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Executive Summary 
Beyond 5G (B5G) technologies are currently undergoing substantial transformations 
as new functionalities emerge and new challenges arise. As we move towards the 
implementation of 6G technology, it becomes evident that strong security measures 
are necessary. A particularly interesting concept is Zero Trust. This concept operates 
under the assumption that no entity can be inherently trusted, and therefore all 
entities are required to provide evidence of their trustworthiness (i.e., correct 
functioning). By adopting the concept of Zero Trust, Mobile Network Operators 
(MNOs) may mitigate the risks posed by both external and internal threats, thus 
improving their overall cybersecurity posture. Zero Trust is crucial for defending 
against the dynamic threat landscape as well as the diverse systems and environments 
envisaged in B5G use cases. To adhere to this notion, a strict approach to security is 
crucial. Hence, apart from the more traditional threat intelligence approaches, 
PRIVATEER is further focusing on the development of attestation mechanisms across 
the network continuum. 

To promptly identify and address any deviations from the expected configuration, 
MNOs, Cloud Infrastructure Providers (CIPs), or Telecommunication Service Providers 
(TSPs) can implement strong attestation mechanisms, operating both at a remote and 
a local level. This enables the mitigation of risks related to unauthorized modifications 
that could result in data breaches or service disruptions. To achieve greater 
protection, attestation mechanisms should extend to further support runtime 
configuration integrity verification, apart from the traditional secure bootup. Towards 
this direction, PRIVATEER designs include the attestation of the correct configuration 
of edge accelerators (i.e., FPGAs) as well as the enabling of the ongoing monitoring 
and evaluation of the integrity of both the virtualised services as well as the entire 
containers throughout their entire operational lifecycles. The aforementioned designs 
further support different Levels of Assurance (LoAs) in accordance with existing 
standards. These levels define the verification levels achieved for each service or 
infrastructure component. 

Identity verification, authentication, and authorization are also essential for allowing 
only entities with the appropriate attributes to access a service or information related 
to the level of trustworthiness evidence. Self-Sovereign Identity (SSI) represents a 
progression from user-centric identity, allowing users to have complete control over 
their own identity without the need for a central authority. Towards this direction, 
blockchain technologies are leveraged in PRIVATEER both in regard to identity 
management as well as trustworthy data exchange as it pertains to trustworthiness 
evidence, leveraged for Trust Assessment. Blockchain by design offers a transparent 
and auditable means for information exchange, apart from confidentiality and 
integrity protection. one of Zero Trust 
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Furthermore, the EU's 6G vision for the next generation of telecommunications places 
great importance on privacy, implementing the necessary measures to provide 
advanced security while upholding privacy. To adhere to the privacy requirements, 
PRIVATEER adopts Zero Knowledge Proofs-based schemes, which provide a verifiable 
means to assert the configuration integrity of a virtualised service without revealing 
any details regarding the exact evidence that was obtained. Additionally, a Trust 
Exposure Layer is proposed to harmonise the acquired information, giving access to 
external (to the infrastructure) parties strictly to information regarding the level of 
trust. Finally, Searchable Encryption mechanisms are further leveraged in Cyber 
Threat Intelligence search operations, for protecting critical infrastructures by 
conducting searches over encrypted data.   
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1 Introduction 
In the rapidly evolving landscape of B5G technologies, novel functionalities emerge 
along with new challenges. While protocol designs emphasize security, the dynamic 
nature of cyber threats demands continuous adaptation and enhancement of the 
existing protective measures. As we transition to 6G, the imperative for robust 
security measures becomes even more evident. These measures refer not only to the 
offered services but also to the infrastructure where these services are deployed. 
Modern systems are envisioned to adhere to the Zero Trust notion. This notion is 
based on the assumption that no entity can be inherently trusted; hence, all entities 
must provide proofs over their trustworthiness and correct operation. By adopting 
Zero Trust principles, organizations can minimize the risks caused by insider threats 
and enhance overall cybersecurity posture.  

In the context of B5G systems, Zero Trust becomes instrumental in protecting against 
evolving cyber threats and safeguarding critical assets across distributed and 
heterogeneous environments. However, achieving Zero Trust-based security requires 
a multifaceted approach. Ensuring the integrity and resilience of both the services as 
well as the underlying infrastructure is paramount for safeguarding against 
sophisticated cyber threats that exploit vulnerabilities in interconnected services or 
even interconnected networks. As such, a comprehensive approach to security is 
essential, encompassing both remote and local attestation to verify the configuration 
integrity of virtualized services, Virtual Functions (VFs), Virtual Network Functions 
(VNFs), and the underlying heterogeneous infrastructure spanning from the core site 
to the edge. This integrity verification process should extend beyond secure bootup, 
covering runtime configuration as well, which allows continuous monitoring and 
assessment of system and network integrity throughout their operational lifecycles. 
Aligning with established standards such as those articulated by ETSI, the 
establishment of different Levels of Attestation (LoAs) becomes crucial, defining the 
accomplished verification levels for each service or infrastructure component. 

By implementing robust attestation mechanisms at both remote and local levels, 
Mobile Network Operators (MNOs), Cloud Infrastructure Providers (CIPs), or 
Telecommunication Service Providers (TSPs) can promptly identify and address any 
deviations from the expected configuration. This proactive approach mitigates the risk 
of unauthorized modifications which could lead to data breaches, or service 
disruptions, thereby enhancing the overall security posture of the network 
infrastructure.  

Furthermore, identity verification, authentication and authorization is another crucial 
aspect in this regard, ensuring that only actors (i.e., including both users and/or 
services) possessing the correct attributes can gain access to a service or information 
regarding the level of trust or the trustworthiness evidence. Self-sovereign identity 
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(SSI) is the next step beyond user-centric identity according to the European 
Commission 1. Compared to centralized identity verification and authentication 
schemes, SSI enables the user’s sovereignty and control over its identity, creating user 
autonomy, without the need of a central party that could be a single point of failure, 
while providing the ability to use an identity across multiple locations. Towards this 
end, the exploration of Decentralized IDentities (DID) by PRIVATEER, as specified by 
the W3C, presents a modern, decentralized, and lightweight alternative to established 
authentication methods. This innovative approach, encompassing DIDs, verifiable 
credentials (VCs), and verifiable presentations (VPs), extends beyond individuals to 
institutions and devices within the Internet of Things (IoT) ecosystem, further 
enhancing the security and trustworthiness of digital interactions. 

Simultaneously, privacy stands as a significant pillar of the EU’s 6G vision for the next 
generation of telecommunications. Fostering security measures that protect all actors 
involved, including users, services, or even the entirety of the underlying 
infrastructure, while preserving privacy, is pivotal. This focus on privacy underscores 
the essence of preserving individual autonomy and data confidentiality in the evolving 
digital landscape. Within this multifaceted ecosystem, privacy assumes a pivotal role, 
extending its relevance beyond end-users to encompass all engaged stakeholders. By 
embedding privacy as a fundamental principle, 6G endeavours to foster trust, 
transparency, and accountability, thereby ensuring the ethical deployment of future 
telecommunications technologies. Towards the direction of safeguarding privacy, 
Zero Knowledge Proofs enable verification of the configuration integrity of Virtual 
Functions (VFs) or Virtual Network Functions (VNFs) without the need to disclose 
specific details of the extracted evidence. By leveraging Zero Knowledge Proofs, 
organizations can authenticate the integrity of system components while preserving 
sensitive information, thereby enhancing privacy and confidentiality in the verification 
process. 

1.1 Document structure 
The rest of the document is structured as follows: Chapter 2 provides the architectural 
details over the WP5 as it pertains to its components, the internal structure and 
communication flows, along with the functional specifications. Chapters 3, 4, 5, 6 and 
7 detail on the runtime attestation for virtualised services and containers, attestation 
in edge accelerators, blockchain for exchange of trustworthiness evidence, distributed 
identity management and privacy-preserving CTI sharing components respectively. 
Lastly, Chapter 8 draws the conclusions. 

  

 
1 https://joinup.ec.europa.eu/collection/ssi-eidas-bridge 
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2 Security & identity management 
components within PRIVATEER 
architecture 

2.1 Overview of the PRIVATEER architecture 
An overview of the consolidated PRIVATEER architecture as it pertains to the 
distributed attestation, identity and threat sharing enablers is illustrated in Figure 1.  
The overall PRIVATEER architecture follows the notions of the HEXA-X flagship project 
[1] definitions, offering though security and privacy extensions for dynamic and 
evidence-based trust assessment. It shall be noted that the proposed framework is 
designed to remain agnostic to the specific orchestrator technology employed, 
ensuring flexibility and compatibility across various infrastructures and environments. 

2.1.1 PRIVATEER Layers and Functionalities 

The depicted architecture is separated into different layers.   

The infrastructure/asset layer is the fundamental level that consists of the physical 
equipment and assets necessary for the system to function (i.e., infrastructure 
elements). This layer comprises a wide array of devices, such as IoT devices, servers, 
switches, and routers, among others. The servers offer the hosting environment for 
the virtualized microservices and containerized applications that form the core of the 
PRIVATEER ecosystem. Among this hardware, Field Programmable Gate Arrays 
(FPGAs) are included for efficiently supporting applications such as Digital Signal 
Processing (DSP), Deep Learning, etc.  Furthermore, these servers may incorporate 
hardware-enabled Trusted Execution Environments (TEEs), such as Intel SGX, to 
establish secure and isolated execution environments known as enclaves. TEEs ensure 
that critical workloads operate within a restricted and isolated space, inaccessible to 
other software running on the same host.  

This capability significantly enhances the system's security by safeguarding against 
unauthorized access and ensuring the integrity of essential processes and data. 
Essentially, the hardware-enabled TEEs provide the Root of Trust (RoT) capabilities 
within PRIVATEER, facilitating the secure execution of critical binaries. In PRIVATEER, 
Gramine2 is leveraged, as the trust anchor, for instantiating all newly developed secure 
life-cycle management controls, within secure enclaves, in a lightweight manner. The 
Gramine technology was chosen because it has the ability to convert a software binary 

 
2 https://gramineproject.io/  

https://gramineproject.io/
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into a trusted equivalent that runs in a separate environment. This conversion can be 
done without making any updates to the code and without impacting its dependencies 
on other parts of the software stack. In essence, it enables the execution of any binary 
file within a secure and isolated environment known as an enclave. This technology is 
a recent development that falls under the established SGX TEE technology. In 
conjunction with Gramine, enclave-cc is utilised for the launching of confidential 
containers. 

Examining the Intel SGX-enabled servers, which provide the hardware-enabled TEE, 
there is a clear distinction between processes executed in the “trusted” and 
“untrusted” domain within the Security Probe. The “trusted” part of the Security 
Probe incorporates the attestation-related tasks as well as the validation of the active 
key restriction usage policies. It shall be noted that the “trusted” part further provides 
the Secure APIs, exposing an interface to the untrusted world. This interface will serve 
as a focal point for future research efforts focused on exporting attestation results, 
including attestation evidence for specific trust properties (e.g., integrity), directly 
from the trusted world. As mentioned in the D2.2 [2], the Attestation Agent residing 
with the Security Probe (i.e., the Prover) conforms to a zero-knowledge based scheme, 
ensuring the configuration state of the microservice by exporting a proof of 
correctness that includes, the key restriction usage policies instead of the traces. This 
proof of correctness is received by the Secure Oracle that acts as the Verifier. The 
protocol is challenge-based, with the Verifier initiating the process with a nonce. This 
approach avoids the disclosure of unnecessary information, adhering to the privacy-
preserving notions of PRIVATEER.  
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Figure 1 - PRIVATEER's Distributed attestation, identity and threat sharing enablers Architectural Overview 

On the other hand, the “untrusted” part of the Security Probe encompasses the eBPF 
tracer3 which collects the configuration integrity traces during runtime (i.e., from 
routines and services), and the Microservice Agility which is communicating with the 
Orchestrator and the Secure Oracle. This communication is expected to facilitate 

 
3 https://ebpf.foundation/  

https://ebpf.foundation/
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secure updates from the Orchestrator to the Security Probe, without requiring the 
latter to be re-enrolled. This feature, planned for integration in the platform's Release 
B, enables seamless updates such as the inclusion of updated versions of the 
Attestation Agent or the introduction of new components in the Security Probe. It shall 
be noted that apart from the Security Probe, attestation services are also supported 
by the FPGA devices, to ensure authenticity and integrity of the binary. 

Moving to the network control plane layer, this is where the deployment of 
virtualized microservices and containerized applications occurs. Servers designated 
for hosting microservices may be positioned either at the edge or the cloud side of the 
network, depending on specific application requirements and the desired proximity to 
end-users or data sources. PRIVATEER employs tailored attestation mechanisms 
designed explicitly to verify the integrity and authenticity of these services, comparing 
their runtime measurements to predefined reference values. This process ensures 
that the deployed services operate as anticipated, thereby strengthening trust in the 
system among users and stakeholders. Hence, in addition to the monitoring and 
attestation functions provided by the Security Probe for both the container and the 
underlying infrastructure, μProbes are deployed within the containers to ensure the 
configuration integrity of the containerized application. These μProbes are equipped 
with their own set of components, including eBPF tracers in the untrusted world, as 
well as Attestation Tracer, Attestation Agent, Key Management System, and Secure 
APIs in the trusted part. As a result, they independently collect configuration integrity 
traces, sign them with their respective attestation keys, and transmit them to the 
Security Probe for verification. This setup implies that the Security Probe not only 
reports its own attestation results but also incorporates the attestation results from 
the μProbes. More information regarding the Secure Launching of a container is 
elaborated in Section 2.1.2.1 of the present deliverable.  

It shall be clarified that the Security Probe and the μProbe serve distinct, yet 
complementary roles within the PRIVATEER platform's security architecture. The first, 
the Security Probe, operates at the container level, encompassing components like the 
Microservice Agility, the Attestation Agent, the Key Restriction Usage Policy Engine and 
the Verification Service. Its primary function is to ensure the integrity and security of 
the containerized environment, facilitating runtime attestation of the entire container 
and enforcing security policies. The μProbe, on the other hand, is tailored for individual 
microservices executed within the containers, providing a finer-grained approach to 
security monitoring and attestation. The combination of the two components provides 
a holistic security framework, safeguarding both the containerized environment and 
microservices against threats and unauthorized modifications. 

The secure and seamless deployment process of the microservices is supported by the 
Orchestrator. The latter receives service and security requirements from the Service 
Provider (SP). Additionally, the Orchestrator receives Cyber Threat Intelligence (CTI) 
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information through the Security Orchestration, Automation and Response (SOAR) 
element and can thus apply Security controls. It then translates these high-level 
requirements into concrete security characterizations, determining the specific 
security controls to be applied. For instance, it may decide to deploy the service with 
a Security Probe installed to offer runtime attestation. This process results in the 
creation of an Interpretable Manifest and Privacy Service Level Agreements (SLAs), 
which outline the security measures and performance expectations for the service 
based on both its characteristics and the underlying network and infrastructure. The 
Orchestrator's decision-making is driven by the goal of optimizing resource allocation 
to ensure that the necessary security enablers are provided as required for the 
execution of the service, thereby meeting performance and security objectives.  

With direct access to all resources within the infrastructure, the Orchestrator will be 
empowered in the Release B of the PRIVATEER platform to perform updates related 
to the Security Probe. This includes adding or removing internal modules within the 
Security Probe and updating their versions, such as the Attestation Agent. It is 
important to note that in the Release A of the PRIVATEER platform, updates regarding 
the Security Probe are not executed during runtime. Instead, the container needs to 
be relaunched to introduce an updated Security Probe.  

Furthermore, the Orchestrator initiates the construction of a smart contract that is 
published to the ledger via the Security Context Broker (SCB) and the Secure Oracle, 
ensuring transparency and immutability. This smart contract includes the agreed 
Privacy SLA between the Orchestrator and the Service Provider, as well as information 
related to network awareness (i.e., service graph chain). Additionally, the Orchestrator 
notifies the LoT assessment component upon the successful deployment of a new 
service, initiating the process of creating Trust Policies and uploading them to the 
ledger.  

The Level of Trust (LoT) Assessment is the component responsible for defining the 
Trust Policies for a specific service graph chain and performing the trust evaluation. 
More specifically, each service may require a different set of parameters, from specific 
trust sources. Therefore, it is imperative to define a Trust Policy based on the LoT 
Assessment, which will subsequently be made available on the ledger, through the 
Security Context Broker (SCB) and the Security Probe.  

The Security Context Broker (SCB) facilitates the construction of smart contracts for 
the Secure Oracle, providing the list of attributes, the Privacy SLA and the service graph 
chain topology as received from the Orchestrator, as well as the Trust Policies as 
received from the LoT Assessment component. It further facilitates the querying of 
the ledger on behalf of the LoT Assessment component and the Orchestrator. 

It shall be noted that if the service graph chain is modified then a new Trust Policy and 
smart contract shall be constructed by the Orchestrator and the Security Context 
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Broker through the Secure Oracle respectively. For auditability purposes the new smart 
contract will include a pointer to the old smart contract.  

The Secure Oracle operates with the support of a Trusted Execution Environment 
(TEE); thus, acts as an integral part of the PRIVATEER Trusted Computing Base (TCB). 
As such, it is inherently considered a trusted component within the system.  The 
Secure Oracle performs multiple tasks. Firstly, it receives and validates attestation 
reports generated by the Security Probes, ensuring the authenticity of the information 
provided. Additionally, the Secure Oracle is responsible for generating smart 
contracts, which contain comprehensive information required for trust assessment 
processes. These smart contracts, dedicated to specific services, include essential 
information such as i) Privacy Service Level Agreements (SLAs), ii) the service graph 
chain, iii) trust policies, iv) trust parameters (including signed attestation reports), v) 
access control attributes, and vi) pointers to off-chain storage for failed attestation 
evidence. To uphold the integrity of these smart contracts, they are hashed and signed 
with the Secure Oracle's private key, allowing any entity accessing the Ledger to verify 
their authenticity using the Secure Oracle's public key. Whenever the LoT Assessment 
accesses information stored in the Distributed Ledger Technology (DLT), through the 
SCB, for conducting a new trust evaluation, the outcome of this assessment can be 
incorporated into the smart contract. This integration occurs through communication 
between the LoT Assessment component and the Secure Oracle, allowing for the 
seamless inclusion of the evaluation result within the smart contract. The LoT and the 
Orchestrator may access the DLT through the Security Context Broker.  

It shall be noted that PRIVATEER further leverages Distributed Ledger Technology 
(DLT) for identity management. More specifically the concept of Self-Sovereign 
Identity (SSI) through Decentralized Identifiers (DIDs) is adopted in PRIVATEER, 
offering to individuals' ownership and control over their digital identities. DIDs provide 
a decentralized, tamper-proof method for verifying individuals' identities. These 
identifiers are stored on the Ledger, a distributed database that maintains a 
transparent and immutable record of all transactions and identity-related activities. 
Moreover, PRIVATEER incorporates the use of Verifiable Credentials (VCs), which are 
digitally signed documents that attest to the authenticity of specific identity attributes 
or claims. VCs enable individuals to prove their identity or qualifications to third 
parties without disclosing unnecessary personal information. The issued VCs are 
securely stored within the trusted boundaries of a secure wallet, which may be hosted 
by a trusted Service Provider or a User or an MNO.  

Additionally, each component collecting and reporting information to the Ledger, 
through the Secure Oracle, in the form of a Verifiable Presentation (VP). These 
components that report information to the DLT include i) the Privacy-aware 
orchestrator reporting the Privacy Index, ii) the Security Probe reporting the 
attestation result, iii) the Proof of Transit (PoT) controller reporting the result from the 
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PoT, iv) the CTI reporting the threats and v) the SLAs as reported by the Orchestrator. 
In both cases (i.e., external and internal users and components) the entity that acts as 
the credential verifier is the SCB.  

Lastly, PRIVATEER offers a Trust Exposure Layer, which guarantees the preservation 
of privacy, while allowing external entities, such as Mobile Network Operators 
(MNOs), users, or Service Providers to access specific data from the Ledger. More 
specifically, the Trust Exposure Layer ensures that the information provided to 
external entities is strictly limited to the trust state of a service, including information 
such as the trust property (i.e., integrity) along with the level of trust. Details, such as 
the exact evidence collected which may leak information regarding the underlying 
infrastructure, or service graph chain, are removed, protecting privacy without 
compromising the ability of external entities to assess the trustworthiness of the 
microservices. This harmonisation mechanism ensures that strictly relevant and 
necessary information is shared with external parties, harmonizing the information for 
safeguarding privacy; hence, effectively mitigating relevant risks.  

 

2.1.2 PRIVATEER Flows 

The PRIVATEER flow can be separated into phases. Please note that Secure Enrolment 
of the devices/assets is considered out-of-scope for PRIVATEER. Additionally, the 
Security Probe comes with pre-installed eBPFs and attestation capabilities; thus, in 
Release A of the PRIVATEER platform, it cannot be altered during runtime. If this stack 
requires modification, this means that the whole container has to be modified and 
relaunched. 

2.1.2.1 Secure Launching of a Confidential Container, Verification of (Confidential) 
Container Workload & Container Binding 

To ensure the proper operation of the edge-based framework and its services, it is 
essential that the containers are launched securely by the Orchestrator. It shall be 
noted that PRIVATEER seeks to adhere to the Confidential Container (CoCo) paradigm. 
In this regard, enclave-cc is utilized for launching confidential containers.  

The Orchestrator determines whether to deploy a confidential or legacy container 
based on the specific security, service, privacy, and trust requirements provided by 
the Service Provider (step 1) (i.e., through an intent). These requirements reflect the 
service’s needs, achieving a balance between performance and security. Evidently, not 
all containers should adhere to the same criteria. Therefore, these requirements serve 
as a basis for the service characterization. The service characterization process 
involves the translation of these high-level requirements into concrete security 
descriptions, which consider not only the service requirements but the infrastructure 
capabilities and imminent threats as well (step 2). Insights regarding the threats arrive 
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to the Orchestrator from the Cyber Threat Intelligence (CTI) component, through the 
Security Orchestration, Automation, and Response (SOAR) system. For instance, based 
on these requirements and threat assessments, the Orchestrator may opt to deploy 
services on SGX-enabled servers. 

Both legacy and CC-enabled image files are accommodated for deployment 
opportunities at the edge. Leveraging the Registry, the Orchestrator accesses 
containerized service images, network-oriented microservices and Confidential 
Computing (CC)-enabled services (e.g., Gramine TEE Overlay) for deployment (step 3). 
The integration of a TEE Gramine Overlay is essential for deploying CC-enabled 
services, facilitating the creation of a service manifest file atop an .sgx version, 
generated through enclave-cc. This .sgx version establishes an overlay layer of the 
Gramine-enabled image on a standard image file, leveraging Intel SGX hardware to 
initiate confidential containers. PRIVATEER's adoption of Gramine as its TEE 
underscores its commitment to security, with "Gramine-enabled image" emblematic 
of the secure conversion of legacy containers. 

The translation of requirements into characterizations culminates in the creation of 
an Interpretable Manifest, facilitated by the Manifest Interpretation component. This 
Manifest serves as a comprehensive set of configuration rules/actions, delineating the 
parameters necessary for deploying the microservice. It encompasses performance, 
security, trust, and privacy considerations, along with network and infrastructure 
capabilities (steps 2 and 4). Within the Interpretable Manifest, details such as 
container size, bandwidth, network dependencies, and specific security requirements 
for CC-enabled images are specified.  

Concurrently, the Orchestrator's SLA Manager formulates and transmits the Privacy 
SLA to the Service Provider, encompassing crucial information pertaining to 
performance, security, trust, privacy parameters, as well as network and 
infrastructure capabilities. This agreement entails all details that may facilitate the 
Service Provider in determining whether to proceed with deploying the service (step 
5). Upon agreeing to the deployment of the service, the Interpretable Manifest is 
transmitted to the Kubernetes Key Management System in order for the latter to 
initiate the secure launching of the container, leveraging the infrastructure assets 
(step 6). It shall be noted that the Registry is enhanced with the images of the 
containerized applications as well as the Key Restriction Usage Policies. These policies 
do not solely refer both to the containerized applications but may further extend to 
the infrastructure assets (step 7).  

Typically, in the case of a legacy container, the Kubernetes key Management System 
releases the Kubernetes key upon deployment for authenticated communication with 
the Master Node, without any prior verification regarding the correctness of the 
deployed container. PRIVATEER provides an extension as it pertains to the Kubernetes 
Key Management, by offering verification of the container prior to the release of the 
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Kubernetes key and certificate. This verification is conducted on the edge side. The 
node receives the application manifest (i.e., either for a legacy or a gramine-enabled 
confidential container) and a challenge (step 8).  

The node, after deploying the service, calculates the MR Enclave Reference Value 
Measurement and signs it with the MR Enclave Key. Likewise, the challenge is signed 
by the deployed μProbe, leveraging its attestation key. This signature guarantees the 
container’s authenticity, which is crucial in complex and multi-tenant environments 
where several instances of the same application may be instantiated; hence 
identification of the specific container that sends the attestation-related information 
is needed. The signed MR Enclave Reference Value Measurement along with the 
signed challenge is sent to the Kubernetes Key Management System, located in the 
Orchestrator for validation (step 9). This attestation key may be generated prior or 
during the launching of the container. More details on the attestation are available in 
Chapter 3.  

The Orchestrator knows the expected MR Enclave Reference Value Measurement for 
the specific node as well as the public part of the attestation key, hence it can validate 
the signature. If the received information is successfully verified, then the Kubernetes 
Key Management System releases the (Kubernetes) Key (i.e., asymmetric keypair) 
bound to the attestation key of the μProbe (step 10). The presented certificate is 
bound to the container's unique attestation key, preventing unauthorized usage.  

It shall be noted that a similar process is followed during the enrollment of the 
infrastructure element (i.e., SGX-enabled server) to the Orchestrator. More specifically 
the Security Probe residing in the SGX enabled sever is bound to the rest of the 
infrastructure (i.e., Orchestrator) through its own attestation key. This process is 
elaborated in Chapter 3.  

Moreover, it shall be clarified that updating the Security Probe in Release A involves 
re-enrolment. In the Release B, the PRIVATEER platform will be enhanced with the 
capability to update the software stack of the infrastructure element without the need 
to re-enrol (i.e., which involves recreating the key to re-enrolling the infrastructure 
element). This feature could be specifically interesting for the case of inter-domain 
service continuity.    

 

2.1.2.2 Definition of Trust Policy and update 

After successfully deploying a service, the Orchestrator notifies both the Security 
Context Broker (SCB) and the LoT Assessment component (step 11). This notification 
further includes information from the Orchestrator regarding the agreed Privacy SLA 
and the service graph chain topology. The latter is needed in order be aware of the 
exact trust sources that need to be queried in order to acquire the evidence. The LoT 
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Assessment utilizes this notification to craft a tailored Trust Policy for the deployed 
service. This Trust Policy encompasses various parameters necessary for assessing the 
trustworthiness of the service, including the privacy index, Proof of Transit (PoT), 
attestation results, and Cyber Threat Intelligence (CTI) data. Apart from the 
parameters, the Trust Policy includes information regarding the periodicity (i.e., how 
often to query the data) and the trust relationships (i.e., based on the service graph 
chain). This Trust Policy is sent to the SCB (step 12).   

The SCB is tasked with building a smart contract per service and defining the list of 
attributes. Nevertheless, the SCB which cannot directly upload a contract to the 
Ledger. This task is handled by the Security Probe. The Security Probe is the entity 
responsible for constructing and executing the (new) smart contracts. Hence, the 
smart contract including the Trust Policy, along with the rest of the information 
received from the Orchestrator such as the Privacy SLA and the service graph chain 
topology information is transmitted to the Ledger via Security Probe. The Orchestrator 
can use this Trust Policy-related information to initiate the attestation process. Should 
any updates be required to the Trust Policy, the LoT Assessment must accordingly 
update the smart contract. 

 

2.1.2.3 Extraction of runtime attestation evidence from the Security Probe and 
μProbe for the LoT Assessment  

The Orchestrator leverages information from the Ledger to determine whether 
attestation data is required for the trust assessment of a particular service, along with 
the periodicity at which this data should be obtained. This critical information is 
included within the Trust Policy field of the smart contract, providing clear guidelines 
for when and how attestation should be conducted to ensure the configuration 
integrity of the deployed services, the containers or even the underlying 
infrastructure. By accessing this data from the Ledger, the Orchestrator can effectively 
manage the attestation process; thus, maintaining the overall trustworthiness of the 
system. 

The Orchestrator triggers the attestation process by sending a challenge to the 
Security Probe(s), that participate in the service graph chain for the specific service 
and more specifically its Attestation Agent(s) (step 13).  This communication is further 
specifying which binary should be attested. Along with the challenge, the Orchestrator 
sends the Key Restriction Usage Policy. The latter is leveraged by the Security Probe 
to verify the responses from the μProbe(s). Each Security Probe and μProbe that 
participates in the specific service graph chain reports separately. 

In the example of Configuration Integrity Verification (CIV), the Attestation Agent 
residing in the Security Probe is tasked with verifying the integrity of the container. To 
accomplish this, the eBPF Tracer initiates the capturing of traces. The tracer consists 
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of two parts: one executed in the untrusted domain and another in the trusted 
domain. Hence, the traces are captured by the untrusted domain and signed by the 
trusted domain. Once the traces are collected and signed, they are transmitted to the 
Attestation Agent to initiate the integrity verification process.  

In parallel, the Key Restriction Usage Policy Engine applies Key Restriction Usage 
Policy, which was configured during the enrolment of the infrastructure element. 
These Key Restriction Usage Policies seal the usage of the attestation key to a new 
configuration state. For example, the by the Key Restriction Usage Policy defines the 
attestation by proof (instead of attestation by quote) scheme, chosen for conforming 
with the Zero Trust notion. Moreover, the Verifiable Policy Enforcer (VPE), as part of 
the Key Restriction Usage Policy Engine (KRPE), monitors the status of the versions 
running on both the Attestation Agent and the Key Restriction Usage Policy Engine. It 
ensures that these components remain active and up to date, detecting any instances 
where they may have become obsolete. 

Moreover, the Security Probe will send the challenge to the μProbe(s) in order for the 
later to verify the integrity of a specific binary, as it pertains to the containerised 
application configuration (step 14). Following a similar rational, as performed in the 
Security Probe, the eBPF Tracer initiates the capturing of traces. Once the traces are 
collected and signed, they are transmitted to the Attestation Agent to initiate the 
integrity verification process. The result, meaning the signed challenge with the 
Attestation Key of the μProbe is sent to the Security Probe for verification (step 15).  

The result of the attestation process can be provided either by the Microservice Agility 
to the Secure Oracle or directly by the trusted part of the Security Probe through the   
Secure APIs. Nevertheless, the provision of such TEE Device Interface Security Protocol 
(TDISP) extensions is still under research by PRIVATEER. 

The result of the entire attestation process, covering both the Security Probe and the 
μProbe, along the collected evidence is transmitted from the Security Probe to the 
Secure Oracle (step 16). It shall be clarified that the collected evidence is available to 
the ledger specifically for the cases where attestation has failed. The Secure Oracle 
verifies the signature of the received information from the Security Probe and includes 
the attestation report to the smart contract dedicated to the specific service. All 
evidence is available to the Ledger in a common Verifiable Presentation (VP) format 
(step 17). In instances where attestation fails, the raw information is stored off-chain 
for efficiency, with pointers to this external storage maintained on the Ledger. The LoT 
can then access the acquired information data through the Ledger to perform a new 
assessment (step 18), leveraging the SCB. Details on the exact operation of the LoT 
are available in D4.1 [3] .  
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2.1.2.4 Attribute-based Access to the Ledger  

Access to specific information on the ledger is regulated through Attribute-based 
Access Control (ABAC), ensuring that only entities possessing the correct attributes 
can access particular information. Furthermore, the information stored in the off-
chain storage is encrypted using Attribute-based Encryption (ABE), providing 
protection against unauthorised access. The list of this attributes is defined by the 
Security Context Broker (SCB), who disseminates to the Secure Oracle in order to be 
included in the smart contract. The SCB further acts as the verifier, meaning that 
whenever an entity (i.e., either internal or external to the network) requests access to 
certain information leveraging a set of attributes that it possesses, it is the SCB that 
will verify whether the attributes possessed by the entity are indeed the correct ones 
to access the specific information. These attributes may be encapsulated within a 
Verifiable Presentation (VP).  

 

2.1.2.5 Harmonization of Evidence for External Entities and Issuance of DIDs 

The information exchanged in the Ledger (i.e., including the evidence available in the 
off-chain storage) may contain sensitive information about the infrastructure that 
should not be accessible to external entities. These entities could include end-users, 
other Mobile Network Operators (MNOs), or even the Service Provider that provided 
the service under assessment. To address this concern and provide an enhanced 
privacy-preserving solution, PRIVATEER introduces the Trust Exposure Layer. This 
layer implements harmonization mechanisms to conceal information that is not 
relevant for external entities, thereby preventing the leakage of crucial infrastructure 
details. 

The Trust Exposure Layer serves as a protective barrier, controlling the information 
exposed to external entities accessing data from the Ledger. Its role is to ensure that 
only essential and non-sensitive information is made accessible. For instance, details 
pertaining to the service graph chain should remain private and not be disclosed to 
external parties. Instead, a summarized trust score reflecting the entirety of the 
service graph chain should be provided, offering a comprehensive yet abstracted view 
of the trustworthiness of the services involved. Through the Trust Exposure Layer, 
PRIVATEER maintains a delicate balance between transparency and privacy, allowing 
external entities to access essential information for trust-related decision-making 
while safeguarding sensitive infrastructure details (step 19). This privacy-preserving 
mechanism further enhances confidence in the system among users and stakeholders. 

To access this information, external entities must have previously obtained a 
Decentralized Identifier (DID) issued through the Ledger, specifically dedicated to 
Identity Management. This DID serves as the foundation for creating a Verifiable 
Credential (VC), which is then used to generate a Verifiable Presentation (VP). The VP 
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encapsulates the necessary attributes required to access specific information related 
to trust within the Ledger. By leveraging these cryptographic mechanisms, entities can 
securely present their credentials and prove possession of the correct access rights, 
without disclosing any further information, thus maintaining the sovereignty of their 
identity. The VCs and VPs are stored within the entity’s wallet. 

 

2.2 User Roles 
In the context of this deliverable, it is essential to define the set of user roles that are 
provisioned so as to flesh out the necessary functional specifications of WP5 activities 
and facilitate the description of each artefact in the upcoming sections. The main user 
roles presented in this deliverable are presented below:  

• Mobile Network Operator (i.e., Infrastructure Provider): These are the 
organizations responsible for the orchestration and management of the 
virtualized infrastructure where various services will be deployed. They further 
decide on the type of security controls and built-in security capabilities of them 
infrastructure and employ orchestration techniques for the optimal 
deployment strategy of all services to not violate any requirements as 
described in the Service level Agreements (SLAs). 

• Service Provider: These are organizations that are responsible for offering the 
b5G/6G services, to be deployed as part of the underlying software stack, but 
also the auxiliary processes (deployed on a virtualized infrastructure such as 
the MEC) for supporting the better and more scalable execution of a specific 
service. The role of a Service Provider can also be taken by the developer of a 
security analytics solution (e.g., such as the AI-based anomaly detection from 
WP3) for equipping the PRIVATEER framework with runtime risk indicator 
capabilities that facilitate the decision-making process of the orchestrator with 
respect to the deployment of a service graph chain. 

• End users: As end-users engage with various services and applications, their 
user equipment (UE) interacts with the network, leveraging Network Exposure 
Functions (NEFs) to access crucial insights into the capabilities and summarized 
trustworthiness data of service providers and underlying resources. For 
instance, when an end-user seeks to connect to a specific service, their UE may 
query NEFs to obtain trust-related data, such as the resources or security 
measures implemented within the service chain. 

2.3 Functional specifications 
This specification introduces the functional specifications in the context of the WP5 
activities. These specifications stem from the requirements that need to be satisfied 
from the various actors – namely, Mobile Network Operators, Service Providers, End 
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Users etc. In addition, this table presents the component-oriented functional 
specifications which, in turn, are further broken down into sub-specifications 
stemming from the associated internal components of each artefact. Specifically, the 
first 6 specifications (i.e., F.S.1-F.S.7) characterize the user-oriented functional 
specifications. Subsequently, F.S.8-F.S.13 refer to the specifications related to the 
Privacy-aware Orchestrator, while the next three (i.e., F.S.14, F.S.15, and F.S.16) 
capture the LoT assessment requirements. It needs to be noted that for these 
artefacts, only the WP5-related specifications have been mentioned. Next, a detailed 
analysis of all the specifications pertaining to the WP5 tasks is presented: from the 
PRIVATEER DLT (i.e., Security Context Broker specifications: F.S.17-F.S.18, Secure 
Oracle: F.S.19-F.S.21, and Trust Exposure Layer: F.S.37), up to the Identity 
Management component (i.e., F.S.22-F.S.24), the CTI sharing (i.e., F.S.25-F.S.27), and 
the attestation mechanisms: both in the far edge devices (i.e., F.S.28-F.S.30), but also 
in the data/network plane (i.e., F.S.31-F.S.36). 
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Table 1 - PRIVATEER Distributed attestation, identity and threat sharing enablers Functional Specifications 

ID As a(n) ... I want to be able to 
...  

So that I can ... Description 

F.S.1  Service Provider 
/ End user / 
Mobile Network 
Providers 

securely store the 
necessary keys, 
certificates, and 
decentralized 
identifiers 
 

Have access to secure IdM 
mechanisms. 

Securely storing cryptographic keys, certificates, decentralized identifiers (DIDs), 
verifiable credentials (VCs), and other sensitive credentials is essential in 
PRIVATEER. The adoption of the Hyperledger ARIES wallet provides a 
comprehensive solution, ensuring confidentiality, integrity, and availability. By 
integrating with ARIES, the end users achieve robust protection, meeting privacy 
requirements and instilling trust among stakeholders. 

F.S.2  Service Provider 
/ End user / 
Mobile Network 
Providers 

provide verifiable 
evidence on my 
identity in a 
privacy preserving 
manner 

get secure access into aggregated 
trust summaries 

The user/service provider should leverage Verifiable Credentials to disclose proof 
of ownership of the necessary attributes that grants access to the information 
stored to the DLT. In this flow, the Secure Context Broker (SCB) authenticates and 
authorizes the actors, who provide a W3C Verifiable Presentation (VP) with the 
Identification Management component-issued attributes that they want to disclose 
to the SCB. The SCB acts as a verifier and checks for the validity of the W3C VP - 
including its revocation status. Subsequently, a fine-grained attribute-based access 
control mechanism is used to validate whether the request is authorized (i.e., has 
the correct attributes) to access the requested information from the DLT. 

F.S.3  Service Provider provide the service 
container images, 
configuration and 
service 
requirements 

enable the orchestrator to deploy 
the service in the MNO 
infrastructure according to the 
service level agreement (SLA) 
 

A manifest encompasses broader details about the deployment, operation, and 
management of a service within a B5G/6G network. It associates the service 
requested by the Service Provider with the characteristics of the MNO 
infrastructure resources. Service container images are included in the 
orchestrator’s registry by the related service providers. If instructed by the service 
requirements, the service container images are launched in secure and isolated 
enclave processes once their correct state is verified. These interpretable manifests 
allow orchestrators to deploy the service using the required resources. This includes 
the decision on whether the service (or part of it) should be deployed in a TEE-
enabled environment where containerized applications can leverage the 
capabilities of the μProbe. This implies that the applications are deployed in 
infrastructure elements that possess a Security Probe to perform the necessary 
attestation mechanisms and secure software updates. Finally, through these 
interpretable manifests, the orchestrator can derive the required level of assurance 
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ID As a(n) ... I want to be able to 
...  

So that I can ... Description 

to be attained by the service graph chain. This information is also used to select the 
necessary key restriction usage policies to be enforced by the assets comprising the 
service topology. The enforcement of the key restriction usage policies is 
intrinsically linked with the necessary attestation tasks that should be supported by 
the service topology to monitor the Level of Assurance. The enforcement and 
evaluation of the key restriction usage policies and - consequently – the attestation 
tasks are carried out by the orchestrator. 

F.S.4  Service Provider have access to an 
immutable version 
of the SLA 
associated with the 
associated, 
deployed service 

ensure that its clauses and 
conditions cannot be tampered 
with and enable all B5G/6G 
components have access to a 
common ground truth. 

Once a service is deployed by an orchestrator, the agreed SLA between the Service 
Provider and the respective MNO is published to the DLT. Specifically, for each 
deployed service the orchestrator triggers – through the SCB - the creation of 
dedicated smart contracts responsible for expressing the SLA in an immutable and 
auditable way. This enables other PRIVATEER components – and authorized 
B5G/6G components – to access the SLA so as to perform their operation. For 
instance, the access to the SLA is essential for carrying out the LoT estimation as it 
provides all the necessary information with respect to the required trustworthiness 
level that a service needs to attain. For this purpose, it is crucial to have an 
immutable version of the Service Level Agreement to avoid any tampering. 

F.S.5  Service Provider monitor the 
aggregated trust 
summary of the 
service graph chain 
(through exposed 
trust summaries) 

measure and verify the SSLA-Trust 
conformance. 

Service providers have access to the respective aggregated trust summary 
pertaining to their service graph chains. Through their interface with the SCB, 
authorized service providers can consume trust state information reported in the 
DLT, without disclosing anything about the MNO’s topology.  Apart from the service 
providers, trust information is also consumed by the respective orchestrators so as 
to make the necessary decisions for ensuring the adherence of the SLA. In the 
context of the LoT estimation, this can be translated into ensuring that the actual 
level of trust is greater than the minimum accepted level of trust (i.e., required level 
of trust). Eventually, this could result in the construction of a new interpretable 
manifest by the orchestrator to respond (e.g., update the deployment) to the new 
LoT estimation results. Such a reaction might be related to the enforcement of 
additional security controls to the service graph chain to ensure the trustworthiness 
of the corresponding service. 
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ID As a(n) ... I want to be able to 
...  

So that I can ... Description 

F.S.6  Mobile Network 
Operator (MNO) 

access inter-
domain trust-
related information 

evaluate the trustworthiness of 
another domain without breaching 
its privacy 

In the context of a multi-domain service graph chain, it is essential that participating 
MNOs can acquire aggregated trust-related information about each other’s 
infrastructure. In this context, it is critical that the exchange of information is 
realized in a privacy-preserving manner – i.e., without disclosing anything about the 
actual intra-domain topology. To address this issue the plan is to build on top of 
existing standardized approaches for exposing network capabilities, such us 
through the definition of Network Exposure Functions [4]. Following the paradigm 
of the use of Application-Layer Traffic Optimization (ALTO) [5] protocol as a 
Network Exposure Function [6], the plan is to evaluate the extension of a NEF  
towards exposing aggregated trust results associated with the underlying network. 
This responsibility is carried out by the Trust Exposure Layer which is part of the 
Privateer DLT. Hence, in scope of this functionality, harmonization techniques are 
to be examined to ensure that no topology information is disclosed along with the 
trust guarantees of a domain. 

F.S.7  Mobile Network 
Operator (MNO) 

provide trust 
guarantees about 
the MNO 
infrastructure 

participate in service graph chains 
spanned across multiple domains 
(service continuity) 

As an MNO I need to expose capabilities and events to third-party authenticated 
and authorized Application Functions (AF). This would enable the MNO to host 
services that might span across multiple domains as instructed by the Service 
Provider’s requirements. PRIVATEER envisions to enhance the information shared 
with NEFs so as to include aggregated trust information in a privacy-preserving 
manner. The trust results are reported by the Level of Trust (LoT) estimation of a 
service while the harmonization is carried out by the Trust Exposure Layer. For 
enabling the LoT estimation, the MNO needs to provision the collection of 
trustworthiness evidence. Such evidence may be static ones such as the verification 
of the correct configuration of the nodes comprising a service graph chain, but also 
dynamic evidence collected during runtime. The latter type, involves among others: 
Proof of Transit evidence, attestation evidence, Cyber-Threat Intelligence sharing. 

F.S.8  Privacy-aware 
Orchestrator 

certify the 
infrastructure 
elements and 
spawned 
containers 

provide proofs pertaining to the 
secure launch of the resources that 
host a specific service 

Each service graph chain is deployed in a set of containers (i.e., application 
containers NFVs) deployed within infrastructure elements. To be able to ensure 
that the service has been securely deployed in this environment, a set of guarantees 
need to be made beforehand so as to ensure that both the infrastructure elements 
(e.g., server node added in the MNO’s cluster of resources) and the spawned 
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participating in a 
service graph chain 

containerized applications have been securely launched. Concerning the 
infrastructure elements that need to deploy TEE-enabled workloads, they are 
equipped with a Security Probe, while the respective containerized applications are 
deployed with their own μProbe.  These probe components provide the attestation 
mechanisms to securely attest to the correct state of the associated entities -
infrastructure element or containerized application - both during initialization (e.g., 
secure bootup), but also during runtime phase (e.g., configuration integrity 
verification). For these attestation mechanisms to be accepted a set of 
requirements need to be attained during initialization of the elements. First and 
foremost, the attestation mechanisms require a set of attestation keys that are 
securely stored and used by each infrastructure element and containerized 
application. These attestation keys need to be certified by the orchestrator so as to 
ensure the authenticity of the associated attestation data and to provide a proof 
that the orchestrator has verified the correct launch of each Security Probe and 
μProbe. Section 3 describes in detail all the necessary details pertaining to the setup 
and execution of the PRIVATEER attestation schemes. 

F.S.9  Privacy-aware 
Orchestrator 

have re-
programmability 
capabilities in the 
available resources 

manage the supported security 
controls that can be employed in 
the underlying infrastructure 

The feature of re-programmability is of paramount importance in the 
parameterization of the infrastructure, especially in the case of configuring the 
security controls deployed in the infrastructure. This configuration of the resources 
is achieved through Security Probe(s), and specifically through the Microservice 
Agility component of the Security Probe(s) (see Figure 1). This allows the 
orchestrator to configure the security controls supported by the deployed 
containerized applications. Of course, in the event of an update in the containerized 
applications, the container needs to be re-launched to put the new key restriction 
usage policies in effect. Two main examples of such configurations with respect to 
the enforced security control consist of: i) upgrading the security controls for bug 
fixing and/or introducing new attestation capabilities, and ii) installing new eBPF 
functionalities for capturing new threats through the collection of specific 
application/container traces. Regarding the former type, enhanced security 
mechanisms (e.g., monotonic counters) are going to be evaluated to ensure that no 
rollback of updated security controls can take place to downgrade the security 
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posture of a microservice. Finally, through the Microservice Agility layer it is 
possible for the orchestrator to trigger the collection of attestation evidence to 
monitor the Level of Assurance of the service graph chain, as dictated by the service 
requirements. 

F.S.10  Privacy-aware 
Orchestrator 

launch workloads 
and containerized 
applications across 
multiple resources 
in an isolated and 
secure manner 

ensure the confidential execution 
of the deployed service graph 
chains 

The use of confidential containers addresses this functional specification as they 
provide confidentiality and integrity for data, especially for runtime data. 
Confidential containers use hardware-based Trusted Execution Environments (HW-
TEE) for resource isolation, data protection, and remote attestation. In the context 
of PRIVATEER, we leverage the enclave-cc project4 which offers a process-based 
confidential container solution through Intel SGX [7]. The adoption of confidential 
computing lifts the trust assumptions that Service Providers need to have for the 
MNOs and the underlying infrastructure. Specifically, it is ensured that the client 
images are deployed in a confidential and tamper-evident manner (i.e., encrypted 
and/or signed images cannot be intercepted or corrupted by MNOs). In parallel, the 
workload data is managed in a confidential manner within the isolated environment 
(i.e., enclave process) without enabling MNOs to acquire access to the deployed 
data. 

F.S.11  Privacy-aware 
Orchestrator 

get an updated 
view of the trust 
state of the 
running edge 
services 

make an informed decision about 
the deployment of the service 
graph chain in the underlying 
resources 

The Orchestrator is responsible for the management of the correct deployment of 
the services as characterized by the SSLAs between the MNO and the corresponding 
Service Providers. Hence, they need to get as much insight as they can in order to 
make informed decisions about the optimal (i.e., in terms of resource management) 
and secure (i.e., in terms of threats in the infrastructure) usage of the underlying 
resources. The runtime assessment of the trustworthiness of a deployed service 
constitutes a crucial input that the orchestrator needs to consider when assessing 
the status of the service with respect to the SSLA. Hence, PRIVATEER should 
facilitate the adoption of a robust Level of Trust Assessment framework as 
presented in D4.1. On top of that, PRIVATEER needs to ensure the auditability and 

 
4 https://github.com/confidential-containers/enclave-cc  

https://github.com/confidential-containers/enclave-cc
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traceability of such trust related information which adds additional trust guarantees 
to the orchestrator. 

F.S.12  Privacy-aware 
Orchestrator 

get real-time, 
trustworthy 
anomaly detection 
events from the 
edge accelerators 

make an informed decision about 
the deployment of the service 
graph chain in the underlying 
resources 

The AI-based security analytics inference operation takes place at the edge 
accelerator devices deployed in the MNO infrastructure.  This enables the detection 
of any event that differs from the normal behaviour of the traffic within the domain. 
The use of such edge accelerators (e.g., FPGA boards) opens a set of attacks that 
need to be addressed to ensure the trustworthiness of the reported events. As 
further elaborated in Section 4 set of common attack vectors is mitigated using 
configuration integrity attestation mechanisms.  

F.S.13  Privacy-aware 
Orchestrator 

deploy the key 
restriction usage 
policies deployed 
in each 
containerized 
service (deployed 
in the edge) 

enable local attestation schemes 
where provers can provide 
attestation evidence if they are at a 
correct state  

Based on the manifest and the SSLA managed by the Orchestrator the necessary 
requirements for the level of trust are derived. These requirements are further 
translated into key restriction usage policies that need to be enforced in the assets 
of a service graph chain. This allows the infrastructure resources to attest to the 
correct state of their underlying Security Probe stack, to ensure that only provers 
with the expected set of components (e.g., eBPF tracer, Attestation agent, 
Verifiable Policy Enforcer as part of the Key Restriction Usage Policy Engine (KRPE)). 
The enforcement of such policies enables the adoption of a robust attestation 
scheme that enables verifiers to validate the correctness of provers’ state in a zero-
knowledge, distributed and scalable manner (e.g., Swarm Attestation scheme). In 
the context of PRIVATEER, the attestation schemes are configured by the 
Orchestrator. Once the Security Prove collects attestation evidence, these are 
forwarded to the Secure Oracle for verification before being sent to the DLT. From 
the prover’s side the attestation process is configured via the Microservice Agility 
Layer which in turn triggers the Attestation Agent, residing in the trusted world of 
the Security Probe of each infrastructure element. The Attestation Agent is also 
responsible to collect – if requested – any attestation evidence coming from the 
deployed μProve in the containerized applications. 

F.S.14  Level of Trust 
assessment 

retrieve evidence 
from various trust 
sources in a 

evaluate the expected and actual 
level of trust for the associated 
service and trust property (i.e., 
integrity) 

PRIVATEER ensures the availability of evidence coming from all the trust sources, 
for the calculation of the actual level of trust of a service are provided. Even though 
trust sources may share their evidence directly with the LoT estimation, they could 
be also persisted through the Privateer DLT. This could enable traceability and 
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verifiable and 
secure manner 

auditability characteristics or even contribute to historical analysis by authorized 
entities. For instance, having trustworthiness evidence persisted to the DLT enables 
the construction of a reputation metric for the trustworthiness of a service. In 
parallel, having (failed) attestation evidence reported to the DLT may enable 
authorized entities (e.g., MNOs) to identify new vulnerabilities for the deployed 
services and resources. 

F.S.15  Level of Trust 
assessment 

compute and 
report the level of 
trust estimation for 
a specific service 
over a time 
window 

Inform all interested parties about 
the trustworthiness of the deployed 
service 

The LoT estimation computes information reported in a secure and verifiable 
manner through the monitoring service graph chain. This is accomplished through 
the Secure Oracle that is responsible for reporting all incoming trustworthiness 
evidence (e.g., attestation evidence) to the DLT. For a specific time, window, the 
LoT estimation collects all associated information for a specific service and 
calculates the actual trust level. This information is posted back to the Secure Oracle 
to amend the information uploaded in the smart contract. These level of trust 
results are then available to all authorized entities. On the one hand the 
orchestrator consumes this information from the DLT in the context of its decision-
making process pertaining to the deployment of the service. On the other hand, 
end users, service providers and MNOs consume aggregated results of the LoT 
estimation to assess the trustworthiness of the underlying infrastructure and/or 
deployed service. 

F.S.16  Level of Trust 
assessment 

Keep track of 
evolution of the 
service graph chain 
for a particular 
service 

enhance the information associated 
with a specific service in the 
context of the trust assessment 
estimations and for auditability 
purposes 

Once the orchestrator has deployed a new service, the associated LoT assessment 
component gets notified about the deployed service graph chain. This enables 
construction of the necessary trust policies for the corresponding service, including 
the trustworthiness evidence that needs to be collected during runtime. Based on 
the decision-making process of the responsible orchestrator, the service graph 
chain is subject to change in the event of new functionality being included in the 
service or the re-evaluation of the deployment setup for performance and/or 
security reasons. This introduces the responsibility to the LoT assessment to update 
the enforced trust policies as well as ensure the association of existing information 
(e.g., trust results, trustworthiness evidence) with the new service graph chain. The 
LoT assessment is responsible for managing the update of the trust policies, but it 
is the Secure Oracle that should provide the necessary provenance metadata (i.e., 
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including the necessary pointers) so that the smart contract for the new service 
graph chain points to the existing information pertaining to the older service graph 
chains of the same service. 

F.S.17  Secure Context 
Broker (SCB) 

enforce access 
control policies for 
accessing the 
information stored 
on DLT 

support the conditional access to 
data for entities that have the 
necessary attributes 

In an intra-domain environment, the SCB provides the interface for Service 
Providers and MNOs to access the information stored to the DLT. Of course, only 
authenticated, and authorized entities can access the resources to the DLT. 
Specifically, the SCB authenticates requests that possess valid W3C VPs issued by 
the Identity Management component. From the W3C VP, the SCB extracts the 
presented attributes and uses its ABAC mechanism to decide whether the request 
has access to the intended data. Finally, as mentioned in Section 5, the PRIVATEER 
DLT distinguishes between on-chain and off-chain storage depending on the type 
of information. The decision of whether a piece of information is stored on-chain 
may depend on various factors, one of which is the size of the payload. In the case 
of attestation evidence, it might be optimal to store it off-chain and maintain the 
necessary integrity and authenticity checks on-chain to ensure that the off-chain 
data cannot be tampered with. Of course, on-chain and off-chain storage needs to 
be protected to ensure that only entities with the necessary attributes can access 
their data. For this purpose, the adoption of Attribute-Based Encryption 
mechanisms is considered in the context of the Secure Oracle functionalities (see 
F.S.17). The list of attributes used for the ABE mechanisms need to be stored 
unencrypted in a public channel. 

F.S.18  Secure Context 
Broker (SCB) 

receive 
notifications about 
the deployment of 
a new service 

trigger the instantiation of the 
necessary smart contracts in the 
DLT 

When a new service is deployed by the orchestrator, a notification is sent to both 
the SCB and the LoT Assessment. The latter creates the trust policy (e.g., set of trust 
sources, required trust level) and forwards it to the SCB. This set of information – 
i.e., the deployment notification and the trust policy – enable the SCB to initiate the 
creation of the necessary smart contracts to monitor the SLAs and trustworthiness 
level of the deployed server. More information pertaining to the smart contracts is 
reported in Section 5. 

F.S.19  Secure Oracle store 
trustworthiness 
evidence, SSLAs 

ensure the integrity of the 
associated information  

To avoid putting excessive trust to centralized entities, PRIVATEER envisions to 
leverage Distributed Ledger Technologies to deploy smart contracts for the 
execution and/or storage of trust-related information. For each service there is a 
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and trust results, in 
an immutable, 
interoperable, and 
auditable way 

dedicated smart contract for storing information such as the privacy SLA between 
the MNO and Service Provider, as well as for storing the LoT results. 
Trustworthiness evidence is also expected to be stored in the DLT, too. Since it is 
crucial to check the integrity of all the ingress data to the DLT, a Secure Oracle 
component is needed. Having a Secure Oracle (see Chapter 5) verifying the 
incoming evidence from various trust sources, increases the trustworthiness of the 
data to be used by the LoT estimation. Finally, when it comes to ensuring 
interoperability and verifiability of the reported evidence to the PRIVATEER DLT 
from the various trust sources, the use of W3C Verifiable Presentations is adopted. 
The aim is to express the reported trustworthiness claims in an interoperable 
fashion. The abstract data model for the expression of trustworthiness claims could 
be expressed using the IETF’s standardized YANG data model specification [8], the 
details of which are to be presented in D5.2 [9]. 

F.S.20  Secure Oracle encrypt 
information stored 
in the DLT 

Protect the stored data from 
unauthorized access 

When data are sent to the secure oracle to be stored in the DLT, it is possible that 
part of it may be stored off-chain. Such is the case of the trustworthiness evidence 
where it is appropriate to be persisted in an off-chain persistent storage, mainly for 
performance purposes. Hence the Secure Oracle provides the Attribute-Based 
Encryption (ABE) mechanisms to protect persisted payload. In addition to that, to 
ensure the integrity of the encrypted data, a pointer is stored in the smart contract 
(i.e., on-chain). 

F.S.21  Secure Oracle get real-time 
notifications about 
any changes in the 
Level of Assurance 
(LoA) regarding the 
service graph chain  

get an updated view of the 
trustworthiness level of the 
deployed service 

The Orchestrator is aware of the services’ characteristics and requirements as 
expressed by the SLA. Hence, it is responsible for triggering – through the 
Microservice Agility layer - the Security Probe of those infrastructure elements 
where the intended service graph chain is deployed. The aim is to monitor specific 
trust properties (e.g., integrity) and measure the Level of Assurance (LoA) of the 
corresponding service graph chain. This monitoring is realized thanks to the 
Attestation Agent component deployed in the infrastructure elements (Security 
Probe) but also in the Attestation Agents in the μProbe (containerized application). 
This attestation evidence is sent to the Secure Oracle that verifies them and reports 
them to the DLT, should a change in the Level of Assurance is detected. This report 
is taken into account in in the context of the LoT estimation. 
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F.S.22  Identity 
Management 
component 

provide a 
decentralized 
identity 
management 
solution in a 
privacy preserving 
manner  

allow the authentication of service 
providers and other stakeholders to 
the PRIVATEER cloud infrastructure 

Based on this requirement, PRIVATEER envisions to adopt the Hyperledger Indy [10] 
for the Identity Management Component. Hyperledger Indy is a Distributed Ledger 
Technology (DLT) specifically designed for DID management. Within Indy 
Hyperledger, it is possible to manage digital identities in a secure, privacy-
preserving, and interoperable manner. 

F.S.23  Identity 
Management 
component 

issue verifiable 
credentials that 
showcase the 
identity and the 
attributes of an 
entity, while 
supporting 
revocation 
capabilities  

enable the authentication and 
authorization of entities (e.g., 
service providers) to the PRIVATEER 
ecosystem 

For the Identity Management component to function as an issuer of W3C Verifiable 
Credentials (VCs), it needs to possess robust capabilities in credential issuance and 
management. Hence, the use of Hyperledger Indy is adopted as a Decentralized 
IDentity Management component. This entails the ability to generate and sign VCs 
in accordance with the W3C standard, ensuring their validity and integrity. The 
Identity Management component should have a mechanism for securely storing 
private keys used for signing credentials, implementing best practices in 
cryptographic key management to prevent unauthorized access. Furthermore, it 
should support the creation and customization of credential schemas to define the 
structure and content of VCs issued by the system. Additionally, the Identity 
Management component should incorporate efficient revocation mechanisms to 
invalidate issued credentials promptly, enhancing security and trust within the 
ecosystem. With these comprehensive capabilities, the Identity Management 
component can effectively act as an issuer of W3C VCs, providing trusted and 
verifiable digital credentials while ensuring robust revocation processes. 

F.S.24  Identity 
Management 
component 

provide a client 
wallet for the 
verifiable 
credential holders 
that allows for the 
secure storage and 
selective disclosure 
of the associated 
attributes 

ensure a secure authentication and 
authorization framework where all 
the necessary credentials are 
secure stored and presented in a 
privacy-preserving fashion 

The adoption of Hyperledger ARIES wallet offers a powerful suite of capabilities 
crucial for secure credential management. The wallet provides a secure storage 
element for cryptographic keys and enabling seamless management of DIDs. 
Additionally, it facilitates the secure storage of verifiable credentials (VCs), ensuring 
their confidentiality and integrity. With ARIES, users can leverage selective 
disclosure verifiable presentations (VPs), enabling controlled and privacy-
preserving sharing of credentials as needed. 
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F.S.25  CTI sharing 
entity 

run in a 
decentralized 
mode 

ensure that the CTI is highly 
available and does not constitute a 
single point of failure 

The CTI Sharing proxy API must not rely entirely on one server for data exchange, 
and as such, each entity should host their own shared index which synchronizes 
with the other entities whenever a change happens. 

F.S.26  CTI sharing 
entity 

protect the cyber 
threat information 
collected from the 
various domains 

control the access and ensure that 
only authorized users have access 
only to the intended parts of the 
CTI information 

The CTI Sharing proxy API allows for better information control through the creation 
of these shared groups, which have different policies. This also entails the 
generation of a new shared secret key between all entities participating in the 
group whenever it is updated (someone joins or leaves). 

F.S.27  CTI sharing 
entity 

protect the 
identity of the 
domain of the 
reported CTI-
related 
information 

ensure confidentiality among the 
parties of the same shared group 

The CTI Sharing proxy API relies on a reverse index to exchange information 
confidentially and securely. This entails being able to read, update and write to this 
index. 

F.S.28  Edge accelerator 
device 

have access to a 
secure element for 
storage, 
measurement, and 
reporting 

support remote attestation 
operations for verifying the correct 
state of the device during initial 
configuration 

Many efforts have focused on the development of Root of Trust provisions in low-
end devices. To address such resource constraints, various proposals have focused 
on the inclusion of Physical Unclonable Functions (PUFs) to facilitate the secure 
generation of cryptographic keys to be used in scope of attestation protocols; even 
though it is not offering secure storage capabilities, it is possible to reconstruct the 
attestation key in a secure and unclonable fashion [11] [12]. In the context of 
PRIVATEER, the aim is to provide an integrity attestation protocol for ensuring that 
edge accelerator devices (i.e., FPGA devices) are loaded with the expected kernel 
applications in a confidential manner (see Section 5). 

F.S.29  Edge accelerator 
device 

to protect the FPGA 
bitstream deployed 
in the edge device 

ensure confidentiality of the FPGA 
configuration information, 
especially in multi-tenant 
environment 

Use of encryption techniques for application’s bitstream, that contains the 
configuration for the hardware accelerators. This prevents unauthorized users 
accessing the code and thus mitigating reverse engineering attempts. 
 

F.S.30  Edge accelerator 
device 

acquire a 
certification about 
the application 
(i.e., AI accelerator 

Avoid any malware updates and 
insertion of malicious circuits. 

Remote attestation protocols are employed to verify the integrity of the users and 
the deployed code, as well as the attestation service running on the hardware 
accelerator. 
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kernel) running on 
the device as well 
as the attestation 
service 

F.S.31  Attestation 
Server in edge 
accelerator 
devices 

Obtain the 
necessary 
reference 
(expected) values 
for the application 
and device 
configuration 
running on the 
edge accelerators 

Verify the attestation evidence 
reported by the edge accelerator 
devices 

Regarding the integrity of the application, the reference values are uploaded by the 
developer of the accelerator to the attestation server, prior to uploading the 
application to the hardware accelerator 

F.S.32  Attestation 
Service in edge 
accelerator 
devices 

securely extract 
fresh attestation 
evidence 

attest to the correct state (device 
and application) of the edge 
accelerator device 

Responsible for generating the attestation report. Random nonces as well as PUF 
responses are going to be utilized, to enhance the security by providing robust 
encryption keys and avoid replay attacks. It is also important to verify the integrity 
of the attestation service. 

F.S.33  Attestation 
Agent in 
containerized 
application and 
infrastructure 
elements 

capture static and 
dynamic 
attestation 
evidence  

provide attestation evidence to 
prove the correct state of the 
application both during design 
phase (i.e., bootup), but also during 
runtime 

The attestation agent is a crucial component for both the Security Probe and the 
μProbe. It provides the prover’s entry point for participating to attestation 
protocols and proving its correct state. It is responsible for the collection of the 
necessary attestation evidence – e.g., through the invocation of the corresponding 
tracing mechanism – as well as the invocation of the policy enforcement checks to 
locally attest to the correct state and, eventually, sign the attestation evidence. In 
PRIVATEER a robust configuration integrity verification mechanism is presented 
that allows containerized applications to provide runtime guarantees about the 
integrity and the correct configuration of the underlying system. To provide robust 
and scalable attestation framework, the μProbe Attestation Agents report their 
attestation evidence to the respective Security Probe Attestation Agent of the 
infrastructure element where they are deployed. Subsequently, once the Security 
Probe verifies the collected μProbe traces, it includes its own traces and reports 
them to the verifier located at the Secure Oracle. Another challenge that is 
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investigated in the context of PRIVATEER is the ability to bind the attestation 
evidence with a specific enclave-cc instance of a containerized application (see 
Section 2.1.2.1). This is crucial in the context of B5G/6G landscape, especially given 
the replicated deployment of the same containerized applications (i.e., Kubernetes 
pod) across multiple resources. 

F.S.34  Attestation 
Agent in 
containerized 
application and 
infrastructure 
elements 

provide zero-
knowledge 
evidence about the 
configuration 
integrity of the 
deployed 
application and the 
container 

attest to the correct configuration of 
the prover entity without disclosing 
any type of the attested attributes. 

One crucial performance challenge of the configuration integrity attestation 
schemes is the size of the configuration information that needs to be shared with 
the verifier. On top of that, in the cases where the verifier is not necessarily trusted, 
this poses a privacy risk as the evidence collected in scope of attestation protocols 
may lead to software/firmware disclosure attacks. One key improvement that is 
employed in the context of the PRIVATEER attestation mechanisms (see Section 3), 
is to provide trustworthiness evidence in a zero-knowledge manner, while enabling 
the verifier to validate the correctness of the prover’s state without getting 
information about the underlying deployment and configuration details. Of course, 
the reporting of the evidence to the DLT by the Security Probe Attestation Agent 
(i.e., through the Secure Oracle) should be performed in a verifiable and 
interoperable manner through the adoption of the W3C Verifiable Presentations. 

F.S.35  Verifiable Key 
Restriction 
Usage Policy 
Enforcer in 
infrastructure 
elements 

provide guarantees 
that the correct key 
restriction usage 
policy is enforced 

enable the modification/update of 
policies while ensuring the 
obsoletion of older policies  

Based on input coming from the Security Orchestration and Automation Response 
(SOAR) element and other sources, the orchestrator may trigger the update of the 
employed security controls in the underlying infrastructure. Such security controls 
may involve the update of the installed Security Probe software stack (e.g., binary 
of the Attestation Agent). This communication is achieved through the Microservice 
Agility component. Such an action leads to a change of the configuration of the TEE. 
As a result, the already-enforced Key Restriction Usage Policy may no longer be 
valid. Such policies provide enhanced authorization mechanisms to the Prover's 
Attestation Key if and only if the respective protection policies, that are deployed 
as part of the underlying Root of Trust (i.e., in this case Gramine and Intel SGX), are 
satisfied. As mentioned in Section 3, part of the research explorations is to evaluate 
the security control updates coming from inter-domain orchestrators in the context 
of service continuity. In such cases, the Security Probe, through the Verifiable Key 
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Restriction Usage Policy Enforcer needs to ensure the validity of such requests and 
ensure that the correct key restriction usage policy is in place. 

F.S.36  Tracer in 
containerized 
application and 
infrastructure 
elements 

securely measure 
and report runtime 
evidence of the 
application to be 
assessed 

attest to the correct state of the 
prover containerized application 
during runtime 

The Attestation Tracer is an integral part of the PRIVATEER attestation mechanisms 
both in the Security Probe and the μProbe (i.e., lighter version of the Security Probe 
attestation tracer). It is invoked by the respective Attestation Agent element for 
collecting runtime traces which attest to the correct state of the container. In the 
context of PRIVATEER, we plan to leverage the eBPF tracing capabilities. Leveraging 
the re-programmability offered by the eBPF framework, it is possible to define the 
necessary tracing capabilities for capturing specific traces as demanded by the 
Orchestrator. Depending on the request for attestation evidence, an eBPF tracer 
could be implemented to provide Configuration Integrity Verification (CIV), Control 
Flow Integrity (CFI), or even Network Flow Attestation (NFA) related evidence. The 
development of eBPF tracer applications imply that the collection of traces is 
deployed in the untrusted host – i.e., not within the TEE. Nevertheless, the signing 
of the traces and the enforcement of the associated key restriction usage policies 
are executed within the trusted world to ensure the trustworthiness with respect 
to the key restriction usage policy enforcement and the signing of the attestation 
evidence on the prover’s side. To minimize the threat vectors due to the collection 
of the traces in the untrusted world, a research exploration is envisioned so as to 
evaluate the development of a secure set of APIs that report attestation evidence 
from within the trusted world. This could be achieved through the extension of the 
TEE Device Interfaces as specified in the TEE Device Interface Security Protocol 
(TDISP) [13]. 

F.S.37  Trust Exposure 
Layer 

harmonize the 
trust-related 
information 
concerning the 
underlying domain 
infrastructure 

share to authorized MNOs and end 
users about trust-related 
information to inter-domain service 
graph chains in a privacy-preserving 
fashion 

Providing network exposure functions (NEFs) for exposing network capabilities is a 
crucial – and standardized – aspect in the context of B5G/6G architectures. 
PRIVATEER envisions to enhance NEFs enabling the inclusion of trust guarantees as 
part of the exchanged information. However, this exchange is not possible to be 
performed directly from the DLT, since this opens a wide spectrum of privacy 
concerns – especially in multi-domain use cases. For this purpose, a specific layer, 
namely the Trust Exposure Layer, is envisioned to sit between the DLT and inter-
domain authorized users (e.g., MNOs) in an effort to provide trust-related 
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ID As a(n) ... I want to be able to 
...  

So that I can ... Description 

information in a privacy preserving. The Trust Exposure Layer, which is part of the 
Privateer DLT solution, should provide the necessary harmonization and 
aggregation mechanisms to ensure that the shared trust-related information 
cannot disclose any information about the exact topology of the underlying 
infrastructure.  
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3 Runtime Attestation for varying 
Levels of Assurance(s) in 
virtualised environments 

To conform to the Zero Trust notion, as priorly described, the trustworthiness of 
virtualised functions, systems, and their associated services should be attained. 
According to the International Standardization Organization, trustworthiness is the 
“ability to meet stakeholders’ expectations in a verifiable way”. While integrity 
verification is a pivotal aspect of trustworthiness, it is important to note that it is just 
one of the characteristics of trustworthiness, as defined in ISO/IEC TS 5723:2022 [14]. 
Other characteristics may include accountability, accuracy, authenticity, availability, 
controllability, security, privacy, quality, reliability, resilience, robustness, safety, 
transparency, and usability, according to the stakeholder’s/landscape’s requirements.  
PRIVATEER considers integrity verification through attestation as one of the 
trustworthiness characteristics used for the trust assessment. More information on 
the characteristics and the quantification methodology followed by the PRIVATEER’s 
trust assessment framework is available in D4.1 [3]. 

More specifically, the trustworthiness of a device can be established when it 
consistently operates in the expected manner for its intended purpose [15]. To ensure 
effective runtime configuration integrity verification, it is imperative to collect 
accurate system measurements, during the actual operation. These measurements 
serve as evidence, indicating whether any tampering has occurred compared to a 
predefined "correct state". Through this ongoing collection and comparison of the 
collected runtime measurements with the established baseline, potential threats can 
be promptly identified and addressed, allowing for proactive responses to security 
incidents. This evidence can be also defined as traces, while they are signed by the 
attestation key (AK).  

 

3.1 State Of The Art  
3.1.1 System Configuration Integrity Verification as a crucial enabler for 

trust assessment 

Evidently, it is crucial for these traces/measurements to be collected and verified in a 
secure manner, providing to any requesting party verifiable and trustworthy evidence 
over the system’s operation. To ensure this, such capabilities should be integrated into 
the underlying Root of Trust (RoT). The RoT, as defined by the Global Platform, serves 
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as a computing engine, code, and potentially data, all co-located on the same 
platform, providing essential security services. It has several types of 
implementations. More specifically, it can be supported by a Trusted Execution 
Environment (TEE) or an embedded Secure Element (eSE). Three types of RoT may 
exist in a trusted platform: i) a RoT for measurement (RTM), ii) a RoT for reporting 
(RTR) and iii) a RoT for storage (RTS). The baseline for a RoT is to support secure 
storage (i.e., RTS). To enable the runtime attestation of platform integrity, 
measurement capabilities (RTM) are indispensable for generating and collecting 
measurements, while storing and reporting capabilities (RTS and RTR) are further 
necessary to provide evidence regarding any potential tampering with these 
measurements [16]. 

Towards collecting and verifying evidence in a provenly secure manner, a Trusted 
Computing Base (TCB) may be leveraged, providing the RoT capabilities needed for 
protecting data in transit and data in rest.  The TCB is essentially a set of computer 
system components tasked with ensuring security. It comprises various security 
mechanisms and processes, including hardware, software, and firmware-based ones, 
that enforce security policies and manage the system's lifecycle. These components, 
including secure boot processes, cryptographic modules, access control mechanisms, 
authentication systems, secure storage mechanisms, and integrity measurement 
mechanisms, work together to protect the system from unauthorized access, 
modification, or exploitation. It is imperative for the TCB to consistently adhere to 
expected behaviour to avoid jeopardizing the overall security of the target system. The 
Trusted Computing Group (TCG) has played a pivotal role in standardizing remote 
attestation protocols, ensuring interoperability and compatibility across different 
platforms and vendors.  

The objective of PRIVATEER is to establish a flexible TCB that may be expanded 
dynamically. This is accomplished by utilizing a modern Trusted Execution 
Environment (TEE) that allows for the dynamic addition of components during 
runtime. These components are safeguarded by the TEE, hence enabling the 
expansion of the TCB. The TEE offers, in essence, a secure environment for critical 
services such as computations and safety-critical binaries, separating the “trusted” 
with the “untrusted” worlds of the host; thus, serving as a RoT. In addition to the 
expansion capabilities offered by the TEE, another rationale behind choosing it for 
executing certain tasks is the need for a minimised TCB. The TCB often includes the 
operating system and most of the hardware (e.g. memory and storage). Minimising 
the TCB can be achieved by reducing the TCB’s trust assumptions on software; thus, 
removing the operating system out of the TCB.  A minimized TCB reduces the risk of 
software bugs and errors, which could potentially disrupt the operation of critical 
services; hence, the TEE ensures that critical binaries will be timely and securely 
executed within its trusted boundaries.  
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Furthermore, PRIVATEER’s Attestation Framework expands its scope by verifying the 
correct configuration of the virtualised environments including VFs, VNFs where 
services are instantiated, in real-time, through local attestation guided by key 
restriction policies to support privacy-preservation. The proposed attestation scheme 
is based on the zero-knowledge proof paradigm, ensuring that the Prover can provide 
evidence of its correct configuration state without revealing any identifiable 
information to the Verifier. To prevent unintentional disclosure, the Prover sends a 
proof of correctness, including the fulfilment of key restriction usage policies, instead 
of the actual traces. This approach aims to provide privacy-preserving features for 
various application domains. The protocol is challenge-based, with the Verifier 
initiating the process by sending a nonce, and the Prover providing a signature using 
its confidential Attestation Key. The secure enrolment phase ensures privacy-related 
restrictions are considered from the initiation of operation, facilitating the provision 
of suitable key material and key restriction usage policies. These policies do not permit 
the usage of the key if the state is not correct. This approach aims to capture both 
security and privacy requirements for various application domains. 

3.1.2 Attestation of Virtualised Infrastructure Configuration 

Virtualization techniques and containerisation demonstrate growing popularity, 
particularly in cloud computing and 5G infrastructures, improving services by 
enhancing resource management, thereby optimizing speed, availability, and latency. 
Even though Trusted Computing has provided essential assurances for the secure 
execution of critical tasks, ensuring the integrity and trustworthiness of systems and 
data, the offered protection is not directly applicable to virtualised infrastructures and 
containers. It becomes evident that the security assurances provided by Trusted 
Computing should be extended to further protect virtualised infrastructures, which 
have become increasingly prevalent in modern computing environments. Such an 
extension would involve developing specialized runtime security controls for trust and 
security, tailored to the unique characteristics and requirements of virtualized 
infrastructures.  

Recognizing this gap, efforts are underway to extend Trusted Computing's security 
assurances to virtualized environments. One notable initiative is the Cloud Native 
Computing Foundation's (CNCF) Confidential Containers (CoCo) project. CoCo 
leverages hardware platforms like Trusted Execution Environments (HW-TEE) to 
enable confidential computing in cloud-native environments, ensuring data security 
at the pod-level. The CoCo project leverages established and developing hardware 
security technologies including Intel SGX (Software Guard Extensions), Intel TDX, AMD 
SEV, and IBM Z Secure Execution, along with novel software frameworks, to safeguard 
data in use. Following this approach, unauthorized access or modification of 
applications and data is successfully prevented, providing resource isolation, data 
protection, and remote attestation. Confidential Containers enable protection against 
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tampering with the infrastructure where the container is instantiated, and executed, 
allowing both secure bootup and secure (runtime) service execution, based on the 
underlying RoT. These assurances further represent the infrastructure’s capabilities 
based on security controls, enabling as a result the Level of Trust assessment for the 
specific virtualised infrastructure, as discussed in ISO/IEC TS 5723:2022 [14].  

ETSI has provided a classification that could be leveraged for mapping the extracted 
traces from virtualised infrastructures to specific Levels of Assurance (LoA) [17]. The 
scale uses 0-5, with a higher number indicating higher trust. PRIVATEER will leverage 
this classification to determine the appropriate scaling for its virtualized 
infrastructure. 

• LoA 0: refers to the state of lacking any sort of integrity verification. 
• LoA 1: involves verifying the integrity of the local hardware and virtualization 

platform (hypervisor) using signatures throughout the boot process and 
application loading. No evidence of integrity is provided. The integrity status is 
determined based on the platform state once the boot and application load 
operations have completed. 

• LoA 2: Enhancing LoA 1 by including the verification of the integrity of the 
hardware and virtualization platform through remote attestation. Boot time 
and application load time measurements are being examined.   

• LoA 3: expands on LoA 2 by incorporating the verification of VNF software 
packages at the local level, using signatures. It is necessary to verify signatures 
for all packages that are loaded when the VNF starts up, as well as when new 
packages are loaded (i.e., during the VNFCI boot and VNFCI application 
loading). 

• LoA 4: involves the inclusion of remote attestation for the of VNF software 
packages. VNFCI boot time measurements and application during runtime 
measurements should be used.   

• LoA 5: In addition to LoA 4, this includes the remote integrity verification of 
the infrastructure network, as well as the virtualization layer and VNF software 
packages, during runtime. 

o LoA5a refers to the use of remote attestation for infrastructure 
network remote verification, in addition to the checks required by LoA 
4.  

o LoA5b refers to the use of remote attestation for run-time integrity 
state remote verification of virtualisation layer and VNF software 
packages, in addition to the checks required by LoA4. 

Although Confidential Containers offer a reliable foundation for securing 
containerized applications, it is important to acknowledge that assessing the security 
levels of containers presents challenges in virtualized environments.  
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Remote Attestation of containers has been suggested through various methodologies, 
including "Container- Linux Integrity Measurement Architecture (IMA)". This method 
evaluates the integrity of each container on a platform using container PCRs. However, 
it has limitations, such as not authenticating closed containers and facing challenges 
when a container is stopped or restarted. Privacy for container measurements relies 
on a shared secret between the host system and the Verifier, but the protocol for 
securely disseminating this confidential information is not explicitly specified. In [18] 
the Keylime framework is leveraged to support a modified IMA, demonstrating low 
latency and independence from containerization technology. 

In [19] a solution is proposed to address the security monitoring needs of lightweight 
cloud infrastructures. This solution leverages remote attestation to verify the software 
integrity of cloud applications throughout their lifecycle. The solution employs widely 
used technologies and frameworks, such as the Linux Integrity Measurement 
Architecture (IMA), the OpenAttestation platform, and the Docker container engine. 

It becomes evident that conventional security techniques such as remote attestation, 
which were originally developed for physical systems, may have constraints when 
used in completely virtualized environments. In addition, specific security solutions 
may not be easily accessible in lightweight virtualization configurations. Despite these 
challenges, lightweight virtualization is gaining attention due to its inherent flexibility 
and minimal overhead. Therefore, this topic continues to be an area of interest for 
ongoing research.  

 

3.1.3 PRIVATEER’s Innovation in Runtime Attestation 

PRIVATEER introduces an innovative approach by adopting a local attestation scheme 
instead of traditional remote methods, alongside privacy-preserving techniques such 
as zero-knowledge proofs, specifically attestation by proof rather than attestation by 
quote. However, to effectively verify configuration integrity, the extracted traces must 
undergo validation against predefined reference values and policies. One challenge in 
this context is supporting policy updates while ensuring that the version running in the 
relevant components is the most recent. To address this challenge, PRIVATEER 
introduces a novel functionality called the Verifiable Policy Enforcer (VPE) as part of 
the Key Restriction Usage Policy Engine (KRPE), detailed further in Section 3.2.1. The 
scope of the runtime attestation scheme is to ensure the configuration integrity of the 
VFs and VNFs. PRIVATEER will further research container attestation methodologies.  

On the implementation aspects, the core of this framework relies on the use of a Root 
of Trust (RoT) and more specifically a hardware-enabled Trusted Execution 
Environment (TEE) named Gramine5. Gramine uses the Intel SGX technology to 

 
5 https://gramineproject.io/  

https://gramineproject.io/
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protect software running on untrusted hosts. The TEE allows for a minimised and 
extensible TCB, as previously explained, while Gramine offers a lightweight 
environment for supporting secure and isolated enclaves with ease of porting to 
different OSes, and process migration. Leveraging this TCB, PRIVATEER securely and 
verifiably collects infrastructure traces for attestation, with all critical security services 
anchored to the RoT instantiated within the Gramine TEE.  

 

3.2 Protocol description 
3.2.1 PRIVATEER Security Probe 

The PRIVATEER’s Security Probe in order to be instantiated, leverages the extension 
routines of the underlying TEE, which are designed to support: i) the Key Management 
System, ii) the Key Restriction Usage Policy Engine, iii) the Attestation Tracer, iv) the 
Attestation Agent. 

i) Key Management System: responsible for the secure generation, storage, and 
management of cryptographic keys. Emulating similar key management 
systems used in well-established Root of Trust (RoT) i.e. TPMs, where the 
cryptographic keys are compliant with the NIST standards and enable 
enhanced authorization access mechanisms through Key Restriction Usage 
Policies. 

ii) Key Restriction Usage Policy Engine (KRPE): offers one of PRIVATEER’s core 
novelties, enabling the local attestation. Local attestation offers the option to 
a Prover to attest to the integrity of its configuration and behavioural state to 
a Verifier without divulging implementation details. This is realized through the 
use of policy-restricted attestation keys, which exclusively generate signed 
attestation attributes when a node's compliance is confirmed by the local 
Attestation Agent. The KRPE supports a collection of logical equations 
formulated from these assertions. In this context, the KRPE processes hash 
digests of inputs via logical ports to determine the validity of a live Key 
Restriction Usage Policy. To seamlessly integrate the KRPE into PRIVATEER's 
Security Probe(s) and μProbe(s), it is conceptualized as a child process initiated 
by the device's Key Manager. This setup ensures that the KRPE operates 
entirely within the Trusted World (enclave), maintaining communication 
integrity between the Key Manager, which handles key authorization requests, 
and the KRPE itself. Moreover, PRIVATEER's Security Probes’ and μProbes’ 
configuration mandates that entity creators or administrators define the set of 
actions permissible before an action is classified as "completed."  
The PRIVATEER’s KRPE further supports the Verifiable Policy Enforcer (VPE) 
functionality. The VPE is responsible for validating the Key Restriction Policy 
Engine (KRPE)'s current version and preventing potential attackers from having 
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multiple obsolete policies active. It ensures that outdated policies are 
identified and characterized as obsolete, preventing unauthorized or outdated 
ones from affecting the system's security posture. It monitors the correctness 
of software versions executed by the Tracer and the Attestation Agent within 
the enclave. If these versions are successfully verified, the VPE authorizes the 
enforcement of a specific key restriction usage policy. Such authorization is 
feasible through the use of a signing key that is injected to the VPE component 
from the SCB. The injected VPE key is also bound with an appropriate Key 
Restriction Usage Policy, indicating that the VPE component is in a correct 
configuration state and that the Tracer and Attestation Agent are executing 
the expected software version.  

iii) Attestation Tracer: It consists of two parts: one operating in the untrusted or 
normal world, and the other running in the trusted world where the Tracer's 
secret key is securely stored. In the untrusted world, the Tracer continuously 
monitors processes and routines executed within each container or device, 
fetching new traces to collect essential information for attestation methods 
utilized in PRIVATEER, ensuring integrity. Its primary function is to capture and 
calculate the hashes of configuration properties from safety-critical untrusted 
processes and routines, thereby aiding in integrity verification. Although the 
monitoring in the untrusted world falls outside the TCB, a portion of the 
Tracer's execution occurs in the trusted world, within the TCB. This protected 
part encompasses cryptographic operations, including decoding raw security 
measurements, calculating real-time configuration hashes, and generating 
digital signatures over the configuration hash using the secret key. Once 
collected, the traces are signed by the Tracer in the trusted world and 
transmitted to the Key Manager to facilitate necessary operations. 

iv) Attestation Agent (ΑΑ): The Attestation Agent exposes Trusted Execution 
Environment (TEE) Device Interfaces based on the TDISP protocol [13], which 
provide runtime system measurements capturing the current device's 
configuration and operational state. These interfaces ensure the integrity of 
monitored traces even in the case of a compromised host. The Attestation 
Agent's role in providing authentic traces and ensuring secure exchange of 
these measurements is fundamental to the overall security and 
trustworthiness of the system. As PRIVATEER moves towards a zero-trust 
architecture, the trust assumptions are minimized. Two types of interfaces 
exposed by the Attestation Agent are Hardened-TDIs and Softened-TDIs. 
Hardened TDIs enable secure interaction with the PRIVATEER’s TCB, capturing 
the consumption of "TEE-assignable" resources and monitoring the integrity 
and authenticity of the Attestation Agent. Softened TDIs allow interaction with 
"non-TEE-assignable" processes, which do not need to possess the required 
security/trust capabilities but have a critical role in the overall system function. 
These untrusted processes mediate the communication of these events to the 
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(trusted) AA for securely executing the required functionality. Due to their 
updateable nature, they are not considered part of the Trusted Computing 
Base, and attestation mechanisms are employed to verify their integrity as part 
of the Attestation Agent software stack. 

 

3.2.2 Service Lifecycle Management 

As described in the previous chapters, the core objective of the PRIVATEER’s 
attestation mechanisms is dual: i) to enable the Orchestrator to securely launch 
confidential containers, and ii) to enable the enrolled devices and containerised 
services to attest their correct configuration during runtime when requested through 
a deployed attestation policy. This attestation policy defines whether a Configuration 
Integrity Verification process (or another) will be initiated. In PRIVATEER only CIV 
processes are supported. This attestation policy can be defined by the Secure Oracle 
that receives and validates the attestation reports from the Security Probe and pushes 
them to the ledger.  

It shall be noted that the secure launch of confidential containers further encapsulates 
two phases: i) the secure enrolment of the Security Probe to the infrastructure (i.e., 
Orchestrator) and ii) the secure launching of a service within the confidential container 
along with the μProbe which enables attestation and tracing.  Additionally, it shall be 
clarified that PRIVATEER aims at attesting the (runtime) configuration integrity for 
both the containerised application/service as well as the containers and devices 
supporting the deployment of the services, offering a holistic validation framework.  

The aforementioned objectives (i.e., secure launching and runtime attestation) are 
achieved through two different protocols namely: i) the Verifiable Policy Enforcement 
and ii) the Attestation by Proof. During the secure launch of a confidential container, 
the Orchestrator requests and verifies the creation of a restrained asymmetric 
Attestation Key (AK) pair within the Trusted World of the Security Probe offered by 
the underlying RoT (Intel SGX); thus, adhering to the Key Restriction Usage Policy as 
defined by the Orchestrator. The Attestation Key of each Security Probe gets certified 
by the Orchestrator and can be used for providing attestation evidence. Although 
these mechanisms ensure the secure deployment, the secure lifecycle manager is 
needed to ensure the runtime configuration integrity of the containerized service. 

 

3.2.2.1 Elevating Secure Launch of Confidential Container through Secure Enrolment 
of a Security Probe and an μProbe to the Orchestrator and Verifiable Policy 
Enforcement 

The first step, prior to the launch of a confidential container, is the secure enrollment 
of the Security Probe to the Infrastructure (i.e., Orchestrator).  
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More specifically, we propose a new functionality to be instantiated within the 
Security Probe, as an extension to the well-established enclave-cc. This extension 
removes one of the two attestation measurements (i.e., MRSigner) from the 
confidential container, as the corresponding manifest is self-signed by a random, 
untrusted key from the host (i.e., server) prior to launching. Aiming to render this 
scheme more secure, the PRIVATEER’s extension scopes to adopt Fuzzing techniques 
for the Orchestrator to deploy a unique Attestation Agent per Security Probe, but 
without altering any of its functionalities. This way the measurement of the enclaved 
Attestation Agent is unique and only known by the Orchestrator.  

It should be noted that the binary fuzzing is bound with the server’s unique 
identification public key and is reproduceable and reversible only by the Orchestrator. 
This way, the Orchestrator can attest the Attestation Agent of the Security Probe 
making sure that is launched correctly and proceeds with certifying the Security 
Probe’s Attestation Public Key.  

For the proper functioning of the PRIVATEER MNO-based framework, the secure 
launch of the MNO containers is of immense importance. To achieve this, PRIVATEER 
leverages the Kubernetes and the enclave-cc technologies, thus ensuring the reliable 
deployment and management of the confidential containers. To meet the 
requirements that PRIVATEER has set and support verifiability on the Key Restriction 
Usage Policy that is enforced, we are introducing a more sophisticated mechanism. 

Since the Security Probe is now launched (as thoroughly described in Section 2.1.2.1) 
and configured correctly, making it part of the PRIVATEER’s Trusted Computing Base, 
we can now authorize it to sign the manifest files of each μProbe; thus, enabling both 
attestation measurements offered by gramine. To be more precise, the MRSigner now 
is the digest of a certified public key, which private counterpart resides within the 
PRIVATEER’s Trusted Computing Base. This way we can ensure that each containerized 
μProbe hosts strictly up-to-date and authorized applications, either running under the 
umbrella of gramine or in the UnTrusted world. Due to this approach, the gramine-
enabled applications are configured as expected and are no longer vulnerable to the 
enforcement of an obsolete key restriction usage policy or to a potential unauthorized 
software rollback. 

 

3.2.2.2 PRIVATEER Runtime Configuration Integrity Verification (CIV) 

PRIVATEER plans to employ several attestation mechanisms so as to provide verifiable 
evidence regarding the execution of runtime services that are hosted within the 
PRIVATEER infrastructure. Such an attestation mechanism is Configuration Integrity 
Verification (CIV), used to ensure the correctness of the configuration of any 
containerised service that is deployed from the Orchestrator. As each MNO 
infrastructure is instantiated by TEE enabled with high computational power servers, 
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we are presenting a Zero-Knowledge CIV scheme based on the notion Attestation by 
Proof. More specifically, we are introducing a challenge response protocol, where a 
Verifier challenges the Prover with a fresh Nonce; if the Prover is able to handle the 
Verifier’s challenge (i.e. is capable of producing a valid signature with its certified 
Attestation Key), then the Verifier knows that the Prover is in a correct configuration 
state.  

By creating a valid signature, the Prover provides Attestation Evidence in a Zero-
Knowledge manner, as he is not disclosing the actual configuration of the attested 
container.  This is achieved by integrating the creation of the Attestation Key with the 
Secure Enrolment module, where the μProbe requests from the Orchestrator to issue 
a Key Restriction Usage Policy under which the Attestation Key will be bound. 

 

3.2.3 CIV High-Level Overview 

Having described all the entities and components that participate in the PRIVATEER’s 
CIV scheme, we will now provide a high-level conceptual overview of the scheme. 
More specifically, it can be broken down into two distinct phases, namely i) Secure 
Enrolment and ii) runtime Attestation. During the Secure Enrolment phase, the 
Orchestrator sets up the appropriate Key Restriction Usage Policy, whereas in the 
runtime Attestation phase the attested μProbe gets challenged by the Security Probe 
to provide attestation evidence. Both flows are illustrated in Figure 2. 

3.2.3.1 Secure Enrolment  

1. Consider a new service owned by the MNO that needs to be deployed by the 
Orchestrator. Firstly, the service has to be deployed containerised as part of a 
confidential container following the Secure Launch protocol described in 
Chapter 2. 

2. Afterwards, the Orchestrator makes the necessary actions for the creation and 
authorization of the Attestation Key. The Orchestrator fetches the reference 
values of the corresponding service in order to calculate the accepted 
configuration of the confidential container. In addition to the reference values 
of the containerised service, the reference values of the Attestation Agent 
Enclave (i.e., MRSigner and MREnclave) and a validation from the Tracer are 
appended for the computation of the accepted configuration. The expected 
configuration is signed and sent back to the Attestation Agents of the now 
enrolled μProbe. 

3. The μProbe’s Attestation Agent receives the signature computed by the 
Orchestrator, called Authorisation Ticket, and creates its Attestation Key 
bound with the respective (issued) key restriction usage policy. It has to be 
noted here that upon creation of the Attestation Key (of the μProbe), its public 
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part is sent to the Security Probe in order to be certified by the Security Probe’s 
Attestation Key. 

3.2.3.2 Runtime Attestation 

Next, we describe the runtime attestation interface initiated by a remote Verifier 
(Security Probe), performed each time we need to collect Attestation Evidence from a 
μProbe, igniting basically a challenge response mechanism. Through this protocol the 
Prover creates evidence for the Verifier ensure that it is indeed in a correct 
configuration but without disclosing any information regarding its state 

1. A Verifier, that is going to be the Security Probe, issues a fresh challenge that 
is going to be sent to the Attestation Agent of the Prover (i.e., μProbe). 

2. Upon reception of the challenge the Attestation Agent creates a fresh nonce 
that is sent to the Tracer. 

3. The Tracer on his behalf starts introspecting the requested services and 
extracts security measurements regarding the configuration of the attested 
services. Upon collecting the Traces, it uses its secret Key (Tracer_priv) to 
calculate a digital signature over the extracted traces and the nonce issued by 
the Attestation Agent. Afterwards, the signature along with the Traces are 
going to be sent back to the Attestation Agent. Let H() represent the hash of 
an information. The signature (σ) is calculated as follows: 

σ= Sign(H(Traces||nonce), Tracer_priv) (1) 

4. The Attestation Agent creates a fresh session and starts executing the policy 
enforcement algorithm in order to get access to its Attestation key. The is 
initiated with zeros, hence RuntimePolicy=(00...00). 

i. Appends to the fresh session the measurement of the entity that signed 
his configuration (i.e. the Security Probe) 

RuntimePolicy=H(RuntimePolicy||MRSigner) (2) 
ii. Appends to the session the measurement of the enclave application 

that is instantiating the Attestation Agent 
RuntimePolicy=H(RuntimePolicy||MREnclave) (3) 

iii. Appends to the session the Security measurement that the Tracer 
extracted.  

RuntimePolicy=H(RuntimePolicy||Traces) (4) 
iv. Verifies the signature of the Tracer with the Tracer’s certified and pre-

shared public key (Tracer_pub).  
Verify(H(Traces||nonce), σ,  Tracer_pub) (5) 

If the verification is completed successfully the Attestation computes 
the name of the Tracer’s key, which is the hash digest of the public key, 
Tracer_Name=H(Tracer_pub) and appends it to the runtime policy, 

RuntimePolicy=H(RuntimePolicy||Tracer_Name) (6) 
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v. With the RuntimePolicy, the Attestation Agent will verify the 
Authorization Ticket that it acquired by the Orchestrator in the Secure 
Enrolment phase,   

Verify(RuntimePolicy, AuthorizationTicket, Orchestrator_pub) (7) 
 If the verification is completed successfully, the RuntimePolicy is re-set 
to: 

RuntimePolicy=H(CC||Orchestrator_Name) (8) 
where CC is the command code of a specific policy command. 

vi. The Attestation Agent will recompute its AK_priv using the same KDF 
that was used during the Secure Enrolment phase. The newly derived 
key gets hashed and compared with the AK_Hash. If these two digests 
match, then the Attestation Agent has successfully recreated its 
AK_priv. 

5. The Attestation Agent uses its AK_priv to sign the initial challenge the Verifier 
has sent to it and then discards the AK_priv. 

 
Figure 2 - PRIVATEER Join and Runtime Attestation Phase 
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3.3 Plan for development 
In the present month within the domain of the PRIVATEER project, Task 5.1 has 
successfully instantiated a functional system designed to furnish a robust security 
framework tailored for cloud-based infrastructures. Moving forward, the trajectory of 
development entails a comprehensive exploration of supplementary methodologies 
and safeguards to fortify this system, capturing higher Levels of Assurance. 

Primarily, regarding PRIVATEER's forthcoming Release A, efforts are concentrated on 
integrating Confidential Containers (CC) and advanced attestation mechanisms such 
as the described configuration integrity verification scheme presented in the above 
sections, into the foundational RA (Release A) protocol. To be more precise, in the 
current PRIVATEER framework release we have achieved to implement security 
mechanisms that achieve LoA 2. That being said, further development and design 
plans after the release A include the consideration of minimising the Trust 
assumptions regarding the Trustworthiness of the host, in order to elevate the Level 
of Assurance even further. 

To this end, we are investigating attestation mechanisms to enable the attestation of 
every server that belongs to the PRIVATEER infrastructure, introspecting every 
security related aspect from VNFs to hosted containers. Such mechanisms are 
targeted to be investigated through the eBPF technology that enables tracing in kernel 
level of syscalls, netcalls and others. 

In summary, the development in the remaining months of the PRIVATEER’s will 
continue to explore new technologies and solution to enable introspection of various 
aspects of the system that are critical for the secure lifecycle of the PRIVATEER’s 
infrastructure. The upcoming security modules will be integrated seamlessly with the 
existing operational base design, and the final iteration of Task 5.1 will be delivered in 
PRIVATEER’s Release B. 
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4 Attestation in edge accelerators 
The future network generations promise higher speeds to meet the connectivity 
requirements, but simultaneously introduce new challenges, especially in terms of 
security and privacy. Hence, real-time threat analysis and mitigation mechanisms are 
needed to protect sensitive data and critical infrastructure. However, existing general-
purpose CPUs cannot always meet the performance criteria necessary for robust and 
real-time security in 6G networks. Towards this direction, alternative platforms such 
as hardware accelerators and more specifically Field Programmable Gate Arrays 
(FPGAs) are being investigated. FPGAs provide energy-efficient and high-performance 
computing capabilities, utilizing configurable logic blocks for digital logic. Unlike fully 
customized solutions (i.e. ASICs), they can be reconfigured according to the desired 
application requirements.  In addition to the programmable logic, FPGAs often include 
a hard processing system (ARM-based or x86-based), which is responsible for 
configuring the device and transferring data coming from different systems. Although 
FPGAs offer an appealing solution, the PRIVATEER tracing and attestation 
mechanisms described in Chapter 3 are mainly designed for virtualized 
infrastructures; thus, tailored trust extensions need to be considered for the far edge 
and edge sites to further support FPGA devices. 

In parallel, despite their performance efficiency, hardware accelerators may still 
introduce security and privacy concerns [20]. Figure 3 presents some of the most 
popular attacks, along with some of the available countermeasures. The threats can 
be divided into two sections, regarding the system’s architecture: i) Single tenant 
referring to one application running to an Edge accelerator and ii) multi-tenant attacks 
representing scenarios where there is resource sharing from multiple users and 
kernels.  Among the different options presented, attackers often perform 
unauthorized updates to application code, causing malicious effects on their 
functionality. They program devices with malware code, insert malicious circuits 
(often referred to as hardware trojans) for distributed Denial-of-Service (DDoS) 
attacks, or steal sensitive information. Side channel attacks rely on power and timing 
analysis, while replay attacks exploit security vulnerabilities. Attackers also reverse 
engineer user code to extract valuable information, such as the application's 
functionality. These attacks can be successful through various methods. 

Recent literature explores methods to ensure secure remote configuration of 
hardware accelerators using FPGAs' inherent reconfigurability, aiming at protecting 
both the devices and the supported applications from the various attacks. Towards 
this direction, remote attestation protocols may be utilised, where essentially a host 
confirms to a remote server (through a predefined protocol tailored for each use case), 
the hardware configuration. However, managing the storage and generation of 
cryptographic keys poses a challenge.   
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Non-volatile memory (NVM) is commonly used for storing cryptographic keys, but it is 
vulnerable to attacks like side-channel. To reduce these risks, researchers have 
developed Physical Unclonable Functions (PUFs) specifically designed for FPGA 
devices [21]. PUFs create unique, impossible-to-replicate responses, which serve as 
authentication keys. This method simplifies the process of establishing a unique 
ID/cryptographic key for a specific FPGA device and strengthens security measures 
against unauthorized access. Regarding multi-tenant scenarios where there is 
resource sharing in a single accelerator card, isolation techniques between the 
different kernels are applied, while also power obfuscation strategies are utilized, to 
avoid remote power analysis attacks that can extract sensitive information (i.e. 
cryptographic keys). 

 

 
Figure 3 - Overview of hardware accelerators security attacks along with possible countermeasures 

When examining different research works, it is important to also consider the trust 
models that are available for hardware accelerators. This should be accomplished 
based on the specific use cases of the application and the stakeholders involved [22]. 
The traditional trust model in hardware accelerator security comprises two main 
entities: i) the application developer and ii) their client, aiming to protect the designs 
for a specific target device. Towards protecting the design, encryption is performed, 
which binds it to a specific FPGA device that can decrypt it. Nevertheless, this method 
has specific constraints as it is confined to only one device and relies on implicit trust 
in the product creator. Consequently, it fails to meet the needs of contemporary 
applications and the different demands of stakeholders. 

Hence, it is imperative to investigate alternative trust models that effectively manage 
security, flexibility, and trust, in order to promote innovation and resilience in FPGA-
based systems within the ever-changing environment of 6G networks. An example of 
a trust model that should be considered in terms of PRIVATEER, is allowing developers 
to share their designs (i.e., AI/ML models for anomaly detection applications) with 
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multiple clients without revealing their source code. It is important to implement 
effective design rights management in order to protect the deployed core. An example 
of this nature typically entails the involvement of a trusted authority that facilitates 
the secure transfer of application cores to the FPGAs. 

In the following paragraphs the State of the Art (SotA) is presented, proposing various 
methodologies to counter the aforementioned attacks with the respective security 
assumptions. 

 

4.1 State Of The Art  
4.1.1 Single tenant 

Many research studies depend on the inclusion of supplementary modules alongside 
hardware accelerators at both the hardware and software levels to carry out secure 
configurations. At first, certain proposed schemes were based solely on dedicated 
hardware modules of the target device, without the involvement of a trusted third 
party (TTP). One example is described in paper [23], where the establishment of trust 
between the FPGA and the CPU is achieved through the utilization of secure software 
that is linked to the bitstream of each application. The clients are provided with an 
encrypted module and the corresponding software to manage CPU-based tasks. 

“Fasten” [24] proposes an alternative method where users encrypt their designs 
specifically for a target FPGA device. The primary principle is based on the utilization 
of pre-installed PUF-based public and private key generators provided by the 
vendors. In order to mitigate the lack of trust with the platform provider, the user 
directly accesses distinct embedded keys to the FPGAs (which serve as unique device 
identities) from the vendor. The vendor maintains a secure database that records the 
deployed keys and their corresponding devices. Nevertheless, the absence of an 
external verification server renders these solutions inflexible and susceptible to 
vulnerabilities in the event of an update, while also raising concerns about user 
authentication. 

More robust approaches are available in the literature that aim at enabling secure 
remote updates to devices through remote attestation protocols. One of the first 
schemes is proposed in [25], where one FPGA device securely receives an updated 
configuration bitstream from a dedicated update server. Each device is equipped with 
a unique identifier and cryptographic key, establishing a symmetrical key that is 
mutually shared between the FPGA and the server. The server employs this key to 
transmit encrypted bitstreams to specific FPGAs via an unsecured communication 
channel. In addition, the scheme includes a remote attestation mechanism that 
verifies the current configuration's status and the update process. The update server 
operates as a Trusted Third Party (TTP), with the responsibility of allocating 
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cryptographic keys and configuration bitstreams to individual Field-Programmable 
Gate Arrays (FPGAs). 

A more recent work with additional functionalities is presented in [26] by the name 
“ShEF”. ShEF is designed as a shield component that can be integrated into existing 
FPGAs to ensure that only authorized users can access the hardware accelerators in 
the cloud and maintain data confidentiality. Their solution offers a secure boot 
procedure and a remote attestation process to restrict access exclusively to 
authorized users. The establishment of RoT is achieved by utilizing dedicated 
embedded keys in the FPGA, while a software-based security kernel verifies the 
received acceleration module. In addition, hardware-based encryption modules are 
utilized to address the possibility of malicious users gaining access to data. 

Furthermore, authors in [27] propose a scheme where self-attestation of the FPGA 
device is performed, namely without a software-based process. The FPGA is divided 
into two partitions, one static and one dynamic. The first remains unchanged for 
performing the verification, while the second one is reserved for loading the hardware 
accelerated application. The attestation protocol relies on securely erasing the 
existing memory contents in the FPGA prior to uploading a new application code; 
therefore, any potential pre-existing malicious modules are also removed from the 
device. Furthermore, the network traffic passes only through the FPGA device, where 
along with the key generation module, the required Ethernet core is implemented. 
Like the other works, the remote attestation process involves communicating with an 
external server, acting as a verifier, where the exchanged data is authenticated.  

In addition to the aforementioned studies, various works focus on the SoC-FPGAs 
which consist of an ARM-based CPU in conjunction with FPGA logic. Most of the 
suggested methods for guaranteeing the integrity verification of Edge Devices rely on 
the existing ARM Trustzone TEE  6. This trusted execution environment, designed for 
ARM CPUs, safeguards sensitive user code by offering hardware-enhanced isolation 
for these applications (as mentioned in Chapter 3). A recent study [28], implements 
modules for securely booting accelerator kernels in FPGAs alongside the existing TEE 
solutions. In addition to the in-device functionalities, an external proxy-server is used 
for performing a custom remote attestation protocol.  

4.1.2 Multi-tenant 

The use of multi-tenant application of FPGAs, where multiple kernels are 
implemented on a single device, is becoming increasingly popular due to the 
advancement of partial reconfiguration. This feature allows for the programming of 
specific sections of the device. Various research works in literature are focusing on 
countering side channel attacks. For example, authors in [29] propose a power 

 
6 https://www.arm.com/technologies/trustzone-for-cortex-a  

https://www.arm.com/technologies/trustzone-for-cortex-a
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obfuscation solution, in which using adjustable noise generating circuits in the FPGA, 
keep the power consumption of the accelerator constant, thus making significantly 
harder any power analysis attempts to extract sensitive data (i.e. encryption keys).  

Different approaches are presented in [30], where a routing-based solution is utilized, 
that tries to reduce the long transmission lines between the different tenants in a 
single FPGA device, therefore minimizing the points for performing side channel 
attacks.  To restrict the efforts of malicious users who attempt to insert circuits that 
carry out power-hammering operations, which can result in distributed denial-of-
service (DDoS) attacks, researchers have created a protective software called 
FPGADefender [31]. This software scans the netlist of the application and identifies 
any modules that exhibit such behaviour. 

4.1.3 PRIVATEER’s Innovation in Edge Accelerator Attestation 

Although various methodologies are available in the literature for securing hardware-
based systems, in the current 5G infrastructure no such security countermeasures are 
applied. PRIVATEER aims to address this gap by offering robust methodologies to 
enhance the security of hardware accelerators in future networks. The proposed 
architecture provides a comprehensive approach that integrates various 
methodologies, allowing to securely configure FPGA accelerators. This will effectively 
protect user code and deployed systems from potential malicious attacks. 

 

4.2 Protocol description 
The core of the developed methodology for enhancing the security of the hardware 
accelerators, is based on a custom Remote Attestation protocol, with the abstract 
architecture of the system shown in Figure 4. The proposed protocol involves the 
interaction between three parties: i) the User, ii) the Attestation Server and iii) the 
Edge Accelerator. In relation to PRIVATEER, i) the User represents the developer of the 
hardware accelerators as described in Task 3.5, ii) the Attestation Server refers to an 
external verification server that may reside at the Orchestrator level, while iii) the 
Edge accelerator (i.e., FPGA) is being executed at the accelerator kernel, residing in 
the Infrastructure Layer (see Figure 1).  
Note that AMD/Xilinx’s FPGA devices can be divided into two categories, depending on 
their system’s architecture: 1) MPSoC FPGAs, where an ARM processor is populated 
along with the FPGA logic; 2) ALVEO cards, where the FPGA logic is implemented on an 
expansion card that connects to a host computer via PCI-Express. Therefore, the device 
family of the Edge accelerator can be either a MPSoC FPGA, considering an edge 
computing platform is utilized, or an edge server where an ALVEO card will be 
employed. 
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In the hardware accelerator, a hybrid remote attestation mechanism is developed, 
where both the hard processing system (host x86 CPU or ARM-based processor), as 
well as the FPGA programmable logic is utilized for executing the various security-
related functions. The network functionalities (communicating with the attestation 
server), as well as the bitstream loading is performed from the hard processor (i.e., 
PRIVATEERs Network Control Plane layer). On the other hand, the required encryption 
and key derivation modules can be implemented in the Programmable Logic (PL). 
Additionally, to verify the device’s identity and achieve a robust RoT, an FPGA-based 
PUF can be utilized. 
In this setup, the external verification server (which in terms of PRIVATEER resides 
within the boundaries of the Orchestrator) also plays the role of a TTP and is 
responsible for having a secure communication channel between the nodes in the 
system. Simultaneously, it has the role of managing the update of the reference values 
in case the user wants to perform an application upgrade. 

 
Figure 4 - Architecture of Edge Accelerator and external Attestation server setup 

 
The detailed steps of the RA protocol are illustrated in Figure 5, while the main 
attestation procedure can be divided into three main stages:  

• Stage 1: The User after developing the Accelerated kernel, produces the 
bitstream that contains the final’s application configuration and is the file that 
will be loaded in the hardware accelerator. Then the user applies the required 
countermeasures to protect its design and communicates with the Attestation 
Server (Steps 1-2). 

• Stage 2: The Attestation Server (residing within the Orchestrator) after 
establishing a secure connection and verifying the integrity of the attestation 
application running in the Edge Accelerator, proceeds with checking the 
authenticity of the uploaded application, as well as the FPGA device (Steps 3-
8). 
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• Stage 3: In case of a successful verification of all the parameters (successful 
RA), the Attestation Server forwards to the Edge accelerator the bitstream 
decryption key required for loading the AI Accelerator program. (Steps 9-10).  

 
Remote Attestation Protocol 
Giving a more detailed analysis of the proposed remote attestation protocol 
illustrated in Figure 5, firstly an offline phase is executed, in order to collect the PUF 
responses from the available FPGA devices, which are then securely stored in the 
Attestation Server (Step 1). This procedure is performed between the Attestation 
Server and the operator of the Edge Accelerator, which in PRIVATEER’s use case can 
be identified as the developer. Additionally, included in the offline phase is obtaining 
the reference checksum value of the attestation service (Step 1), which also must be 
performed only one time by the developer of Task 5.2, that is providing the hardware 
security infrastructure. Furthermore, we note that the collection of the PUF responses 
and the checksum of the security application is a one-time performed task (per FPGA 
device), and no recollection of these data is required in case the user wants to update 
a newer version of the accelerator. 

As a next step, the user prior to uploading the application kernel to the Edge 
Accelerator, performs an encryption and signing of the bitstream with a unique key 
and the corresponding certificate, and finally transfers them to the Attestation Server 
(Step 2). These correspond to the reference values that will later be used for verifying 
the integrity of the edge accelerator’s code, which are denoted as “Golden Values”. 

After this preparation, the user is ready to make a request for RA. After establishing a 
secure connection with the Attestation Server and sending the corresponding request 
with a randomly generated nonce (N1) to avoid replay attacks (Steps 3-4), the 
Attestation Server receives the checksum of the attestation application along with the 
transferred nonce, to verify that the correct verification service is running at the Edge 
Accelerator (Step 5). 

The Attestation Server then sends an attestation request to the Edge Accelerator 
along with a new randomly generated Nonce (N2) and the PUF challenge (PC) (Steps 
6-7). We note that prior to the request for RA, the user has already uploaded the 
encrypted application bitstream to the edge accelerator, to be ready for 
authentication. This transfer is performed using a generic secure file transfer protocol, 
using the already secure connection that has been established. Then, the edge 
accelerator calculates the static checksum of the received bitstream, as well as getting 
the included bitstream certificate to generate the AttestReport. This process can be 
performed from the FPGA host in software level (ARM CPU or x86 based CPU 
depending on the used device). Additionally, in order to avoid any potential sensitive 
information leakage, the checksum, the received certificate, and the received nonce 
are encrypted along with the PUF response in the FPGA. The generated attestation 
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report (AttReport) then gets transmitted to the External Server for verification (Step 
8). The encryption of the transmitted message is performed to also ensure the device’s 
authenticity, since the PUF response is unique per device. 

Then the Attestation server using the prestored PUF responses for the used FPGA 
device, decrypts the AttestReport to check if the transmitted variables match with the 
golden values initially received by the user. After a successful authentication of the 
AttestReport, the bitstream decryption key (BitstrDecKey) is forwarded from the User 
to the Edge Accelerator, using a secure key exchange algorithm (i.e. Elliptic Curve Diffie 
Hellman - ECDH) (Steps 9-10). After receiving the DecrKey, the Edge Accelerator 
decrypts the user code and loads the application to the Hardware Accelerator.  

 
Figure 5 - Suggested RA protocol for the security of Hardware Accelerators 



 
D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A. 

 

www.privateer-project.eu © PRIVATEER Consortium Page 65 of 124 

4.3 Plan for development 
In the current month of PRIVATEER project, Task 5.2 has implemented a working 
system that provides a security infrastructure for hardware accelerators. During the 
remaining months, the development will continue, by exploring additional techniques 
and countermeasures which can be incorporated into the system. Firstly, regarding the 
PRIVATEER’s Release A, the integration of PUFs and additional FPGA-based units (i.e. 
attestation report generation module) into the base RA protocol is being explored, 
along with evaluating different PUF implementation, to find the most suitable one.  
Additionally, further development plans after the Release A include the consideration 
of reducing the assumptions regarding the trustworthiness of the attestation server, 
in order to enhance the security of the system. This incorporates an additional node 
to the RA protocol, that could either be an external standard TTP service, or it can also 
be integrated in the PRIVATEER’s Blockchain. Further security countermeasures that 
can be considered include enhancing the security of the software-based tasks, for 
example by using CPU-based TEEs for the software-based applications involved in the 
remote attestation, as well as researching countermeasures aimed at multi-tenant 
scenarios. Specifically, this refers to methodologies in the scenario where multiple AI 
accelerator kernels are running in the same FPGA card and thus resource sharing 
occurs. 
To summarize, the development in the remaining months of PRIVATEER’s will continue 
exploring additional techniques and solutions to mitigate hardware security attacks 
relevant to the project’s threat model. The future developed security modules will be 
incorporated with the base design that is already available and operational, while the 
final version of Task’s 5.2 will be delivered in PRIVATEER’s Release B. 
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5 Blockchain for secure data 
exchange of trustworthiness 
evidence  

The blockchain serves as a fundamental component for 6G networks, enabling 
intelligent resource management, spectrum sharing, scalability, and availability for 
emerging smart environments such as healthcare, smart cities, industry 4.0 and 
agriculture. The ability to securely share, exchange and store data, along with strong 
monitoring and traceability methods, makes it a crucial component of 6G technology, 
as explained in D2.1 [32]. By allowing tracking of data origins and exchanges within 
the network, blockchain enhances transparency; thus, trust.  

Blockchain technology provides a compelling solution for auditability, efficient 
querying, and access control due to its unique features. One key advantage is its 
immutable record keeping, where data recorded on a blockchain cannot be altered or 
deleted once added. This characteristic ensures the integrity and reliability of the 
data, making it ideal for auditing and compliance purposes. Additionally, blockchain 
transactions are transparent and decentralized, enabling auditors to easily trace 
transactions and verify data authenticity across the distributed ledger. 

Blockchain is a chain of records called blocks, linked and secured using cryptography. 
Each block contains transaction data, a time stamp, and the hash value of its previous 
block. These timestamps are leveraged for ensuring the auditability of transactions, 
linking each transaction to previous ones, allowing auditors to track the flow of assets 
or information over time accurately. In the blockchain each node, in this network of 
nodes, has a copy of the transaction records. This makes all records accessible and 
easily verifiable. Modifying a block requires consensus from all nodes, making it 
expensive for nodes to modify data. Blockchain technology allows untrusted parties 
to make transactions securely without the involvement of a central authority 
regulating them. Cryptocurrencies based on blockchain have gained attention, with 
smart contracts emerging as an evolving area. 

In addition to the auditability, encryption, integrity protection mechanisms, 
authentication, and access control mechanisms are applied, restricting access to 
authorized entities, while ensuring accountability of actions. Smart contracts, which 
are self-executing contracts with predefined rules encoded on the blockchain, enable 
sophisticated access control mechanisms. These contracts can enforce access policies, 
specifying which parties have permission to access specific data or perform certain 
actions on the blockchain. This granular control enhances security and privacy, 
particularly in industries with stringent regulatory requirements like healthcare and 
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finance, where sensitive data must be carefully protected. Regarding the exact access 
control and encryption mechanisms, Attribute Based Encryption (ABE) and Attribute 
Based Access Control (ABAC) can be exploited within the blockchain setup to offer 
confidentiality and authentication linking while restricting access based on certain 
user, system, or device properties. 

Moreover, blockchain technology is device and type-agnostic, providing flexibility by 
allowing access to devices with limited computational and storage capabilities. This 
enables the exploration of advanced functionalities of next-generation networks 
without the requirement to upgrade existing hardware. Simultaneously, it facilitates 
data portability, particularly when data owners desire to transfer their data from one 
blockchain ecosystem to another. 

However, blockchain-enabled data sharing must not neglect privacy requirements. To 
comply with both security and privacy requirements, access control and 
confidentiality requirements should be considered. Towards this direction, 
distinctions between public and private ledgers must be performed according to use 
case scenarios, while enhanced crypto primitives could be employed according to the 
requirements of each application scenario. The variations among different ledger 
solutions are summarised as follows: 

• Public/Permissionless blockchains are open-access networks that allow 
anyone to participate without prior approval, promoting decentralization. 
Examples include Bitcoin, which achieves consensus across an anonymous 
network. However, these blockchains often face scalability issues and slower 
transaction speeds due to the need for consensus mechanisms.  

• Private/Permissioned blockchains restrict network participation to entities 
vetted through an authentication process, enhancing privacy and operational 
efficiency. Examples include Hyperledger Fabric, which supports various 
industrial applications and ensures the integrity of network participants.  

• Hybrid blockchains combine elements from both public and private 
blockchains, offering a balanced approach that balances privacy and 
transparency. These blockchains allow selective participation, making them 
attractive for organizations seeking to capitalize on their potential. 

Table 2 demonstrates a comparative analysis between the different types of 
Blockchain solutions (i.e., public, private and hybrid) in terms of access, authority, 
transaction speed, efficiency, data accessibility and immutability.  

Table 2 - Blockchain types overview 

Item Public Blockchain Private Blockchain Hybrid Blockchain 
Access Open to all By authentication 

only 
Selective access 
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Authority Fully decentralised Centralised control 
elements 

Combination of 
both 

Transaction Speed Typically slower Enhanced speed Customisable 
Consensus 
Mechanism 

Open participation Restricted to 
members 

Adaptable 

Efficiency Variable Optimised for private 
networks 

Tailored to 
requirements 

Data Accessibility Universal 
read/write 

Limited to authorised 
Entities 

Configurable 

Immutability Immutable Conditionally im- 
mutable 

Variable based on 
rules 

 

5.1 State Of The Art  
5.1.1 Smart Contracts 

The term is popularly used to refer to low-level code scripts running on a blockchain 
platform [33]. Smart contracts are software programs that are recorded on a 
blockchain and are designed to execute automatically when certain preset criteria are 
fulfilled.  Contracts like these became popular due to their ability to automate and 
optimize numerous operations, removing the requirement for intermediaries and 
guaranteeing prompt execution of agreements. Smart contracts are self-executing 
protocols that function autonomously within the blockchain network. They execute 
predetermined actions in response to specific situations and triggers, following a 
"if/when...then" structure. This architecture not only speeds up transactions but also 
fosters trust by allowing parties to immediately determine the outcome without the 
need for intermediaries. 

The lifecycle of a smart contract involves several stages, from design and deployment 
to execution and recording of results. Once deployed onto the blockchain, the contract 
earns a unique address for identification. Authorized users can then activate the 
contract by initiating transactions containing the contract's address, which are 
executed by nodes or miners precisely following the contract's stipulations. The 
immutable nature of smart contracts ensures that once executed, a transaction's 
details remain unalterable, with access to resulting data controlled and restricted to 
authorized parties. This combination of transparency, automation, and security 
positions smart contracts as a transformative force across various sectors, reshaping 
the execution of agreements and management of business processes. 

5.1.2 Consensus Algorithms 

• Consensus Algorithms are essential in blockchain, determining which nodes 
have the authority to record transactions and facilitating their quick consensus 
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on the information to be included in a block. This guarantees the uniformity 
and safety of the data while simultaneously enhancing the computational 
efficiency of the blockchain [34]. In addition, these algorithms are essential to 
achieve Byzantine fault tolerance (BFT) (as described in D2.1 [32]) and preserve 
a consistent representation of the blockchain across all nodes in a 
decentralized network. The BFT mechanism aims to safeguard against system 
failures by employing a collaborative decision-making process that takes into 
account the input of both functioning and defective nodes, with the objective 
of minimizing the influence of defective nodes [34]. 

• Proof of Work (PoW): One popular BFT-tolerant consensus mechanism is the 
Pow consensus mechanism, where miners in Ethereum and Bitcoin must solve 
challenging cryptographic puzzles in order to validate transactions and add 
new blocks. The first miner who successfully solved the challenge is given 
permission to create a fresh block of transactions and append it to the 
blockchain. The solution to the challenge is verified by the other miners, and if 
it is correct, the new block is appended to their version of the blockchain. 
Nevertheless, this solution is not efficient in terms of energy consumption. 

• Proof of Stake (PoS): PoS BFT-tolerant consensus algorithm that is gradually 
becoming more popular because of its scalability and energy efficiency. In PoS 
the next block is selected based on the stake (i.e., amount of cryptocurrency 
held by the miner), instead of the computational power. The nodes that are 
responsible to validate the new blocks are chosen by staking a certain amount 
of cryptocurrency. The selection algorithm combines a mix of the candidate's 
stake (quantity of cryptocurrency possessed) and additional variables, such as 
coin age and randomization, for guaranteeing fairness across every node on 
the network. With the mining of new blocks, the energy of the spent coins 
diminishes slightly, leading to a deflationary mechanism where the total 
amount of currency gradually decreases, potentially raising its worth. 
Conversely, cryptocurrencies that experience an increase in quantity over time 
generally depreciate in value.  

• Delegated Proof of Stake (DPoS): allows token holders (stakers) to delegate 
their voting power to delegates or witnesses who are responsible for creating 
new blocks and validating transactions on the blockchain. Platforms like Tron 
and EOS employ the developing DPoS method, adding a democratic element 
to PoS.  

• Proof of Authority (PoA): is a new family of BFT consensus algorithms, 
designed to optimize the PoS mechanism while it is more focused on private 
and permissioned blockchains. It relies on a predetermined set of transaction 
validators based on their identity or reputation staked in the network. Current 
validators have the ability to vote for the inclusion of more users into the 
authority group [35]. 



 
D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A. 

 

www.privateer-project.eu © PRIVATEER Consortium Page 70 of 124 

Frequently employed in permissioned or private blockchains, BFT algorithms give 
priority to network speed and throughput over decentralization. The trade-offs 
between security, decentralization, scalability and energy consumption are unique to 
each consensus method. The blockchain network's unique needs and objectives, such 
as attaining maximum security, scalability, or energy efficiency, determine the 
consensus mechanism to be used. In order to overcome the shortcomings and 
restrictions of current methods, new consensus algorithms are being investigated and 
created as blockchain technology advances. 

5.1.3 Access Control Mechanisms 

Access control mechanisms are essential in blockchain networks, guaranteeing that 
only authorized users can engage with the system and carry out particular operations. 
These systems regulate the authorization levels given to users, determining their 
capacity to view, modify, or execute smart contracts and retrieve data stored on the 
blockchain. Various access control models and strategies are utilized to ensure the 
enforcement of security and privacy in blockchain ecosystems. Role-based Access 
Control (RBAC) and Attribute-based Access Control (ABAC) are the most popular ones.   

Role-Based Access Control (RBAC) is a widely used access control method in 
blockchain technology that assigns permissions to individuals based on their roles 
within an organization or system. It involves defining specific roles like administrators, 
validators, and regular users, each with different access privileges. RBAC can also be 
implemented within blockchain networks to manage user permissions based on their 
roles. 

Attribute-Based Access Control (ABAC) is a more flexible approach that considers 
multiple properties of people, resources, and the environment when determining 
access permissions. These attributes may include user roles, time of access, location, 
and other contextual information. It can be used in smart contracts on blockchain 
networks to enforce detailed access control policies. 

5.1.4 Blockchain platforms  

5.1.4.1 Hyperledger Fabric 

Hyperledger Fabric is a permissioned blockchain framework designed for enterprise 
use, hosted by the Linux Foundation. It provides a modular architecture that allows 
for flexibility and scalability, allowing components such as consensus services to be 
plug-and-play based on the enterprise’s needs. Fabric supports smart contracts, 
known as "chaincode," and offers features like privacy through channels and private 
data collections. More specifically, Fabric allows the creation of different “channels” 
for transaction isolation, while offering the “private data” feature which enables the 
sharing of hashes as transaction evidence on the ledger. Although there is potential 
for the Fabric to support certain Ethereum 2.0 implementations, the new architecture 
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has not yet been fully implemented in the Ethereum public (i.e., permissionless) 
network, while Hyperledger Fabric has already achieved its version 2.0 milestone. 
Hence, such as support is yet to be offered [36].  

5.1.4.2 Hyperledger Besu 

Hyperledger Besu is an Ethereum client developed under the Hyperledger Foundation, 
providing enhanced flexibility and functionality. It supports both public and private 
Ethereum networks, as well as hybrid networks. Besu offers features like privacy 
through private transactions, permissioned network access7. It further supports 
flexibility in terms of selected consensus mechanisms like Proof of Authority (PoA) and 
Proof of Work (PoW)8, as discussed in Section 5.1.2. One of the key features of Besu 
is its compatibility with the Ethereum Virtual Machine (EVM)9. This means that Besu 
can execute smart contracts and decentralized applications (DApps) written in 
Ethereum's native programming languages, such as Solidity, adhering to the Ethereum 
network’s principles. Moreover, Besu is scalable and capable of supporting a large 
number of transactions per second.  

5.1.4.3 Hyperledger Indy 

Hyperledger Indy is distributed ledger solution focused on a decentralized identity 
management. It enables the creation, management, and verification of digital 
identities, offering features like privacy, interoperability, and self-sovereign identity 
(SSI) solutions, providing the necessary tools and libraries which conform to the Wide 
Web Consortium (W3C) standards [37]. Indy is particularly suited for applications 
requiring secure and privacy-preserving identity solutions, offering interoperable 
identities across different administrative domains and applications. Moreover, Indy 
promotes privacy-preservation through Zero Knowledge Proofs, which prove the 
trustworthiness of certain data in a collection of claims without disclosing any extra 
information, such as the identity of the individual providing the proof. 

A comparative analysis of the aforementioned Hyperledger solutions is presented in 
Table 3.  

Table 3 - Comparative analysis of different Hyperledgers 

Criteria Hyperledger Fabric Hyperledger Besu Hyperledger Indy 
Consensus 
Mechanism 

Organisation may choose 
(i.e., Pluggable) 

PoW, PoS, PoA, etc. N/A 

Privacy Features Channels, Private Data 
Collections 

Private Transactions, 
Permissioning 

Privacy, Self-
Sovereign Identity 

 
7 https://www.hyperledger.org/blog/2019/08/29/announcing-hyperledger-besu  
8 https://besu.hyperledger.org/private-networks/how-to/configure/consensus  
9 https://www.hyperledger.org/projects/besu  

https://www.hyperledger.org/blog/2019/08/29/announcing-hyperledger-besu
https://besu.hyperledger.org/private-networks/how-to/configure/consensus
https://www.hyperledger.org/projects/besu


 
D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A. 

 

www.privateer-project.eu © PRIVATEER Consortium Page 72 of 124 

Smart Contract 
Support 

Yes Yes Limited 

Smart Contract 
Language  

Go, JavaScript, and Java Solidity N/A 

Use Cases Enterprise Applications,  Ethereum-based 
Applications 

Decentralized 
Identity, Self-
Sovereign Identity 

 

5.1.5 PRIVATEER’s Innovation in Blockchain 

After thorough evaluation, Hyperledger Besu was selected as the preferable option 
for the PRIVATEER project due to its support in both private and public blockchain 
networks. Besu offers strong privacy features and a high capacity for processing a large 
volume of transactions, which is specifically interesting for PRIVATEER considering 
that trustworthiness evidence may contain a lot of information. In addition, the 
compatibility of PRIVATEER with Ethereum is highly useful as it enables the utilization 
of the wide range of tools and applications offered by the Ethereum ecosystem. This 
compatibility also applies to the integration with Town Crier oracles, which are 
specifically intended to support Ethereum, providing a secure mediator to the 
Blockchain network. The Town Crier oracles are further elaborated on Section 5.2.1.1. 

Hyperledger Besu is the optimal blockchain platform for PRIVATEER's objectives of 
improving and facilitating the security and trustworthy data exchange, offering a 
protected and auditable distributed network that can be easily accessed by all 
interested parties. Furthermore, Hyperledger Besu's open-source nature and active 
development community makes it a secure, efficient, and flexible blockchain solution. 

In addition to the Hyperledger solution, certain mechanisms as introduced in Chapter 
2 and further elaborated on Section 5.2 are employed, enabling PRIVATEER to offer a 
secure framework which further allows privacy preservation. These mechanisms are 
summarised in Table 4.  

Table 4 - PRIVATEER Blockchain mechanisms towards advanced security 

Desired Characteristic PRIVATEER component 
Auditability Hyperledger Besu which supports the integration and 

execution of smart contracts, which enable the mediating 
and management of trust-related information, exchanged 
via the ledger. 

Integrity  Secure Oracle is integrated, providing integrity of data and 
processes. More specifically, the execution of data veracity 
checks over the received data (i.e., attestation reports from 
the Security Probe) are performed in a protected 
environment. Likewise, the smart contract creation is 
adheres to the same notion.  
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Access Control mechanisms 
for information in the ledger 

Attribute Based Access Control (ABAC) mechanisms 
leveraging the Verifiable Presentations (VPs) are supported 
ensuring that only entities with appropriate attributes have 
access to the information available on the ledger. 

Confidentiality in off-chain 
storage 

Attribute Based Encryption (ABE) mechanisms employed for 
the protection of information (i.e., evidence) stored in the 
off-chain storage. 

Privacy Preservation for 
external entities that access 
data in the ledger 

Permissioned functionality of Besu is leveraged providing 
restricted access. In addition, Trust Exposure Layer is 
proposed by PRIVATEER, which provides the harmonisation 
mechanisms, ensuring that only information regarding the 
Level of Trust is exposed to external (to the MNO 
infrastructure entities). Details regarding the information 
used to perform the Level of Trust assessment (i.e., 
trustworthiness evidence, attestation report, etc.) is 
available only to internal entities. 

 

5.2 Protocol description 
5.2.1 Building Blocks  

As described in the previous paragraphs, PRIVATEER leverages the Hyperledger BESU 
as the DLT solution. The next paragraphs analyse the internal building blocks and 
architecture of the selected DLT solution, further considering the overall scope of this 
framework in the context of PRIVATEER. Figure 6 provides an illustration of the 
Conceptual Architecture for the PRIVATEER Blockchain Framework, further clarifying 
the interactions between the components.  

5.2.1.1 Secure Oracle – Town Crier (TC) 

Blockchain oracles are external services that provide smart contracts with 
supplementary information. They serve as mediators that establish connections 
between blockchains and the outside world. Blockchains and smart contracts do not 
have the capability to access outside of the chain data, which refers to data that is 
located outside of the network. However, it is essential to get relevant information 
from external sources to achieve the operational goal of the blockchain, particularly 
in circumstances where smart contracts need such information to efficiently execute 
their business logic. In the context of PRIVATEER this functionality is critical to provide 
the attestation result and the attestation evidence, as acquired by the Security and 
μProbes (as described in Chapter 2).  

Blockchain oracles further act as middlemen that link off-chain and on-chain data 
[38]. Oracles are essential components of the blockchain ecosystem since they 
enhance the capabilities of smart contracts by serving as an intermediate layer that 
acquires, validates, and verifies data from other sources, and then transfers that 
information. 
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Figure 6 - PRIVATEER Blockchain Infrastructure Conceptual Architecture 

The Oracles include qualities that PRIVATEER seeks to utilize and enhance for the 
purpose to achieve the project's vision of auditable trust evaluation tailored to the 
needs of the B5G landscape. Figure 6 illustrates the placement of the Secure Oracles 
network between the edge devices and the BESU network. This positioning allows for 
the gathering and filtering of data originating from the devices. Regarding data 
processing, the Oracles are utilized to receive attestation-related data in PRIVATEER. 
They then proceed to filter, standardize, and authenticate the data utilizing the 
Verifiable Presentations (VPs), as data structures, which may encompass both identity 
but also device state attributes. More information on the VPs is available in Chapter 
6. 

To access data from external sources, the smart contracts need to be triggered and 
network resources must be utilized. The Town Crier (TC) possesses the capability to 
not only transmit information to smart contracts, but also to send it back to other 
sources. Furthermore, TC combines a blockchain interface and a secure hardware 
component built on top of Intel SGX. It also leverages communication channels 
enabled with HTTPS to deliver source-verified data to smart contracts. The system 
facilitates confidential data requests by utilizing encrypted parameters, promoting 
secrecy. TC enables the secure utilization of credentials to access data from protected 
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data sources thanks to the implementation of Intel SGX. This feature will be utilized in 
PRIVATEER to allow Attribute-based Encryption (ABE), which will encrypt sensitive 
data before it is placed on the off-chain data storage (more information on the off-
chain storage are available in section 5.2.1.7). 

The PRIVATEER consortium also chose TC because of its safe execution environment, 
which is powered by Intel SGX. TEEs provide a secure setting that ensures the privacy 
and integrity of data and code, which is essential for oracles that deal with sensitive 
external data. Secure oracles built on Intel SGX's secure enclave technology are 
impervious to manipulation and unauthorised access, which boosts the reliability of 
the PRIVATEER blockchain. Data processed by the Town Crier oracle remains 
encrypted and confidential even while computations are being performed, thus in 
PRIVATEER data filtering and veracity operations are executed as part of the enclave 
to guarantee the isolated and confidential execution of sensitive data processing 
operations. In Figure 6 the enclave of the TC nodes is depicted, which includes the 
processes outlined before. Furthermore, the enclave's isolated environment 
guarantees the isolated execution of cryptographic operations, such as ABE of data, 
before they are stored on the BC infrastructure. Finally, the Town Crier may use the 
Proof Generator to cryptographically prove that the data processed and retrieved 
within the safe enclave has not been altered. This would enable blockchain apps to 
confirm that the oracle's outputs are valid. 

5.2.1.2 Enclave 

The Enclave, an execution environment supplied by Intel SGX, is a crucial component 
of the Town Crier (TC) design. It serves as an isolated location for data processing. The 
Enclave's primary responsibility is to process datagram requests from the blockchain 
by accessing external data sources that support HTTPS to get the required information 
(see Figure 7). 

The Enclave places utmost importance on ensuring the secrecy and integrity of data 
processing. It functions with an awareness that it is completely isolated from 
potentially hostile operating systems and other activities on the host. The isolation is 
a fundamental aspect of the TC's security concept, allowing the Enclave to operate as 
a reliable component inside the larger system. 
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Figure 7 –System Architecture of TownCrier 

5.2.1.3 Relay 

The Relay serves as an infrastructure to facilitate communication between the Enclave 
and the outside world. Due to the constraints of SGX, the Enclave does not have direct 
network access. Therefore, the Relay plays a crucial role in managing bidirectional 
network traffic. This involves establishing a connection between the Enclave and the 
blockchain to monitor the status of the TC Contract and publish messages on the 
blockchain. It also involves managing off-chain service requests from clients for 
Enclave attestations, as well as facilitating communication between the Enclave and 
other data sources. The operation of the Relay is essential for the smooth transmission 
of information required for the functioning of the TC system. 

Nevertheless, the Relay functions within the user space and does not receive any 
advantages from SGX's integrity safeguards. This vulnerability exposes it to 
exploitations by a hostile operating system, which might result in delays or failures. 
Despite this susceptibility, the design of TC strives to alleviate the consequences of 
such concerns. Although the Relay can potentially be used to carry out denial-of-
service attacks, the TC design guarantees that it is incapable of generating inaccurate 
datagrams or causing customers to loss revenue paid for datagram services. TC's 
dedication to upholding the integrity and dependability of its service is emphasized by 
this design philosophy, which addresses the possible security problems presented by 
the Relay component. 

 

5.2.1.4 Hyperledger Besu - PRIVATEER Private/Public Ledger 

Hyperledger Besu's architecture offers a solid and flexible framework for developing 
enterprise-grade blockchain applications. As stated, Besu's characteristics are capable 
of satisfying the demands of PRIVATEER. Figure 6 presents that Besu is a structure 
constructed of crucial parts that provide its functionality. 

• Network Layer: The BESU network of PRIVATEER will consist of numerous 
nodes. The nodes in the network engage in communication with each other to 
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achieve synchronization of the blockchain, dissemination of transactions, and 
active involvement in the consensus process. BESU is compatible with several 
networking protocols. PRIVATEER will utilize Ethereum's devp2p protocol, 
facilitating safe discovery and connection between nodes. After the nodes are 
linked, both public and private transactions can occur. 

• Consensus Mechanism: BESU is capable of supporting many consensus 
mechanisms, such as Proof of Work (PoW) and Proof of Authority (PoA). The 
consensus mechanism governs the process by which transactions are 
authenticated and included into the blockchain. In the Proof of Work (PoW) 
consensus mechanism, miners engage in a competition to solve intricate 
mathematical problems to append new blocks to the blockchain. On the other 
hand, in the Proof of Authority (PoA) consensus mechanism, block validators 
are selected based on their established identity or reputation inside the 
network. The consensus method used for PRIVATEER is PoA. 

• Ethereum Virtual Machine (EVM): Besu incorporates a completely compatible 
implementation of the Ethereum Virtual Machine (EVM). The EVM is a 
confined runtime environment that plays a vital role in executing smart 
contracts and handling transactions in an Ethereum blockchain network. The 
EVM carries out bytecode, which is the compiled version of smart contract 
code, to guarantee the consistent execution of contracts across all nodes. 

• Permissioning and Privacy: PRIVATEER utilized a hybrid technique to fulfil the 
data confidentiality criteria. Therefore, each node inside the blockchain 
network has the responsibility of keeping and overseeing the public global 
state, along with an individual private state for every privacy group. The private 
states include sensitive data that is not revealed in the globally replicated 
world state. In relation to data stored in an off-chain storage, the private state 
comprises the data hash and a reference pointer that indicates the exact 
location of the stored data off-chain. By employing this method, the private 
entity safeguards the essential information required to validate and 
authenticate the integrity of data. Access to the private state is provided by 
the incorporation of the private transaction manager within the Tessera node. 
The term "public state" refers to information that is freely accessible and may 
be used to exchange attestation-related data with trustworthy parties.  
This component is valuable in PRIVATEER as it provides transparency regarding 
the condition of an ecosystem. It may be utilized as a feature to facilitate 
external entities in conducting audits and certifications. Additionally, relevant 
information, such as source linkages that show the provenance of the private 
states from which the data came, is also retained. This setup guarantees that 
the necessary data needed for validation and verification may be acquired 
from the public ledger, while simultaneously safeguarding the privacy and 
security of the sensitive data stored off-chain. 
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• APIs and Interfaces: Besu provides a range of APIs and interfaces that allow 
users to communicate with the blockchain. These consist of JSON-RPC APIs for 
automated access, GraphQL APIs for retrieving blockchain data, and 
WebSocket APIs for receiving real-time updates. In addition, Besu offers 
command-line utilities and a web-based interface for monitoring and 
controlling the node. 

• Plugins and Extensions: Besu's design facilitates expansion by including plugins 
and extensions. We leverage this property in PRIVATEER to enhance Besu's 
capabilities through the implementation of bespoke modules. This 
functionality enables us to incorporate further customized functionalities, such 
as integrating Elastic as the off-chain data storage for the project. 
The primary goal of Hyperledger Besu's design is to offer a secure, scalable, 
and extensible framework for developing blockchain applications for 
enterprises. It supports permissioning and privacy features, has a flexible 
design that works with Ethereum, and is suitable for many use cases across 
multiple industries. 
 

5.2.1.5 Security Context Broker (SCB) 

The Security Context Broker (SCB) serves as the sole middleman between the 
blockchain infrastructure and external entities. It operates as an intermediary, 
facilitating communication and interaction between the PRIVATEER components and 
Secure Oracle blockchain smart contracts, via APIs. The primary role of the Context 
Broker is to trigger the implementation of smart contract functionalities. It is a service 
that facilitates the transmission of messages and allows for the connection of different 
components to the Blockchain. It efficiently manages access control and permissions 
in the Distributed Ledger Technology (DLT) by leveraging smart contract technology. 
To guarantee and maintain safe access, Verifiable Presentations (VPs), which function 
as user tokens, undergo a process of verification. VPs not only grant access to a service, 
but also encompass specific attributes that define the user or device's privileges inside 
the network, as well as identity claims and proof of the system's secure status. VPs 
play a pivotal role also in terms of the Attribute-Based Access Control (ABAC) in 
PRIVATEER. The ABAC is implemented through the interaction between the Context 
Broker and the Peers in the Distributed Ledger Technology (DLT) network. This 
implementation takes use of the VPs, which also represent the security status of an 
object. Furthermore, the Context Broker possesses the potential to engage with 
external storage systems that are not integrated into the blockchain. Consequently, 
the SCB manages both communication and access control. 

5.2.1.6 Attribute-Based Access Control (ABAC)  

Attribute-Based Access Control (ABAC) is an advanced access control technique that 
uses characteristics as the basis for governing access to resources. ABAC does not 
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primarily rely on roles or rules, but instead assesses access requests by considering 
several factors connected with individuals, resources, and environmental variables. 
Examples of such features may encompass user roles, department, location, time of 
access, and the sensitivity of resources. The essential elements of ABAC consist of the 
Policy Decision Point (PDP), which assesses access requests based on predetermined 
rules, considering the characteristics of the person making the request, the resource 
being accessed, and the surrounding circumstances in order to make well-informed 
access determinations.  

The Policy Enforcement Point (PEP) is responsible for implementing the access choices 
determined by the Policy Decision Point (PDP), therefore guaranteeing that only users 
with proper authorization are granted access to the requested resources. The Policy 
Information Point (PIP) obtains supplementary attribute information that is necessary 
for the Policy Decision Point (PDP), while the Policy Administration Point (PAP) 
oversees and establishes the policies, enabling administrators to create, modify, and 
remove policies according to the organization's needs. ABAC has several advantages, 
such as precise access control, the ability to react to changing situations, the capacity 
to handle complicated structures, and the flexibility to manage policies. ABAC offers 
enterprises a versatile, accurate, and dynamic method for access control, improving 
both security and operational efficiency. The PRIVATEER consortium chose to use 
ABAC as the mechanism for performing access control to the information stored on 
the BC due to its specific properties. 

In PRIVATEER, any data sources (i.e., orchestrator) and external entities that require 
access to the BC infrastructure, either for data retrieval or data submission, must go 
via the trust-aware authorization and authentication process, which is based on ABAC. 
During operation, a device creates compliance certifications in the form of Verifiable 
Presentations. Therefore, these VPs represent the characteristics and protected 
condition of devices and entities. The PDP point in PRIVATEER is located within the 
Security Context Broker components, as seen in Figure 6. Every request is 
accompanied with the requisite VPs from the entities involved in the transaction in 
order to verify the identity, secure status, and permissions of the entity. The 
importance of the ABAC service supported within PRIVATEER SCB is seen in its role of 
managing and verifying user access to recorded blockchain data and off-chain data 
storage queries. Ensuring data security and exact access is extremely important in 
these scenarios, making this service indispensable. 

5.2.1.7 Off-Chain Data Storage 

The Off-Chain Storage feature of the PRIVATEER platform offers an innovative solution 
for managing a vast amount of (confidential) data. Such data that cannot be stored 
directly on the DLT network due to privacy and capacity limitations. Leveraging the 
off-chain storage is a common methodology in sophisticated blockchain applications, 
since it allows optimization of the performance, essential when managing the large 
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amounts of data. In this approach, the actual data is stored in Off-Chain Storage, which 
is separate from the blockchain network. Pointers are maintained in the private ledger 
of the DLT network to establish a connection between the data and the blockchain. 
These pointers function as references or links to the precise location of the data in the 
Off-Chain Storage. By using this approach, the system successfully overcomes the 
disparity between the blockchain's need for integrity and transparency and the 
practical limitations of storing big amounts of data on the blockchain. It functions 
primarily as an indexing service. In the context of PRIVATEER data stored in the off 
chain may include (attestation) evidence, policies, or system traces.  

In order to enhance security and control access, the data stored off-chain is encrypted 
or encoded. The implementation of this encryption layer is essential as it effectively 
prevents unauthorized users from getting access to or altering off-chain data. Access 
to these pointers, and hence to off-chain data, is tightly controlled and limited to 
authorized users/entities with the proper privileges (according to ABAC). Users or 
entities have the ability to retrieve off-chain data by decrypting or decoding these data 
points. 

The SCB exclusively regulates interactions with Off-Chain Storage in PRIVATEER. This 
broker functions as an intermediate, overseeing and facilitating all communication 
and data exchanges between the blockchain network and Off-Chain Storage. This 
design not only streamlines data retrieval and storage, but it also provides an 
additional layer of security by enabling the SCB to enforce various checks and limits to 
ensure that only authorized requests are executed. 

The Elastic Search operates as the main storage solution for the PRIVATEER off-chain 
storage component, incorporating PRIVATEER-specific functionalities for handling off-
chain data. Elastic offers storage capabilities for storing large amounts of data, using 
collections and documents instead of conventional tables and rows. Documents are 
composed of key-value pairs, whereas collections comprise both sets of documents 
and functions. A database is comprised of collections that include separate 
documents, each of which may have varied fields and sizes. Elastic's data structure 
optimizes the arrangement of hierarchical links and effectively stores arrays. The 
scalability of Elastic is a consequence of its advanced architecture, making it an 
excellent option for PRIVATEER's storage solution. 

 

5.2.2 PRIVATEER Blockchain Infrastructure High-level Design and Flows 
mediated through Town Crier 

As previously stated, PRIVATEER utilizes Blockchain technology to facilitate the 
exchange of data required for the Level of Trust calculation. The PRIVATEER Blockchain 
solution utilizes Town Crier as a Secure Oracle to offer enhanced security capabilities, 
and off-chain storage for safeguarding large volumes of data, such as attestation 
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evidence. Towards this direction and delving into the flow as firstly described in 
Chapter 2, the flow as it pertains to the functionalities that take place within the 
Blockchain is illustrated in Figure 8.  

The flow is initiated when the Privacy-aware Orchestrator notifies simultaneously 
both the Security Context Broker (SCB) and the LoT Assessment component about the 
deployment of a new service. This notification further includes the Privacy SLA and the 
Service Graph Chain topology (steps 1 and 2). The latter, the LoT Assessment 
component, leverages the received information to generate the Trust Policy for the 
specific service (step 3), which is later transmitted to the SCB (step 4).  

The SCB leverages the received information to create the SGC Trust Chain Data 
Structure, as defined in Table 6, which further includes the Trust Policy structure for 
the designated service graph chain, as defined in Table 7, and the Privacy SLA (step 5). 
These structures are elaborated in Section 5.2.3.1. After the creation of the SGC Trust 
Chain Data Structure, the SCB forwards this structure to the Town Crier (step 6), which 
subsequently transmits it to the Oracle Contract (step 7). The Oracle Contract 
establishes the SGCTrustChain() Smart Contract and may further compute the Real 
Trust Level (RTL). Please note that the calculation of the RTL functionality will be 
introduced in Release B of the platform. Subsequently, the Oracle Contract publishes 
the smart contract on the ledger leveraging the Hyperledger BESU Interface (step 9). 
The Oracle Contract returns the Smart Contract which was previously published on 
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the ledger (containing the Trust Policy structure along with other information), to the 
SCB (step 10), which then sends it to the Privacy-aware Orchestrator (step 11).  

 

 
Figure 8 - Trustworthiness Evidence Management Mediated through Town Crier 

Upon receiving this information from the SCB, the Privacy-aware Orchestrator begins 
the collection of the attestation report(s) and attestation evidence, based on the Trust 
Policy, prompting the Security Probe (step 12). In essence, the Trust Policy defines 
whether attestation evidence is required for the LoT calculation for the specific graph 
chain, and the periodicity that this data should be collected, prompting the Security 
Probe to collect traces and perform the attestation task (step 13). More information 
on the runtime attestation flow is available in Section 3.2.3.2. The Security Probe 
transmits the attestation report, along with the attestation evidence to the Town Crier 
(step 14), which subsequently relays it to the Oracle Contract (step 15). The latter, 
creates the pointers to the off-chain storage and constructs the Trustworthiness 
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Evidence Object Data Structure, as defined in Table 8 (step 16). Next, the Oracle 
Contract is deployed on the ledger using the Hyperledger BESU Interface (step 17) and 
the raw trustworthiness evidence are stored in the off-chain storage (step 18). The 
LoT assessment can leverage the available information, through the Hyperledger BESU 
Interface, to calculate the runtime Actual Level of Trust (ATL) and updates the 
SGCTrustChain() Smart Contract accordingly. The ATL structure is defined in Table 9.  

 

5.2.3 PRIVATEER Smart Contracts for Trustworthiness Evidence 
Management 

In the PRIVATEER project, the implementation of Blockchain smart contract functions 
is driven by the objective to facilitate secure, transparent, and automated operations 
within the blockchain framework. The use of smart contracts in PRIVATEER introduces 
innovative approaches for managing trustworthiness evidence data like attestation 
evidence, CTI information and Proof of transit evidence of services and ensuring data 
integrity and confidentiality across the network. To this end, Table 5 details the smart 
contract functions that have been developed or are planned for future releases of the 
PRIVATEER platform. 

Note that there are two types of smart contract functions: 

• Exported (E): Functions that are responsible to call and implement Smart 
Contracts (SCs) of the PRIVATEER BC, typically starting with an uppercase 
letter. 

• Unexported (U): Sub-functions and variables which necessitate a SC to operate 
as designed, usually starting with a lowercase letter. 

 
Table 5 - Smart Contract Functions in PRIVATEER 

Type Smart 
Contract 
Function 

Description Release Account
able 

E GetTrustworthi
nessEvidence() 

It is the responsibility of this function to create 
a smart contract to govern the process of 
initiating and collecting the necessary of 
trustworthiness evidence such as (i.e., 
attestation evidence) from PRIVATEER Security 
Probe to Secure Oracle in accordance with the 
Trust Policy that applies. The Trust Policy is 
dictated to the Oracle from the LoT Assessment 
via Security Context Broker (SCB). Upon 
reveiving the data, the Secure Oracle executes 
the validateDataVeracity() and 
StoreOfchainDataAndDBPointer() function. 

1.0 Oracle 
Function 
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U validateDataVe
racity() 

Validates the integrity and authenticity of the 
trust evidence provided by 
GetTrustworthinessEvidence() based on the 
associated verifiable presentation that created 
by the Oracle when harmonizing the trust data. 
Integrity and authenticity of attestation results 
and evidence is performed through the 
verification of the associated signatures 
constructed from the underlying PRIVATEER 
Trusted Computing Base (instantiated in each 
node)  

1.0 Oracle 
Function 

U storeOfchainD
ataAndDBPoint
er() 

Appends metadata and a controlDBPointer to a 
previously trustworthiness evidence report 
that is signed from the Oracle enclave and 
stores it in the ledger. Raw traces are produced 
as part of the attestation evidence report, 
which are stored in an offline database. The 
pointer created with this function is stored on 
the ledger and points to these traces. 

1.0 Security 
Context 
Broker 

U harmonization 
() 

This function collects the trustworthiness 
evidence of every container from 
GetTrustworthinessEvidence() function, 
harmonize and create a verifiable presentation 
based on these trust evidence and stored on 
the ledger. 

2.0 Security 
Context 
Broker 

E SGCTrustChain
() 

Its responsible to create a smart contract to 
collect the trust policy from the LoT 
Assessment component and related Privacy 
SLA and Service Graph chain topology from 
Orchestrator via SCB to calculate the 
Requirement Trust Level (RTL) of the service. 
At the second step the LoT Assessment 
component receives the trustworthiness 
evidence, including attestation reports (in the 
form of a VP) with the appropriate pointers to 
the off-chain storage where the actual 
attestation evidence may be acquired, if 
needed. 
The LoT Assessment component leverages the 
received information to calculate the Actual 
Trust level (ATL) of the service and compare it 
with the RTL to create a trust decision. The ATL 
is pushed to the ledger leveraging the SCB and 
the Secure Oracle. 

2.0 Oracle 
Function 

E QueryTrustLvl(
) 

This function is responsible to create a smart 
contract that implement the trustExposure() 
function in order to give access to the level of 
trust of a specific service to external 
entities/user.  

2.0 Security 
Context 
Broker 
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U trustExposure(
) 

This function verifies the credentials of the 
external entity or component that requests 
access, retrieves the entire history of the Trust 
Level of the particular service from the 
blockchain ledger and gives them access to the 
Level of Trust chain of the service if they are 
successful in passing the validation process. 

2.0 Security 
Context 
Broker 

  

5.2.3.1 Smart Contract Data Model Definition 

Following that, we present detailed explanations of the data models employed within the 
Smart Contract framework. These models serve to support the operational requirements and 
functional specifications of PRIVATEER in relation to the delivery of the Trust Policy and enable 
the collection and execution of calculations based on several types of trust evidence. These 
models are represented as data structures, consisting of fields in the form of a JSON schema, 
which specifies the features that must be included in each structure. 

Various data structures are defined based on the specific work environment and the data they 
are required to hold. 

Table 6 - SGC Trust Chain Data Structure 

Name Data 
Type 

JSON Schema Description 

PrivacySLA string json:” privacysla” The Service Level Agreement (SLA) produced 
by Orchestrator's SLA Manager contains details 
on security, trust, privacy characteristics, as 
well as network and service capabilities. 
PrivacySLA indicates the users or external 
entities who are authorized to access specific 
containers and services. 

ContainerID [] integer json:” 
servicegraphchain” 

The array list contains the container IDs that 
make up the service graph chain, representing 
the services that possess these trust evidence 
in order Trust Level Manager performs the 
Trust Assessment. 

TrustPolicy [] struct json:” trustPolicy” The Trust Policy covers several characteristics 
that are essential for evaluating the 
trustworthiness of the service. These 
parameters include the trust level for the 
specific service, Proof of Transit (PoT), 
information using by the Oracle to collect trust 
evidence. In addition to the parameters, the 
Trust Policy contains details on the frequency 
at which the data should be queried (i.e., 
periodicity) and the trust relationships that are 
established based on the service graph chain. 
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TypeofEviden
ce 

string json:” 
typeofEvidence” 

What type of evidence need to ask from 
Security Probe to collect on Town Crier (i.e., 
evidence for proof of transit and for 
attestation) 

RequiredTrust
Level (RTL) 

[] struct json:” 
requiredtrustlevel” 

The Required Trust Level (RTL) is a measure of 
the trustworthiness of the service graph chain 
prior to uploading the trustworthiness 
evidence to the blockchain, to perform the 
runtime assessment. It serves as a threshold 
that decides the level of security for a specific 
service. 

ListOfAttribut
es 

[] string json:” 
listofattributes” 

This field specifies the list of attributes that a 
given device or entity must possess in order to 
access and edit this specific data structure from 
the DLT. 

Signature [] string json:” signature” Include a self-signed certificate issued by the 
enclave (i.e., Secure Oracle). This certificate is 
applied at the hash of Smart contract. The 
enclave signature includes information that 
enables the Intel SGX architecture to identify 
whether any part of the enclave file has been 
altered. 

  

Table 7 - Trust Policy Data Structure 

Name Data 
Type 

JSON Schema Description 

ActualTrustLvl [] struct json:” actualTrustLvl” The Actual Trust Level (ATL) is derived from 
the computation based on the 
trustworthiness evidence of services in order 
to be determined if the container of services 
meet the requirements of the RTL. 

TrustModel [] string json:” trustmodel” An array of strings is utilized to indicate the 
relationship between several design models 
from separate developers, based on their ID 
definitions, without disclosing the actual 
code that implements by them. 

ListOfTrustSo
urce 

[] string json:” 
listoftrustsource” 

The objective is to monitor specific trust 
parameters (such as configuration integrity 
through attestation) and measure the Level 
of Assurance (LoA) of the associated service 
graph chain. 

Periodicity integer json:” periodicity” Periodicity refers to the frequency at which 
Oracle decide to request and collect 
trustworthiness evidence. 
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Table 8 - Trustworthiness Evidence Object Data Structure 

Name Data 
Type 

JSON Schema Description 

DbPointer [] string json:” dbPointer” A string identifier, that is used by the Oracle 
to store the value of the trust evidence after 
the data veracity check, in an off-chain 
database. 

OracleSign [] string json:” oracleSign” The unique signature that produced from the 
enclave SGX of Secure Oracle that apply to 
trust evidence before them store at the off-
chain storage. 

ContainerSign [] string json:” containerSign” The signature is created and applied to the 
container from which the specified trust 
evidence originates. 

CategoryTrust
Source 

[] string json:” 
categoryTrustSource” 

It refers to the type of trust parameter that 
the evidence concerns (such as, evidence for 
attestation and/or proof of transit) 

 

Table 9 - Actual Trust Level Data Structure 

Name Data 
Type 

JSON Schema Description 

TrustLvlValue [] string json:”  trustLvlValue ” Indicate the Trust Level value derived from 
the calculation procedure to apply on Service 
Graph chain by LoT Assessment via the 
SGCTrustChain() smart contract using the 
trustworthiness evidence. 

LotSign [] string json:” lotSign ” The string identification represents the Level 
of Trust Assessment, which is responsible for 
updating the new trust values each time new 
trustworthiness evidence collecting to 
Blockchain. 

DbPointer [] string json:” dbPointer” A string identifier, that is used by the Oracle 
to store the value of the trust evidence after 
the data veracity check, in an off-chain 
database. 

  

5.3 Plan for development 
The implementation roadmap for the Blockchain development is characterized by two 
major milestones. In the initial release, the primary objective is to establish core 
functionalities and provide a stable base for the PRIVATEER framework to operate. 
This mainly involves the construction and management of the necessary contracts to 
support the PRIVATEER workflows as presented in Section 2. This implies that the first 
version contains the full instantiation of the Town Crier secure oracle, along with the 
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Service Graph (SGC) smart contract. In addition to that the necessary gRPC and http 
clients are envisioned so as to enable the data sharing from the various PRIVATEER 
components towards the DLT. Hence, it enables the privacy-aware orchestrator to 
publish information pertaining to the SLAs and the service graph chain as well as the 
LoT Assessment to specify the necessary trust policies for each service. On top of that, 
communication between the Security Probe and the Secure Oracle is also envisioned 
so that the trustworthiness evidence is recorded to the DLT. Finally, the veracity of the 
ingress data to the Town Crier is also planned for the first release. 

Building upon the foundation established in the first version, the second release 
introduces significant enhancements and additional features to regulate the access to 
the data stored in the Blockchain. In this second version, the SCB is enhanced with the 
full-fledged ABAC and ABE implementations so as to control the access to the 
information stored to the DLT. In addition, the final integration with the distributed 
identity management framework is envisioned. Last but not least, this second release 
accommodates the harmonization mechanisms (e.g., harmonization functionalities 
within Town Crier) required for the trust exposure layer to provide aggregated trust 
results to external actors.  
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6 Distributed Identity Management  
The rapid adoption of the Internet of Things and 5G network further increases the 
need for secure communication among devices. Therefore, it is necessary for each 
device to have a unique digital identity in order to ensure secure communication and 
authentication [39] [40]. A plethora of the existing models for identity management 
leverage centralized identity providers and repositories to meet the goal of 
identification. However, this centralised identity management approach creates a 
single point of failure, rendering it vulnerable to widespread system failures and an 
attractive target for malicious individuals. This increases the risk of large-scale data 
breaches, potentially exposing significant quantities of personal information 
Moreover, centralized solutions frequently fail to meet strict privacy requirements, 
thus increasing the chances of unintentional data exposure [41].  

By distributing control over personal data and leveraging secure, immutable ledgers, 
Self-Sovereign Identity (SSI) frameworks mitigate the risks associated with single 
points of failure and data privacy breaches, providing data subjects with greater 
autonomy and security over their digital identities [39] [42]. In addition, the principles 
of transparency and data minimization are also applied, as individuals are made aware 
of the purposes of data processing, and they only share necessary information 
depending on the specific purpose [43]. Since the majority of users own at least one 
digital identity, in order to authenticate themselves at a service or an application, the 
need for protecting these identities has grown exponentially [39]. Moreover, it is 
crucial to acknowledge that identities extend beyond individual users to further 
include services, which highlights the significance of strong mechanisms for protecting 
identities. 

The following sections delve into the State of the Art (SotA), detailing on existing 
protocols, while introducing the PRIVATEER protocol descriptions, and the plan for 
development. 

 

6.1 State Of The Art  
In Self-Sovereign Identity (SSI) model, individuals have control over their own personal 
information without relying on centralized authorities. More specifically, users can 
securely manage and share their personal data using cryptographic techniques, 
ensuring security and privacy, when interacting with other entities [44]. Within an SSI 
ecosystem, individuals can store their identity information and share it with other 
parties when the occasion arises. In addition, they can also decide what information 
they would like to share with other entities, and they are not obliged to share data 
which is not required for the identification [43]. 
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Self-Sovereign Identity is founded on decentralized and distributed ledger 
technologies. Along with DIDs and VCs these technologies (which are elaborated in 
sections 6.1.1 and 6.1.2 respectively) can be used in order to create irrefutable and 
immutable (tamper-proof) records [45]. The privacy-by-design principle is also 
upheld within the context of SSI [42]. More specifically, the data subjects can control 
when they will share their attributes, and which attributes (which data) they would 
like to share. With selective disclosure, data subjects have control over the data which 
is shared for a specific purpose. In addition, no personal data is stored on the ledger, 
neither encrypted nor hashed. This eliminates the need of monitoring or removing 
data from the blockchain either for privacy or security-related purposes [42]. 

The stakeholders involved within an SSI ecosystem are the holder, the issuer, and the 
verifier. Each entity plays a different role in Self-Sovereign Identity model [44] [46]. 

• Holder: An entity which has ownership and control over a set of personal 
information. Each holder can have one or more digital identities, without 
depending on a third party to obtain them, and can manage and selectively 
share their personal data using verifiable credentials [47] [48]. The holder 
stores these credentials in his/her digital wallet, which may be a software 
application or hardware device. By retaining control over their identity 
information, holders can assert their identity and share relevant credentials 
with verifiers, thereby preserving privacy and security in digital transactions 
[43]. 

• Issuer: A trusted entity which issues verifiable credentials on behalf of the 
holder. Issuers are responsible for verifying the authenticity of the information 
they issue and cryptographically signing the credentials to ensure their 
integrity [43]. By issuing verifiable credentials, issuers enable holders to 
present proof of their identity in a secure and verifiable manner. 

• Verifier: An entity that verifies the authenticity of a verifiable credential 
provided by a holder. Verifiers validate the cryptographic signatures of the 
presented credentials to ensure their authenticity [47]. 

In terms of PRIVATEER architecture, as described in Chapter 2 of the present 
deliverable, the holder is the entity possessing the credentials (i.e., the MNO, the 
Service Provider or the user), the issuer can be any trusted entity issuing the DIDs (the 
VCs are self-issued in PRIVATEER), while the Verifier resides within the Security 
Context Broker component.  

There are certain use cases where a regular user may leverage Self-Sovereign Identity. 
In general, SSI finds applications in Internet of Things (IoT) devices, payment solutions, 
public transportation, the healthcare sector, digital driving license verification [39] 
[43] [49] [50], and various other domains. As already mentioned in the deliverable 
D2.2 [2], a possible scenario for users leveraging DIDs is a city that leases a multi-
domain B5G network to support various public and private transportation operators. 
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In that case, the Service Provider (i.e., which refers to the Ticketing System and 
Transport Provider), which reflects in essence an application deployed in an MNOs A 
infrastructure, is responsible for processing data regarding journey planning, routing, 
and fare settlement in a privacy-preserving manner. In this specific case, PRIVATEER 
aims to leverage Decentralized Identifiers and Verifiable Credentials to securely 
authenticate users (i.e., travellers) so that they can access transportation services 
even when moving across different regions served by different MNOs. In this scenario, 
the traveller is the holder of the Verifiable Credentials, the Identity Provider is the 
Issuer, whereas the Transport Provider is the Verifier. 

6.1.1 Decentralized Identifiers (DIDs) 

Decentralized Identifiers (DIDs) are considered as the cornerstone of SSI ecosystems, 
by offering a way to uniquely identify individuals, organizations, devices, and entities 
in a decentralized manner [42] [47]. Unlike traditional identifiers, like usernames or 
email addresses, DIDs are not related to any centralized registry or authority. On the 
contrary, they are cryptographically generated and stored on distributed ledgers, such 
as blockchains [43] [46]. Each DID is globally unique and user-centric, enabling 
individuals to assert ownership and control over their digital identities. DIDs can be 
associated with cryptographic keys, allowing users to authenticate themselves 
without relying on any intermediate entity to do so [43]. This decentralized approach 
increases the level of both security and privacy, as users maintain full control over 
their identity information. In essence, a DID is a Uniform Resource Identifier (URI) 
which refers to a DID subject and associates the DID subject with its corresponding 
DID Document [47] [51]. The DID document contains information, such as verification 
methods and cryptographic public keys, relevant to the DID subject [51]. According to 
the World Wide Web Consortium (W3C), DIDs are defined as “globally unique 
persistent identifiers” [51]. The specifications outline a method for verifying the public 
keys included in DID documents. 

6.1.2 Verifiable Credentials (VCs) and Verifiable Presentations (VPs) 

Verifiable Credentials (VCs) are digital documents, and more specifically digital 
credentials, which contain information about specific attributes or claims of a data 
subject. These claims are basically personal information of an individual, such as 
his/her age or level of education [44] [46]. Unlike customary credentials, which are 
issued by centralized authorities, verifiable credentials are designed to be 
independent and cryptographically verifiable. They are issued by trusted parties, 
known as issuers, and are cryptographically signed to ensure their integrity and 
authenticity [44] [48]. Verifiable credentials enable individuals to present proof of 
their attributes in a privacy-preserving manner, without disclosing any unnecessary 
and additional personal information [48]. The VC data model takes advantage of 
verifiable credentials in order to establish trust among all involved entities within the 
SSI ecosystem. By leveraging verifiable credentials, users can exchange their 
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information seamlessly in a decentralized and privacy-enhancing manner, across 
different platforms and services [43]. 

A Verifiable Presentation (VP) is a cryptographic proof that attests to the validity of 
the information being shared, without revealing unnecessary details about the 
underlying credentials or the individual's identity [41] [49]. This proof is generated by 
combining verifiable credentials with cryptographic signatures and proofs, ensuring 
the integrity and authenticity of the presented information [41] [43] [47]. Verifiable 
presentations allow individuals to selectively disclose specific attributes or claims from 
their credentials, depending on the context or the needs of the recipient. 

6.1.3 PRIVATEER’s Innovation in Identity Management 

PRIVATEER pioneers in adopting SSI for Identity Management in the context of B5G 
networks, not only for user but also for infrastructure component verification. By 
adopting this approach, PRIVATEER leverages SSI structures, such as Verifiable 
Credentials (VCs) and Verifiable Presentations (VPs), to enhance network security 
while also taking into account issues related to privacy. Towards this end, access to 
specific information such as trust levels or the acquired trustworthiness evidence is 
granted though selective disclosure of attributes (i.e., ABAC).  

In terms of employed DLT technology for Identity Management, PRIVATEER leverages 
the Hyperledger Aries [52], that is part of the extensive Hyperledger ecosystem, 
providing an open-source initiative designed to offer developers with a robust set of 
libraries and tools, facilitating the creation of Decentralized Identity applications [39]. 
This set of libraries and tools comprises features which are essential for the secure 
management and presentation of DIDs and VCs, while safeguarding user’s privacy. 
Hyperledger Aries Cloud Agent Python (ACA-Py) [53] is part of Aries Hyperledger 
framework. ACA-Py implementation simplifies the integration of DID functionalities, 
and empowers developers to exploit its capabilities, within their Python-based 
projects. In addition to the toolset provided by Aries, Hyperledger Indy [10] further 
provides a Distributed Ledger Technology (DLT) specifically designed for DID 
management. Within Indy Hyperledger, developers are able to create and manage 
digital identities in a secure, privacy-preserving, and interoperable manner. 

In the context of PRIVATEER, Aries Cloud Agent is preferred due to its robust 
implementation, active development community, and seamless integration 
capabilities [39] [43] [46]. ACA-Py offers a comprehensive suite of tools for building 
SSI solutions. It supports all functionalities needed in PRIVATEER, such as VC issuance, 
VC verification, VC revocation, and ensures flexibility and scalability, making it 
adaptable to diverse use cases. Moreover, ACA-Py benefits from extensive community 
support, providing regular updates and security enhancements. 
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6.2 Protocol description 
PRIVATEER considers the entities as also defined by the W3C standards: i) the holder, 
ii) the issuer, and iii) the verifier. The holder and the verifier each possess a DID which 
is stored locally in their wallet, while the issuer's DID is published on the blockchain 
for Identity Management. Considering the PRIVATEER architecture, the holder may be 
any entity (i.e., covering both components and users), while the Security Context 
Broker (SCB) acts as the credential verifier. The main function of the issuer is to issue 
and revoke credentials on behalf of the holder, whereas the verifier is responsible for 
validating the holder’s credentials. The scenario description is depicted in the figure 
below (Figure 9). It is worth noting that the blockchain used for identity management 
is based on Indy Hyperledger [10]. The flow goes as follows: 

 

 
Figure 9 - Self-Sovereign Identity Diagram and Flow 

The holder, the issuer and the verifier create a local DID in their wallet respectively 
(step 1). In parallel, the issuer publishes their previously generated DID on Indy 
Hyperledger (step 2). Along with the generation and publishment of the DID, the issuer 
creates and publishes a credential schema on Indy Hyperledger (step 3). The 
credential schema consists of a name, version, and a set of attributes. More 
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specifically, the credential schema can be considered as a template for the upcoming 
credentials, and it defines the structure and the type of the attributes. 

The issuer creates and publishes a credential definition on Indy Hyperledger (step 4). 
The credential definition is an instance of the credential schema and includes 
cryptographic material, such as public keys, which are used for the issuance of 
verifiable credentials. If revocation of verifiable credentials is supported, the issuer 
should declare this information when registering the credential definition on the 
ledger. In addition, it should also define the size of the revocation registry, which 
determines the maximum number of credentials that can utilize this revocation 
registry. In case that revocation is supported, the issuer should also create and publish 
a Revocation Registry (RR) on Indy Hyperledger (step 5). This is done automatically. In 
fact, two revocation registries are created, one active and one initiated. The advantage 
of this implementation lies in the absence of delays when the first registry reaches 
capacity, as the second one can be utilized. During continuous operations, when one 
revocation registry reaches its limit, the second revocation registry gets activated, and 
a new one is generated to ensure that one registry remains on standby. 

The holder requests a verifiable credential from the issuer (step 6). More specifically, 
the holder makes a credential proposal to the issuer, inquiring the latter to issue a 
credential based on specific attributes. The issuer inspects the credential attributes. If 
all attributes are valid and the holder meets the criteria, the issuer issues and sends 
the verifiable credential to the holder; otherwise, the issuer sends a message to the 
holder informing the latter that an error occurred (step 7). The holder receives and 
stores the verifiable credential in its wallet (step 8).  

Whenever the holder wants to get verified somewhere, for instance, at a service, it 
must first establish a connection with the verifier (step 9). The verifier requests a 
presentation (proof) from the holder (step 10). The holder creates and responds to 
the verifier with a proof from a matching credential (step 11). The verifier verifies the 
holder’s presentation, yielding a Boolean result (true/false) (step 12). If the attribute 
values are valid and the credential is active and not revoked, the result will be true; 
otherwise, it will be false. 

The issuer can also revoke the previously issued verifiable credentials (step 13). More 
specifically, the issuer can access all issued credentials at any time and select which 
ones to revoke. After credential revocation, the status of the credential will change, 
and the credential will not be considered as valid anymore. As a result, the holder will 
not be able to verify itself. 

Note: It is worth noting that a connection must be established between the holder 
and the issuer before credential issuance, and between the holder and the verifier 
before proof verification. 
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6.3 Plan for development 
The main functionalities which will be developed in the context of PRIVATEER are as 
follows: 

1) DID Generation: A unique Decentralized Identifier, either private or public, is 
created for each entity within the SSI ecosystem. 

2) Verifiable Credential Issuance: A Verifiable Credential is issued by an issuer and 
certifies various attributes or claims of a holder. 

3) Verifiable Credential Validation: The verifier confirms both the authenticity 
and the integrity of the received verifiable credentials or presentations. 

4) Verifiable Credential Revocation: The issuer, who has previously issued a 
verifiable credential on behalf of the holder, can revoke the holder’s credential 
if needed. 

5) DID Resolution: A DID is resolved into a DID document containing metadata or 
information associated with the entity it represents. When a DID needs to be 
resolved, the resolver locates the corresponding DID document, typically 
stored on a decentralized ledger, and retrieves relevant information such as 
public keys, service endpoints, or authentication mechanisms associated with 
this DID [51] [54]. This process enables verifiers to authenticate and interact 
with the DID subject in a secure, privacy-preserving, and decentralized 
manner. 

 
For Release A (M16), a first version of all the above functionalities has been 
implemented. However, the current implementation needs to be improved in order 
for the DID/VC functionalities to be performed properly. In addition, the attributes 
which will be included within the verifiable credentials need to be defined and 
described since, at the time, only credentials with test attributes are issued. It should 
also be clarified how the SSI concept will adapt to the Use Case “Verification of Mass 
Transportation Application” and with which components it is expected to interact.  Till 
Release B (M30) all open points should be addressed, in conjunction with other 
relevant partners, and an improved version is expected to be implemented. 
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7 Privacy-preserving CTI sharing 
Sharing Cyber Threat Intelligence (CTI) information is crucial for improving the security 
of networks, including B5G networks. By facilitating the exchange of relevant data 
among interested parties, operators and other stakeholders, it is possible to efficiently 
identify and address imminent cybersecurity threats. However, organizations may 
hesitate to share this kind of data due to the potential exposure of sensitive 
information, such as internal network topology and configuration details.  Disclosing 
such information could potentially provide malicious actors with valuable insights into 
an organization's infrastructure, thereby allow them to initiate focused cyber-attacks, 
resulting in data breaches, service disruptions as well as financial and reputation 
damage.  

Therefore, although the exchange of cyber threat intelligence is crucial for improving 
network security, organizations must thoroughly evaluate the privacy consequences 
and implement suitable measures to reduce the risks associated with sharing 
confidential data. It is clear that enabling the seamless and privacy-preserving 
exchange of threat data is essential for protecting critical infrastructures. Usually, 
when users wish to retrieve information, they need to formulate a search query and 
send it to a server operated by a third party. The server then provides data that is 
related to the search query. Normally, this data is decrypted first, which allows for 
operations to be performed in clear text. This can bring up the confidentiality of the 
data exchanges into question. An effective method to address this issue is through 
Searchable Encryption.  

Searchable Encryption is a technique that uses trapdoors to search and retrieve 
information from an untrusted third-party server without the need to decrypt. For 
example, a user that wants to search for information about “apples” will first create a 
trapdoor (the result of a secure one-way cryptographic function, eg. HMAC) from the 
keyword, which is then sent to the server. The server when receiving the trapdoor 
compares it with the contents of their database where the identifier of the record is 
the trapdoor. This requires that the encrypted inverse index is prepared and set up 
before searching is possible. Since all data is encrypted (even the search query), 
confidentiality is guaranteed. Searchable encryption can be split into different types 
based on the used cryptographic techniques, with the base ones, from which many 
other approaches are derived, being i) the Symmetric Searchable Encryption (SSE) and 
ii) Public Key Encryption Keyword Search (PEKS).  

Symmetric Searchable Encryption 

SSE uses symmetric key cryptography, allowing for anyone with access to the secret 
key to encrypt and decrypt data. SSE can either be static or dynamic. Static means that 
the encrypted index is set up and then cannot be updated without rebuilding the 
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encrypted index. Dynamic, on the other hand, allows for new records to be inserted 
into the index as well as existent records being able to be deleted. Usually, static SSE 
requires a combination of four steps: 

• Key Generation: Generates a secret key. It usually receives a parameter, such 
as key size of the system, as input. 

• Set Up: Generation and preparation of the encrypted index – receives the 
secret key and the documents that will be encrypted and outputs the index. 

• Trapdoor Generation: Generation of a trapdoor for a certain keyword – 
receives the keyword and the secret key and outputs the trapdoor of the 
keyword. 

• Search: Searches for all documents that have a certain trapdoor – receives the 
index and the trapdoor as input and returns a set of documents. 

 
Dynamic Searchable Encryption 

For dynamic SSE, the same four steps are used, along with an extra four: 

• Insert Token: Generates a token used to call for an insert action - receives the 
secret key and the document that will be added to output an insert token. 

• Insert: Adds the new document to the chosen encrypted index – receives the 
insert token and the encrypted index, outputting an updated index, now with 
the new document. 

• Delete Token: Generates a token used to call for a deletion action - receives 
the secret key and the document that will be deleted to output a deletion 
token. 

• Delete: Removes the chosen document from the chosen encrypted index – 
receives the deletion token and the encrypted index, outputting an updated 
index, now with the chosen document removed. 

Public Key Encryption Keyword Search 
PEKS uses public-key cryptography, allowing for only the owner of the corresponding 
private key to perform searches. This approach is preferred for use in multi-user 
scenarios where nonrepudiation is a requirement. A PEKS approach usually consists of 
four steps, analogous to the ones of the SSE approach: 

• Key Generation: Generates a private/public key pair.  
• Set Up: Generation and preparation of the encrypted index – receives the 

public key of the recipient and the documents that will be encrypted and 
outputs the index. 

• Trapdoor Generation: Generation of a trapdoor for a certain keyword – 
receives the keyword and the private key of the recipient and outputs the 
trapdoor of the keyword. 

• Test: Verifies if an encrypted document was encrypted with a certain token or 
not, returning a Boolean variable. 
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The following sections list some State of the Art (SotA) works, detailing on existing 
protocols, while introducing the PRIVATEER protocol descriptions, and the plan for 
development. 

7.1 State Of The Art  
7.1.1 Searchable Encryption 

Searchable encryption was first proposed by Song et al. [55], who presented 
algorithms allowing for search over encrypted text data. This scheme uses a 
deterministic encryption scheme to encrypt the keywords, in a first round of 
encryption. Then it uses a stream cipher for a second round of encryption. For 
instance, in this scheme, a keyword is first run through this algorithm and the result is 
separated in two parts – one which will be used for key generation for a hash function 
and the other which will be XORed with a random seed, picked by the keystream, and 
the result of the hash function (which is computing the key generated by the first part 
along with the random seed). If a user wants to perform a search, they first encrypt 
the keyword, and this result is sent to the server which iterates over all encrypted 
keywords, attempting to recover the seed that was used in the second layer of 
encryption, by performing the XOR operation. After that, the key generated from the 
first part of the encryption result is compared with the cipher text. If it is a match, then 
the keyword that was being searched for was found. This approach has its’ issues. For 
one, it doesn’t achieve very strong security. While the ciphertext itself is secure, no 
security is achieved regarding search capabilities. The scheme leaks the position of the 
keyword in the document, which can lead to statistical analysis attacks. This scheme’s 
search time is also linear, which means, the time required for a search to complete 
would increase, at an equal rate, depending on the number of keywords the 
documents are hosting. 

Goh [56] then attempted to increase the security of the previous scheme through a 
forward index approach. In it, for each document there is a combination of keywords, 
which have been encrypted and linked to it. A user that has the secret key can 
generate a trapdoor and then search for a certain keyword. This scheme requires that 
the index be built beforehand – and this is done using bloom filters. These are data 
structures, in the form of an array of bits, each bit representing the presence of 
specific data. These are used to definitely confirm that an element is not part of a data 
set. All bloom filters will be empty when first created with all its bits set to zero. Once 
a new element is added, the bloom filter’s array of bit changes, the bit that maps to 
the new element will become 1. Thus, by hashing the element the user wants to find, 
and checking whether all the positions returned of said bits are set to one, the user 
can verify that the keyword exists, in theory. However, this is not certain. Bloom filters 
will never produce false negatives, but they can, especially on larger datasets and 
depending on the number of bits available for each element, produce false positives. 
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Another issue is that the number of ones can be enough to give a clue of how many 
keywords the document is hosting. Once again, the issue of linear search time occurs 
in this scheme as well, since the search is performed by using the combination of 
encrypted keywords linked to the document. 

Curtmola et al. [57] presented an inverted index approach. This approach would 
become the basis for many other searchable encryption implementations. The idea 
behind this approach is that, instead of trying to find a keyword within data, we find 
the data linked to said keyword, which is achieved by preparing an index where the 
trapdoor, associated to a keyword, links to a list of identifiers of the data that contains 
said keyword, all of which is encrypted. Curtmola et al. approach proposes that all 
nodes of all linked lists, associated to different keywords, should be part of a single 
array, in a scrambled order. The plaintext of each node includes the identifier of the 
data that contains the keyword, a pointer to the next node of the list as well as the 
key used to encrypt that node. The only thing the user needs then is the secret key of 
the first node of the list associated to the keyword they want to search for and the 
position of that node in the array. One of the downsides of the approach presented is 
that it is not dynamic, meaning the arrays would need to be updated whenever 
something is added or removed. Another issue, that affects performance, is that it is 
not parallelizable, meaning that the system can only focus on processing one thing at 
a time. This is so, since nodes are spread out randomly in the array and the only way 
to know where the next node of the list is by decrypting said node.  

Kamara et al. [58] present a possible way to achieve dynamic searchable encryption 
by being able to track these operations in an efficient manner. Whenever data is added 
or deleted, the array positions that will suffer changes will be kept track of in a deletion 
array. Furthermore, a list of free nodes, keeping track of positions available on the 
search array is kept and used whenever new data is added to the server. Finally, the 
pointers of each node are updated through the usage of homomorphic encryption. 
Homomorphic encryption [59] is a type of encryption that allows a user to work and 
process data even while its encrypted, without the need to be decrypted. This 
technique allows for this approach to modify data, the pointers to next nods, while 
skipping decryption. 

Another possibility for achieving dynamic searchable encryption is by building the 
inverted index while also working on it. This idea is presented by Hahn and 
Kerschbaum [60] and makes use of both a forward index along with an inverted 
index. The idea behind it is to first have a forward index, where the data/document is 
used as the index to find a keyword and an empty inverted index. When a keyword is 
first searched, the system first learns what the search token is, that will be used in the 
inverted index. Once that’s done the keyword and its’ data are added to the inverted 
index. If data/document that contains a certain keyword are added or deleted, the 
inverted index is updated accordingly. the forward index is used when a keyword is 
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first searched, which means a linear search time for the first search, however, once 
that’s done, whenever users later search for the same keyword, the search token 
remains the same and users will access the inverted index instead. 

Most searchable encryption schemes can only work with single keyword queries. Golle 
et al [61] first presented an approach that offered multi-keyword searches, achieved 
through the combination of different protocols that allow conjunctive keyword 
search. One of these approaches involves the intersection of multiple searches. If a 
user wants to search for documents that contain the keywords A and B, they first send 
a query for all documents that contain A and then do the same for B, and finally they 
check what documents are found on both results. This has the drawback of the server 
getting information from the searches which can later be used to infer about each 
document. Another approach is the usage of meta-keywords. Instead of sending a 
query that contains keyword A and then another for B, a query such as “A:B” is sent 
to retrieve documents with that meta-keyword. This requires that each document has 
associated to it all combinations of every keyword, represented in meta-keywords. 
This has the drawback of massive storage usage. Golle et al. present an approach that 
offers the benefits of the previous approaches while lowering the drawbacks which is 
achieved through Boolean conjunctive query in linear performance. 

Later, Cao et al.  [62] first proposed a multi-keyword ranked searchable encryption 
(MRSE), whose main idea was allowing users to search for multiple keywords and 
receive the most relevant results. This is achieved through “inner product similarity” 
which utilizes an algorithm, adapted from k-nearest neighbour technique, to enable 
the selection of the k-nearest database records between database record and query 
vector. This approach has the issue of using a static dictionary, requiring rebuilding it 
whenever a new keyword is added. Furthermore, it also does not account for the 
weight and access patterns of keywords when presenting the top results. As such, R. 
Li et al  [63] proposed a new scheme, MKQE, to tackle and overcome MRSE’s faults. 

More recently, Liu et al [64] present a searchable encryption scheme named 
Searchable Encryption based on Efficient Privacy-preserving Outsourced calculation 
framework with Multiple keys (SE-EPOM), capable of multi-keyword search in a multi-
server architecture, while also allowing for multiple writers. This scheme is based on 
a subset decision mechanism, also developed by the authors, with the goal of 
determining whether one input is the subset of another input set.  

Regarding forward and backward privacy, topics that have also seen research efforts 
in recent years in the context of searchable encryption, forward privacy means that 
when adding a document, no information is revealed about its’ keywords, whether 
what keywords it contains or if they have been searched. As for backward privacy, it 
must guarantee that searches do not leak information about keywords that have 
already been deleted. Sefanov et al. (2014) introduced these concepts in searchable 
encryption and proposed a scheme that used forward privacy. The concept was 
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improved by Bost et al. [65] who focused on researching backward privacy, which was 
until then overlooked and proposed different schemes with both forward and 
backward privacy. More recently, Bakas and Michalas [66] applied forward and 
backward privacy in a multi-client cloud environment. 

Searchable Encryption usage in Cyber Threat Intelligence sharing is a topic which is still 
very overlooked; hence, there is limited research on the topic. INESC TEC has achieved 
two different publications on this topic, both authored by Fernandes et al. In the first 
publication [67] it is mentioned that although the Malware Information Sharing 
Platform (MISP) allows for sharing of CTI, it presents limitations in the way the CTI 
sharing can be controlled and searched within groups of entities while maintaining its 
confidentiality. As such, a prototype that allowed for CTI to be shared between entities 
through a proxy API, which also connects to a MISP instance, is proposed. As for the 
second publication [68], the performance of the previous prototype is evaluated and 
improved, with the results being presented. 

 

7.1.2 Decentralization 

Current CTI-sharing solutions present drawbacks, one of them being: Single Point of 
Failure; meaning that the system is dependent on one server to work, which hosts the 
reverse index containing data that will be exchanged. If this server goes down, the 
whole system suffers a failure. Another drawback is their inability to support the 
dynamic creation and operation of autonomous CTI-sharing groups. 

A way to overcome the Single Point of Failure problem is by no longer being dependent 
on a single server. This entails the existence of a distributed index, which also requires 
multiple systems hosting indexes. Such a concept is explored by Cai et al. [69], where 
an encrypted decentralized storage architecture, which also allows for private 
keyword search, is proposed. Blockchain is used as the decentralized data storage 
platform of choice. In this solution there will exist two types of peers: i) client peers, 
responsible for outsourcing files and indexes, as well as verifying keyword searches 
and ii) storage peers, responsible for returning search results. To minimize search 
latency, encrypted files and their encrypted index are stored in the same peer. 

More recently, Sultan et al. [70] presents a scheme, to be used in the context of 
Internet of Things, that allows for multi-client usage, offers forward and backward 
privacy and a distributed index through distributed hash tables. 

As referenced beforehand, one way of achieving this is through Blockchain. The 
concept was first explored by Haber and Stornetta [71], with the objective of 
timestamping digital documents through cryptographically secure blocks of chains. 
This concept would go under the radar until some years later, when Nakamoto [72] 
and the introduction of cryptocurrencies, through Bitcoins, would cause the concept 
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to gain much traction. Furthermore, this was also the paper that popularized the term 
“Blockchain”. In this paper, Nakamoto presents a decentralized and distributed 
electronic payment system, without the intervention of third parties. Since then, 
Blockchain has been a topic of study in several industry sectors, such as: 

• Supply Chains: Palamara [73] analyses what advantages Blockchain can bring 
to supply chain and proposes a solution for tracking products to a company in 
the chocolate industry. Canavari et al. [74] also references the tracking of 
meats in the UK, allowing for transparency, and how it has developed. It also 
studies the underdevelopment of Blockchain, in comparison, for fresh 
produce, while mentioning what is making Blockchain fall behind. 

• IoT: Wang et al. (2020) presents the benefits of Blockchain to IoT an Industrial 
IoT, while also introducing the main features of Blockchain applied to IoT for 
Industry 4.0. Mathur et al. [75] reviews the advantages Blockchain brings to 
IoT and introduces the main aspects of using Blockchain in IoT as well as the 
main implementation challenges. 

• Healthcare: As with all these other pieces of research, in healthcare, Blockchain 
can be used in order to safely store information of patients, Ejaz et al. [76], 
Zhang et al. [77], validate and check integrity of all records, Tanwar et al. [78], 
Pham et al. [79] as well as ensuring the transparency of system 
communications, Hathaliya et al. [80]. 

Another way to achieve decentralization is through the usage of Torrent, a P2P 
protocol, also known as BitTorrent. It is a protocol mostly used for file transfers and it 
entails the usage of “torrent” files that contain metadata of the data that will be 
shared as well as what other systems have that information (peers). 

Released in 2008, the BitTorrent10 protocol has, mostly, seen use in P2P overlay 
networks (networks built on top of existing networks). P2P overlay networks have 
seen some research – Polar et al. [81] proposed a newer design at the time for P2P 
overlay networks in fiber optic communications; Caubet et al. [82] presented a new 
protocol that allowed for better security in these networks, while maintaining the 
anonymity; Srivastava and Ahmad [83] also proposed a new probabilistic gossip-based 
secure protocol to track faulty peers. As can be seen in the previous papers, the 
security of the BitTorrent protocol was often called into question. As such, in 2020 
BitTorrent v.211 was released with a focus on improving on the security faults of the 
previous version. 

The BitTorrent protocol itself was researched for application in multiple scenarios. Lee 
and Nakao [84] presented approaches and results on how to achieve a more efficient 
usage of BitTorrent to lower traffic, while satisfying both the users and the ISPs. 

 
10 https://www.bittorrent.org/beps/bep_0003.html  
11 https://blog.libtorrent.org/2020/09/bittorrent-v2/  

https://www.bittorrent.org/beps/bep_0003.html
https://blog.libtorrent.org/2020/09/bittorrent-v2/
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Kopiczko et al. [85] presented “StegTorrent” a steganographic method based on 
BitTorrent, allowing for users to share secret information within data being shared in 
such a way that it is indiscernible and difficult for others to detect. Although the 
protocol is not used, Neuner et al. [86] proposed the usage of data from BitTorrent 
networks to create hash databases for digital forensics. To detect if a system has a 
certain file, it first needs to have a parameter in its’ database that tells it what to search 
for. But if the files in the system being searched have suffered some kind of change, 
the parameter used for searching may not be usable. Since BitTorrent is a protocol 
used mostly for file transfers, to ensure the integrity of the files, it works with large 
quantities of hash values, hence the choice of BitTorrent to feed the hash database. 

While Blockchain is currently a topic under more research and development, the 
adoption of an approach similar to the one of the BitTorrent protocol would solve the 
single point of failure, as each sharing group could have its own index, but also enables 
a more dynamic environment with support for the establishment of ad hoc sharing 
groups.  

7.1.3 PRIVATEER’s Innovation in CTI 

The PRIVATEER proposed solution innovates upon the research in Searchable 
Encryption by presenting a way to exchange data with two particularities: Firstly, it is 
a decentralized system, with all entities having shared encrypted indexes, which 
synchronize between each other, and overcomes the single point of failure. And 
secondly, it allows for user-generated sharing groups to control information – in each 
group an entity has a different index linked to it, entities can only share information 
with other entities that belong to the same shared group and an entity can set up 
different policies for data exchange for different shared groups, further controlling the 
flow of information. 

 

7.2 Protocol description 
In order to ensure the security of the solution, the indexing and the search querying 
must be confidential. There does not exist in scientific literature a standard security 
model for searchable encryption, thus, for the threat model, an honest-but-curious 
server is adopted. This entails that a server follows the rules, however, it is interested 
in learning sensitive information through analysis of search queries. Furthermore, we 
also assume the existence of a third-party malicious actor that will attempt to read, 
alter or delete data.  

The solution must also ensure that it can resist common attack vectors in the 
searchable encryption field, during the search phase, such as Chosen-Keyword Attack 
(CKA) and Known Keyword Attack (KGA). A CKA attack happens, in a searchable 
encryption scenario, when a malicious actor gains information of the stored data by 
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retrieving the plain text keyword from an encrypted keyword. A way to overcome this 
issue is by ensuring that the server does not know any keyword, thus, it becomes 
unfeasible for a malicious actor to figure out whether a certain ciphertext contains a 
certain keyword. A KGA attack happens, in a searchable encryption scenario, if the 
malicious actor is the one that generated all of the cyphertexts of all keywords. With 
the knowledge of one trapdoor, the attacker can search the cyphertexts for matching 
results and when a cyphertext that contains the keyword is found, the attacker can 
guess what keyword is related to the trapdoor. 

Index confidentiality is achieved through HMAC running at client-side, using secret 
keys that only the entities know, making it unlikely that any other group of entities is 
capable of generating the trapdoors. Since HMAC is a one-way mathematical function, 
it is also not feasible for a malicious actor to obtain the original keywords. The solution 
is resistant to CKA attacks, thanks to HMAC as well. Since an attacker requires the 
original keywords in order to be able to retrieve any information and since HMAC is a 
one-way function generated with a secret key, that only the participating entities will 
hold, it becomes unfeasible for the attacker to follow this approach. The solution is 
also resistant to KGA attacks since only participating entities will be able to generate 
keyword trapdoors. 

In the sequence diagrams of this section, three participants are presented: two 
entities and a shared index. The entity represents an organization or individual that 
wants to share or receive CTI data through our CTI sharing proxy API (end-user) and 
the shared index represents a database that was properly set up to work with our 
proxy API – inverse index, encrypted information that can be queried through 
trapdoors. In terms of PRIVATEER the consumer of the CTI information can be the 
Privacy-aware Orchestrator and the Level of Trust Assessment component.  

7.2.1 Set Up 

Presented in Figure 10 is the setup process: When an entity wants to begin 
communicating with another entity, it starts by exchanging UUIDs and public keys 
(step 1). Then each entity adds the other entity’s information to their local database 
(step 2 and 4) and associates the public key received to the new record (step 3 and 5). 
Once that’s done a peer validation process is performed (step 6) and is presented in 
Figure 11. 

In this process, presented in Figure 11, a nonce is generated first (step 1). The plaintext 
message, which is a combination of the UUID of the sender, a timestamp and the nonce 
generated is prepared (step 2). This message is encrypted with the public key of the 
receiver (step 3). Another message is created which consists of a combination of the 
UUID of the sender, timestamp and the encrypted message, done to ensure integrity 
(step 4). This message is sent to the other entity (step 5). The receiver starts by splitting 
the message into a UUID, timestamp and an encrypted message (step 6). The 
encrypted message is decrypted with the entity’s private key (step 7). Once that’s 



 
D5.1 – Distributed attestation, identity & threat sharing enablers – Rel. A. 

 

www.privateer-project.eu © PRIVATEER Consortium Page 105 of 124 

done, the contents of the decrypted message are split, once again into a UUID, 
timestamp and a nonce (step 8). The two UUIDs are compared to verify if they match 
(step 9). If they don’t then the integrity of the message is called into question. 
Afterwards, a new message is prepared containing the receiver’s UUID, a timestamp 
and a nonce (step 10). This message is encrypted with the sender’s public key (step 
11). Another message is prepared with the UUID of the receiver, a timestamp and the 
encrypted message (step 12). This message is sent back to the sender (step 13). 

 
Figure 10 - Set Up 

The process is very similar to what the receiver did to the sender’s message. It’s split 
into different parts and decrypted (steps 14, 15, 16), and the UUID and nonces are 
compared to verify that they match to ensure integrity (steps 17, 18). If no errors 
occur, the peer status is changed to OK (step 19). 

7.2.1 MISP Data Sync 

When preparing the data synchronisation between MISP instances (see Figure 12), the 
entities must first prepare a daily job to sync data between each other (step 1, 2) and 
setup policies, to define what information can and can’t be shared (step 3, 4). When 
the daily job starts, the API proxy sends a request for a MISP data sync to the other 
entity (step 5, 7), and, if no errors occur, a MISP data sync response with the data 
requested is sent back (step 6, 8).  

All data sync processes are run through MISP’s API. 
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Figure 11 - Peer Validation 
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Figure 12 - MISP Data Sync 

7.2.2 Shared Index 

To start, a shared group needs to be created on each entity (steps 1 and 2), as 
illustrated in Figure 13. Then the entities that are part of the shared group need to be 
added to the shared group, which is done by associating the UUID to it (steps 3 and 4). 
Afterwards, the secret key of the shared group is generated (step 5) and presented in 
Figure 14. 

As illustrated in Figure 14, the generation of the secret key is done by first retrieving 
the group hash, or if it doesn’t exist, a new one is generated (step 1). A message is 
prepared containing the UUID of the sender, a timestamp, the group name, a list of 
the entities part of the group and the group hash (step 2). This message is encrypted 
with the public key of the receiver (step 3). Another message is prepared containing 
the UUID of the sender, a timestamp and the encrypted message (step 4). This 
message is sent to the receiver (step 5). 
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Figure 13 - Shared Group Set Up 

The receiver splits the message into three parts: the UUID of the sender, a timestamp 
and an encrypted message (step 6), which is decrypted with the private key of the 
receiver (step 7). This decrypted message is split into five parts: another UUID of the 
sender, a timestamp, the group’s name, the list of participants of the group and the 
group’s hash (step 8). The UUIDs retrieved are compared to verify if they match (step 
9). The receiver then checks if they belong to the group that is referenced in the 
message received (step 10). If so, the information received of the group is compared 
with the information available on the receiver’s end, once again to verify if it matches 
(step 11). If no errors occur, the receiver retrieves (step 12) and adds their hash to the 
group hash (step 13). A new message containing the UUID of the receiver, a timestamp 
and the receiver’s hash is prepared (step 14). This message is encrypted with the 
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sender’s public key (step 15). A new message is prepared containing the UUID of the 
receiver, a timestamp and the encrypted message (step 16). This last message is sent 
back to the sender (step 17). 

 
Figure 14 - Secret Key Generation 
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The sender splits the message into the receiver’s UUID, timestamp and an encrypted 
message (step 18). The encrypted message is decrypted with the sender’s private key 
(step 19). The decrypted text is split into another UUID, timestamp and a hash (step 
20). The UUIDs are compared and checked to see if they match (step 21). If all goes 
well, the hash of the receiver is added to the group hash (step 22). The secret key is 
generated from the group hash (step 23). 

Returning to Figure 13, with the new secret key generated, the shared group’s 
configuration is prepared. The entity needs to set up the shared index’s location, the 
daily update job and set up the policies, or in other words, what information can be 
shared using the index (steps 6 and 7). When the daily update job begins, the API 
updates the shared index (steps 8 and 9). 

 
Figure 15 - Shared Index Update 

With this update the API starts by checking what attributes are available on the MISP 
(step 1) as illustrated in Figure 15 and whether these attributes can be shared 
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according to the entity’s sharing policies (step 2). If so, the information about those 
attributes is retrieved (step 3). A trapdoor, or hash, is generated from the shared 
group's secret key and the attribute data (step 4). A new hash is generated, differing 
from the previous one because it’s signed with the shared group’s secret key (step 5). 
This new hash is appended to the UUID of the sender and encrypted with the shared 
group’s secret key (step 6). A message is created from the trapdoor (step 7) and the 
encrypted hash and sent to the shared index (step 8). 

 

7.3 Plan for development 
As mentioned, one of the main concerns of many searchable encryption schemes is 
the reliance on a single server, hence they suffer from single point of failure. If the 
server hosting the encrypted shared index fails in some way, the whole system is 
disrupted. The current CTI Sharing proxy API solution developed in PRIVATEER is also 
susceptible to single point of failure and as such, future plans include overcoming this 
risk by implementing encrypted shares index decentralization. This requires that there 
exist multiple encrypted shared indexes, that are synchronized with each other, so if 
one fails, users can still use one of the other ones available. 

Regarding decentralization, different approaches were considered: Blockchain and 
Distributed Hash Tables were some of the possible choices. However, after some 
research, it became clear that this goal could be achieved with an implementation 
inspired by the BitTorrent protocol that, overall, adapted more smoothly to the 
current architecture, without the need to implement too many new modules or 
components. This approach fits well with the current solution, since the current 
solution has the functionality to create and join shared groups and when doing so it 
requires the input of information about the other entities that belong to the same 
group, to ensure that the shared key generated when exchanging data is correct, with 
one of those pieces of information being the IP address of the entities – hence, the 
only requirement to implement decentralization becomes that all entities now have a 
database running on their system, or access to one, which hosts the multiple 
encrypted indexes for their groups and that all entities synchronize these encrypted 
indexes whenever another entity updates theirs. 

Figure 16 presents the idea – each entity needs to be part of at least one shared group 
to be able to share information with others, furthermore, each entity is required to 
have a MISP instance connected to the proxy API to store the CTI data. The proxy API 
feeds the encrypted index in the system according to two conditions: the MISP 
instance receives new CTI data (from external sources) and the policies that were 
applied for the shared group fit this new data. This causes the encrypted index to be 
updated and then a synchronization notification is sent to all other peers, to update 
their encrypted index with the new information. 
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Figure 16 - CTI  Internal Architecture 

Another possibility is the development of a micro-service that supports this new 
distributed index for searches of CTI but also enables them to be performed in lower-
performance devices. This entails the usage of the API without a dependency on a 
MISP instance – thus these users themselves do not host any CTI data but can 
communicate with other entities to perform searches. 
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8 Conclusions  
In the context of future B5G, achieving Zero Trust based security requires a 
multifaceted approach. Ensuring the integrity and resilience of both the services and 
the underlying infrastructure is paramount for protecting against sophisticated cyber 
threats that exploit vulnerabilities in interconnected services or networks. Evidently a 
comprehensive approach to security, encompassing both remote and local 
attestation, identity verification, and authentication, is essential. Towards this 
direction PRIVATEER has addressed these challenges by integrating hardware-enabled 
Trusted Execution Environments (TEEs), privacy-preserving mechanisms, and 
Distributed Ledger Technology (DLT), for both data exchange and identity 
management through Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs).  
The present deliverable delved into the details and internal architecture and 
functionalities of WP5. This WP provides the enablers in terms of attestation-related 
evidence, leveraged by the Level of Trust Assessment framework. The PRIVATEER 
architecture represents a comprehensive framework for enhancing security, privacy, 
and trust in distributed and complex B5G environments. 

The incorporation of hardware-enabled Trusted Execution Environments (TEEs), such 
as Intel SGX, has established a strong Root of Trust (RoT) within the system, providing 
the foundation for isolated execution of critical workloads. Secure deployment 
mechanisms, such as Gramine and enclace-cc for confidential container launching and 
eBPF tracers for extraction of runtime evidence, enhance security by enabling 
configuration integrity verification. μProbes deployed within the containers further 
bolster security by providing insights into the configuration integrity of containerized 
applications. Additionally, edge accelerators (i.e., FPGAs) are also monitored through 
dedicated attestation agents, ensuring that the bitstream has not been altered.  

Integration with Distributed Ledger Technology (DLT) has enhanced transparency, 
immutability, and accountability of trust-related data exchange. The Secure Oracle's 
role in smart contract execution facilitates trust assessment processes by validating 
attestation reports and generating comprehensive smart contracts. These contracts 
encapsulate essential information required for trust assessment, ensuring 
transparency and accountability throughout the system. It shall be noted that apart 
from secure and auditable data exchange, DLT is leveraged for identity management 
in PRIVATEER, supporting the notion of Self Sovereign Identity (SSI). Decentralized 
Identifiers (DIDs) and Verifiable Credentials (VCs) enable secure and decentralized 
identity verification, contributing to a trustworthy ecosystem. 

In addition to the above, PRIVATEER has employed privacy-preserving mechanisms, 
for protecting sensitive information from unauthorized disclosure while allowing 
access to essential trust-related data to external parties. Towards this direction, the 
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Trust Exposure Layer along with Attribute-based Access Control (ABAC) mechanisms 
is supported, ensuring that only authorized parties have access to information 
available on the ledger.  By implementing Attribute-based Encryption (ABE), 
PRIVATEER ensures the confidentiality and privacy in data access and exchange 
processes in the off-chain storage too. Furthermore, the implementation of a privacy-
preserving CTI sharing mechanism has been taken into account to improve the security 
level of an entity, specifically a Mobile Network Operator (MNO). This mechanism 
enables the exchange of threat information, thereby facilitating compliance with the 
existing threat landscape.   

The aforementioned components have offered a strong foundation for secure and 
trustworthy interactions across distributed environments. The upcoming Release B of 
the PRIVATEER platform will include enhancements and additional features, resulting 
in the completion of the framework's final view. 
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Glossary 

Confidential Containers: The Cloud Native Computing Foundation (CNCF) has 
launched a project called Confidential Containers, which aims to enable cloud native 
confidential computing by utilizing hardware platforms like the Trusted Execution 
Environment (HW-TEE). The project aims to secure data at the pod-level, removing 
trust assumptions on the cloud side, and provides resource isolation, data protection, 
and remote attestation. This approach does not require further modifications to the 
container image during development. 

Root of Trust (RoT):  The RoT, as defined by the Global Platform, serves as a computing 
engine, code, and potentially data, all co-located on the same platform, providing 
essential security services. It has several types of implementations. More specifically, 
it can be supported by a Trusted Execution Environment (TEE) or an embedded Secure 
Element (eSE). Three types of RoT may exist in a trusted platform: i) a RoT for 
measurement (RTM), ii) a RoT for reporting (RTR) and iii) a RoT for storage (RTS). The 
baseline for a RoT is to support secure storage (i.e., RTS). 

Trusted Execution Environment (TEE): is a secure area within a computer system's 
hardware or software that provides isolated execution of sensitive code and data. It is 
designed to ensure the confidentiality and integrity of the executed code and data, 
even in the presence of potentially compromised or malicious components in the 
system. 

Trusted Computing Base (TCB):  refers to the set of all hardware (e.g. memory and 
storage), firmware, and software components that are critical to enforcing security 
policies and maintaining the security of a system. TCB often still includes the operating 
system. 

Trust Property: refers to the different elements used by the Level of Trust Assessment 
component in order to derive to a trust calculation. Among these properties 
attestation results are included as well as Privacy SLAs, CTI information and other 
information, as thoroughly reported in D4.1 [3].  
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