-TDIs.
Hardened TDIs enable secure interaction with the PRIVATEER’s TCB, capturing
the consumption of "TEE-assignable" resources and monitoring the integrity
and authenticity of the Attestation Agent. Softened TDIs allow interaction with
"non-TEE-assignable" processes, which do not need to possess the required
security/trust capabilities but have a critical role in the overall system function.
These untrusted processes mediate the communication of these events to the

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 51 of 124

(trusted) AA for securely executing the required functionality. Due to their
updateable nature, they are not considered part of the Trusted Computing
Base, and attestation mechanisms are employed to verify their integrity as part
of the Attestation Agent software stack.

3.2.2 Service Lifecycle Management

As described in the previous chapters, the core objective of the PRIVATEER’s
attestation mechanisms is dual: i) to enable the Orchestrator to securely launch
confidential containers, and ii) to enable the enrolled devices and containerised
services to attest their correct configuration during runtime when requested through
a deployed attestation policy. This attestation policy defines whether a Configuration
Integrity Verification process (or another) will be initiated. In PRIVATEER only CIV
processes are supported. This attestation policy can be defined by the Secure Oracle
that receives and validates the attestation reports from the Security Probe and pushes
them to the ledger.

It shall be noted that the secure launch of confidential containers further encapsulates
two phases: i) the secure enrolment of the Security Probe to the infrastructure (i.e.,
Orchestrator) and ii) the secure launching of a service within the confidential container
along with the μProbe which enables attestation and tracing. Additionally, it shall be
clarified that PRIVATEER aims at attesting the (runtime) configuration integrity for
both the containerised application/service as well as the containers and devices
supporting the deployment of the services, offering a holistic validation framework.

The aforementioned objectives (i.e., secure launching and runtime attestation) are
achieved through two different protocols namely: i) the Verifiable Policy Enforcement
and ii) the Attestation by Proof. During the secure launch of a confidential container,
the Orchestrator requests and verifies the creation of a restrained asymmetric
Attestation Key (AK) pair within the Trusted World of the Security Probe offered by
the underlying RoT (Intel SGX); thus, adhering to the Key Restriction Usage Policy as
defined by the Orchestrator. The Attestation Key of each Security Probe gets certified
by the Orchestrator and can be used for providing attestation evidence. Although
these mechanisms ensure the secure deployment, the secure lifecycle manager is
needed to ensure the runtime configuration integrity of the containerized service.

3.2.2.1 Elevating Secure Launch of Confidential Container through Secure Enrolment
of a Security Probe and an μProbe to the Orchestrator and Verifiable Policy
Enforcement

The first step, prior to the launch of a confidential container, is the secure enrollment
of the Security Probe to the Infrastructure (i.e., Orchestrator).

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 52 of 124

More specifically, we propose a new functionality to be instantiated within the
Security Probe, as an extension to the well-established enclave-cc. This extension
removes one of the two attestation measurements (i.e., MRSigner) from the
confidential container, as the corresponding manifest is self-signed by a random,
untrusted key from the host (i.e., server) prior to launching. Aiming to render this
scheme more secure, the PRIVATEER’s extension scopes to adopt Fuzzing techniques
for the Orchestrator to deploy a unique Attestation Agent per Security Probe, but
without altering any of its functionalities. This way the measurement of the enclaved
Attestation Agent is unique and only known by the Orchestrator.

It should be noted that the binary fuzzing is bound with the server’s unique
identification public key and is reproduceable and reversible only by the Orchestrator.
This way, the Orchestrator can attest the Attestation Agent of the Security Probe
making sure that is launched correctly and proceeds with certifying the Security
Probe’s Attestation Public Key.

For the proper functioning of the PRIVATEER MNO-based framework, the secure
launch of the MNO containers is of immense importance. To achieve this, PRIVATEER
leverages the Kubernetes and the enclave-cc technologies, thus ensuring the reliable
deployment and management of the confidential containers. To meet the
requirements that PRIVATEER has set and support verifiability on the Key Restriction
Usage Policy that is enforced, we are introducing a more sophisticated mechanism.

Since the Security Probe is now launched (as thoroughly described in Section 2.1.2.1)
and configured correctly, making it part of the PRIVATEER’s Trusted Computing Base,
we can now authorize it to sign the manifest files of each μProbe; thus, enabling both
attestation measurements offered by gramine. To be more precise, the MRSigner now
is the digest of a certified public key, which private counterpart resides within the
PRIVATEER’s Trusted Computing Base. This way we can ensure that each containerized
μProbe hosts strictly up-to-date and authorized applications, either running under the
umbrella of gramine or in the UnTrusted world. Due to this approach, the gramine-
enabled applications are configured as expected and are no longer vulnerable to the
enforcement of an obsolete key restriction usage policy or to a potential unauthorized
software rollback.

3.2.2.2 PRIVATEER Runtime Configuration Integrity Verification (CIV)

PRIVATEER plans to employ several attestation mechanisms so as to provide verifiable
evidence regarding the execution of runtime services that are hosted within the
PRIVATEER infrastructure. Such an attestation mechanism is Configuration Integrity
Verification (CIV), used to ensure the correctness of the configuration of any
containerised service that is deployed from the Orchestrator. As each MNO
infrastructure is instantiated by TEE enabled with high computational power servers,

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 53 of 124

we are presenting a Zero-Knowledge CIV scheme based on the notion Attestation by
Proof. More specifically, we are introducing a challenge response protocol, where a
Verifier challenges the Prover with a fresh Nonce; if the Prover is able to handle the
Verifier’s challenge (i.e. is capable of producing a valid signature with its certified
Attestation Key), then the Verifier knows that the Prover is in a correct configuration
state.

By creating a valid signature, the Prover provides Attestation Evidence in a Zero-
Knowledge manner, as he is not disclosing the actual configuration of the attested
container. This is achieved by integrating the creation of the Attestation Key with the
Secure Enrolment module, where the μProbe requests from the Orchestrator to issue
a Key Restriction Usage Policy under which the Attestation Key will be bound.

3.2.3 CIV High-Level Overview

Having described all the entities and components that participate in the PRIVATEER’s
CIV scheme, we will now provide a high-level conceptual overview of the scheme.
More specifically, it can be broken down into two distinct phases, namely i) Secure
Enrolment and ii) runtime Attestation. During the Secure Enrolment phase, the
Orchestrator sets up the appropriate Key Restriction Usage Policy, whereas in the
runtime Attestation phase the attested μProbe gets challenged by the Security Probe
to provide attestation evidence. Both flows are illustrated in Figure 2.

3.2.3.1 Secure Enrolment

1. Consider a new service owned by the MNO that needs to be deployed by the
Orchestrator. Firstly, the service has to be deployed containerised as part of a
confidential container following the Secure Launch protocol described in
Chapter 2.

2. Afterwards, the Orchestrator makes the necessary actions for the creation and
authorization of the Attestation Key. The Orchestrator fetches the reference
values of the corresponding service in order to calculate the accepted
configuration of the confidential container. In addition to the reference values
of the containerised service, the reference values of the Attestation Agent
Enclave (i.e., MRSigner and MREnclave) and a validation from the Tracer are
appended for the computation of the accepted configuration. The expected
configuration is signed and sent back to the Attestation Agents of the now
enrolled μProbe.

3. The μProbe’s Attestation Agent receives the signature computed by the
Orchestrator, called Authorisation Ticket, and creates its Attestation Key
bound with the respective (issued) key restriction usage policy. It has to be
noted here that upon creation of the Attestation Key (of the μProbe), its public

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 54 of 124

part is sent to the Security Probe in order to be certified by the Security Probe’s
Attestation Key.

3.2.3.2 Runtime Attestation

Next, we describe the runtime attestation interface initiated by a remote Verifier
(Security Probe), performed each time we need to collect Attestation Evidence from a
μProbe, igniting basically a challenge response mechanism. Through this protocol the
Prover creates evidence for the Verifier ensure that it is indeed in a correct
configuration but without disclosing any information regarding its state

1. A Verifier, that is going to be the Security Probe, issues a fresh challenge that
is going to be sent to the Attestation Agent of the Prover (i.e., μProbe).

2. Upon reception of the challenge the Attestation Agent creates a fresh nonce
that is sent to the Tracer.

3. The Tracer on his behalf starts introspecting the requested services and
extracts security measurements regarding the configuration of the attested
services. Upon collecting the Traces, it uses its secret Key (Tracer_priv) to
calculate a digital signature over the extracted traces and the nonce issued by
the Attestation Agent. Afterwards, the signature along with the Traces are
going to be sent back to the Attestation Agent. Let H() represent the hash of
an information. The signature (σ) is calculated as follows:

σ= Sign(H(Traces||nonce), Tracer_priv) (1)

4. The Attestation Agent creates a fresh session and starts executing the policy
enforcement algorithm in order to get access to its Attestation key. The is
initiated with zeros, hence RuntimePolicy=(00...00).

i. Appends to the fresh session the measurement of the entity that signed
his configuration (i.e. the Security Probe)

RuntimePolicy=H(RuntimePolicy||MRSigner) (2)
ii. Appends to the session the measurement of the enclave application

that is instantiating the Attestation Agent
RuntimePolicy=H(RuntimePolicy||MREnclave) (3)

iii. Appends to the session the Security measurement that the Tracer
extracted.

RuntimePolicy=H(RuntimePolicy||Traces) (4)
iv. Verifies the signature of the Tracer with the Tracer’s certified and pre-

shared public key (Tracer_pub).
Verify(H(Traces||nonce), σ, Tracer_pub) (5)

If the verification is completed successfully the Attestation computes
the name of the Tracer’s key, which is the hash digest of the public key,
Tracer_Name=H(Tracer_pub) and appends it to the runtime policy,

RuntimePolicy=H(RuntimePolicy||Tracer_Name) (6)

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 55 of 124

v. With the RuntimePolicy, the Attestation Agent will verify the
Authorization Ticket that it acquired by the Orchestrator in the Secure
Enrolment phase,

Verify(RuntimePolicy, AuthorizationTicket, Orchestrator_pub) (7)
 If the verification is completed successfully, the RuntimePolicy is re-set
to:

RuntimePolicy=H(CC||Orchestrator_Name) (8)
where CC is the command code of a specific policy command.

vi. The Attestation Agent will recompute its AK_priv using the same KDF
that was used during the Secure Enrolment phase. The newly derived
key gets hashed and compared with the AK_Hash. If these two digests
match, then the Attestation Agent has successfully recreated its
AK_priv.

5. The Attestation Agent uses its AK_priv to sign the initial challenge the Verifier
has sent to it and then discards the AK_priv.

Figure 2 - PRIVATEER Join and Runtime Attestation Phase

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 56 of 124

3.3 Plan for development
In the present month within the domain of the PRIVATEER project, Task 5.1 has
successfully instantiated a functional system designed to furnish a robust security
framework tailored for cloud-based infrastructures. Moving forward, the trajectory of
development entails a comprehensive exploration of supplementary methodologies
and safeguards to fortify this system, capturing higher Levels of Assurance.

Primarily, regarding PRIVATEER's forthcoming Release A, efforts are concentrated on
integrating Confidential Containers (CC) and advanced attestation mechanisms such
as the described configuration integrity verification scheme presented in the above
sections, into the foundational RA (Release A) protocol. To be more precise, in the
current PRIVATEER framework release we have achieved to implement security
mechanisms that achieve LoA 2. That being said, further development and design
plans after the release A include the consideration of minimising the Trust
assumptions regarding the Trustworthiness of the host, in order to elevate the Level
of Assurance even further.

To this end, we are investigating attestation mechanisms to enable the attestation of
every server that belongs to the PRIVATEER infrastructure, introspecting every
security related aspect from VNFs to hosted containers. Such mechanisms are
targeted to be investigated through the eBPF technology that enables tracing in kernel
level of syscalls, netcalls and others.

In summary, the development in the remaining months of the PRIVATEER’s will
continue to explore new technologies and solution to enable introspection of various
aspects of the system that are critical for the secure lifecycle of the PRIVATEER’s
infrastructure. The upcoming security modules will be integrated seamlessly with the
existing operational base design, and the final iteration of Task 5.1 will be delivered in
PRIVATEER’s Release B.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 57 of 124

4 Attestation in edge accelerators
The future network generations promise higher speeds to meet the connectivity
requirements, but simultaneously introduce new challenges, especially in terms of
security and privacy. Hence, real-time threat analysis and mitigation mechanisms are
needed to protect sensitive data and critical infrastructure. However, existing general-
purpose CPUs cannot always meet the performance criteria necessary for robust and
real-time security in 6G networks. Towards this direction, alternative platforms such
as hardware accelerators and more specifically Field Programmable Gate Arrays
(FPGAs) are being investigated. FPGAs provide energy-efficient and high-performance
computing capabilities, utilizing configurable logic blocks for digital logic. Unlike fully
customized solutions (i.e. ASICs), they can be reconfigured according to the desired
application requirements. In addition to the programmable logic, FPGAs often include
a hard processing system (ARM-based or x86-based), which is responsible for
configuring the device and transferring data coming from different systems. Although
FPGAs offer an appealing solution, the PRIVATEER tracing and attestation
mechanisms described in Chapter 3 are mainly designed for virtualized
infrastructures; thus, tailored trust extensions need to be considered for the far edge
and edge sites to further support FPGA devices.

In parallel, despite their performance efficiency, hardware accelerators may still
introduce security and privacy concerns [20]. Figure 3 presents some of the most
popular attacks, along with some of the available countermeasures. The threats can
be divided into two sections, regarding the system’s architecture: i) Single tenant
referring to one application running to an Edge accelerator and ii) multi-tenant attacks
representing scenarios where there is resource sharing from multiple users and
kernels. Among the different options presented, attackers often perform
unauthorized updates to application code, causing malicious effects on their
functionality. They program devices with malware code, insert malicious circuits
(often referred to as hardware trojans) for distributed Denial-of-Service (DDoS)
attacks, or steal sensitive information. Side channel attacks rely on power and timing
analysis, while replay attacks exploit security vulnerabilities. Attackers also reverse
engineer user code to extract valuable information, such as the application's
functionality. These attacks can be successful through various methods.

Recent literature explores methods to ensure secure remote configuration of
hardware accelerators using FPGAs' inherent reconfigurability, aiming at protecting
both the devices and the supported applications from the various attacks. Towards
this direction, remote attestation protocols may be utilised, where essentially a host
confirms to a remote server (through a predefined protocol tailored for each use case),
the hardware configuration. However, managing the storage and generation of
cryptographic keys poses a challenge.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 58 of 124

Non-volatile memory (NVM) is commonly used for storing cryptographic keys, but it is
vulnerable to attacks like side-channel. To reduce these risks, researchers have
developed Physical Unclonable Functions (PUFs) specifically designed for FPGA
devices [21]. PUFs create unique, impossible-to-replicate responses, which serve as
authentication keys. This method simplifies the process of establishing a unique
ID/cryptographic key for a specific FPGA device and strengthens security measures
against unauthorized access. Regarding multi-tenant scenarios where there is
resource sharing in a single accelerator card, isolation techniques between the
different kernels are applied, while also power obfuscation strategies are utilized, to
avoid remote power analysis attacks that can extract sensitive information (i.e.
cryptographic keys).

Figure 3 - Overview of hardware accelerators security attacks along with possible countermeasures

When examining different research works, it is important to also consider the trust
models that are available for hardware accelerators. This should be accomplished
based on the specific use cases of the application and the stakeholders involved [22].
The traditional trust model in hardware accelerator security comprises two main
entities: i) the application developer and ii) their client, aiming to protect the designs
for a specific target device. Towards protecting the design, encryption is performed,
which binds it to a specific FPGA device that can decrypt it. Nevertheless, this method
has specific constraints as it is confined to only one device and relies on implicit trust
in the product creator. Consequently, it fails to meet the needs of contemporary
applications and the different demands of stakeholders.

Hence, it is imperative to investigate alternative trust models that effectively manage
security, flexibility, and trust, in order to promote innovation and resilience in FPGA-
based systems within the ever-changing environment of 6G networks. An example of
a trust model that should be considered in terms of PRIVATEER, is allowing developers
to share their designs (i.e., AI/ML models for anomaly detection applications) with

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 59 of 124

multiple clients without revealing their source code. It is important to implement
effective design rights management in order to protect the deployed core. An example
of this nature typically entails the involvement of a trusted authority that facilitates
the secure transfer of application cores to the FPGAs.

In the following paragraphs the State of the Art (SotA) is presented, proposing various
methodologies to counter the aforementioned attacks with the respective security
assumptions.

4.1 State Of The Art
4.1.1 Single tenant

Many research studies depend on the inclusion of supplementary modules alongside
hardware accelerators at both the hardware and software levels to carry out secure
configurations. At first, certain proposed schemes were based solely on dedicated
hardware modules of the target device, without the involvement of a trusted third
party (TTP). One example is described in paper [23], where the establishment of trust
between the FPGA and the CPU is achieved through the utilization of secure software
that is linked to the bitstream of each application. The clients are provided with an
encrypted module and the corresponding software to manage CPU-based tasks.

“Fasten” [24] proposes an alternative method where users encrypt their designs
specifically for a target FPGA device. The primary principle is based on the utilization
of pre-installed PUF-based public and private key generators provided by the
vendors. In order to mitigate the lack of trust with the platform provider, the user
directly accesses distinct embedded keys to the FPGAs (which serve as unique device
identities) from the vendor. The vendor maintains a secure database that records the
deployed keys and their corresponding devices. Nevertheless, the absence of an
external verification server renders these solutions inflexible and susceptible to
vulnerabilities in the event of an update, while also raising concerns about user
authentication.

More robust approaches are available in the literature that aim at enabling secure
remote updates to devices through remote attestation protocols. One of the first
schemes is proposed in [25], where one FPGA device securely receives an updated
configuration bitstream from a dedicated update server. Each device is equipped with
a unique identifier and cryptographic key, establishing a symmetrical key that is
mutually shared between the FPGA and the server. The server employs this key to
transmit encrypted bitstreams to specific FPGAs via an unsecured communication
channel. In addition, the scheme includes a remote attestation mechanism that
verifies the current configuration's status and the update process. The update server
operates as a Trusted Third Party (TTP), with the responsibility of allocating

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 60 of 124

cryptographic keys and configuration bitstreams to individual Field-Programmable
Gate Arrays (FPGAs).

A more recent work with additional functionalities is presented in [26] by the name
“ShEF”. ShEF is designed as a shield component that can be integrated into existing
FPGAs to ensure that only authorized users can access the hardware accelerators in
the cloud and maintain data confidentiality. Their solution offers a secure boot
procedure and a remote attestation process to restrict access exclusively to
authorized users. The establishment of RoT is achieved by utilizing dedicated
embedded keys in the FPGA, while a software-based security kernel verifies the
received acceleration module. In addition, hardware-based encryption modules are
utilized to address the possibility of malicious users gaining access to data.

Furthermore, authors in [27] propose a scheme where self-attestation of the FPGA
device is performed, namely without a software-based process. The FPGA is divided
into two partitions, one static and one dynamic. The first remains unchanged for
performing the verification, while the second one is reserved for loading the hardware
accelerated application. The attestation protocol relies on securely erasing the
existing memory contents in the FPGA prior to uploading a new application code;
therefore, any potential pre-existing malicious modules are also removed from the
device. Furthermore, the network traffic passes only through the FPGA device, where
along with the key generation module, the required Ethernet core is implemented.
Like the other works, the remote attestation process involves communicating with an
external server, acting as a verifier, where the exchanged data is authenticated.

In addition to the aforementioned studies, various works focus on the SoC-FPGAs
which consist of an ARM-based CPU in conjunction with FPGA logic. Most of the
suggested methods for guaranteeing the integrity verification of Edge Devices rely on
the existing ARM Trustzone TEE 6. This trusted execution environment, designed for
ARM CPUs, safeguards sensitive user code by offering hardware-enhanced isolation
for these applications (as mentioned in Chapter 3). A recent study [28], implements
modules for securely booting accelerator kernels in FPGAs alongside the existing TEE
solutions. In addition to the in-device functionalities, an external proxy-server is used
for performing a custom remote attestation protocol.

4.1.2 Multi-tenant

The use of multi-tenant application of FPGAs, where multiple kernels are
implemented on a single device, is becoming increasingly popular due to the
advancement of partial reconfiguration. This feature allows for the programming of
specific sections of the device. Various research works in literature are focusing on
countering side channel attacks. For example, authors in [29] propose a power

6 https://www.arm.com/technologies/trustzone-for-cortex-a

https://www.arm.com/technologies/trustzone-for-cortex-a

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 61 of 124

obfuscation solution, in which using adjustable noise generating circuits in the FPGA,
keep the power consumption of the accelerator constant, thus making significantly
harder any power analysis attempts to extract sensitive data (i.e. encryption keys).

Different approaches are presented in [30], where a routing-based solution is utilized,
that tries to reduce the long transmission lines between the different tenants in a
single FPGA device, therefore minimizing the points for performing side channel
attacks. To restrict the efforts of malicious users who attempt to insert circuits that
carry out power-hammering operations, which can result in distributed denial-of-
service (DDoS) attacks, researchers have created a protective software called
FPGADefender [31]. This software scans the netlist of the application and identifies
any modules that exhibit such behaviour.

4.1.3 PRIVATEER’s Innovation in Edge Accelerator Attestation

Although various methodologies are available in the literature for securing hardware-
based systems, in the current 5G infrastructure no such security countermeasures are
applied. PRIVATEER aims to address this gap by offering robust methodologies to
enhance the security of hardware accelerators in future networks. The proposed
architecture provides a comprehensive approach that integrates various
methodologies, allowing to securely configure FPGA accelerators. This will effectively
protect user code and deployed systems from potential malicious attacks.

4.2 Protocol description
The core of the developed methodology for enhancing the security of the hardware
accelerators, is based on a custom Remote Attestation protocol, with the abstract
architecture of the system shown in Figure 4. The proposed protocol involves the
interaction between three parties: i) the User, ii) the Attestation Server and iii) the
Edge Accelerator. In relation to PRIVATEER, i) the User represents the developer of the
hardware accelerators as described in Task 3.5, ii) the Attestation Server refers to an
external verification server that may reside at the Orchestrator level, while iii) the
Edge accelerator (i.e., FPGA) is being executed at the accelerator kernel, residing in
the Infrastructure Layer (see Figure 1).
Note that AMD/Xilinx’s FPGA devices can be divided into two categories, depending on
their system’s architecture: 1) MPSoC FPGAs, where an ARM processor is populated
along with the FPGA logic; 2) ALVEO cards, where the FPGA logic is implemented on an
expansion card that connects to a host computer via PCI-Express. Therefore, the device
family of the Edge accelerator can be either a MPSoC FPGA, considering an edge
computing platform is utilized, or an edge server where an ALVEO card will be
employed.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 62 of 124

In the hardware accelerator, a hybrid remote attestation mechanism is developed,
where both the hard processing system (host x86 CPU or ARM-based processor), as
well as the FPGA programmable logic is utilized for executing the various security-
related functions. The network functionalities (communicating with the attestation
server), as well as the bitstream loading is performed from the hard processor (i.e.,
PRIVATEERs Network Control Plane layer). On the other hand, the required encryption
and key derivation modules can be implemented in the Programmable Logic (PL).
Additionally, to verify the device’s identity and achieve a robust RoT, an FPGA-based
PUF can be utilized.
In this setup, the external verification server (which in terms of PRIVATEER resides
within the boundaries of the Orchestrator) also plays the role of a TTP and is
responsible for having a secure communication channel between the nodes in the
system. Simultaneously, it has the role of managing the update of the reference values
in case the user wants to perform an application upgrade.

Figure 4 - Architecture of Edge Accelerator and external Attestation server setup

The detailed steps of the RA protocol are illustrated in Figure 5, while the main
attestation procedure can be divided into three main stages:

• Stage 1: The User after developing the Accelerated kernel, produces the
bitstream that contains the final’s application configuration and is the file that
will be loaded in the hardware accelerator. Then the user applies the required
countermeasures to protect its design and communicates with the Attestation
Server (Steps 1-2).

• Stage 2: The Attestation Server (residing within the Orchestrator) after
establishing a secure connection and verifying the integrity of the attestation
application running in the Edge Accelerator, proceeds with checking the
authenticity of the uploaded application, as well as the FPGA device (Steps 3-
8).

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 63 of 124

• Stage 3: In case of a successful verification of all the parameters (successful
RA), the Attestation Server forwards to the Edge accelerator the bitstream
decryption key required for loading the AI Accelerator program. (Steps 9-10).

Remote Attestation Protocol
Giving a more detailed analysis of the proposed remote attestation protocol
illustrated in Figure 5, firstly an offline phase is executed, in order to collect the PUF
responses from the available FPGA devices, which are then securely stored in the
Attestation Server (Step 1). This procedure is performed between the Attestation
Server and the operator of the Edge Accelerator, which in PRIVATEER’s use case can
be identified as the developer. Additionally, included in the offline phase is obtaining
the reference checksum value of the attestation service (Step 1), which also must be
performed only one time by the developer of Task 5.2, that is providing the hardware
security infrastructure. Furthermore, we note that the collection of the PUF responses
and the checksum of the security application is a one-time performed task (per FPGA
device), and no recollection of these data is required in case the user wants to update
a newer version of the accelerator.

As a next step, the user prior to uploading the application kernel to the Edge
Accelerator, performs an encryption and signing of the bitstream with a unique key
and the corresponding certificate, and finally transfers them to the Attestation Server
(Step 2). These correspond to the reference values that will later be used for verifying
the integrity of the edge accelerator’s code, which are denoted as “Golden Values”.

After this preparation, the user is ready to make a request for RA. After establishing a
secure connection with the Attestation Server and sending the corresponding request
with a randomly generated nonce (N1) to avoid replay attacks (Steps 3-4), the
Attestation Server receives the checksum of the attestation application along with the
transferred nonce, to verify that the correct verification service is running at the Edge
Accelerator (Step 5).

The Attestation Server then sends an attestation request to the Edge Accelerator
along with a new randomly generated Nonce (N2) and the PUF challenge (PC) (Steps
6-7). We note that prior to the request for RA, the user has already uploaded the
encrypted application bitstream to the edge accelerator, to be ready for
authentication. This transfer is performed using a generic secure file transfer protocol,
using the already secure connection that has been established. Then, the edge
accelerator calculates the static checksum of the received bitstream, as well as getting
the included bitstream certificate to generate the AttestReport. This process can be
performed from the FPGA host in software level (ARM CPU or x86 based CPU
depending on the used device). Additionally, in order to avoid any potential sensitive
information leakage, the checksum, the received certificate, and the received nonce
are encrypted along with the PUF response in the FPGA. The generated attestation

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 64 of 124

report (AttReport) then gets transmitted to the External Server for verification (Step
8). The encryption of the transmitted message is performed to also ensure the device’s
authenticity, since the PUF response is unique per device.

Then the Attestation server using the prestored PUF responses for the used FPGA
device, decrypts the AttestReport to check if the transmitted variables match with the
golden values initially received by the user. After a successful authentication of the
AttestReport, the bitstream decryption key (BitstrDecKey) is forwarded from the User
to the Edge Accelerator, using a secure key exchange algorithm (i.e. Elliptic Curve Diffie
Hellman - ECDH) (Steps 9-10). After receiving the DecrKey, the Edge Accelerator
decrypts the user code and loads the application to the Hardware Accelerator.

Figure 5 - Suggested RA protocol for the security of Hardware Accelerators

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 65 of 124

4.3 Plan for development
In the current month of PRIVATEER project, Task 5.2 has implemented a working
system that provides a security infrastructure for hardware accelerators. During the
remaining months, the development will continue, by exploring additional techniques
and countermeasures which can be incorporated into the system. Firstly, regarding the
PRIVATEER’s Release A, the integration of PUFs and additional FPGA-based units (i.e.
attestation report generation module) into the base RA protocol is being explored,
along with evaluating different PUF implementation, to find the most suitable one.
Additionally, further development plans after the Release A include the consideration
of reducing the assumptions regarding the trustworthiness of the attestation server,
in order to enhance the security of the system. This incorporates an additional node
to the RA protocol, that could either be an external standard TTP service, or it can also
be integrated in the PRIVATEER’s Blockchain. Further security countermeasures that
can be considered include enhancing the security of the software-based tasks, for
example by using CPU-based TEEs for the software-based applications involved in the
remote attestation, as well as researching countermeasures aimed at multi-tenant
scenarios. Specifically, this refers to methodologies in the scenario where multiple AI
accelerator kernels are running in the same FPGA card and thus resource sharing
occurs.
To summarize, the development in the remaining months of PRIVATEER’s will continue
exploring additional techniques and solutions to mitigate hardware security attacks
relevant to the project’s threat model. The future developed security modules will be
incorporated with the base design that is already available and operational, while the
final version of Task’s 5.2 will be delivered in PRIVATEER’s Release B.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 66 of 124

5 Blockchain for secure data
exchange of trustworthiness
evidence

The blockchain serves as a fundamental component for 6G networks, enabling
intelligent resource management, spectrum sharing, scalability, and availability for
emerging smart environments such as healthcare, smart cities, industry 4.0 and
agriculture. The ability to securely share, exchange and store data, along with strong
monitoring and traceability methods, makes it a crucial component of 6G technology,
as explained in D2.1 [32]. By allowing tracking of data origins and exchanges within
the network, blockchain enhances transparency; thus, trust.

Blockchain technology provides a compelling solution for auditability, efficient
querying, and access control due to its unique features. One key advantage is its
immutable record keeping, where data recorded on a blockchain cannot be altered or
deleted once added. This characteristic ensures the integrity and reliability of the
data, making it ideal for auditing and compliance purposes. Additionally, blockchain
transactions are transparent and decentralized, enabling auditors to easily trace
transactions and verify data authenticity across the distributed ledger.

Blockchain is a chain of records called blocks, linked and secured using cryptography.
Each block contains transaction data, a time stamp, and the hash value of its previous
block. These timestamps are leveraged for ensuring the auditability of transactions,
linking each transaction to previous ones, allowing auditors to track the flow of assets
or information over time accurately. In the blockchain each node, in this network of
nodes, has a copy of the transaction records. This makes all records accessible and
easily verifiable. Modifying a block requires consensus from all nodes, making it
expensive for nodes to modify data. Blockchain technology allows untrusted parties
to make transactions securely without the involvement of a central authority
regulating them. Cryptocurrencies based on blockchain have gained attention, with
smart contracts emerging as an evolving area.

In addition to the auditability, encryption, integrity protection mechanisms,
authentication, and access control mechanisms are applied, restricting access to
authorized entities, while ensuring accountability of actions. Smart contracts, which
are self-executing contracts with predefined rules encoded on the blockchain, enable
sophisticated access control mechanisms. These contracts can enforce access policies,
specifying which parties have permission to access specific data or perform certain
actions on the blockchain. This granular control enhances security and privacy,
particularly in industries with stringent regulatory requirements like healthcare and

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 67 of 124

finance, where sensitive data must be carefully protected. Regarding the exact access
control and encryption mechanisms, Attribute Based Encryption (ABE) and Attribute
Based Access Control (ABAC) can be exploited within the blockchain setup to offer
confidentiality and authentication linking while restricting access based on certain
user, system, or device properties.

Moreover, blockchain technology is device and type-agnostic, providing flexibility by
allowing access to devices with limited computational and storage capabilities. This
enables the exploration of advanced functionalities of next-generation networks
without the requirement to upgrade existing hardware. Simultaneously, it facilitates
data portability, particularly when data owners desire to transfer their data from one
blockchain ecosystem to another.

However, blockchain-enabled data sharing must not neglect privacy requirements. To
comply with both security and privacy requirements, access control and
confidentiality requirements should be considered. Towards this direction,
distinctions between public and private ledgers must be performed according to use
case scenarios, while enhanced crypto primitives could be employed according to the
requirements of each application scenario. The variations among different ledger
solutions are summarised as follows:

• Public/Permissionless blockchains are open-access networks that allow
anyone to participate without prior approval, promoting decentralization.
Examples include Bitcoin, which achieves consensus across an anonymous
network. However, these blockchains often face scalability issues and slower
transaction speeds due to the need for consensus mechanisms.

• Private/Permissioned blockchains restrict network participation to entities
vetted through an authentication process, enhancing privacy and operational
efficiency. Examples include Hyperledger Fabric, which supports various
industrial applications and ensures the integrity of network participants.

• Hybrid blockchains combine elements from both public and private
blockchains, offering a balanced approach that balances privacy and
transparency. These blockchains allow selective participation, making them
attractive for organizations seeking to capitalize on their potential.

Table 2 demonstrates a comparative analysis between the different types of
Blockchain solutions (i.e., public, private and hybrid) in terms of access, authority,
transaction speed, efficiency, data accessibility and immutability.

Table 2 - Blockchain types overview

Item Public Blockchain Private Blockchain Hybrid Blockchain
Access Open to all By authentication

only
Selective access

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 68 of 124

Authority Fully decentralised Centralised control
elements

Combination of
both

Transaction Speed Typically slower Enhanced speed Customisable
Consensus
Mechanism

Open participation Restricted to
members

Adaptable

Efficiency Variable Optimised for private
networks

Tailored to
requirements

Data Accessibility Universal
read/write

Limited to authorised
Entities

Configurable

Immutability Immutable Conditionally im-
mutable

Variable based on
rules

5.1 State Of The Art
5.1.1 Smart Contracts

The term is popularly used to refer to low-level code scripts running on a blockchain
platform [33]. Smart contracts are software programs that are recorded on a
blockchain and are designed to execute automatically when certain preset criteria are
fulfilled. Contracts like these became popular due to their ability to automate and
optimize numerous operations, removing the requirement for intermediaries and
guaranteeing prompt execution of agreements. Smart contracts are self-executing
protocols that function autonomously within the blockchain network. They execute
predetermined actions in response to specific situations and triggers, following a
"if/when...then" structure. This architecture not only speeds up transactions but also
fosters trust by allowing parties to immediately determine the outcome without the
need for intermediaries.

The lifecycle of a smart contract involves several stages, from design and deployment
to execution and recording of results. Once deployed onto the blockchain, the contract
earns a unique address for identification. Authorized users can then activate the
contract by initiating transactions containing the contract's address, which are
executed by nodes or miners precisely following the contract's stipulations. The
immutable nature of smart contracts ensures that once executed, a transaction's
details remain unalterable, with access to resulting data controlled and restricted to
authorized parties. This combination of transparency, automation, and security
positions smart contracts as a transformative force across various sectors, reshaping
the execution of agreements and management of business processes.

5.1.2 Consensus Algorithms

• Consensus Algorithms are essential in blockchain, determining which nodes
have the authority to record transactions and facilitating their quick consensus

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 69 of 124

on the information to be included in a block. This guarantees the uniformity
and safety of the data while simultaneously enhancing the computational
efficiency of the blockchain [34]. In addition, these algorithms are essential to
achieve Byzantine fault tolerance (BFT) (as described in D2.1 [32]) and preserve
a consistent representation of the blockchain across all nodes in a
decentralized network. The BFT mechanism aims to safeguard against system
failures by employing a collaborative decision-making process that takes into
account the input of both functioning and defective nodes, with the objective
of minimizing the influence of defective nodes [34].

• Proof of Work (PoW): One popular BFT-tolerant consensus mechanism is the
Pow consensus mechanism, where miners in Ethereum and Bitcoin must solve
challenging cryptographic puzzles in order to validate transactions and add
new blocks. The first miner who successfully solved the challenge is given
permission to create a fresh block of transactions and append it to the
blockchain. The solution to the challenge is verified by the other miners, and if
it is correct, the new block is appended to their version of the blockchain.
Nevertheless, this solution is not efficient in terms of energy consumption.

• Proof of Stake (PoS): PoS BFT-tolerant consensus algorithm that is gradually
becoming more popular because of its scalability and energy efficiency. In PoS
the next block is selected based on the stake (i.e., amount of cryptocurrency
held by the miner), instead of the computational power. The nodes that are
responsible to validate the new blocks are chosen by staking a certain amount
of cryptocurrency. The selection algorithm combines a mix of the candidate's
stake (quantity of cryptocurrency possessed) and additional variables, such as
coin age and randomization, for guaranteeing fairness across every node on
the network. With the mining of new blocks, the energy of the spent coins
diminishes slightly, leading to a deflationary mechanism where the total
amount of currency gradually decreases, potentially raising its worth.
Conversely, cryptocurrencies that experience an increase in quantity over time
generally depreciate in value.

• Delegated Proof of Stake (DPoS): allows token holders (stakers) to delegate
their voting power to delegates or witnesses who are responsible for creating
new blocks and validating transactions on the blockchain. Platforms like Tron
and EOS employ the developing DPoS method, adding a democratic element
to PoS.

• Proof of Authority (PoA): is a new family of BFT consensus algorithms,
designed to optimize the PoS mechanism while it is more focused on private
and permissioned blockchains. It relies on a predetermined set of transaction
validators based on their identity or reputation staked in the network. Current
validators have the ability to vote for the inclusion of more users into the
authority group [35].

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 70 of 124

Frequently employed in permissioned or private blockchains, BFT algorithms give
priority to network speed and throughput over decentralization. The trade-offs
between security, decentralization, scalability and energy consumption are unique to
each consensus method. The blockchain network's unique needs and objectives, such
as attaining maximum security, scalability, or energy efficiency, determine the
consensus mechanism to be used. In order to overcome the shortcomings and
restrictions of current methods, new consensus algorithms are being investigated and
created as blockchain technology advances.

5.1.3 Access Control Mechanisms

Access control mechanisms are essential in blockchain networks, guaranteeing that
only authorized users can engage with the system and carry out particular operations.
These systems regulate the authorization levels given to users, determining their
capacity to view, modify, or execute smart contracts and retrieve data stored on the
blockchain. Various access control models and strategies are utilized to ensure the
enforcement of security and privacy in blockchain ecosystems. Role-based Access
Control (RBAC) and Attribute-based Access Control (ABAC) are the most popular ones.

Role-Based Access Control (RBAC) is a widely used access control method in
blockchain technology that assigns permissions to individuals based on their roles
within an organization or system. It involves defining specific roles like administrators,
validators, and regular users, each with different access privileges. RBAC can also be
implemented within blockchain networks to manage user permissions based on their
roles.

Attribute-Based Access Control (ABAC) is a more flexible approach that considers
multiple properties of people, resources, and the environment when determining
access permissions. These attributes may include user roles, time of access, location,
and other contextual information. It can be used in smart contracts on blockchain
networks to enforce detailed access control policies.

5.1.4 Blockchain platforms

5.1.4.1 Hyperledger Fabric

Hyperledger Fabric is a permissioned blockchain framework designed for enterprise
use, hosted by the Linux Foundation. It provides a modular architecture that allows
for flexibility and scalability, allowing components such as consensus services to be
plug-and-play based on the enterprise’s needs. Fabric supports smart contracts,
known as "chaincode," and offers features like privacy through channels and private
data collections. More specifically, Fabric allows the creation of different “channels”
for transaction isolation, while offering the “private data” feature which enables the
sharing of hashes as transaction evidence on the ledger. Although there is potential
for the Fabric to support certain Ethereum 2.0 implementations, the new architecture

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 71 of 124

has not yet been fully implemented in the Ethereum public (i.e., permissionless)
network, while Hyperledger Fabric has already achieved its version 2.0 milestone.
Hence, such as support is yet to be offered [36].

5.1.4.2 Hyperledger Besu

Hyperledger Besu is an Ethereum client developed under the Hyperledger Foundation,
providing enhanced flexibility and functionality. It supports both public and private
Ethereum networks, as well as hybrid networks. Besu offers features like privacy
through private transactions, permissioned network access7. It further supports
flexibility in terms of selected consensus mechanisms like Proof of Authority (PoA) and
Proof of Work (PoW)8, as discussed in Section 5.1.2. One of the key features of Besu
is its compatibility with the Ethereum Virtual Machine (EVM)9. This means that Besu
can execute smart contracts and decentralized applications (DApps) written in
Ethereum's native programming languages, such as Solidity, adhering to the Ethereum
network’s principles. Moreover, Besu is scalable and capable of supporting a large
number of transactions per second.

5.1.4.3 Hyperledger Indy

Hyperledger Indy is distributed ledger solution focused on a decentralized identity
management. It enables the creation, management, and verification of digital
identities, offering features like privacy, interoperability, and self-sovereign identity
(SSI) solutions, providing the necessary tools and libraries which conform to the Wide
Web Consortium (W3C) standards [37]. Indy is particularly suited for applications
requiring secure and privacy-preserving identity solutions, offering interoperable
identities across different administrative domains and applications. Moreover, Indy
promotes privacy-preservation through Zero Knowledge Proofs, which prove the
trustworthiness of certain data in a collection of claims without disclosing any extra
information, such as the identity of the individual providing the proof.

A comparative analysis of the aforementioned Hyperledger solutions is presented in
Table 3.

Table 3 - Comparative analysis of different Hyperledgers

Criteria Hyperledger Fabric Hyperledger Besu Hyperledger Indy
Consensus
Mechanism

Organisation may choose
(i.e., Pluggable)

PoW, PoS, PoA, etc. N/A

Privacy Features Channels, Private Data
Collections

Private Transactions,
Permissioning

Privacy, Self-
Sovereign Identity

7 https://www.hyperledger.org/blog/2019/08/29/announcing-hyperledger-besu
8 https://besu.hyperledger.org/private-networks/how-to/configure/consensus
9 https://www.hyperledger.org/projects/besu

https://www.hyperledger.org/blog/2019/08/29/announcing-hyperledger-besu
https://besu.hyperledger.org/private-networks/how-to/configure/consensus
https://www.hyperledger.org/projects/besu

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 72 of 124

Smart Contract
Support

Yes Yes Limited

Smart Contract
Language

Go, JavaScript, and Java Solidity N/A

Use Cases Enterprise Applications, Ethereum-based
Applications

Decentralized
Identity, Self-
Sovereign Identity

5.1.5 PRIVATEER’s Innovation in Blockchain

After thorough evaluation, Hyperledger Besu was selected as the preferable option
for the PRIVATEER project due to its support in both private and public blockchain
networks. Besu offers strong privacy features and a high capacity for processing a large
volume of transactions, which is specifically interesting for PRIVATEER considering
that trustworthiness evidence may contain a lot of information. In addition, the
compatibility of PRIVATEER with Ethereum is highly useful as it enables the utilization
of the wide range of tools and applications offered by the Ethereum ecosystem. This
compatibility also applies to the integration with Town Crier oracles, which are
specifically intended to support Ethereum, providing a secure mediator to the
Blockchain network. The Town Crier oracles are further elaborated on Section 5.2.1.1.

Hyperledger Besu is the optimal blockchain platform for PRIVATEER's objectives of
improving and facilitating the security and trustworthy data exchange, offering a
protected and auditable distributed network that can be easily accessed by all
interested parties. Furthermore, Hyperledger Besu's open-source nature and active
development community makes it a secure, efficient, and flexible blockchain solution.

In addition to the Hyperledger solution, certain mechanisms as introduced in Chapter
2 and further elaborated on Section 5.2 are employed, enabling PRIVATEER to offer a
secure framework which further allows privacy preservation. These mechanisms are
summarised in Table 4.

Table 4 - PRIVATEER Blockchain mechanisms towards advanced security

Desired Characteristic PRIVATEER component
Auditability Hyperledger Besu which supports the integration and

execution of smart contracts, which enable the mediating
and management of trust-related information, exchanged
via the ledger.

Integrity Secure Oracle is integrated, providing integrity of data and
processes. More specifically, the execution of data veracity
checks over the received data (i.e., attestation reports from
the Security Probe) are performed in a protected
environment. Likewise, the smart contract creation is
adheres to the same notion.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 73 of 124

Access Control mechanisms
for information in the ledger

Attribute Based Access Control (ABAC) mechanisms
leveraging the Verifiable Presentations (VPs) are supported
ensuring that only entities with appropriate attributes have
access to the information available on the ledger.

Confidentiality in off-chain
storage

Attribute Based Encryption (ABE) mechanisms employed for
the protection of information (i.e., evidence) stored in the
off-chain storage.

Privacy Preservation for
external entities that access
data in the ledger

Permissioned functionality of Besu is leveraged providing
restricted access. In addition, Trust Exposure Layer is
proposed by PRIVATEER, which provides the harmonisation
mechanisms, ensuring that only information regarding the
Level of Trust is exposed to external (to the MNO
infrastructure entities). Details regarding the information
used to perform the Level of Trust assessment (i.e.,
trustworthiness evidence, attestation report, etc.) is
available only to internal entities.

5.2 Protocol description
5.2.1 Building Blocks

As described in the previous paragraphs, PRIVATEER leverages the Hyperledger BESU
as the DLT solution. The next paragraphs analyse the internal building blocks and
architecture of the selected DLT solution, further considering the overall scope of this
framework in the context of PRIVATEER. Figure 6 provides an illustration of the
Conceptual Architecture for the PRIVATEER Blockchain Framework, further clarifying
the interactions between the components.

5.2.1.1 Secure Oracle – Town Crier (TC)

Blockchain oracles are external services that provide smart contracts with
supplementary information. They serve as mediators that establish connections
between blockchains and the outside world. Blockchains and smart contracts do not
have the capability to access outside of the chain data, which refers to data that is
located outside of the network. However, it is essential to get relevant information
from external sources to achieve the operational goal of the blockchain, particularly
in circumstances where smart contracts need such information to efficiently execute
their business logic. In the context of PRIVATEER this functionality is critical to provide
the attestation result and the attestation evidence, as acquired by the Security and
μProbes (as described in Chapter 2).

Blockchain oracles further act as middlemen that link off-chain and on-chain data
[38]. Oracles are essential components of the blockchain ecosystem since they
enhance the capabilities of smart contracts by serving as an intermediate layer that
acquires, validates, and verifies data from other sources, and then transfers that
information.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 74 of 124

Figure 6 - PRIVATEER Blockchain Infrastructure Conceptual Architecture

The Oracles include qualities that PRIVATEER seeks to utilize and enhance for the
purpose to achieve the project's vision of auditable trust evaluation tailored to the
needs of the B5G landscape. Figure 6 illustrates the placement of the Secure Oracles
network between the edge devices and the BESU network. This positioning allows for
the gathering and filtering of data originating from the devices. Regarding data
processing, the Oracles are utilized to receive attestation-related data in PRIVATEER.
They then proceed to filter, standardize, and authenticate the data utilizing the
Verifiable Presentations (VPs), as data structures, which may encompass both identity
but also device state attributes. More information on the VPs is available in Chapter
6.

To access data from external sources, the smart contracts need to be triggered and
network resources must be utilized. The Town Crier (TC) possesses the capability to
not only transmit information to smart contracts, but also to send it back to other
sources. Furthermore, TC combines a blockchain interface and a secure hardware
component built on top of Intel SGX. It also leverages communication channels
enabled with HTTPS to deliver source-verified data to smart contracts. The system
facilitates confidential data requests by utilizing encrypted parameters, promoting
secrecy. TC enables the secure utilization of credentials to access data from protected

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 75 of 124

data sources thanks to the implementation of Intel SGX. This feature will be utilized in
PRIVATEER to allow Attribute-based Encryption (ABE), which will encrypt sensitive
data before it is placed on the off-chain data storage (more information on the off-
chain storage are available in section 5.2.1.7).

The PRIVATEER consortium also chose TC because of its safe execution environment,
which is powered by Intel SGX. TEEs provide a secure setting that ensures the privacy
and integrity of data and code, which is essential for oracles that deal with sensitive
external data. Secure oracles built on Intel SGX's secure enclave technology are
impervious to manipulation and unauthorised access, which boosts the reliability of
the PRIVATEER blockchain. Data processed by the Town Crier oracle remains
encrypted and confidential even while computations are being performed, thus in
PRIVATEER data filtering and veracity operations are executed as part of the enclave
to guarantee the isolated and confidential execution of sensitive data processing
operations. In Figure 6 the enclave of the TC nodes is depicted, which includes the
processes outlined before. Furthermore, the enclave's isolated environment
guarantees the isolated execution of cryptographic operations, such as ABE of data,
before they are stored on the BC infrastructure. Finally, the Town Crier may use the
Proof Generator to cryptographically prove that the data processed and retrieved
within the safe enclave has not been altered. This would enable blockchain apps to
confirm that the oracle's outputs are valid.

5.2.1.2 Enclave

The Enclave, an execution environment supplied by Intel SGX, is a crucial component
of the Town Crier (TC) design. It serves as an isolated location for data processing. The
Enclave's primary responsibility is to process datagram requests from the blockchain
by accessing external data sources that support HTTPS to get the required information
(see Figure 7).

The Enclave places utmost importance on ensuring the secrecy and integrity of data
processing. It functions with an awareness that it is completely isolated from
potentially hostile operating systems and other activities on the host. The isolation is
a fundamental aspect of the TC's security concept, allowing the Enclave to operate as
a reliable component inside the larger system.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 76 of 124

Figure 7 –System Architecture of TownCrier

5.2.1.3 Relay

The Relay serves as an infrastructure to facilitate communication between the Enclave
and the outside world. Due to the constraints of SGX, the Enclave does not have direct
network access. Therefore, the Relay plays a crucial role in managing bidirectional
network traffic. This involves establishing a connection between the Enclave and the
blockchain to monitor the status of the TC Contract and publish messages on the
blockchain. It also involves managing off-chain service requests from clients for
Enclave attestations, as well as facilitating communication between the Enclave and
other data sources. The operation of the Relay is essential for the smooth transmission
of information required for the functioning of the TC system.

Nevertheless, the Relay functions within the user space and does not receive any
advantages from SGX's integrity safeguards. This vulnerability exposes it to
exploitations by a hostile operating system, which might result in delays or failures.
Despite this susceptibility, the design of TC strives to alleviate the consequences of
such concerns. Although the Relay can potentially be used to carry out denial-of-
service attacks, the TC design guarantees that it is incapable of generating inaccurate
datagrams or causing customers to loss revenue paid for datagram services. TC's
dedication to upholding the integrity and dependability of its service is emphasized by
this design philosophy, which addresses the possible security problems presented by
the Relay component.

5.2.1.4 Hyperledger Besu - PRIVATEER Private/Public Ledger

Hyperledger Besu's architecture offers a solid and flexible framework for developing
enterprise-grade blockchain applications. As stated, Besu's characteristics are capable
of satisfying the demands of PRIVATEER. Figure 6 presents that Besu is a structure
constructed of crucial parts that provide its functionality.

• Network Layer: The BESU network of PRIVATEER will consist of numerous
nodes. The nodes in the network engage in communication with each other to

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 77 of 124

achieve synchronization of the blockchain, dissemination of transactions, and
active involvement in the consensus process. BESU is compatible with several
networking protocols. PRIVATEER will utilize Ethereum's devp2p protocol,
facilitating safe discovery and connection between nodes. After the nodes are
linked, both public and private transactions can occur.

• Consensus Mechanism: BESU is capable of supporting many consensus
mechanisms, such as Proof of Work (PoW) and Proof of Authority (PoA). The
consensus mechanism governs the process by which transactions are
authenticated and included into the blockchain. In the Proof of Work (PoW)
consensus mechanism, miners engage in a competition to solve intricate
mathematical problems to append new blocks to the blockchain. On the other
hand, in the Proof of Authority (PoA) consensus mechanism, block validators
are selected based on their established identity or reputation inside the
network. The consensus method used for PRIVATEER is PoA.

• Ethereum Virtual Machine (EVM): Besu incorporates a completely compatible
implementation of the Ethereum Virtual Machine (EVM). The EVM is a
confined runtime environment that plays a vital role in executing smart
contracts and handling transactions in an Ethereum blockchain network. The
EVM carries out bytecode, which is the compiled version of smart contract
code, to guarantee the consistent execution of contracts across all nodes.

• Permissioning and Privacy: PRIVATEER utilized a hybrid technique to fulfil the
data confidentiality criteria. Therefore, each node inside the blockchain
network has the responsibility of keeping and overseeing the public global
state, along with an individual private state for every privacy group. The private
states include sensitive data that is not revealed in the globally replicated
world state. In relation to data stored in an off-chain storage, the private state
comprises the data hash and a reference pointer that indicates the exact
location of the stored data off-chain. By employing this method, the private
entity safeguards the essential information required to validate and
authenticate the integrity of data. Access to the private state is provided by
the incorporation of the private transaction manager within the Tessera node.
The term "public state" refers to information that is freely accessible and may
be used to exchange attestation-related data with trustworthy parties.
This component is valuable in PRIVATEER as it provides transparency regarding
the condition of an ecosystem. It may be utilized as a feature to facilitate
external entities in conducting audits and certifications. Additionally, relevant
information, such as source linkages that show the provenance of the private
states from which the data came, is also retained. This setup guarantees that
the necessary data needed for validation and verification may be acquired
from the public ledger, while simultaneously safeguarding the privacy and
security of the sensitive data stored off-chain.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 78 of 124

• APIs and Interfaces: Besu provides a range of APIs and interfaces that allow
users to communicate with the blockchain. These consist of JSON-RPC APIs for
automated access, GraphQL APIs for retrieving blockchain data, and
WebSocket APIs for receiving real-time updates. In addition, Besu offers
command-line utilities and a web-based interface for monitoring and
controlling the node.

• Plugins and Extensions: Besu's design facilitates expansion by including plugins
and extensions. We leverage this property in PRIVATEER to enhance Besu's
capabilities through the implementation of bespoke modules. This
functionality enables us to incorporate further customized functionalities, such
as integrating Elastic as the off-chain data storage for the project.
The primary goal of Hyperledger Besu's design is to offer a secure, scalable,
and extensible framework for developing blockchain applications for
enterprises. It supports permissioning and privacy features, has a flexible
design that works with Ethereum, and is suitable for many use cases across
multiple industries.

5.2.1.5 Security Context Broker (SCB)

The Security Context Broker (SCB) serves as the sole middleman between the
blockchain infrastructure and external entities. It operates as an intermediary,
facilitating communication and interaction between the PRIVATEER components and
Secure Oracle blockchain smart contracts, via APIs. The primary role of the Context
Broker is to trigger the implementation of smart contract functionalities. It is a service
that facilitates the transmission of messages and allows for the connection of different
components to the Blockchain. It efficiently manages access control and permissions
in the Distributed Ledger Technology (DLT) by leveraging smart contract technology.
To guarantee and maintain safe access, Verifiable Presentations (VPs), which function
as user tokens, undergo a process of verification. VPs not only grant access to a service,
but also encompass specific attributes that define the user or device's privileges inside
the network, as well as identity claims and proof of the system's secure status. VPs
play a pivotal role also in terms of the Attribute-Based Access Control (ABAC) in
PRIVATEER. The ABAC is implemented through the interaction between the Context
Broker and the Peers in the Distributed Ledger Technology (DLT) network. This
implementation takes use of the VPs, which also represent the security status of an
object. Furthermore, the Context Broker possesses the potential to engage with
external storage systems that are not integrated into the blockchain. Consequently,
the SCB manages both communication and access control.

5.2.1.6 Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC) is an advanced access control technique that
uses characteristics as the basis for governing access to resources. ABAC does not

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 79 of 124

primarily rely on roles or rules, but instead assesses access requests by considering
several factors connected with individuals, resources, and environmental variables.
Examples of such features may encompass user roles, department, location, time of
access, and the sensitivity of resources. The essential elements of ABAC consist of the
Policy Decision Point (PDP), which assesses access requests based on predetermined
rules, considering the characteristics of the person making the request, the resource
being accessed, and the surrounding circumstances in order to make well-informed
access determinations.

The Policy Enforcement Point (PEP) is responsible for implementing the access choices
determined by the Policy Decision Point (PDP), therefore guaranteeing that only users
with proper authorization are granted access to the requested resources. The Policy
Information Point (PIP) obtains supplementary attribute information that is necessary
for the Policy Decision Point (PDP), while the Policy Administration Point (PAP)
oversees and establishes the policies, enabling administrators to create, modify, and
remove policies according to the organization's needs. ABAC has several advantages,
such as precise access control, the ability to react to changing situations, the capacity
to handle complicated structures, and the flexibility to manage policies. ABAC offers
enterprises a versatile, accurate, and dynamic method for access control, improving
both security and operational efficiency. The PRIVATEER consortium chose to use
ABAC as the mechanism for performing access control to the information stored on
the BC due to its specific properties.

In PRIVATEER, any data sources (i.e., orchestrator) and external entities that require
access to the BC infrastructure, either for data retrieval or data submission, must go
via the trust-aware authorization and authentication process, which is based on ABAC.
During operation, a device creates compliance certifications in the form of Verifiable
Presentations. Therefore, these VPs represent the characteristics and protected
condition of devices and entities. The PDP point in PRIVATEER is located within the
Security Context Broker components, as seen in Figure 6. Every request is
accompanied with the requisite VPs from the entities involved in the transaction in
order to verify the identity, secure status, and permissions of the entity. The
importance of the ABAC service supported within PRIVATEER SCB is seen in its role of
managing and verifying user access to recorded blockchain data and off-chain data
storage queries. Ensuring data security and exact access is extremely important in
these scenarios, making this service indispensable.

5.2.1.7 Off-Chain Data Storage

The Off-Chain Storage feature of the PRIVATEER platform offers an innovative solution
for managing a vast amount of (confidential) data. Such data that cannot be stored
directly on the DLT network due to privacy and capacity limitations. Leveraging the
off-chain storage is a common methodology in sophisticated blockchain applications,
since it allows optimization of the performance, essential when managing the large

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 80 of 124

amounts of data. In this approach, the actual data is stored in Off-Chain Storage, which
is separate from the blockchain network. Pointers are maintained in the private ledger
of the DLT network to establish a connection between the data and the blockchain.
These pointers function as references or links to the precise location of the data in the
Off-Chain Storage. By using this approach, the system successfully overcomes the
disparity between the blockchain's need for integrity and transparency and the
practical limitations of storing big amounts of data on the blockchain. It functions
primarily as an indexing service. In the context of PRIVATEER data stored in the off
chain may include (attestation) evidence, policies, or system traces.

In order to enhance security and control access, the data stored off-chain is encrypted
or encoded. The implementation of this encryption layer is essential as it effectively
prevents unauthorized users from getting access to or altering off-chain data. Access
to these pointers, and hence to off-chain data, is tightly controlled and limited to
authorized users/entities with the proper privileges (according to ABAC). Users or
entities have the ability to retrieve off-chain data by decrypting or decoding these data
points.

The SCB exclusively regulates interactions with Off-Chain Storage in PRIVATEER. This
broker functions as an intermediate, overseeing and facilitating all communication
and data exchanges between the blockchain network and Off-Chain Storage. This
design not only streamlines data retrieval and storage, but it also provides an
additional layer of security by enabling the SCB to enforce various checks and limits to
ensure that only authorized requests are executed.

The Elastic Search operates as the main storage solution for the PRIVATEER off-chain
storage component, incorporating PRIVATEER-specific functionalities for handling off-
chain data. Elastic offers storage capabilities for storing large amounts of data, using
collections and documents instead of conventional tables and rows. Documents are
composed of key-value pairs, whereas collections comprise both sets of documents
and functions. A database is comprised of collections that include separate
documents, each of which may have varied fields and sizes. Elastic's data structure
optimizes the arrangement of hierarchical links and effectively stores arrays. The
scalability of Elastic is a consequence of its advanced architecture, making it an
excellent option for PRIVATEER's storage solution.

5.2.2 PRIVATEER Blockchain Infrastructure High-level Design and Flows
mediated through Town Crier

As previously stated, PRIVATEER utilizes Blockchain technology to facilitate the
exchange of data required for the Level of Trust calculation. The PRIVATEER Blockchain
solution utilizes Town Crier as a Secure Oracle to offer enhanced security capabilities,
and off-chain storage for safeguarding large volumes of data, such as attestation

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 81 of 124

evidence. Towards this direction and delving into the flow as firstly described in
Chapter 2, the flow as it pertains to the functionalities that take place within the
Blockchain is illustrated in Figure 8.

The flow is initiated when the Privacy-aware Orchestrator notifies simultaneously
both the Security Context Broker (SCB) and the LoT Assessment component about the
deployment of a new service. This notification further includes the Privacy SLA and the
Service Graph Chain topology (steps 1 and 2). The latter, the LoT Assessment
component, leverages the received information to generate the Trust Policy for the
specific service (step 3), which is later transmitted to the SCB (step 4).

The SCB leverages the received information to create the SGC Trust Chain Data
Structure, as defined in Table 6, which further includes the Trust Policy structure for
the designated service graph chain, as defined in Table 7, and the Privacy SLA (step 5).
These structures are elaborated in Section 5.2.3.1. After the creation of the SGC Trust
Chain Data Structure, the SCB forwards this structure to the Town Crier (step 6), which
subsequently transmits it to the Oracle Contract (step 7). The Oracle Contract
establishes the SGCTrustChain() Smart Contract and may further compute the Real
Trust Level (RTL). Please note that the calculation of the RTL functionality will be
introduced in Release B of the platform. Subsequently, the Oracle Contract publishes
the smart contract on the ledger leveraging the Hyperledger BESU Interface (step 9).
The Oracle Contract returns the Smart Contract which was previously published on

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 82 of 124

the ledger (containing the Trust Policy structure along with other information), to the
SCB (step 10), which then sends it to the Privacy-aware Orchestrator (step 11).

Figure 8 - Trustworthiness Evidence Management Mediated through Town Crier

Upon receiving this information from the SCB, the Privacy-aware Orchestrator begins
the collection of the attestation report(s) and attestation evidence, based on the Trust
Policy, prompting the Security Probe (step 12). In essence, the Trust Policy defines
whether attestation evidence is required for the LoT calculation for the specific graph
chain, and the periodicity that this data should be collected, prompting the Security
Probe to collect traces and perform the attestation task (step 13). More information
on the runtime attestation flow is available in Section 3.2.3.2. The Security Probe
transmits the attestation report, along with the attestation evidence to the Town Crier
(step 14), which subsequently relays it to the Oracle Contract (step 15). The latter,
creates the pointers to the off-chain storage and constructs the Trustworthiness

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 83 of 124

Evidence Object Data Structure, as defined in Table 8 (step 16). Next, the Oracle
Contract is deployed on the ledger using the Hyperledger BESU Interface (step 17) and
the raw trustworthiness evidence are stored in the off-chain storage (step 18). The
LoT assessment can leverage the available information, through the Hyperledger BESU
Interface, to calculate the runtime Actual Level of Trust (ATL) and updates the
SGCTrustChain() Smart Contract accordingly. The ATL structure is defined in Table 9.

5.2.3 PRIVATEER Smart Contracts for Trustworthiness Evidence
Management

In the PRIVATEER project, the implementation of Blockchain smart contract functions
is driven by the objective to facilitate secure, transparent, and automated operations
within the blockchain framework. The use of smart contracts in PRIVATEER introduces
innovative approaches for managing trustworthiness evidence data like attestation
evidence, CTI information and Proof of transit evidence of services and ensuring data
integrity and confidentiality across the network. To this end, Table 5 details the smart
contract functions that have been developed or are planned for future releases of the
PRIVATEER platform.

Note that there are two types of smart contract functions:

• Exported (E): Functions that are responsible to call and implement Smart
Contracts (SCs) of the PRIVATEER BC, typically starting with an uppercase
letter.

• Unexported (U): Sub-functions and variables which necessitate a SC to operate
as designed, usually starting with a lowercase letter.

Table 5 - Smart Contract Functions in PRIVATEER

Type Smart
Contract
Function

Description Release Account
able

E GetTrustworthi
nessEvidence()

It is the responsibility of this function to create
a smart contract to govern the process of
initiating and collecting the necessary of
trustworthiness evidence such as (i.e.,
attestation evidence) from PRIVATEER Security
Probe to Secure Oracle in accordance with the
Trust Policy that applies. The Trust Policy is
dictated to the Oracle from the LoT Assessment
via Security Context Broker (SCB). Upon
reveiving the data, the Secure Oracle executes
the validateDataVeracity() and
StoreOfchainDataAndDBPointer() function.

1.0 Oracle
Function

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 84 of 124

U validateDataVe
racity()

Validates the integrity and authenticity of the
trust evidence provided by
GetTrustworthinessEvidence() based on the
associated verifiable presentation that created
by the Oracle when harmonizing the trust data.
Integrity and authenticity of attestation results
and evidence is performed through the
verification of the associated signatures
constructed from the underlying PRIVATEER
Trusted Computing Base (instantiated in each
node)

1.0 Oracle
Function

U storeOfchainD
ataAndDBPoint
er()

Appends metadata and a controlDBPointer to a
previously trustworthiness evidence report
that is signed from the Oracle enclave and
stores it in the ledger. Raw traces are produced
as part of the attestation evidence report,
which are stored in an offline database. The
pointer created with this function is stored on
the ledger and points to these traces.

1.0 Security
Context
Broker

U harmonization
()

This function collects the trustworthiness
evidence of every container from
GetTrustworthinessEvidence() function,
harmonize and create a verifiable presentation
based on these trust evidence and stored on
the ledger.

2.0 Security
Context
Broker

E SGCTrustChain
()

Its responsible to create a smart contract to
collect the trust policy from the LoT
Assessment component and related Privacy
SLA and Service Graph chain topology from
Orchestrator via SCB to calculate the
Requirement Trust Level (RTL) of the service.
At the second step the LoT Assessment
component receives the trustworthiness
evidence, including attestation reports (in the
form of a VP) with the appropriate pointers to
the off-chain storage where the actual
attestation evidence may be acquired, if
needed.
The LoT Assessment component leverages the
received information to calculate the Actual
Trust level (ATL) of the service and compare it
with the RTL to create a trust decision. The ATL
is pushed to the ledger leveraging the SCB and
the Secure Oracle.

2.0 Oracle
Function

E QueryTrustLvl(
)

This function is responsible to create a smart
contract that implement the trustExposure()
function in order to give access to the level of
trust of a specific service to external
entities/user.

2.0 Security
Context
Broker

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 85 of 124

U trustExposure(
)

This function verifies the credentials of the
external entity or component that requests
access, retrieves the entire history of the Trust
Level of the particular service from the
blockchain ledger and gives them access to the
Level of Trust chain of the service if they are
successful in passing the validation process.

2.0 Security
Context
Broker

5.2.3.1 Smart Contract Data Model Definition

Following that, we present detailed explanations of the data models employed within the
Smart Contract framework. These models serve to support the operational requirements and
functional specifications of PRIVATEER in relation to the delivery of the Trust Policy and enable
the collection and execution of calculations based on several types of trust evidence. These
models are represented as data structures, consisting of fields in the form of a JSON schema,
which specifies the features that must be included in each structure.

Various data structures are defined based on the specific work environment and the data they
are required to hold.

Table 6 - SGC Trust Chain Data Structure

Name Data
Type

JSON Schema Description

PrivacySLA string json:” privacysla” The Service Level Agreement (SLA) produced
by Orchestrator's SLA Manager contains details
on security, trust, privacy characteristics, as
well as network and service capabilities.
PrivacySLA indicates the users or external
entities who are authorized to access specific
containers and services.

ContainerID [] integer json:”
servicegraphchain”

The array list contains the container IDs that
make up the service graph chain, representing
the services that possess these trust evidence
in order Trust Level Manager performs the
Trust Assessment.

TrustPolicy [] struct json:” trustPolicy” The Trust Policy covers several characteristics
that are essential for evaluating the
trustworthiness of the service. These
parameters include the trust level for the
specific service, Proof of Transit (PoT),
information using by the Oracle to collect trust
evidence. In addition to the parameters, the
Trust Policy contains details on the frequency
at which the data should be queried (i.e.,
periodicity) and the trust relationships that are
established based on the service graph chain.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 86 of 124

TypeofEviden
ce

string json:”
typeofEvidence”

What type of evidence need to ask from
Security Probe to collect on Town Crier (i.e.,
evidence for proof of transit and for
attestation)

RequiredTrust
Level (RTL)

[] struct json:”
requiredtrustlevel”

The Required Trust Level (RTL) is a measure of
the trustworthiness of the service graph chain
prior to uploading the trustworthiness
evidence to the blockchain, to perform the
runtime assessment. It serves as a threshold
that decides the level of security for a specific
service.

ListOfAttribut
es

[] string json:”
listofattributes”

This field specifies the list of attributes that a
given device or entity must possess in order to
access and edit this specific data structure from
the DLT.

Signature [] string json:” signature” Include a self-signed certificate issued by the
enclave (i.e., Secure Oracle). This certificate is
applied at the hash of Smart contract. The
enclave signature includes information that
enables the Intel SGX architecture to identify
whether any part of the enclave file has been
altered.

Table 7 - Trust Policy Data Structure

Name Data
Type

JSON Schema Description

ActualTrustLvl [] struct json:” actualTrustLvl” The Actual Trust Level (ATL) is derived from
the computation based on the
trustworthiness evidence of services in order
to be determined if the container of services
meet the requirements of the RTL.

TrustModel [] string json:” trustmodel” An array of strings is utilized to indicate the
relationship between several design models
from separate developers, based on their ID
definitions, without disclosing the actual
code that implements by them.

ListOfTrustSo
urce

[] string json:”
listoftrustsource”

The objective is to monitor specific trust
parameters (such as configuration integrity
through attestation) and measure the Level
of Assurance (LoA) of the associated service
graph chain.

Periodicity integer json:” periodicity” Periodicity refers to the frequency at which
Oracle decide to request and collect
trustworthiness evidence.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 87 of 124

Table 8 - Trustworthiness Evidence Object Data Structure

Name Data
Type

JSON Schema Description

DbPointer [] string json:” dbPointer” A string identifier, that is used by the Oracle
to store the value of the trust evidence after
the data veracity check, in an off-chain
database.

OracleSign [] string json:” oracleSign” The unique signature that produced from the
enclave SGX of Secure Oracle that apply to
trust evidence before them store at the off-
chain storage.

ContainerSign [] string json:” containerSign” The signature is created and applied to the
container from which the specified trust
evidence originates.

CategoryTrust
Source

[] string json:”
categoryTrustSource”

It refers to the type of trust parameter that
the evidence concerns (such as, evidence for
attestation and/or proof of transit)

Table 9 - Actual Trust Level Data Structure

Name Data
Type

JSON Schema Description

TrustLvlValue [] string json:” trustLvlValue ” Indicate the Trust Level value derived from
the calculation procedure to apply on Service
Graph chain by LoT Assessment via the
SGCTrustChain() smart contract using the
trustworthiness evidence.

LotSign [] string json:” lotSign ” The string identification represents the Level
of Trust Assessment, which is responsible for
updating the new trust values each time new
trustworthiness evidence collecting to
Blockchain.

DbPointer [] string json:” dbPointer” A string identifier, that is used by the Oracle
to store the value of the trust evidence after
the data veracity check, in an off-chain
database.

5.3 Plan for development
The implementation roadmap for the Blockchain development is characterized by two
major milestones. In the initial release, the primary objective is to establish core
functionalities and provide a stable base for the PRIVATEER framework to operate.
This mainly involves the construction and management of the necessary contracts to
support the PRIVATEER workflows as presented in Section 2. This implies that the first
version contains the full instantiation of the Town Crier secure oracle, along with the

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 88 of 124

Service Graph (SGC) smart contract. In addition to that the necessary gRPC and http
clients are envisioned so as to enable the data sharing from the various PRIVATEER
components towards the DLT. Hence, it enables the privacy-aware orchestrator to
publish information pertaining to the SLAs and the service graph chain as well as the
LoT Assessment to specify the necessary trust policies for each service. On top of that,
communication between the Security Probe and the Secure Oracle is also envisioned
so that the trustworthiness evidence is recorded to the DLT. Finally, the veracity of the
ingress data to the Town Crier is also planned for the first release.

Building upon the foundation established in the first version, the second release
introduces significant enhancements and additional features to regulate the access to
the data stored in the Blockchain. In this second version, the SCB is enhanced with the
full-fledged ABAC and ABE implementations so as to control the access to the
information stored to the DLT. In addition, the final integration with the distributed
identity management framework is envisioned. Last but not least, this second release
accommodates the harmonization mechanisms (e.g., harmonization functionalities
within Town Crier) required for the trust exposure layer to provide aggregated trust
results to external actors.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 89 of 124

6 Distributed Identity Management
The rapid adoption of the Internet of Things and 5G network further increases the
need for secure communication among devices. Therefore, it is necessary for each
device to have a unique digital identity in order to ensure secure communication and
authentication [39] [40]. A plethora of the existing models for identity management
leverage centralized identity providers and repositories to meet the goal of
identification. However, this centralised identity management approach creates a
single point of failure, rendering it vulnerable to widespread system failures and an
attractive target for malicious individuals. This increases the risk of large-scale data
breaches, potentially exposing significant quantities of personal information
Moreover, centralized solutions frequently fail to meet strict privacy requirements,
thus increasing the chances of unintentional data exposure [41].

By distributing control over personal data and leveraging secure, immutable ledgers,
Self-Sovereign Identity (SSI) frameworks mitigate the risks associated with single
points of failure and data privacy breaches, providing data subjects with greater
autonomy and security over their digital identities [39] [42]. In addition, the principles
of transparency and data minimization are also applied, as individuals are made aware
of the purposes of data processing, and they only share necessary information
depending on the specific purpose [43]. Since the majority of users own at least one
digital identity, in order to authenticate themselves at a service or an application, the
need for protecting these identities has grown exponentially [39]. Moreover, it is
crucial to acknowledge that identities extend beyond individual users to further
include services, which highlights the significance of strong mechanisms for protecting
identities.

The following sections delve into the State of the Art (SotA), detailing on existing
protocols, while introducing the PRIVATEER protocol descriptions, and the plan for
development.

6.1 State Of The Art
In Self-Sovereign Identity (SSI) model, individuals have control over their own personal
information without relying on centralized authorities. More specifically, users can
securely manage and share their personal data using cryptographic techniques,
ensuring security and privacy, when interacting with other entities [44]. Within an SSI
ecosystem, individuals can store their identity information and share it with other
parties when the occasion arises. In addition, they can also decide what information
they would like to share with other entities, and they are not obliged to share data
which is not required for the identification [43].

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 90 of 124

Self-Sovereign Identity is founded on decentralized and distributed ledger
technologies. Along with DIDs and VCs these technologies (which are elaborated in
sections 6.1.1 and 6.1.2 respectively) can be used in order to create irrefutable and
immutable (tamper-proof) records [45]. The privacy-by-design principle is also
upheld within the context of SSI [42]. More specifically, the data subjects can control
when they will share their attributes, and which attributes (which data) they would
like to share. With selective disclosure, data subjects have control over the data which
is shared for a specific purpose. In addition, no personal data is stored on the ledger,
neither encrypted nor hashed. This eliminates the need of monitoring or removing
data from the blockchain either for privacy or security-related purposes [42].

The stakeholders involved within an SSI ecosystem are the holder, the issuer, and the
verifier. Each entity plays a different role in Self-Sovereign Identity model [44] [46].

• Holder: An entity which has ownership and control over a set of personal
information. Each holder can have one or more digital identities, without
depending on a third party to obtain them, and can manage and selectively
share their personal data using verifiable credentials [47] [48]. The holder
stores these credentials in his/her digital wallet, which may be a software
application or hardware device. By retaining control over their identity
information, holders can assert their identity and share relevant credentials
with verifiers, thereby preserving privacy and security in digital transactions
[43].

• Issuer: A trusted entity which issues verifiable credentials on behalf of the
holder. Issuers are responsible for verifying the authenticity of the information
they issue and cryptographically signing the credentials to ensure their
integrity [43]. By issuing verifiable credentials, issuers enable holders to
present proof of their identity in a secure and verifiable manner.

• Verifier: An entity that verifies the authenticity of a verifiable credential
provided by a holder. Verifiers validate the cryptographic signatures of the
presented credentials to ensure their authenticity [47].

In terms of PRIVATEER architecture, as described in Chapter 2 of the present
deliverable, the holder is the entity possessing the credentials (i.e., the MNO, the
Service Provider or the user), the issuer can be any trusted entity issuing the DIDs (the
VCs are self-issued in PRIVATEER), while the Verifier resides within the Security
Context Broker component.

There are certain use cases where a regular user may leverage Self-Sovereign Identity.
In general, SSI finds applications in Internet of Things (IoT) devices, payment solutions,
public transportation, the healthcare sector, digital driving license verification [39]
[43] [49] [50], and various other domains. As already mentioned in the deliverable
D2.2 [2], a possible scenario for users leveraging DIDs is a city that leases a multi-
domain B5G network to support various public and private transportation operators.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 91 of 124

In that case, the Service Provider (i.e., which refers to the Ticketing System and
Transport Provider), which reflects in essence an application deployed in an MNOs A
infrastructure, is responsible for processing data regarding journey planning, routing,
and fare settlement in a privacy-preserving manner. In this specific case, PRIVATEER
aims to leverage Decentralized Identifiers and Verifiable Credentials to securely
authenticate users (i.e., travellers) so that they can access transportation services
even when moving across different regions served by different MNOs. In this scenario,
the traveller is the holder of the Verifiable Credentials, the Identity Provider is the
Issuer, whereas the Transport Provider is the Verifier.

6.1.1 Decentralized Identifiers (DIDs)

Decentralized Identifiers (DIDs) are considered as the cornerstone of SSI ecosystems,
by offering a way to uniquely identify individuals, organizations, devices, and entities
in a decentralized manner [42] [47]. Unlike traditional identifiers, like usernames or
email addresses, DIDs are not related to any centralized registry or authority. On the
contrary, they are cryptographically generated and stored on distributed ledgers, such
as blockchains [43] [46]. Each DID is globally unique and user-centric, enabling
individuals to assert ownership and control over their digital identities. DIDs can be
associated with cryptographic keys, allowing users to authenticate themselves
without relying on any intermediate entity to do so [43]. This decentralized approach
increases the level of both security and privacy, as users maintain full control over
their identity information. In essence, a DID is a Uniform Resource Identifier (URI)
which refers to a DID subject and associates the DID subject with its corresponding
DID Document [47] [51]. The DID document contains information, such as verification
methods and cryptographic public keys, relevant to the DID subject [51]. According to
the World Wide Web Consortium (W3C), DIDs are defined as “globally unique
persistent identifiers” [51]. The specifications outline a method for verifying the public
keys included in DID documents.

6.1.2 Verifiable Credentials (VCs) and Verifiable Presentations (VPs)

Verifiable Credentials (VCs) are digital documents, and more specifically digital
credentials, which contain information about specific attributes or claims of a data
subject. These claims are basically personal information of an individual, such as
his/her age or level of education [44] [46]. Unlike customary credentials, which are
issued by centralized authorities, verifiable credentials are designed to be
independent and cryptographically verifiable. They are issued by trusted parties,
known as issuers, and are cryptographically signed to ensure their integrity and
authenticity [44] [48]. Verifiable credentials enable individuals to present proof of
their attributes in a privacy-preserving manner, without disclosing any unnecessary
and additional personal information [48]. The VC data model takes advantage of
verifiable credentials in order to establish trust among all involved entities within the
SSI ecosystem. By leveraging verifiable credentials, users can exchange their

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 92 of 124

information seamlessly in a decentralized and privacy-enhancing manner, across
different platforms and services [43].

A Verifiable Presentation (VP) is a cryptographic proof that attests to the validity of
the information being shared, without revealing unnecessary details about the
underlying credentials or the individual's identity [41] [49]. This proof is generated by
combining verifiable credentials with cryptographic signatures and proofs, ensuring
the integrity and authenticity of the presented information [41] [43] [47]. Verifiable
presentations allow individuals to selectively disclose specific attributes or claims from
their credentials, depending on the context or the needs of the recipient.

6.1.3 PRIVATEER’s Innovation in Identity Management

PRIVATEER pioneers in adopting SSI for Identity Management in the context of B5G
networks, not only for user but also for infrastructure component verification. By
adopting this approach, PRIVATEER leverages SSI structures, such as Verifiable
Credentials (VCs) and Verifiable Presentations (VPs), to enhance network security
while also taking into account issues related to privacy. Towards this end, access to
specific information such as trust levels or the acquired trustworthiness evidence is
granted though selective disclosure of attributes (i.e., ABAC).

In terms of employed DLT technology for Identity Management, PRIVATEER leverages
the Hyperledger Aries [52], that is part of the extensive Hyperledger ecosystem,
providing an open-source initiative designed to offer developers with a robust set of
libraries and tools, facilitating the creation of Decentralized Identity applications [39].
This set of libraries and tools comprises features which are essential for the secure
management and presentation of DIDs and VCs, while safeguarding user’s privacy.
Hyperledger Aries Cloud Agent Python (ACA-Py) [53] is part of Aries Hyperledger
framework. ACA-Py implementation simplifies the integration of DID functionalities,
and empowers developers to exploit its capabilities, within their Python-based
projects. In addition to the toolset provided by Aries, Hyperledger Indy [10] further
provides a Distributed Ledger Technology (DLT) specifically designed for DID
management. Within Indy Hyperledger, developers are able to create and manage
digital identities in a secure, privacy-preserving, and interoperable manner.

In the context of PRIVATEER, Aries Cloud Agent is preferred due to its robust
implementation, active development community, and seamless integration
capabilities [39] [43] [46]. ACA-Py offers a comprehensive suite of tools for building
SSI solutions. It supports all functionalities needed in PRIVATEER, such as VC issuance,
VC verification, VC revocation, and ensures flexibility and scalability, making it
adaptable to diverse use cases. Moreover, ACA-Py benefits from extensive community
support, providing regular updates and security enhancements.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 93 of 124

6.2 Protocol description
PRIVATEER considers the entities as also defined by the W3C standards: i) the holder,
ii) the issuer, and iii) the verifier. The holder and the verifier each possess a DID which
is stored locally in their wallet, while the issuer's DID is published on the blockchain
for Identity Management. Considering the PRIVATEER architecture, the holder may be
any entity (i.e., covering both components and users), while the Security Context
Broker (SCB) acts as the credential verifier. The main function of the issuer is to issue
and revoke credentials on behalf of the holder, whereas the verifier is responsible for
validating the holder’s credentials. The scenario description is depicted in the figure
below (Figure 9). It is worth noting that the blockchain used for identity management
is based on Indy Hyperledger [10]. The flow goes as follows:

Figure 9 - Self-Sovereign Identity Diagram and Flow

The holder, the issuer and the verifier create a local DID in their wallet respectively
(step 1). In parallel, the issuer publishes their previously generated DID on Indy
Hyperledger (step 2). Along with the generation and publishment of the DID, the issuer
creates and publishes a credential schema on Indy Hyperledger (step 3). The
credential schema consists of a name, version, and a set of attributes. More

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 94 of 124

specifically, the credential schema can be considered as a template for the upcoming
credentials, and it defines the structure and the type of the attributes.

The issuer creates and publishes a credential definition on Indy Hyperledger (step 4).
The credential definition is an instance of the credential schema and includes
cryptographic material, such as public keys, which are used for the issuance of
verifiable credentials. If revocation of verifiable credentials is supported, the issuer
should declare this information when registering the credential definition on the
ledger. In addition, it should also define the size of the revocation registry, which
determines the maximum number of credentials that can utilize this revocation
registry. In case that revocation is supported, the issuer should also create and publish
a Revocation Registry (RR) on Indy Hyperledger (step 5). This is done automatically. In
fact, two revocation registries are created, one active and one initiated. The advantage
of this implementation lies in the absence of delays when the first registry reaches
capacity, as the second one can be utilized. During continuous operations, when one
revocation registry reaches its limit, the second revocation registry gets activated, and
a new one is generated to ensure that one registry remains on standby.

The holder requests a verifiable credential from the issuer (step 6). More specifically,
the holder makes a credential proposal to the issuer, inquiring the latter to issue a
credential based on specific attributes. The issuer inspects the credential attributes. If
all attributes are valid and the holder meets the criteria, the issuer issues and sends
the verifiable credential to the holder; otherwise, the issuer sends a message to the
holder informing the latter that an error occurred (step 7). The holder receives and
stores the verifiable credential in its wallet (step 8).

Whenever the holder wants to get verified somewhere, for instance, at a service, it
must first establish a connection with the verifier (step 9). The verifier requests a
presentation (proof) from the holder (step 10). The holder creates and responds to
the verifier with a proof from a matching credential (step 11). The verifier verifies the
holder’s presentation, yielding a Boolean result (true/false) (step 12). If the attribute
values are valid and the credential is active and not revoked, the result will be true;
otherwise, it will be false.

The issuer can also revoke the previously issued verifiable credentials (step 13). More
specifically, the issuer can access all issued credentials at any time and select which
ones to revoke. After credential revocation, the status of the credential will change,
and the credential will not be considered as valid anymore. As a result, the holder will
not be able to verify itself.

Note: It is worth noting that a connection must be established between the holder
and the issuer before credential issuance, and between the holder and the verifier
before proof verification.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 95 of 124

6.3 Plan for development
The main functionalities which will be developed in the context of PRIVATEER are as
follows:

1) DID Generation: A unique Decentralized Identifier, either private or public, is
created for each entity within the SSI ecosystem.

2) Verifiable Credential Issuance: A Verifiable Credential is issued by an issuer and
certifies various attributes or claims of a holder.

3) Verifiable Credential Validation: The verifier confirms both the authenticity
and the integrity of the received verifiable credentials or presentations.

4) Verifiable Credential Revocation: The issuer, who has previously issued a
verifiable credential on behalf of the holder, can revoke the holder’s credential
if needed.

5) DID Resolution: A DID is resolved into a DID document containing metadata or
information associated with the entity it represents. When a DID needs to be
resolved, the resolver locates the corresponding DID document, typically
stored on a decentralized ledger, and retrieves relevant information such as
public keys, service endpoints, or authentication mechanisms associated with
this DID [51] [54]. This process enables verifiers to authenticate and interact
with the DID subject in a secure, privacy-preserving, and decentralized
manner.

For Release A (M16), a first version of all the above functionalities has been
implemented. However, the current implementation needs to be improved in order
for the DID/VC functionalities to be performed properly. In addition, the attributes
which will be included within the verifiable credentials need to be defined and
described since, at the time, only credentials with test attributes are issued. It should
also be clarified how the SSI concept will adapt to the Use Case “Verification of Mass
Transportation Application” and with which components it is expected to interact. Till
Release B (M30) all open points should be addressed, in conjunction with other
relevant partners, and an improved version is expected to be implemented.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 96 of 124

7 Privacy-preserving CTI sharing
Sharing Cyber Threat Intelligence (CTI) information is crucial for improving the security
of networks, including B5G networks. By facilitating the exchange of relevant data
among interested parties, operators and other stakeholders, it is possible to efficiently
identify and address imminent cybersecurity threats. However, organizations may
hesitate to share this kind of data due to the potential exposure of sensitive
information, such as internal network topology and configuration details. Disclosing
such information could potentially provide malicious actors with valuable insights into
an organization's infrastructure, thereby allow them to initiate focused cyber-attacks,
resulting in data breaches, service disruptions as well as financial and reputation
damage.

Therefore, although the exchange of cyber threat intelligence is crucial for improving
network security, organizations must thoroughly evaluate the privacy consequences
and implement suitable measures to reduce the risks associated with sharing
confidential data. It is clear that enabling the seamless and privacy-preserving
exchange of threat data is essential for protecting critical infrastructures. Usually,
when users wish to retrieve information, they need to formulate a search query and
send it to a server operated by a third party. The server then provides data that is
related to the search query. Normally, this data is decrypted first, which allows for
operations to be performed in clear text. This can bring up the confidentiality of the
data exchanges into question. An effective method to address this issue is through
Searchable Encryption.

Searchable Encryption is a technique that uses trapdoors to search and retrieve
information from an untrusted third-party server without the need to decrypt. For
example, a user that wants to search for information about “apples” will first create a
trapdoor (the result of a secure one-way cryptographic function, eg. HMAC) from the
keyword, which is then sent to the server. The server when receiving the trapdoor
compares it with the contents of their database where the identifier of the record is
the trapdoor. This requires that the encrypted inverse index is prepared and set up
before searching is possible. Since all data is encrypted (even the search query),
confidentiality is guaranteed. Searchable encryption can be split into different types
based on the used cryptographic techniques, with the base ones, from which many
other approaches are derived, being i) the Symmetric Searchable Encryption (SSE) and
ii) Public Key Encryption Keyword Search (PEKS).

Symmetric Searchable Encryption

SSE uses symmetric key cryptography, allowing for anyone with access to the secret
key to encrypt and decrypt data. SSE can either be static or dynamic. Static means that
the encrypted index is set up and then cannot be updated without rebuilding the

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 97 of 124

encrypted index. Dynamic, on the other hand, allows for new records to be inserted
into the index as well as existent records being able to be deleted. Usually, static SSE
requires a combination of four steps:

• Key Generation: Generates a secret key. It usually receives a parameter, such
as key size of the system, as input.

• Set Up: Generation and preparation of the encrypted index – receives the
secret key and the documents that will be encrypted and outputs the index.

• Trapdoor Generation: Generation of a trapdoor for a certain keyword –
receives the keyword and the secret key and outputs the trapdoor of the
keyword.

• Search: Searches for all documents that have a certain trapdoor – receives the
index and the trapdoor as input and returns a set of documents.

Dynamic Searchable Encryption

For dynamic SSE, the same four steps are used, along with an extra four:

• Insert Token: Generates a token used to call for an insert action - receives the
secret key and the document that will be added to output an insert token.

• Insert: Adds the new document to the chosen encrypted index – receives the
insert token and the encrypted index, outputting an updated index, now with
the new document.

• Delete Token: Generates a token used to call for a deletion action - receives
the secret key and the document that will be deleted to output a deletion
token.

• Delete: Removes the chosen document from the chosen encrypted index –
receives the deletion token and the encrypted index, outputting an updated
index, now with the chosen document removed.

Public Key Encryption Keyword Search
PEKS uses public-key cryptography, allowing for only the owner of the corresponding
private key to perform searches. This approach is preferred for use in multi-user
scenarios where nonrepudiation is a requirement. A PEKS approach usually consists of
four steps, analogous to the ones of the SSE approach:

• Key Generation: Generates a private/public key pair.
• Set Up: Generation and preparation of the encrypted index – receives the

public key of the recipient and the documents that will be encrypted and
outputs the index.

• Trapdoor Generation: Generation of a trapdoor for a certain keyword –
receives the keyword and the private key of the recipient and outputs the
trapdoor of the keyword.

• Test: Verifies if an encrypted document was encrypted with a certain token or
not, returning a Boolean variable.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 98 of 124

The following sections list some State of the Art (SotA) works, detailing on existing
protocols, while introducing the PRIVATEER protocol descriptions, and the plan for
development.

7.1 State Of The Art
7.1.1 Searchable Encryption

Searchable encryption was first proposed by Song et al. [55], who presented
algorithms allowing for search over encrypted text data. This scheme uses a
deterministic encryption scheme to encrypt the keywords, in a first round of
encryption. Then it uses a stream cipher for a second round of encryption. For
instance, in this scheme, a keyword is first run through this algorithm and the result is
separated in two parts – one which will be used for key generation for a hash function
and the other which will be XORed with a random seed, picked by the keystream, and
the result of the hash function (which is computing the key generated by the first part
along with the random seed). If a user wants to perform a search, they first encrypt
the keyword, and this result is sent to the server which iterates over all encrypted
keywords, attempting to recover the seed that was used in the second layer of
encryption, by performing the XOR operation. After that, the key generated from the
first part of the encryption result is compared with the cipher text. If it is a match, then
the keyword that was being searched for was found. This approach has its’ issues. For
one, it doesn’t achieve very strong security. While the ciphertext itself is secure, no
security is achieved regarding search capabilities. The scheme leaks the position of the
keyword in the document, which can lead to statistical analysis attacks. This scheme’s
search time is also linear, which means, the time required for a search to complete
would increase, at an equal rate, depending on the number of keywords the
documents are hosting.

Goh [56] then attempted to increase the security of the previous scheme through a
forward index approach. In it, for each document there is a combination of keywords,
which have been encrypted and linked to it. A user that has the secret key can
generate a trapdoor and then search for a certain keyword. This scheme requires that
the index be built beforehand – and this is done using bloom filters. These are data
structures, in the form of an array of bits, each bit representing the presence of
specific data. These are used to definitely confirm that an element is not part of a data
set. All bloom filters will be empty when first created with all its bits set to zero. Once
a new element is added, the bloom filter’s array of bit changes, the bit that maps to
the new element will become 1. Thus, by hashing the element the user wants to find,
and checking whether all the positions returned of said bits are set to one, the user
can verify that the keyword exists, in theory. However, this is not certain. Bloom filters
will never produce false negatives, but they can, especially on larger datasets and
depending on the number of bits available for each element, produce false positives.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 99 of 124

Another issue is that the number of ones can be enough to give a clue of how many
keywords the document is hosting. Once again, the issue of linear search time occurs
in this scheme as well, since the search is performed by using the combination of
encrypted keywords linked to the document.

Curtmola et al. [57] presented an inverted index approach. This approach would
become the basis for many other searchable encryption implementations. The idea
behind this approach is that, instead of trying to find a keyword within data, we find
the data linked to said keyword, which is achieved by preparing an index where the
trapdoor, associated to a keyword, links to a list of identifiers of the data that contains
said keyword, all of which is encrypted. Curtmola et al. approach proposes that all
nodes of all linked lists, associated to different keywords, should be part of a single
array, in a scrambled order. The plaintext of each node includes the identifier of the
data that contains the keyword, a pointer to the next node of the list as well as the
key used to encrypt that node. The only thing the user needs then is the secret key of
the first node of the list associated to the keyword they want to search for and the
position of that node in the array. One of the downsides of the approach presented is
that it is not dynamic, meaning the arrays would need to be updated whenever
something is added or removed. Another issue, that affects performance, is that it is
not parallelizable, meaning that the system can only focus on processing one thing at
a time. This is so, since nodes are spread out randomly in the array and the only way
to know where the next node of the list is by decrypting said node.

Kamara et al. [58] present a possible way to achieve dynamic searchable encryption
by being able to track these operations in an efficient manner. Whenever data is added
or deleted, the array positions that will suffer changes will be kept track of in a deletion
array. Furthermore, a list of free nodes, keeping track of positions available on the
search array is kept and used whenever new data is added to the server. Finally, the
pointers of each node are updated through the usage of homomorphic encryption.
Homomorphic encryption [59] is a type of encryption that allows a user to work and
process data even while its encrypted, without the need to be decrypted. This
technique allows for this approach to modify data, the pointers to next nods, while
skipping decryption.

Another possibility for achieving dynamic searchable encryption is by building the
inverted index while also working on it. This idea is presented by Hahn and
Kerschbaum [60] and makes use of both a forward index along with an inverted
index. The idea behind it is to first have a forward index, where the data/document is
used as the index to find a keyword and an empty inverted index. When a keyword is
first searched, the system first learns what the search token is, that will be used in the
inverted index. Once that’s done the keyword and its’ data are added to the inverted
index. If data/document that contains a certain keyword are added or deleted, the
inverted index is updated accordingly. the forward index is used when a keyword is

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 100 of 124

first searched, which means a linear search time for the first search, however, once
that’s done, whenever users later search for the same keyword, the search token
remains the same and users will access the inverted index instead.

Most searchable encryption schemes can only work with single keyword queries. Golle
et al [61] first presented an approach that offered multi-keyword searches, achieved
through the combination of different protocols that allow conjunctive keyword
search. One of these approaches involves the intersection of multiple searches. If a
user wants to search for documents that contain the keywords A and B, they first send
a query for all documents that contain A and then do the same for B, and finally they
check what documents are found on both results. This has the drawback of the server
getting information from the searches which can later be used to infer about each
document. Another approach is the usage of meta-keywords. Instead of sending a
query that contains keyword A and then another for B, a query such as “A:B” is sent
to retrieve documents with that meta-keyword. This requires that each document has
associated to it all combinations of every keyword, represented in meta-keywords.
This has the drawback of massive storage usage. Golle et al. present an approach that
offers the benefits of the previous approaches while lowering the drawbacks which is
achieved through Boolean conjunctive query in linear performance.

Later, Cao et al. [62] first proposed a multi-keyword ranked searchable encryption
(MRSE), whose main idea was allowing users to search for multiple keywords and
receive the most relevant results. This is achieved through “inner product similarity”
which utilizes an algorithm, adapted from k-nearest neighbour technique, to enable
the selection of the k-nearest database records between database record and query
vector. This approach has the issue of using a static dictionary, requiring rebuilding it
whenever a new keyword is added. Furthermore, it also does not account for the
weight and access patterns of keywords when presenting the top results. As such, R.
Li et al [63] proposed a new scheme, MKQE, to tackle and overcome MRSE’s faults.

More recently, Liu et al [64] present a searchable encryption scheme named
Searchable Encryption based on Efficient Privacy-preserving Outsourced calculation
framework with Multiple keys (SE-EPOM), capable of multi-keyword search in a multi-
server architecture, while also allowing for multiple writers. This scheme is based on
a subset decision mechanism, also developed by the authors, with the goal of
determining whether one input is the subset of another input set.

Regarding forward and backward privacy, topics that have also seen research efforts
in recent years in the context of searchable encryption, forward privacy means that
when adding a document, no information is revealed about its’ keywords, whether
what keywords it contains or if they have been searched. As for backward privacy, it
must guarantee that searches do not leak information about keywords that have
already been deleted. Sefanov et al. (2014) introduced these concepts in searchable
encryption and proposed a scheme that used forward privacy. The concept was

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 101 of 124

improved by Bost et al. [65] who focused on researching backward privacy, which was
until then overlooked and proposed different schemes with both forward and
backward privacy. More recently, Bakas and Michalas [66] applied forward and
backward privacy in a multi-client cloud environment.

Searchable Encryption usage in Cyber Threat Intelligence sharing is a topic which is still
very overlooked; hence, there is limited research on the topic. INESC TEC has achieved
two different publications on this topic, both authored by Fernandes et al. In the first
publication [67] it is mentioned that although the Malware Information Sharing
Platform (MISP) allows for sharing of CTI, it presents limitations in the way the CTI
sharing can be controlled and searched within groups of entities while maintaining its
confidentiality. As such, a prototype that allowed for CTI to be shared between entities
through a proxy API, which also connects to a MISP instance, is proposed. As for the
second publication [68], the performance of the previous prototype is evaluated and
improved, with the results being presented.

7.1.2 Decentralization

Current CTI-sharing solutions present drawbacks, one of them being: Single Point of
Failure; meaning that the system is dependent on one server to work, which hosts the
reverse index containing data that will be exchanged. If this server goes down, the
whole system suffers a failure. Another drawback is their inability to support the
dynamic creation and operation of autonomous CTI-sharing groups.

A way to overcome the Single Point of Failure problem is by no longer being dependent
on a single server. This entails the existence of a distributed index, which also requires
multiple systems hosting indexes. Such a concept is explored by Cai et al. [69], where
an encrypted decentralized storage architecture, which also allows for private
keyword search, is proposed. Blockchain is used as the decentralized data storage
platform of choice. In this solution there will exist two types of peers: i) client peers,
responsible for outsourcing files and indexes, as well as verifying keyword searches
and ii) storage peers, responsible for returning search results. To minimize search
latency, encrypted files and their encrypted index are stored in the same peer.

More recently, Sultan et al. [70] presents a scheme, to be used in the context of
Internet of Things, that allows for multi-client usage, offers forward and backward
privacy and a distributed index through distributed hash tables.

As referenced beforehand, one way of achieving this is through Blockchain. The
concept was first explored by Haber and Stornetta [71], with the objective of
timestamping digital documents through cryptographically secure blocks of chains.
This concept would go under the radar until some years later, when Nakamoto [72]
and the introduction of cryptocurrencies, through Bitcoins, would cause the concept

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 102 of 124

to gain much traction. Furthermore, this was also the paper that popularized the term
“Blockchain”. In this paper, Nakamoto presents a decentralized and distributed
electronic payment system, without the intervention of third parties. Since then,
Blockchain has been a topic of study in several industry sectors, such as:

• Supply Chains: Palamara [73] analyses what advantages Blockchain can bring
to supply chain and proposes a solution for tracking products to a company in
the chocolate industry. Canavari et al. [74] also references the tracking of
meats in the UK, allowing for transparency, and how it has developed. It also
studies the underdevelopment of Blockchain, in comparison, for fresh
produce, while mentioning what is making Blockchain fall behind.

• IoT: Wang et al. (2020) presents the benefits of Blockchain to IoT an Industrial
IoT, while also introducing the main features of Blockchain applied to IoT for
Industry 4.0. Mathur et al. [75] reviews the advantages Blockchain brings to
IoT and introduces the main aspects of using Blockchain in IoT as well as the
main implementation challenges.

• Healthcare: As with all these other pieces of research, in healthcare, Blockchain
can be used in order to safely store information of patients, Ejaz et al. [76],
Zhang et al. [77], validate and check integrity of all records, Tanwar et al. [78],
Pham et al. [79] as well as ensuring the transparency of system
communications, Hathaliya et al. [80].

Another way to achieve decentralization is through the usage of Torrent, a P2P
protocol, also known as BitTorrent. It is a protocol mostly used for file transfers and it
entails the usage of “torrent” files that contain metadata of the data that will be
shared as well as what other systems have that information (peers).

Released in 2008, the BitTorrent10 protocol has, mostly, seen use in P2P overlay
networks (networks built on top of existing networks). P2P overlay networks have
seen some research – Polar et al. [81] proposed a newer design at the time for P2P
overlay networks in fiber optic communications; Caubet et al. [82] presented a new
protocol that allowed for better security in these networks, while maintaining the
anonymity; Srivastava and Ahmad [83] also proposed a new probabilistic gossip-based
secure protocol to track faulty peers. As can be seen in the previous papers, the
security of the BitTorrent protocol was often called into question. As such, in 2020
BitTorrent v.211 was released with a focus on improving on the security faults of the
previous version.

The BitTorrent protocol itself was researched for application in multiple scenarios. Lee
and Nakao [84] presented approaches and results on how to achieve a more efficient
usage of BitTorrent to lower traffic, while satisfying both the users and the ISPs.

10 https://www.bittorrent.org/beps/bep_0003.html
11 https://blog.libtorrent.org/2020/09/bittorrent-v2/

https://www.bittorrent.org/beps/bep_0003.html
https://blog.libtorrent.org/2020/09/bittorrent-v2/

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 103 of 124

Kopiczko et al. [85] presented “StegTorrent” a steganographic method based on
BitTorrent, allowing for users to share secret information within data being shared in
such a way that it is indiscernible and difficult for others to detect. Although the
protocol is not used, Neuner et al. [86] proposed the usage of data from BitTorrent
networks to create hash databases for digital forensics. To detect if a system has a
certain file, it first needs to have a parameter in its’ database that tells it what to search
for. But if the files in the system being searched have suffered some kind of change,
the parameter used for searching may not be usable. Since BitTorrent is a protocol
used mostly for file transfers, to ensure the integrity of the files, it works with large
quantities of hash values, hence the choice of BitTorrent to feed the hash database.

While Blockchain is currently a topic under more research and development, the
adoption of an approach similar to the one of the BitTorrent protocol would solve the
single point of failure, as each sharing group could have its own index, but also enables
a more dynamic environment with support for the establishment of ad hoc sharing
groups.

7.1.3 PRIVATEER’s Innovation in CTI

The PRIVATEER proposed solution innovates upon the research in Searchable
Encryption by presenting a way to exchange data with two particularities: Firstly, it is
a decentralized system, with all entities having shared encrypted indexes, which
synchronize between each other, and overcomes the single point of failure. And
secondly, it allows for user-generated sharing groups to control information – in each
group an entity has a different index linked to it, entities can only share information
with other entities that belong to the same shared group and an entity can set up
different policies for data exchange for different shared groups, further controlling the
flow of information.

7.2 Protocol description
In order to ensure the security of the solution, the indexing and the search querying
must be confidential. There does not exist in scientific literature a standard security
model for searchable encryption, thus, for the threat model, an honest-but-curious
server is adopted. This entails that a server follows the rules, however, it is interested
in learning sensitive information through analysis of search queries. Furthermore, we
also assume the existence of a third-party malicious actor that will attempt to read,
alter or delete data.

The solution must also ensure that it can resist common attack vectors in the
searchable encryption field, during the search phase, such as Chosen-Keyword Attack
(CKA) and Known Keyword Attack (KGA). A CKA attack happens, in a searchable
encryption scenario, when a malicious actor gains information of the stored data by

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 104 of 124

retrieving the plain text keyword from an encrypted keyword. A way to overcome this
issue is by ensuring that the server does not know any keyword, thus, it becomes
unfeasible for a malicious actor to figure out whether a certain ciphertext contains a
certain keyword. A KGA attack happens, in a searchable encryption scenario, if the
malicious actor is the one that generated all of the cyphertexts of all keywords. With
the knowledge of one trapdoor, the attacker can search the cyphertexts for matching
results and when a cyphertext that contains the keyword is found, the attacker can
guess what keyword is related to the trapdoor.

Index confidentiality is achieved through HMAC running at client-side, using secret
keys that only the entities know, making it unlikely that any other group of entities is
capable of generating the trapdoors. Since HMAC is a one-way mathematical function,
it is also not feasible for a malicious actor to obtain the original keywords. The solution
is resistant to CKA attacks, thanks to HMAC as well. Since an attacker requires the
original keywords in order to be able to retrieve any information and since HMAC is a
one-way function generated with a secret key, that only the participating entities will
hold, it becomes unfeasible for the attacker to follow this approach. The solution is
also resistant to KGA attacks since only participating entities will be able to generate
keyword trapdoors.

In the sequence diagrams of this section, three participants are presented: two
entities and a shared index. The entity represents an organization or individual that
wants to share or receive CTI data through our CTI sharing proxy API (end-user) and
the shared index represents a database that was properly set up to work with our
proxy API – inverse index, encrypted information that can be queried through
trapdoors. In terms of PRIVATEER the consumer of the CTI information can be the
Privacy-aware Orchestrator and the Level of Trust Assessment component.

7.2.1 Set Up

Presented in Figure 10 is the setup process: When an entity wants to begin
communicating with another entity, it starts by exchanging UUIDs and public keys
(step 1). Then each entity adds the other entity’s information to their local database
(step 2 and 4) and associates the public key received to the new record (step 3 and 5).
Once that’s done a peer validation process is performed (step 6) and is presented in
Figure 11.

In this process, presented in Figure 11, a nonce is generated first (step 1). The plaintext
message, which is a combination of the UUID of the sender, a timestamp and the nonce
generated is prepared (step 2). This message is encrypted with the public key of the
receiver (step 3). Another message is created which consists of a combination of the
UUID of the sender, timestamp and the encrypted message, done to ensure integrity
(step 4). This message is sent to the other entity (step 5). The receiver starts by splitting
the message into a UUID, timestamp and an encrypted message (step 6). The
encrypted message is decrypted with the entity’s private key (step 7). Once that’s

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 105 of 124

done, the contents of the decrypted message are split, once again into a UUID,
timestamp and a nonce (step 8). The two UUIDs are compared to verify if they match
(step 9). If they don’t then the integrity of the message is called into question.
Afterwards, a new message is prepared containing the receiver’s UUID, a timestamp
and a nonce (step 10). This message is encrypted with the sender’s public key (step
11). Another message is prepared with the UUID of the receiver, a timestamp and the
encrypted message (step 12). This message is sent back to the sender (step 13).

Figure 10 - Set Up

The process is very similar to what the receiver did to the sender’s message. It’s split
into different parts and decrypted (steps 14, 15, 16), and the UUID and nonces are
compared to verify that they match to ensure integrity (steps 17, 18). If no errors
occur, the peer status is changed to OK (step 19).

7.2.1 MISP Data Sync

When preparing the data synchronisation between MISP instances (see Figure 12), the
entities must first prepare a daily job to sync data between each other (step 1, 2) and
setup policies, to define what information can and can’t be shared (step 3, 4). When
the daily job starts, the API proxy sends a request for a MISP data sync to the other
entity (step 5, 7), and, if no errors occur, a MISP data sync response with the data
requested is sent back (step 6, 8).

All data sync processes are run through MISP’s API.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 106 of 124

Figure 11 - Peer Validation

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 107 of 124

Figure 12 - MISP Data Sync

7.2.2 Shared Index

To start, a shared group needs to be created on each entity (steps 1 and 2), as
illustrated in Figure 13. Then the entities that are part of the shared group need to be
added to the shared group, which is done by associating the UUID to it (steps 3 and 4).
Afterwards, the secret key of the shared group is generated (step 5) and presented in
Figure 14.

As illustrated in Figure 14, the generation of the secret key is done by first retrieving
the group hash, or if it doesn’t exist, a new one is generated (step 1). A message is
prepared containing the UUID of the sender, a timestamp, the group name, a list of
the entities part of the group and the group hash (step 2). This message is encrypted
with the public key of the receiver (step 3). Another message is prepared containing
the UUID of the sender, a timestamp and the encrypted message (step 4). This
message is sent to the receiver (step 5).

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 108 of 124

Figure 13 - Shared Group Set Up

The receiver splits the message into three parts: the UUID of the sender, a timestamp
and an encrypted message (step 6), which is decrypted with the private key of the
receiver (step 7). This decrypted message is split into five parts: another UUID of the
sender, a timestamp, the group’s name, the list of participants of the group and the
group’s hash (step 8). The UUIDs retrieved are compared to verify if they match (step
9). The receiver then checks if they belong to the group that is referenced in the
message received (step 10). If so, the information received of the group is compared
with the information available on the receiver’s end, once again to verify if it matches
(step 11). If no errors occur, the receiver retrieves (step 12) and adds their hash to the
group hash (step 13). A new message containing the UUID of the receiver, a timestamp
and the receiver’s hash is prepared (step 14). This message is encrypted with the

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 109 of 124

sender’s public key (step 15). A new message is prepared containing the UUID of the
receiver, a timestamp and the encrypted message (step 16). This last message is sent
back to the sender (step 17).

Figure 14 - Secret Key Generation

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 110 of 124

The sender splits the message into the receiver’s UUID, timestamp and an encrypted
message (step 18). The encrypted message is decrypted with the sender’s private key
(step 19). The decrypted text is split into another UUID, timestamp and a hash (step
20). The UUIDs are compared and checked to see if they match (step 21). If all goes
well, the hash of the receiver is added to the group hash (step 22). The secret key is
generated from the group hash (step 23).

Returning to Figure 13, with the new secret key generated, the shared group’s
configuration is prepared. The entity needs to set up the shared index’s location, the
daily update job and set up the policies, or in other words, what information can be
shared using the index (steps 6 and 7). When the daily update job begins, the API
updates the shared index (steps 8 and 9).

Figure 15 - Shared Index Update

With this update the API starts by checking what attributes are available on the MISP
(step 1) as illustrated in Figure 15 and whether these attributes can be shared

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 111 of 124

according to the entity’s sharing policies (step 2). If so, the information about those
attributes is retrieved (step 3). A trapdoor, or hash, is generated from the shared
group's secret key and the attribute data (step 4). A new hash is generated, differing
from the previous one because it’s signed with the shared group’s secret key (step 5).
This new hash is appended to the UUID of the sender and encrypted with the shared
group’s secret key (step 6). A message is created from the trapdoor (step 7) and the
encrypted hash and sent to the shared index (step 8).

7.3 Plan for development
As mentioned, one of the main concerns of many searchable encryption schemes is
the reliance on a single server, hence they suffer from single point of failure. If the
server hosting the encrypted shared index fails in some way, the whole system is
disrupted. The current CTI Sharing proxy API solution developed in PRIVATEER is also
susceptible to single point of failure and as such, future plans include overcoming this
risk by implementing encrypted shares index decentralization. This requires that there
exist multiple encrypted shared indexes, that are synchronized with each other, so if
one fails, users can still use one of the other ones available.

Regarding decentralization, different approaches were considered: Blockchain and
Distributed Hash Tables were some of the possible choices. However, after some
research, it became clear that this goal could be achieved with an implementation
inspired by the BitTorrent protocol that, overall, adapted more smoothly to the
current architecture, without the need to implement too many new modules or
components. This approach fits well with the current solution, since the current
solution has the functionality to create and join shared groups and when doing so it
requires the input of information about the other entities that belong to the same
group, to ensure that the shared key generated when exchanging data is correct, with
one of those pieces of information being the IP address of the entities – hence, the
only requirement to implement decentralization becomes that all entities now have a
database running on their system, or access to one, which hosts the multiple
encrypted indexes for their groups and that all entities synchronize these encrypted
indexes whenever another entity updates theirs.

Figure 16 presents the idea – each entity needs to be part of at least one shared group
to be able to share information with others, furthermore, each entity is required to
have a MISP instance connected to the proxy API to store the CTI data. The proxy API
feeds the encrypted index in the system according to two conditions: the MISP
instance receives new CTI data (from external sources) and the policies that were
applied for the shared group fit this new data. This causes the encrypted index to be
updated and then a synchronization notification is sent to all other peers, to update
their encrypted index with the new information.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 112 of 124

Figure 16 - CTI Internal Architecture

Another possibility is the development of a micro-service that supports this new
distributed index for searches of CTI but also enables them to be performed in lower-
performance devices. This entails the usage of the API without a dependency on a
MISP instance – thus these users themselves do not host any CTI data but can
communicate with other entities to perform searches.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 113 of 124

8 Conclusions
In the context of future B5G, achieving Zero Trust based security requires a
multifaceted approach. Ensuring the integrity and resilience of both the services and
the underlying infrastructure is paramount for protecting against sophisticated cyber
threats that exploit vulnerabilities in interconnected services or networks. Evidently a
comprehensive approach to security, encompassing both remote and local
attestation, identity verification, and authentication, is essential. Towards this
direction PRIVATEER has addressed these challenges by integrating hardware-enabled
Trusted Execution Environments (TEEs), privacy-preserving mechanisms, and
Distributed Ledger Technology (DLT), for both data exchange and identity
management through Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs).
The present deliverable delved into the details and internal architecture and
functionalities of WP5. This WP provides the enablers in terms of attestation-related
evidence, leveraged by the Level of Trust Assessment framework. The PRIVATEER
architecture represents a comprehensive framework for enhancing security, privacy,
and trust in distributed and complex B5G environments.

The incorporation of hardware-enabled Trusted Execution Environments (TEEs), such
as Intel SGX, has established a strong Root of Trust (RoT) within the system, providing
the foundation for isolated execution of critical workloads. Secure deployment
mechanisms, such as Gramine and enclace-cc for confidential container launching and
eBPF tracers for extraction of runtime evidence, enhance security by enabling
configuration integrity verification. μProbes deployed within the containers further
bolster security by providing insights into the configuration integrity of containerized
applications. Additionally, edge accelerators (i.e., FPGAs) are also monitored through
dedicated attestation agents, ensuring that the bitstream has not been altered.

Integration with Distributed Ledger Technology (DLT) has enhanced transparency,
immutability, and accountability of trust-related data exchange. The Secure Oracle's
role in smart contract execution facilitates trust assessment processes by validating
attestation reports and generating comprehensive smart contracts. These contracts
encapsulate essential information required for trust assessment, ensuring
transparency and accountability throughout the system. It shall be noted that apart
from secure and auditable data exchange, DLT is leveraged for identity management
in PRIVATEER, supporting the notion of Self Sovereign Identity (SSI). Decentralized
Identifiers (DIDs) and Verifiable Credentials (VCs) enable secure and decentralized
identity verification, contributing to a trustworthy ecosystem.

In addition to the above, PRIVATEER has employed privacy-preserving mechanisms,
for protecting sensitive information from unauthorized disclosure while allowing
access to essential trust-related data to external parties. Towards this direction, the

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 114 of 124

Trust Exposure Layer along with Attribute-based Access Control (ABAC) mechanisms
is supported, ensuring that only authorized parties have access to information
available on the ledger. By implementing Attribute-based Encryption (ABE),
PRIVATEER ensures the confidentiality and privacy in data access and exchange
processes in the off-chain storage too. Furthermore, the implementation of a privacy-
preserving CTI sharing mechanism has been taken into account to improve the security
level of an entity, specifically a Mobile Network Operator (MNO). This mechanism
enables the exchange of threat information, thereby facilitating compliance with the
existing threat landscape.

The aforementioned components have offered a strong foundation for secure and
trustworthy interactions across distributed environments. The upcoming Release B of
the PRIVATEER platform will include enhancements and additional features, resulting
in the completion of the framework's final view.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 115 of 124

9 References

[1] Hexa-X A flagship for B5G/6G vision and intelligent fabric of technology enablers
connecting human, “Deliverable D1.4 Hexa-X architecture for B5G/6G networks
– final release,” 2023.

[2] PRIVATEER, “Deliverable 2.2: Use cases, requirements and design report,” 2023.

[3] PRIVATEER, “Deliverable 4.1: Privacy-aware slicing and orchestration enablers -
Rel. A,” 2024.

[4] “ETSI TS 133 501 V15.4.0, 5G; Security architecture and procedures for 5G
System,” 2019.

[5] “RFC7285: "Application-Layer Traffic Optimization (ALTO) Protocol",” Internet
Engineering Task Force (IETF), 2014.

[6] “Internet-Draft: Considering ALTO as IETF Network Exposure Function,” Internet
Engineering Task Force (IETF), 2023.

[7] Intel, “Whitepaper: Overview on Signing and Whitelisting for Intel Software
Guard Extension (Intel SGX) enclaves,” 2018.

[8] “RFC 7223: A YANG Data Model for Interface Management,” Internet
Engineering Task Force (IETF), 2020.

[9] PRIVATEER, “Deliverable 2.4: PRIVATEER framework demonstrator – Rel. B,”
2025.

[10] Hyperledger Foundation, "Hyperledger Indy," [Online]. Available:
https://www.hyperledger.org/projects/hyperledger-indy. [Accessed 14 March
2024].

[11] R. Román, R. Arjona and I. Baturone, “A lightweight remote attestation using
PUFs and hash-based signatures for low-end IoT devices,” Future Generation
Computer Systems, vol. 148, pp. 425-435, 2023.

[12] U. Javaid, M. N. Aman and B. Sikdar, “Defining trust in IoT environments via
distributed remote attestation using blockchain,” in International Symposium on
Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and
Mobile Computing (Mobihoc '20), 2020.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 116 of 124

[13] PCI-SIG, “TEE Device Interface Security Protocol (TDISP),” 2022.

[14] “ ISO/IEC TS 5723:2022, Trustworthiness Vocabulary,” 2022.

[15] A. Martin, “The ten-page introduction to Trusted Computing.,” 2008.

[16] E. C.-L. Raghuram Yeluri, “Building the Infrastructure for Cloud Security: A
Solutions View,” Springer Nature, p. 244, 2014.

[17] ETSI, “Network Functions Virtualisation (NFV): Trust: Report on Attestation
Technologies and Practices for Secure Deployments, ETSI GR NFV-SEC 007
V1.1.1,,” 2017.

[18] L. Ferro, Container Attestation with Linux IMA namespace. PhD diss., Torino,
Italy: Politecnico di Torino, 2023.

[19] M. De Benedictis and A. Lioy, “Integrity verification of Docker containers for a
lightweight cloud environment.,” Future generation computer systems, vol. 97,
pp. 236-246, 2019.

[20] A. Proulx, J.-Y. Chouinard, P. Fortier and A. Miled, “A survey on fpga cybersecurity
design strategies,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 16, no. 2, p. 1–33, 2023.

[21] N. N. Anandakumar, M. S. Hashmi and M. Tehranipoor, “FPGA-based Physical
Unclonable Functions: A comprehensive overview of theory and architectures,”
Integration, vol. 81, p. 175–194, 2021.

[22] F. Verbauwhede and I. Turan, “Trust in FPGA-accelerated cloud computing,”
ACM Computing Surveys (CSUR),, vol. 53, no. 6, p. 1–28, 2020.

[23] N. Khan, A. Silitonga, B. Pachideh, S. Nitzsche and J. Becker, “Secure local
configuration of intellectual property without a trusted third party,” in Applied
Reconfigurable Computing (ARC) 15th International Symposium, Darmstadt,
2019.

[24] B. Hong, H.-Y. Kim, M. Kim, T. Suh, L. Xu and W. Shi, “Fasten: An fpga-based
secure system for big data processing,” IEEE Design & Test,, vol. 35, no. 1, p. 30–
38, 2017.

[25] S. Kuhn and M. G. Drimer, “A protocol for secure remote updates of FPGA
configurations,” in International Workshop on Applied Reconfigurable
Computing, 2009.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 117 of 124

[26] M. Zhao, M. Gao and C. Kozyrakis, “Shef: Shielded enclaves for cloud fpgas,” in
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022.

[27] J. Vliegen, M. M. Rabbani, M. Conti and N. Mentens, “SACHa: Self-attestation of
configurable hardware,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2019.

[28] Y. Wang, X. Chang, H. Zhu, J. Wang, Gong, Y and L. Li, “Towards Secure Runtime
Customizable Trusted Execution Environment on FPGA-SoC,” IEEE Transactions
on Computers, 2024.

[29] M. M. Ahmadi, F. Khalid, R. Vaidya, F. Kriebel, A. Steininger and M. Shafique,
“‘SHIELD: An Adaptive and Lightweight Defense against the Remote Power Side-
Channel Attacks on Multi-tenant FPGAs,” arXiv preprint arXiv:2303. 06486, 2023.

[30] Y. Luo, S. Duan and X. Xu, “FPGAPRO: A defense framework against crosstalk-
induced secret leakage in FPGA,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 27, no. 3, p. 1–31, 2021.

[31] T. M. La, K. Matas, N. Grunchevski, K. D. Pham and D. Koch, “FPGADefender:
Malicious self-oscillator scanning for Xilinx Ultrascale+ FPGAs,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 13, no. 3,
p. 1–31, 2020.

[32] PRIVATEER, “Deliverable 2.1: 6G threat landscape and gap analysis ,” 2023.

[33] W. Zou and e. al, “Smart contract development: Challenges and opportunities,”
IEEE transactions on software engineering, vol. 47, no. 10, pp. 2084-2106, 2019.

[34] Z. Hussein, M. A. Salama and S. A. El-Rahman, “Evolution of blockchain consensus
algorithms: a review on the latest milestones of blockchain consensus
algorithms,” Cybersecurity , vol. 6, no. 30, 2023.

[35] N. R. Kasi, R. S and M. Karuppiah, “Chapter 1 - Blockchain architecture,
taxonomy, challenges, and applications,” in Hybrid Computational Intelligence
for Pattern Analysis in Blockchain Technology for Emerging Applications, 2022.

[36] “Hyperledger Fabric Whitepaper,” Hyperledger Foundation.

[37] “Whitepaper: An Introduction to Hyperledger,” Hyperledger, 2018.

[38] F. Zhang, E. Cecchetti, K. Croman, A. Juels and E. Shi, “Town Crier: An
Authenticated Data Feed for Smart Contracts,” in ACM SIGSAC Conference on
Computer and Communications Security (CCS '16), 2016.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 118 of 124

[39] C. Mazzocca, A. Acar, S. Uluagac, R. Montanari, . P. Bellavista and M. Conti, "A
Survey of Decentralized Identifiers and Verifiable Credentials," 2024.

[40] K.-L. Tan, C.-H. Chi and K.-Y. Lam, "Analysis of Digital Sovereignty and Identity:
From Digitization to Digitalization," 2022.

[41] R. Soltani, U. T. Nguyen and A. An, "A Survey of Self-Sovereign Identity
Ecosystem," Security and Communication Networks, p. 26, 2021.

[42] M. Takaoğlu, T. Dursun and A. Doğan, "The Impact of Self-Sovereign Identities
on CyberSecurity," 2023.

[43] A. Satybaldy, A. Subedi and M. Nowostawski, "A Framework for Online
Document Verification Using Self-Sovereign Identity Technology," Sensors, p. 22,
2022.

[44] C. Sehlke, "Transforming a Digital University Degree Issuance Process Towards
Self-Sovereign Identity," 2022.

[45] Y. Bai, H. Lei, S. Li, H. Gao, J. Li and L. Li, "Decentralized and Self-Sovereign
Identity in the Era of Blockchain: A Survey," in 2022 IEEE International
Conference on Blockchain (Blockchain), 2022, pp. 500-507.

[46] P. Bolte, "Self-sovereign Identity: Development of an Implementation-based
Evaluation Framework for Verifiable Credential SDKs," 2021.

[47] ENISA, "Digital Identity: Leveraging the SSI Concept to Build Trust," 2022.

[48] World Wide Web Consortium, "Verifiable Credentials Data Model v2.0," 2024.
[Online]. Available: https://www.w3.org/TR/vc-data-model-2.0/. [Accessed 14
March 2024].

[49] F. Schardong and R. Custódio, Self-Sovereign Identity: A Systematic Map and
Review, 2021.

[50] L. Stockburger, G. Kokosioulis, A. M. Mukkamala, R. R. Mukkamala and M. Avital,
"Blockchain-enabled Decentralized Identity Management: The Case of Self-
sovereign Identity in Public Transportation.," Blockchain: Research and
Applications, vol. 2, p. 18, 2021.

[51] World Wide Web Consortium, "Decentralized Identifiers (DIDs) v1.0," 2022.
[Online]. Available: https://www.w3.org/TR/did-core/. [Accessed 14 March
2024].

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 119 of 124

[52] Hyperledger Foundation, "Aries Hyperledger," [Online]. Available:
https://www.hyperledger.org/projects/aries. [Accessed 04 April 2024].

[53] Hyperledger Aries Cloud Agent - Python, "GitHub," [Online]. Available:
https://github.com/hyperledger/aries-cloudagent-python. [Accessed 04 April
2024].

[54] M. Sabadello and A. Horvat, "Identifiers and Discovery Working Group,"
Decentralized Identity Foundation, [Online]. Available:
https://identity.foundation/working-groups/identifiers-discovery.html.
[Accessed 19 March 2024].

[55] D. X. Song, D. Wagner and A. Perrig, “Practical techniques for searches on
encrypted data,” in IEEE symposium on security and privacy (IEEE S&P), 2000.

[56] E.-J. Goh, “Secure indexes,” Cryptology ePrint Archive, 2003.

[57] R. Curtmola, J. Garay, S. Kamara and R. Ostrovsky, “Searchable symmetric
encryption: improved definitions and efficient constructions,” in 13th ACM
conference on Computer and communications security, 2006.

[58] S. Kamara, C. Papamanthou and T. Roeder, “Dynamic searchable symmetric
encryption,” in ACM conference on Computer and communications security,
2012.

[59] X. Yi, R. Paulet and E. Bertino, “Fully Homomorphic Encryption,” Homomorphic
Encryption and Applications, pp. 47-66, 2014.

[60] F. Hahn and F. Kerschbaum, “Searchable encryption with secure and efficient
updates,” in ACM SIGSAC Conference on Computer and Communications
Security, 2014.

[61] P. Golle, J. Staddon and B. Waters, “Secure conjunctive keyword search over
encrypted data,” in Applied Cryptography and Network Security: Second
International Conference (ACNS 2004), Yellow Mountain, China, 2004.

[62] N. Cao, C. Wang, M. Li, K. Ren and W. Lou, “Privacy-preserving multi-keyword
ranked search over encrypted cloud data,” IEEE Transactions on parallel and
distributed systems, vol. 25, no. 1, pp. 222-233, 2013.

[63] R. Li, Z. Xu, W. Kang, K. C. Yow and C.-Z. Xu, “Efficient multi-keyword ranked
query over encrypted data in cloud computing,” Future Generation Computer
Systems, vol. 30 , pp. 179-190, 2014.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 120 of 124

[64] X. Liu, G. Yang, W. Susilo, J. Tonien, X. Liu and J. Shen, “Privacy-preserving multi-
keyword searchable encryption for distributed systems.,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 3, pp. 561-574., 2020.

[65] R. Bost, M. Brice and O. Ohrimenko, “Forward and backward private searchable
encryption from constrained cryptographic primitives,” in ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[66] A. Bakas and A. Michalas, “Nowhere to leak: Forward and backward private
symmetric searchable encryption in the multi-client setting (Extended Version),”
Cryptology ePrint Archive, 2021.

[67] R. Fernandes, P. Pinto and A. Pinto, “Controlled and Secure Sharing of Classified
Threat Intelligence between Multiple Entities,” in IEEE International
Mediterranean Conference on Communications and Networking (MeditCom),
2021 .

[68] R. Fernandes, S. Bugla, P. Pinto and A. Pinto, “On the performance of secure
sharing of classified threat intelligence between multiple entities,” Sensors , vol.
23, no. 2, p. 914, 2023.

[69] C. Cai, X. Yuan and C. Wang, “Towards trustworthy and private keyword search
in encrypted decentralized storage,” in IEEE International Conference on
Communications (ICC), 2017.

[70] N. H. Sultan, K.-K. S. Y. Tran, S. Lai, V. Varadharajan, S. Nepal and X. Yi, “A Multi-
Client Searchable Encryption Scheme for IoT Environment,” arXiv preprint
arXiv:2305.09221 , 2023.

[71] S. Haber and W. S. Stornetta, “ How to time-stamp a digital document,” Springer
Berlin Heidelberg, , 1991.

[72] S. NAKAMOTO, “ Bitcoin: A peer-to-peer electronic cash system,” 2008.

[73] P. Palamara, “Tracing and tracking with the blockchain,” 2016.

[74] R. K. Osei, M. Canavari and M. Hingley, “An exploration into the opportunities
for blockchain in the fresh produce supply chain,” 2018.

[75] M. Shikha, K. Anshuman, G. Gürkan, B. M. Kumar and L. Madhusanka, “A Survey
on Role of Blockchain for loT: Applications and Technical Aspects,” Computer
Networks, vol. 227 , p. 109726, 2023.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 121 of 124

[76] M. Ejaz, T. Kumar, I. Kovacevic, M. Ylianttila and E. Harjula, “Health-blockedge:
Blockchain-edge framework for reliable low-latency digital healthcare
applications,” Sensors , vol. 21, no. 7, p. 2502, 2021.

[77] P. Zhang and B. Maged N. Kamel, “Blockchain solutions for healthcare,” Precision
medicine for investigators, practitioners and providers, pp. 519-524, 2020.

[78] S. Tanwar, K. Parekh and R. Evans, “Blockchain-based electronic healthcare
record system for healthcare 4.0 applications,” Journal of Information Security
and Applications, vol. 50 , p. 102407, 2020.

[79] H. L. Pham, T. H. Tran and Y. Nakashima, “A secure remote healthcare system for
hospital using blockchain smart contract,” in IEEE globecom workshops (GC
Wkshps),, 2018.

[80] J. Hathaliya, P. Sharma, S. Tanwar and R. Gupta, “Blockchain-based remote
patient monitoring in healthcare 4.0,” in IEEE 9th international conference on
advanced computing (IACC), 2019.

[81] A. Polar, M. Bunruangses, K. Luangxaysanam, S. Mitatha and P. P. Yupapin,
“Overlay Fiber Network Based MNRs for P2P Networks,” Procedia Engineering,
vol. 32 , pp. 482-488, 2012.

[82] J. Caubet, O. Esparza, J. L. ,. A. J. Muñoz and J. Mata‐Díaz, “Riappa: a robust
identity assignment protocol for p2p overlays,” Security and Communication
Networks, vol. 7, no. 12 , pp. 2743-2760, 2014.

[83] A. Srivastava and P. Ahmad, “A probabilistic gossip-based secure protocol for
unstructured P2P networks,” Procedia Computer Science, vol. 78 , pp. 595-602,
2016.

[84] H. Lee and A. Nakao, “Approaches for practical BitTorrent traffic control,” in IEEE
Conference on Local Computer Networks, 2013.

[85] P. Kopiczko, W. Mazurczyk and K. Szczypiorski, “Stegtorrent: a steganographic
method for the p2p file sharing service,” in IEEE security and privacy workshops,
2013.

[86] S. Neuner, M. Schmiedecker and E. R. Weippl, “PeekaTorrent: Leveraging P2P
hash values for digital forensics,” Digital Investigation, vol. 18 , pp. S149-S156.,
2016.

[87] Y. Fu, J. Shao, Q. Huang, Q. Zhou, H. Feng, X. Jia, R. Wang and W. Feng, Non-
transferable Blockchain-based Identity Authentication, 2023.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 122 of 124

[88] S. M R H, M. T. Rahman and N. Mansoor, “Exploration of Hyperledger Besu in
Designing Private Blockchain-based Financial Distribution Systems.,” arXiv
preprint arXiv:2311.08483., 2023.

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

www.privateer-project.eu © PRIVATEER Consortium Page 123 of 124

Glossary

Confidential Containers: The Cloud Native Computing Foundation (CNCF) has
launched a project called Confidential Containers, which aims to enable cloud native
confidential computing by utilizing hardware platforms like the Trusted Execution
Environment (HW-TEE). The project aims to secure data at the pod-level, removing
trust assumptions on the cloud side, and provides resource isolation, data protection,
and remote attestation. This approach does not require further modifications to the
container image during development.

Root of Trust (RoT): The RoT, as defined by the Global Platform, serves as a computing
engine, code, and potentially data, all co-located on the same platform, providing
essential security services. It has several types of implementations. More specifically,
it can be supported by a Trusted Execution Environment (TEE) or an embedded Secure
Element (eSE). Three types of RoT may exist in a trusted platform: i) a RoT for
measurement (RTM), ii) a RoT for reporting (RTR) and iii) a RoT for storage (RTS). The
baseline for a RoT is to support secure storage (i.e., RTS).

Trusted Execution Environment (TEE): is a secure area within a computer system's
hardware or software that provides isolated execution of sensitive code and data. It is
designed to ensure the confidentiality and integrity of the executed code and data,
even in the presence of potentially compromised or malicious components in the
system.

Trusted Computing Base (TCB): refers to the set of all hardware (e.g. memory and
storage), firmware, and software components that are critical to enforcing security
policies and maintaining the security of a system. TCB often still includes the operating
system.

Trust Property: refers to the different elements used by the Level of Trust Assessment
component in order to derive to a trust calculation. Among these properties
attestation results are included as well as Privacy SLAs, CTI information and other
information, as thoroughly reported in D4.1 [3].

D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A.

Contact Us
privateer-contact@spacemaillist.eu

PRIVATEER has received funding from the Smart Networks and
Services Joint Undertaking (SNS JU) under the European
Union’s Horizon Europe research and innovation programme
under Grant Agreement No. 101096110

Consortium

Space Hellas
www.space.gr NCSR Demokritos

www.demokritos.gr Telefonica I&D
www.telefonica.com

RHEA SYSTEM SA
www.rheagroup.com INESC TEC

www.inesctec.pt Infili Technologies PC
www.infili.com

UBITECH LTD
www.ubitech.eu IQUADRAT R&D

www.ucm.es ICCS
www.iccs.gr

FORSVARETS
FORSKNINGSINSTITUTT
www.ffi.no

UNIVERSIDAD
COMPLUTENSE DE MADRID
www.ucm.es

INSTITUTO POLITÉCNICO
DO PORTO
www.ipp.pt

 ERTICO ITS EUROPE
www.ertico.com

	1 Introduction
	1.1 Document structure

	2 Security & identity management components within PRIVATEER architecture
	2.1 Overview of the PRIVATEER architecture
	2.1.1 PRIVATEER Layers and Functionalities
	2.1.2 PRIVATEER Flows
	2.1.2.1 Secure Launching of a Confidential Container, Verification of (Confidential) Container Workload & Container Binding
	2.1.2.2 Definition of Trust Policy and update
	2.1.2.3 Extraction of runtime attestation evidence from the Security Probe and μProbe for the LoT Assessment
	2.1.2.4 Attribute-based Access to the Ledger
	2.1.2.5 Harmonization of Evidence for External Entities and Issuance of DIDs

	2.2 User Roles
	2.3 Functional specifications

	3 Runtime Attestation for varying Levels of Assurance(s) in virtualised environments
	3.1 State Of The Art
	3.1.1 System Configuration Integrity Verification as a crucial enabler for trust assessment
	3.1.2 Attestation of Virtualised Infrastructure Configuration
	3.1.3 PRIVATEER’s Innovation in Runtime Attestation

	3.2 Protocol description
	3.2.1 PRIVATEER Security Probe
	3.2.2 Service Lifecycle Management
	3.2.2.1 Elevating Secure Launch of Confidential Container through Secure Enrolment of a Security Probe and an μProbe to the Orchestrator and Verifiable Policy Enforcement
	3.2.2.2 PRIVATEER Runtime Configuration Integrity Verification (CIV)

	3.2.3 CIV High-Level Overview
	3.2.3.1 Secure Enrolment
	3.2.3.2 Runtime Attestation

	3.3 Plan for development

	4 Attestation in edge accelerators
	4.1 State Of The Art
	4.1.1 Single tenant
	4.1.2 Multi-tenant
	4.1.3 PRIVATEER’s Innovation in Edge Accelerator Attestation

	4.2 Protocol description
	4.3 Plan for development

	5 Blockchain for secure data exchange of trustworthiness evidence
	5.1 State Of The Art
	5.1.1 Smart Contracts
	5.1.2 Consensus Algorithms
	5.1.3 Access Control Mechanisms
	5.1.4 Blockchain platforms
	5.1.4.1 Hyperledger Fabric
	5.1.4.2 Hyperledger Besu
	5.1.4.3 Hyperledger Indy

	5.1.5 PRIVATEER’s Innovation in Blockchain

	5.2 Protocol description
	5.2.1 Building Blocks
	5.2.1.1 Secure Oracle – Town Crier (TC)
	5.2.1.2 Enclave
	5.2.1.3 Relay
	5.2.1.4 Hyperledger Besu - PRIVATEER Private/Public Ledger
	5.2.1.5 Security Context Broker (SCB)
	5.2.1.6 Attribute-Based Access Control (ABAC)
	5.2.1.7 Off-Chain Data Storage

	5.2.2 PRIVATEER Blockchain Infrastructure High-level Design and Flows mediated through Town Crier
	5.2.3 PRIVATEER Smart Contracts for Trustworthiness Evidence Management
	5.2.3.1 Smart Contract Data Model Definition

	5.3 Plan for development

	6 Distributed Identity Management
	6.1 State Of The Art
	6.1.1 Decentralized Identifiers (DIDs)
	6.1.2 Verifiable Credentials (VCs) and Verifiable Presentations (VPs)
	6.1.3 PRIVATEER’s Innovation in Identity Management

	6.2 Protocol description
	6.3 Plan for development

	7 Privacy-preserving CTI sharing
	7.1 State Of The Art
	7.1.1 Searchable Encryption
	7.1.2 Decentralization
	7.1.3 PRIVATEER’s Innovation in CTI

	7.2 Protocol description
	7.2.1 Set Up
	7.2.1 MISP Data Sync
	7.2.2 Shared Index

	7.3 Plan for development

	8 Conclusions
	9 References

