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Executive Summary 
  
The present deliverable documents the first release of the PRIVATEER security analytics 
modules, which have been researched and developed within Work Package 3 (WP3) 
“Decentralised Robust Security Analytics”. The main objective of WP3 is to develop and 
integrate cutting-edge technologies to provide robust, privacy-preserving and trustworthy 
artificial intelligence (AI) security analytics algorithms, which can reliably detect potential 
cybersecurity threats in decentralised settings, such as Internet-of-Things (IoT) ecosystems. 
To safeguard the privacy and security of cloud-to-edge devices in a way applicable to the 
various PRIVATEER use cases, specific requirements and key performance indicators (KPIs) 
have been elicited. These are now being realised in the design and the architecture of the WP3 
components. The use of artificial intelligence (AI) models for decentralised anomaly detection 
is a particular focus. This report reflects the current work progress in implementing the 
requirements and the advances achieved during the first period of the project. 

In WP3, five main pillars promoting trustworthiness and privacy preservation in AI-based 
security analytics for decentralised and collaborative settings are exploited. The WP focuses 
on establishing and delivering robust components based on i) anonymisation of sensitive data, 
ii) trustworthy and privacy-preserving AI algorithm building, iii) robustness through adversarial 
hardening, iv) AI explainability, and v) optimal acceleration through appropriate hardware.  

Within the 5G setting, which enables highly decentralised environments, the 5G Network Data 
Analytics Function (NWDAF) is distributed across the network continuum and gives insights 
into the network data production and consumption. Such data can be used to perform 
anomaly detection, and, by applying machine learning, provide adaptable and smart, near 
real-time security analytics. To emulate the context of 5G connectivity, specific NWDAF 
datasets have been generated by NCSRD and Space Hellas for use within PRIVATEER and its 
use cases. The streams of data exhibit features and specifications adhering to the 5G NWDAF 
standard.  

In applying AI services in the cloud-edge/IoT continuum, suitable technological approaches for 
establishing trustworthiness and privacy preservation must be developed. The federated 
learning (FL) paradigm serves as an ideal starting point for the development of privacy-
preserving AI algorithms in WP3. In FL, copies of a global model are sent to multiple clients, 
which hold their training data locally. A central server coordinates the FL process, collecting 
and aggregating locally trained models to update the global model without exchanging local 
input data. This decentralised approach reduces the influence of potential adversaries and 
preserves privacy by design, making FL suitable for applications in IoT and open networks like 
5G and 6G.  

Nevertheless, various threats to privacy and security persevere, which must be addressed 
appropriately through defence strategies to guarantee a secure operation. These risks must 
be taken into consideration when designing AI services in decentralised environments. 
Therefore, anticipating potential security vulnerabilities, additional security and privacy 
measures must be taken.  
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On the one hand, fruitful privacy-preserving techniques, such as differential privacy and 
secure multiparty computation, present themselves to protect collaborative computation 
environments from threats. These can be applied at various stages of the computation or 
aggregation processes. Such techniques may decrease computational accuracy and, thus, 
involve balancing utility and privacy, which is a significant challenge. Detecting potential 
adversarial behaviour relies on changes in client behaviour during downloads from or uploads 
to the server, distinguishing them from trusted clients. The latest version of the above-
mentioned dataset with 5G Radio and Core metrics containing sporadic DDoS attacks has been 
analysed for this purpose, and an exploratory data analysis of the dataset features has been 
performed. A deep-learning model for anomaly detection on these time-series data has been 
developed and investigated. All these topics are part of the work within Task 3.2.  

On the other hand, adversarial training can be employed to harden the models against 
vulnerabilities that can be exploited in various ways. Attacks can target the central server or 
local clients and lead to manipulation of the global model or inference of private information 
during the training and prediction phases. This includes membership and attribute inference. 
Because of the FL architecture and the aggregation mechanism, the effectiveness of certain 
threats, such as poisoning attacks, depends on the number of affected clients, which must be 
carefully analysed. The adversarial hardening is dealt with in Task 3.3. To minimise the 
probability of data breaches and successful data-related attacks, especially when private 
information is involved, anonymisation pipelines of sensitive or personal information are 
constructed and implemented, which is part of Task 3.1. Location data have been identified 
as sensitive and have consequently been anonymised via privacy-preserving methods. 

Desirable properties of the AI models creating trust and security include trustworthiness, 
confidence, accountability, causality or fairness and ethical decisions. Therefore, in Task 3.4, 
explainability methods are investigated, which can add human-understandable explanation to 
the results produced by the security analytics. In this way, conclusions regarding the above-
mentioned properties can be drawn and an explanation can be provided for the cyber threat 
intelligence decision that involves machine-learning algorithms. Finally, the edge nodes are 
equipped with appropriate hardware acceleration mechanisms to optimise the energy and 
time consumption of the AI models, which is part of Task 3.5.
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1  Introduction 
In the evolution from fifth generation (5G) to the forthcoming sixth generation (6G) 
networks – which promise intelligent and autonomous technologies – security, safety 
and trustworthiness in artificial intelligence (AI) and related services become 
increasingly crucial [1]. Both 5G and 6G hold the potential for significant 
transformation in the way users and stakeholders interact with network technologies 
by laying the ground for new services through unprecedented data speeds, ultra-low 
latency, and ubiquitous connectivity. These enable real-time data processing and rapid 
communication among devices.  

However, with these advancements serious challenges arise regarding security and 
privacy [2]. The expansive network infrastructure, which supports applications such as 
IoT, edge computing and AI-assisted services for autonomous vehicles and smart 
cities, creates progressively more complex ecosystems that are susceptible to cyber 
threats and privacy breaches. The expanding ubiquitous computing capabilities, 
increased user participation and the growing demand for user and network-usage data 
raise privacy and security concerns. For these reasons, special attention must be paid 
to ensure robust security measures and trust in automated AI-driven services that will 
be integrated into the 6G ecosystem services. Anticipating the challenges described 
above, the PRIVATEER project tackles the security and privacy threats arising from the 
collection of large amounts of data by 5G/6G components and services by providing a 
privacy-first, decentralised approach to machine-learning-based security analytics.  

The present report describes the research, findings and implementation of the work 
done in Work Package 3 (WP3) of PRIVATEER. The document is structured as follows:  

Chapter 1 provides an introduction to motivation, privacy and security concerns, and 
anticipated challenges.  

In Chapter 2, we describe the overall structure of WP3 and the development setting. 
Furthermore, the NWDAF and the dataset generated for PRIVATEER containing a DDoS 
attack are presented. This dataset is uploaded on Zenodo, however we have prepared 
a revised version where some parameters have been updated. 

Chapter 3 is dedicated to the five components comprising the trustworthy and robust 
security analytics enablers of PRIVATEER with their functionalities. Each module is 
described in detail, presenting objectives, state-of-the-art and work plan. Firstly, in 
Task 3.1 the strategy for the anonymisation pipelines of sensitive data is presented. 
Secondly, the development of trustworthy federated security-analytics models within 
Task 3.2 is described. Thirdly, the approach in Task 3.3 for enhancing the robustness 
of these models against adversarial actions and corresponding hardening techniques 
is provided. Fourthly, strategies for providing explanations for the models’ results and 



 
D3.1 – Decentralised Robust Security Analytics Enablers Rel. A 

 

www.privateer-project.eu © PRIVATEER Consortium Page 13 of 68 

the corresponding AI-model development mechanisms of Task 3.4 are introduced. 
Finally, the integration of suitable hardware-based acceleration of the AI models in 
Task 3.5 for resource- and energy-efficient operations of the federated-learning 
models is presented. Tasks 3.1 and 3.2, which started in month 9, present a detailed 
approach and first results in architecture and computation. Chapter 4 concludes by 
summarising the findings so far and provides an outlook on the WP3 developments 
within the second phase of the PRIVATEER project. 

 

1.1 Motivation   
The extreme interconnectivity that is expected to govern future technologies by 
linking a vast number of devices requires a detailed analysis of the threat landscape. 
The analysis of the potential threats and possible mitigation strategies performed 
within the PRIVATEER project can be found in deliverable D2.1 “6G threat landscape 
and gap analysis” [3]. Based on this analysis, the technologies that the PRIVATEER use 
cases will rely on focus on security and privacy preservation. Regarding the 
development of AI algorithms for security-analytics purposes, the distributed setting 
of interconnected devices poses challenges, but also holds opportunities. The IoT 
setting and the consequential potential threat vectors and intrusion points govern the 
design of secure and robust security-analytics enablers [4].  

On the one hand, trustworthiness in ΑΙ-driven services within the 5G or 6G landscape 
requires secure, robust, transparent and accountable decision-making processes, free 
from errors and biases [5]. On the other hand, to establish trust among stakeholders 
and users, the privacy of sensitive data stored or transmitted through the networks 
must be safeguarded as a key priority.  

Both above-mentioned strong requirements for the 6G technologies comprise key 
motivations of WP3. The goal of WP3 is to develop privacy-preserving and trustworthy 
AI algorithms for adaptable, real-time security analytics of services running on (5G/6G) 
networks and offering IoT solutions, such as automated driving or smart-home 
systems. PRIVATEER’s approach relies on the federated-learning (FL) principle [6], 
which by design federates both data and computation and removes the necessity of 
duplication or transfer of data. An important cornerstone of the work within WP3 is 
to anticipate security threats within a decentralised setting characteristic for IoT 
environments and design suitable defence strategies while maintaining the 
performance and functionality of the computational setting. Techniques for 
guaranteeing privacy and security are researched and added to this design, while the 
models are hardened against potential attacks through adversarial training. The 
decentralised security-analytics architecture is enriched with data-anonymisation 
pipelines for sensitive and private data, or data from which private information can be 
inferred, and, moreover, suitable hardware-acceleration methods. The AI algorithms 
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are further enhanced with explainability techniques to satisfy important 
trustworthiness requirements, such as explainability, fairness and robustness.  

 

1.2 Privacy and Security Concerns in AI Services in 6G  
In the landscape of 6G networks, AI-based services promise to be a fundamental 
technology. Through machine learning (ML) and deep learning (DL), the realisation of 
6G-connected intelligence moves closer. These technologies will enhance 
performance, energy efficiency and security across various layers of applications. 
Distributed storage and processing, along with federated ML are crucial for 
computational efficiency and will improve security. However, federated AI also opens 
the door to potential attacks, necessitating constant surveillance, verification and 
automatic repair mechanisms of AI systems against malicious attacks [7]. To address 
these challenges, privacy-preserving schemes, including ML-based techniques, aim to 
safeguard user privacy, especially in the edge and control layers which are prone to 
data poisoning and attacks on AI models. FL emerges as a prominent privacy-
preserving approach, but it also faces potential attack surfaces. Techniques such as 
differential privacy (DP) [8] and multiparty computation (MPC) [9] hold the potential 
to enhance privacy within the 6G framework. 

In the following, the attack surfaces of FL are described in more detail, since it offers 
a valuable starting point as a distributed ML architecture.  

Being a truly decentralised machine-learning approach, FL preserves privacy by 
keeping data locally as mentioned above. The model training occurs across multiple 
local clients which send the model parameters for global aggregation to a central 
server. Thereby, FL might be susceptible to malicious attacks at different stages, 
namely through data gathering, training and inference. These attacks can target both 
the central server and the local clients, compromising the integrity and privacy of the 
FL process. Therefore, effective measures must be implemented to secure FL across 
all phases. 

On the client side, contaminated data and malicious behaviour can impact the model 
training and the global model’s performance, although the impact of this is reduced 
due to the federated nature of the computation process. Interception attacks, like 
eavesdropping during model updates, necessitate secure-transfer methods like 
encryption or DP. Evasion attacks can alter the outcomes of inference, while privacy-
inference attacks extract sensitive information from the model. There exist defence 
strategies for these attacks, which will be discussed in section 3.3. Poisoning attacks 
aim to influence the model performance by manipulating local clients which can be 
mediated through techniques such as DP and secure aggregation. During inference, 
evasion attacks produce adversarial examples to deceive the model, while privacy-
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inference attacks target model inversion, membership inference and model 
extraction. Obfuscation techniques present defence strategies, while the utility-
privacy trade-off must be taken into consideration when applying these techniques. 
MPC with DP allows collaboration of different parties without revealing individual 
inputs which creates a trusted aggregator while preserving privacy. 

In general, adversarial attacks are techniques where only slight modifications to the 
input data can cause ML models to make incorrect predictions, even though the 
changes are imperceptible to humans. These attacks are a significant concern as they 
can compromise the reliability of AI systems. Adversarial training is one method used 
to defend against such attacks, where models are trained with adversarial examples 
to improve their robustness. This will be implemented within Task 3.3 in PRIVATEER. 
These strategies collectively contribute to enhancing the security and reliability of 
machine-learning models against adversarial attacks. 

Different types of attacks are considered as anticipated threats within the WP3 
developments and will be investigated with respect to their success and detectability 
during adversarial hardening and re-training of the anomaly-detection models in Task 
3.2. Moreover, the effect of the obfuscation techniques on the quality and 
performance of the models will be thoroughly examined. Chapter 3 provides a 
detailed analysis and results achieved so far. 

 

1.3 Challenges 
The rapid advancements in AI-based technologies come with a variety of challenges, 
both regarding technological and societal aspects [1]. The trustworthiness of 
software-related services always depends on the technical reliability, but also on the 
societal acceptance. Especially the implementation of AI-assisted services, which 
depend on vast amounts of data, relies on trust and robustness. Therefore, providing 
comprehensibility, fairness and explainability of automated and interconnected 
services is paramount.  

With the proliferation of IoT devices and the anticipated growth in the number of 
connected devices in 6G networks, the scale and complexity of network 
infrastructures will increase extremely [10]. Analysing security-related data from such 
massive networks in real time requires highly scalable and efficient security-analytics 
solutions.  

Another potential challenge lies in the latency requirements, as 5G and 6G networks 
aim to solve exactly this problem by delivering ultra-low latency communication. 
Effective security-analytics solutions must meet these latency requirements while 
providing timely detection and response to security threats. Due to the time-series 
character of network data, ML-based anomaly detection that relies on sliding windows 
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or time batches must be adapted carefully to the network-data transfer frequency. 
This is an important parameter for the model development in Task 3.2.  

The most serious challenge presents itself in the security, privacy and data-protection 
aspects [2]. Decentralised security analytics analyse data from distributed sources, 
which raises concerns about privacy and data protection. This deliverable deals with a 
set of measures that are suitable to protect data and privacy in order to guarantee a 
level of privacy and security for the services running on the network. The privacy-utility 
trade-off is of central importance in this respect and must be thoroughly balanced to 
achieve optimal performance along with data accuracy while guaranteeing certain 
levels of privacy. This will be tackled in WP3 by detailed computational experiments 
within the second phase of the project. 
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2 WP Architecture 
2.1 WP Structure 
WP3 focuses on facilitating security analytics in a decentralised, privacy-preserving 
manner by delivering all essential components needed from data handling to real-time 
detection of anomalous behaviour. The key activities include the creation of 
anonymisation pipelines to selectively anonymise data for AI security analytics in Task 
3.1. Additionally, WP3 aims to develop trustworthy AI models optimised for 
distributed learning and inference, ensuring reliability and integrity across 
decentralised systems. The evaluation and hardening of AI models against adversarial 
attacks are of paramount importance and are taking place in a feedback loop between 
Tasks 3.2 and 3.3. Moreover, on top of the security-analytics models, the 
implementation of mechanisms for decision support through Explainable AI (XAI) in 
Task 3.4 enhances the comprehensibility of the AI results. Finally, the integration of 
hardware-based accelerators in Task 3.5 enhances the efficiency of decentralised, AI-
computational operations, optimising energy utilisation for improved performance.  

 

 

Figure 2.1 WP3 architecture and task interdependence 
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The architecture of the Decentralised Robust Security Analytics of WP3 is depicted in 
Figure 2.1. The five technology components corresponding to the five tasks 3.1–3.5 
are shown, and their interdependence is underlined. The embedding of the 
decentralised modules in the edge domain is highlighted by the fact that the data, 
which are anonymised in Task 3.1 and used as input for the anomaly-detection in Task 
3.2, is hosted at the edge nodes. For PRIVATEER’s purpose, the edge nodes perform a 
first aggregation from the user equipment (UE) devices. Local models are computed 
at the edge nodes and aggregated at the central PRIVATEER server. Task 3.2 focuses 
on enhancing security analytics through decentralised AI and privacy-preserving 
techniques, while Task 3.3 tests these models against adversarial attacks using tools 
like Generative Adversarial Networks (GANs). This synergy creates a robust feedback 
loop, with Task 3.2 strengthening defences and Task 3.3 refining robustness through 
continuous testing, ensuring the models are effective and resilient against threats. The 
resulting algorithms for security analytics are consequently input into the 
explainability module of Task 3.4. Finally, the hardware acceleration of the algorithms 
in Task 3.5 takes place for optimal performance. Detected anomalous behaviour is 
reported via security notifications to the PRIVATEER Security Manager for further 
analysis or cyber-threat intelligence (CTI) sharing which is developed in PRIVATEER 
under WP5. 

 

2.2 Development Setting 
2.2.1 5G Network Data Analytics Function 

The Network Data Analytics Function (NWDAF) was introduced as part of the 3rd 
Generation Partnership Project (3GPP) Release 15 specification, representing a shift 
towards data-driven and proactive cellular networks. The NWDAF is designed to 
aggregate and analyse data from various sources within the 5G network. These data 
include performance metrics, user behaviour, and network conditions. The insights 
derived from this analysis are used to optimise network performance, manage 
resources more efficiently, and improve user experiences. 

 
Figure 2.2 Schema of NWDAF integration into the SBA of 5G 
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The NWDAF is integrated into the Service-Based Architecture (SBA) of 5G and interacts 
with other network functions via standardised interfaces, as depicted in Figure 2.2. 
This integration allows it to collect data from various network elements and provide 
analytics services to other functions like the Network Slice Selection Function (NSSF) 
or the Policy Control Function (PCF). 

By leveraging advanced data analytics and ML algorithms, the NWDAF can predict 
network demands, detect anomalies, and provide recommendations for network 
configuration changes. NWDAF supports a range of use cases, from network security 
(by identifying and responding to threats) to quality-of-service optimisation (by 
predicting and mitigating congestion). As a result, it is considered as a significant 
enabler of advanced 5G use cases like network slicing for diverse service requirements 
and edge computing for low-latency applications, including extended reality (XR) and 
automotive use cases. 

In PRIVATEER, the NWDAF is instantiated as a multi-container application designed for 
robust data collection and processing. This application integrates several widely used 
technologies such as Apache Kafka, ZooKeeper, and InfluxDB, each serving a 
specialised function within the system. 

The application comprises the following components: 

• ZooKeeper is utilised to manage coordination and configuration for Kafka, a 
necessity in distributed systems to maintain robustness and reliability. It is 
isolated within a custom Docker network and opts out of logging to streamline 
operations. 

• Kafka serves as the central message broker, handling real-time data feeds 
essential for dynamic data processing environments. It directly depends on 
ZooKeeper for operational management and is configured for external 
communications. Kafka’s environment settings are tailored to facilitate both 
internal and external communications through specified listeners and to 
automatically manage topics. This configuration enhances Kafka's integration 
within the networked application. 

• InfluxDB is a time-series database ideal for efficient storage and retrieval of 
time-stamped data. A time-series database is a type of database designed to 
handle time-stamped data - data that changes over time or is sequentially 
timestamped. This kind of database manages and stores sequences of values 
that are tracked, monitored, and aggregated over time. Time-series databases 
are optimized for handling large volumes of data that are typically written in a 
chronological order. The InfluxDB maps a local directory to the container's 
storage location to ensure data persistence. 

• Data Producer and InfluxDB Connector are additional custom components 
built to integrate seamlessly with Kafka and InfluxDB. The Data Producer is 
tasked with feeding data into Kafka, while the InfluxDB Connector is designed 
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to facilitate data transfer between Kafka and InfluxDB. Both components are 
crucial for the end-to-end data handling capability of the system, ensuring that 
data not only flows efficiently but is also effectively processed and stored. 

The entire system is interconnected through the Docker network, which supports 
secure communications between the containers. The configuration is optimised for 
scalability and reliability in a production environment, focusing on high availability and 
robust data management. 

 

2.2.2 The NCSRD-DS-5GDDoS Dataset: 5G Radio and Core Metrics 
Containing Sporadic DDoS Attacks 

PRIVATEER Partners have been working on releasing open-source datasets from the 
5G+ infrastructure located in NCSRD, which will also be the testbed for the use case 
scenarios deployment for Release B of the project. The NCSRD-DS-5GDDoS dataset 
[11] is published on Zenodo and will be updated throughout the project, based on 
feedback from PRIVATEER partners and external partners with strong interest on 
AI/ML applications on 5G cybersecurity. 

This is a comprehensive dataset recorded in a real-world 5G testbed that aligns with 
the 3GPP specifications. The dataset captures Distributed-Denial-of-Service (DDoS) 
attacks initiated by malicious connected User Equipment (UEs). The setup comprises 
of two cells with a total of nine UEs connected to the same core network. The 5G 
network is implemented by the Amarisoft Callbox Mini solution, and we further 
employ a second cell using the Amarisoft Classic, that also hosts the 5G core. 

The setup utilises a broad set of UE devices comprising a set of smart phones (Huawei 
P40), microcomputers (Raspberry Pi 4 - Waveshare 5G Hat M2), industrial 5G routers 
(Industrial Waveshare 5G Router), a WiFi-6 mobile hotspot (DWR-2101 5G Wi-Fi 6 
Mobile Hotspot) and a CPE box (Waveshare 5G CPE Box). All UEs are being operated 
by subsidiary hosts which are responsible for the traffic generation, occurring from 
scheduled communications times. 

All identifiers are artificially generated and neither represent nor are based on 
personal data. We identify each UE through its ‘imeisv’ ID, that corresponds to the 
device in use, due to vendor implementation, that uses the same IMSI for all UEs. 
There are eight attacker UEs in the testbed and one benign user with imeisv = 
8609960480666910. The benign user streams YouTube traffic, while the malicious 
users are performing two DDoS attacks (UDP floods using hping3); the first attack 
takes place on 24-01-2024 between 14:48:30-14:58:30 and the second one on 25-01-
2014 between 14:05:00-14:10:00. Throughout the recording session, handover events 
also take place. 
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The dataset is populated using the data collector previously outlined, which interfaces 
with the 5G network to collect information about UEs, gNBs, and the Core Network. 
The data are recorded in an InfluxdB and pre-processed into three separate tabular 
CSV files for more efficient processing: “amari_ue_data.csv”, “enb_counters.csv” and 
“mme_counters.csv”. 
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3 Robust, Decentralised Security-
Analytics Components 

This chapter introduces the five technical components of the WP which provide 
PRIVATEER’s decentralised security analytics in more detail. Every section corresponds 
to one task of the WP. We present first research and implementation results along 
with privacy and security considerations related to the risks and threats described 
above. 
 
 

3.1 Anonymisation pipelines 
3.1.1 Objectives 

The main objective of anonymisation pipelines (Task 3.1) is to provide methods for 
privacy analysis and protection of sensitive data types considered in PRIVATEER 
components. In the first stage, this task was focused on gathering information about 
privacy-sensitive data types and corresponding privacy and utility requirements. Upon 
the identification of sensitive data types, the focus is on selecting and/or developing 
appropriate Privacy-Preserving Mechanisms (PPMs) that fulfil the privacy/utility 
requirements, while considering potential attacks and defining metrics to quantify the 
attained privacy and utility levels. In order to standardise this process, the 
anonymisation pipelines will be available as a toolkit of PPMs for heterogeneous data 
types. This toolkit is designed in a modular manner and can act as a privacy-aware pre-
processing stage for data-driven components in the PRIVATEER framework, such as 
those from Tasks 3.2 and 3.4. In this way, the anonymisation pipelines warrant proper 
privacy protection for data identified as personal and/or sensitive before making it 
available to the security analytics models.  

 

3.1.2 State of the Art 

Although privacy has been recognised as a human right since 1948, there is a lack of a 
standardised and universal privacy definition. The growing collection of large amounts 
of data has been raising serious privacy concerns, which is a call for Privacy-Preserving 
Mechanisms (PPMs) [12]. 

In the context of 6G technologies, all sorts of localisation-based analytics methods 
envisioned reveal potential threats related to location exposure and position tracking 
[3]. To address these risks, location privacy has become an emerging topic of research 
with the proposal of several Location Privacy-Preserving Mechanisms (LPPMs). The 
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existing LPPMs are commonly divided into the following approaches: anonymisation, 
obfuscation, reducing location sharing, and cryptography-based. The anonymisation 
approaches typically rely on traditional notions (e.g. 𝑘𝑘-anonymity) to protect the 
users’ identity, whereas the obfuscation approaches are mainly focused on protecting 
the position of the users. To do so, various methods have been proposed either to 
obfuscate locations in terms of spatial, temporal, and spatiotemporal characteristics 
or to perturb the locations by adding noise (e.g. geo-indistinguishability). 

Due to the simplicity of implementation, efficiency, and effectiveness, geo-
indistinguishability has been considered the state of the art by the research 
community. Geo-indistinguishability is a formal notion based on Differential Privacy 
(DP) that guarantees that any two points within a given radius centred at the user’s 
location are statistically indistinguishable independently of the adversary’s 
background information [13]. For a detailed explanation on DP, see Section 3.2.2.3. 
The Planar Laplace (PL) mechanism was the first proposed mechanism to satisfy the 
notion of geo-indistinguishability applied to the context of Location-Based Services 
(LBSs). The PL mechanism consists of adding 2-dimensional Laplacian noise centred at 
the exact user location with a probability density function that satisfies 𝜀𝜀-geo-
indistinguishability. This probability of generating an obfuscated location from any 
two points 𝑥𝑥, 𝑥𝑥’ is bounded by the distance between these two points factored by the 
privacy budget 𝜀𝜀, commonly set by the user. This privacy parameter 𝜀𝜀 is typically 
defined as 𝜀𝜀 = 𝑙𝑙/𝑟𝑟, being 𝑟𝑟, the radius defined by the user, where the privacy level 𝑙𝑙 
is guaranteed.  

However, preserving a certain level of privacy can come at the expense of data utility, 
which makes the selection of the proper PPM quite challenging. Despite the necessity 
of identifying the data type that needs to be protected, privacy protection can occur 
at different times of the data lifecycle [14]: data collection, data publishing, data 
distribution, and at the output of data mining. Furthermore, each stage might have 
specific constraints (e.g. data collection can be either sporadic or continuous) that 
should be taken into consideration by PPMs. To fulfil the identified requirements, 
PPMs might then require a trusted third party or may not. 

In addition to the selection of the PPM, a proper configuration of the mechanisms is 
also crucial since a misconfiguration can lead to an ineffective privacy/utility level [15]. 
Thus, there is a need to define the appropriate metrics to assess the attained privacy 
and utility levels. The development of the privacy toolkit within Task 3.1 aims at 
standardising this process of selecting, configuring, and evaluating PPMs to warrant 
appropriate privacy protection for data that is identified as personal and sensitive, 
before making it available to the security-analytics models. 
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3.1.3 Work Plan 

3.1.3.1 Identification of Threats 

The ubiquitousness of smart and mobile devices has led to a growing collection of 
enormous amounts of data. Although the benefits that advent from collecting data 
both to the users and to the service providers, exposing sensitive information might 
pose serious threats to privacy. Within the context of 6G networks, the collection of 
user information, including location data, is relevant to predict user mobility and 
reduce latency of edge-services handover, as well as behaviour tracking/prediction to 
find abnormal patterns in user equipment of traffic behaviour. Despite the 
enhancements in connectivity and in the location precision, location exposure and 
position tracking are considered privacy challenges that need to be addressed [3]. 

Location privacy is an emerging topic of research due to the sensitive nature of this 
data type. The potential threats of exposing location data go beyond physical security 
since location data can reveal users’ identity, routines, habits, or even health 
conditions [16]. Thus, this task will be focused on protecting location data, identified 
as a sensitive data type within the PRIVATEER project. 

 

3.1.3.2 Approach and Architecture 

The lack of a standardised method for privacy analysis as well as the demand for 
protecting sensitive types considered in PRIVATEER components led to the 
development of a toolkit of PPMs [17]. This toolkit is designed to follow a modular and 
extensible approach, thus allowing to act as a privacy-aware pre-processing stage for 
data-driven components in the PRIVATEER framework. 

 
Figure 3.1: Architecture overview of the privacy toolkit. 

The main objective of this toolkit is to apply PPMs, test configurations, and assess 
mechanisms according to the attained privacy and utility levels of data. Similarly to 
other well-known scientific toolkits, this toolkit will be available as an open-source 
Python package. Figure 3.1 provides an overview of the package architecture. 
Commonly, an anonymisation pipeline is composed of the following steps: input data, 
PPM, attack, privacy/utility metrics, and output data. Concerning the input data step, 
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beyond loading, data might need to be processed before applying the PPM. The PPM 
is then properly configured and applied to the resulting input data, generating an 
anonymized version of the data as output. The assessment of the achieved 
privacy/utility level relies on the output data, suitable privacy/utility metrics and, 
optionally, on an attack whose goal is to estimate the original data through the 
anonymized version. 

To systematise this process, each step of the mentioned pipeline constitutes a sub-
package as represented in Figure 3.1. Each sub-package contains an adapter 
corresponding to an abstract class that can be extended by implementing the abstract 
methods (i.e., relevant methods for the component). These adapters foster the 
implementation of new features (e.g., new PPMs or metrics) while maintaining the 
source-code structure and readability. The sub-packages presented in Figure 3.1 can 
be briefly described as follows. The data sub-package is responsible for handling a data 
type by providing methods such as the ones represented in grey: load data, process 
data, and save data. For adding new data types, the Data Adapter can be extended 
with the implementation of the corresponding methods and other methods of 
relevance for the new data type. The remaining sub-packages follow a similar 
approach by defining the corresponding adapter. Thus, for adding a new PPM, attack, 
or metric, the respective adapter is extended, the executor is implemented, as well as 
other desired methods. 

Within the PRIVATEER framework, location data was identified as a sensitive data type 
that needs to be protected. Towards this goal, the toolkit is designed to include 
implementations of appropriate PPMs, attacks, and metrics in this context. 
Nevertheless, due to its extendibility, the privacy toolkit is expected to support 
heterogeneous data types, as well as different types of PPMs, attacks, and metrics that 
are suitable for the needs of the PRIVATEER framework. 

 

3.1.3.3 Current Status and Next Steps 

Recalling the objectives of Task 3.1, this task started with the identification of sensitive 
data types from PRIVATEER, which has been accomplished in accordance with the 
current version of the dataset. From the performed analysis, location data was 
identified as a sensitive data type and will be the focus of data protection. 

As mentioned before, the anonymisation pipelines will be standardised through a 
toolkit of PPMs. This toolkit is designed in a modular and extensible manner [17], 
including PPMs implemented to protect data, as well as metrics, and attacks. The 
current version of the toolkit implements location data as data type by extending the 
Data Adapter, the Planar Laplace (geo-indistinguishability) as a PPM, and the quality 
loss as a metric to assess the utility level achieved after applying the PPM. This 
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assessment is quantified by the distance between the obfuscated location that was 
generated by the PPM and the exact user location. 

To foster the anonymisation pipelines in a wide manner, this toolkit is also accessible 
through a Web application. The Web version facilitates the selection and configuration 
of PPMs through a more interactive interface, while providing a better understanding 
of the privacy parameters under configuration. The performed configurations can 
then be downloaded to be executed locally in a larger sample of data. For illustration, 
Figure 3.2 demonstrates the configuration and application of the Planar Laplace (PL) 
mechanism in an interactive manner, which allows us to modify the privacy parameter 
𝜀𝜀, while showing the corresponding impact on the obfuscation radius. In addition, 
recalling that PL is designed to single queries and, hence, that the privacy level linearly 
scales with the number of queries [13], this example also allows us to visualize the 
privacy degradation that occurs when applying the mechanism to traces. This privacy 
degradation comes from the multiple applications of the protection mechanism. 

The next steps of this task are the identification and analysis of sensitive features, and 
the development of PPMs to protect such sensitive features. Furthermore, this toolkit 
can also be integrated with other project components to provide a pre-processing 
stage for the data-driven components and enable assessment of the impact of privacy-
protection methods. 

 
Figure 3.2: Web application screenshot for the application of Planar Laplace privacy-preserving mechanism. 
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3.2 Trustworthy AI model building 
3.2.1 Objectives 

Task 3.2 aims to enhance security analytics using decentralised AI, focusing on 
anomaly detection and threat classification. It leverages Privacy-Preserving Machine 
Learning (PPML) techniques to safeguard user data, incorporating data from the 5G 
NWDAF function for improved insights. The task seeks a balance between privacy, 
performance and fairness in AI training and emphasises robustness through 
adversarial training.  

The following outlines the specific objectives of Task 3.2: 

• Develop sophisticated decentralised artificial intelligence models specialised in 
anomaly detection and threat classification to augment the security-analytics 
capabilities of the PRIVATEER framework. 

• Implement advanced PPML techniques during the training phase of these AI 
models to ensure privacy guarantees for PRIVATEER users. This approach aims 
to secure sensitive data against unauthorised access or inference, providing a 
solid privacy framework within the analytics operations. 

• Address the privacy-performance trade-off by devising optimisation strategies 
that ensure the efficient processing of data while upholding strict privacy 
standards, ultimately aiming to maximise the effectiveness of security analytics 
without compromising the privacy of PRIVATEER users. 

• Integrate results from Task 3.3 regarding adversarial-training paradigm to 
reinforce the security and trustworthiness of the AI models. This involves 
training models to withstand malicious attempts to deceive or bypass the 
security analytics, thereby enhancing the resilience and reliability of the threat 
detection mechanisms. 

• Engineer and execute an effective alarm management framework capable of 
aggregating, analysing, and refining preliminary security alerts with 
corroborative information from external sources. This strategy aims to 
optimise the accuracy and relevance of security notifications, reducing false 
positives and ensuring timely response to genuine threats. 

In the following, we present the current state of the art for technologies that have 
been identified as crucial to the PRIVATEER project. Within PRIVATEER these 
technologies will be combined and tailored to the needs of preserving privacy and 
security within decentralised settings reflected in the PRIVATEER use cases. 
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3.2.2 State of the Art  

3.2.2.1 Network Anomaly Detection 

In the era of increasing digital interconnectivity, spanning traditional networks to the 
next generation of Software-Defined Networks and the Internet of Things (IoT), 
network security has become a paramount concern. The interconnected nature of 
these digital systems amplifies the potential impact of cyber-attacks, exposing a vast 
array of systems, services, and stakeholders. Despite these risks, security experts often 
find it challenging to stay ahead of the rapidly evolving landscape of cyber threats, as 
criminals devise more sophisticated attacks [18]. 

While traditional security measures such as firewalls, encryption methods, and anti-
virus software remain essential, they alone are not sufficient to address the novel and 
complex threats that characterize today's security landscape [19]. Intrusion-Detection 
Systems (IDS), which serve as an additional line of defence by monitoring and alerting 
on suspicious activities, traditionally rely on signature-based detection. However, the 
relentless evolution of cyber threats necessitates constant updates to IDS signature 
databases, a process that is both time-consuming and increasingly ineffective. On top 
of that, the widespread use of encryption means most traffic bypasses traditional deep 
packet inspection, further reducing the effectiveness of these signatures. 

In response to these challenges, the industry is increasingly adopting zero-trust 
architectures (ZTA), which require continuous verification and adaptive defence 
mechanisms. Complementing this, advanced machine learning-based detection 
techniques are utilized to enhance ZTA by providing swift and precise identification of 
potential security threats. These innovations aim to not only accelerate the detection 
and mitigation of threats but also to improve the overall robustness of network 
systems against the sophisticated cyber-attacks of the modern era. 

The taxonomy of ML-based IDS is quite varied. Such advanced IDS encompass a range 
of approaches, from supervised-learning techniques that utilise labelled datasets for 
training models to recognise known threats, to unsupervised learning algorithms 
adept at detecting new, previously unseen anomalies by analysing patterns in network 
traffic [20].  

Traditional approaches take ML as a common practice, with k-means clustering, 
isolation forests and one-class support vector machines (SVM) being the main 
approaches [21]. 

Apart from traditional ML algorithms, DL models have been extensively used for 
anomaly-based intrusion detection. Based on recent research, various DL 
architectures have shown promising results in network-anomaly detection, each with 
unique strengths and challenges  [22, 23]. Generative Adversarial Networks (GANs), 
for example, utilise a dual-network architecture comprising a generator and a 
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discriminator. The generator creates data-mimicking normal traffic, while the 
discriminator works to distinguish between this synthetic data and real network data. 
This setup allows GANs to effectively identify anomalies as the generator evolves to 
produce increasingly accurate synthetic data. However, they face challenges with 
training stability and high computational demands. 

Additionally, Long Short-Term Memory Networks (LSTMs) and other Recurrent Neural 
Networks (RNNs) are effective for data that involve sequences, such as time series or 
continuous network traffic. These networks excel at learning dependencies and 
patterns over time, which is crucial in dynamic environments where anomaly patterns 
can evolve and change. 

Lastly, autoencoders are employed for unsupervised-learning tasks – ideal in 
situations where labelled data are scarce. They detect anomalies by reconstructing 
input data and identifying instances where the reconstruction error is unusually high, 
signalling an anomaly. This method is particularly advantageous in environments 
where anomalies are rare and not well-defined, allowing for detection without prior 
labelling of data. 

Together, these DL methods form a comprehensive toolkit for network-anomaly 
detection, each contributing differently to address the complexities of monitoring and 
securing modern networks. 

The rapid evolution and adoption of 5G networks have gained considerable attention 
due to their enhanced speed, lower latency, greater capacity, improved reliability, and 
reduced energy consumption. This technological leap is also influencing the realm of 
AI-based malicious-traffic detection, with a growing focus on adapting these models 
to the unique architecture and scale of 5G networks. Unlike its predecessors, 5G 
represents a highly flexible infrastructure, organised around various functional 
modules, presenting new challenges not previously encountered. Among these, the 
most pressing issues include the need for high-performance processing capabilities 
within detection models to handle increased network-traffic volumes, ensuring data 
security and privacy, and maintaining robust detection capabilities in a more complex 
network environment. As 5G networks enhance throughput and capacity, AI models 
must not only manage larger volumes of data but also match this performance in real-
time processing scenarios. 

These challenges underline the need for innovative solutions that enhance the speed 
and efficiency of anomaly detection in the evolving landscape of 5G networks. 

 

3.2.2.2 Federated Learning 

As described above, federated learning (FL) which was introduced by McMahan et al. 
in 2017 [6] serves as a good starting point for privacy-preserving and decentralised 
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computation. The technique allows each node to train a model locally in contrast to 
submitting the complete dataset to a central node. After training, each party submits 
their updated model to an aggregator, which averages all models into a unified model, 
which is again distributed to the parties. The algorithm was termed federated 
averaging (FedAvg). The server receives weights 𝑤𝑤𝑡𝑡+1

𝑘𝑘  from 𝐾𝐾 clients, and computes 
the update 

𝑤𝑤𝑡𝑡+1 ← �
𝑛𝑛𝑘𝑘
𝑛𝑛
𝑤𝑤𝑡𝑡+1
𝑘𝑘

𝐾𝐾

𝑘𝑘=1

. (3.1) 

This process continues until the model converges. Note that this is a linear 
combination of the client weights with the client dataset sizes 𝑛𝑛𝑘𝑘 and total size 𝑛𝑛. 

McMahan et al. suggested FL as a privacy-preserving effort, as private data would no 
longer leave the data owner. However, while the information is obscured, FL – or 
indeed ML itself – gives no formal guarantee that the model does not leak private 
information. 

 

3.2.2.3 Differential Privacy 

To get such guarantees, we need to turn to dedicated definitions. The concept of 
differential privacy (DP) [8, 24] parametrises the acceptable privacy loss, and it is well-
known how to instantiate mechanisms that satisfy the definition for high levels of 
privacy. We first give the mathematical definition, and then explain the intuition it 
conveys.  

Let M be an algorithm that takes a dataset D as input, and let S be a subset of all 
possible output from M (known as the image of M and denoted im 𝑀𝑀). Let D1 and D2 
be two datasets that differ in a single datapoint. The algorithm M gives (ε, δ)-DP if for 
all pairs D1, D2 and all 𝑆𝑆 ⊆ im 𝑀𝑀, 

Pr[𝑀𝑀(𝐷𝐷1) ∈ 𝑆𝑆] ≤ exp(ε) Pr[𝑀𝑀(𝐷𝐷2) ∈ 𝑆𝑆] + 𝛿𝛿. 

The original definition of ε-DP used δ = 0, which makes it easier to grasp. The definition 
then states that if you choose a set S that corresponds to a particularly interesting 
property, then the probabilities of M producing a model that reveals that property is 
approximately the same regardless of whether one uses the dataset D1 or D2, where 
the former may contain a datapoint with this property whereas the latter may not.  

This again implies that the property will only be visible from the model if sufficiently 
many datapoints contribute to it: if the model suggests that a house could be painted 
with zebra stripes, then you can be sure that this is not only because your house has 
this decoration.  
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A smaller ε gives better privacy but may make the model less accurate. On the other 
hand, the presence of DP may also reduce a tendency to overfitting [25]. 

Experience shows that the original ε-DP definition is too strong in the case of non-
likely events. Therefore, the δ-approximate definition has been suggested [26], which 
relaxes the definition slightly. 

One way to apply DP is for each participant to ensure that all vectors have a bounded 
norm and clip any that are too large [27, 28]. 

 
Figure 3.3: Two ways of creating a privacy-preserving aggregated model from local gradients. 

This gives us a way to create a privacy-preserving aggregated model: each participant 
applies DP to their gradients, and the central server aggregates these models. This 
corresponds to starting in the top left corner of Figure 3.3, and following the arrow 
down and then right. However, this has a substantial drawback. As each participant 
adds noise to the model, this noise will grow during aggregation, which results in a less 
accurate model. 

 

3.2.2.4 Multiparty Computation for Secure Aggregation 

We will now explore the other path in Figure 3.3: First aggregate, then apply DP. The 
benefit of applying DP after the aggregation is that the noise is only added once, and 
we should, therefore, get a more accurate model. 

Clearly, we can’t delegate this to the untrusted aggregation service, as the gradients 
and the resulting model would leak private information. To solve this problem, we let 
(a subset of) the distributed parties cooperate to emulate the aggregator. This is 
feasible using secure multiparty computation (MPC) [9]. 

Theoretically, any function can be computed using MPC. The security guarantee is that 
any adversary may only learn as much as he would from their input and output. In this 
sense, MPC can be compared to a perfect pre-programmed black box to which all 
participants privately send their input. Eventually, the box will output the result of the 
computation. 

In practice, MPC favours “simple” computations. Sums and scalar multiplications are 
essentially free of additional cost, whereas multiplications may require additional 
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rounds of communications. More advanced operations, such as divisions or checking 
(in)equalities require even more work and communication. 

Recall Equation 3.1 and the observation that it essentially is a linear combination. This 
gives us three possibilities: 

1. The parties wish to keep their updates private. However, they are willing to 
disclose the size 𝑛𝑛𝑘𝑘 of their datasets. Notice that 𝑛𝑛 =  ∑ 𝑛𝑛𝑘𝑘𝐾𝐾

𝑘𝑘=1 . Hence, we only 
need to perform 𝐾𝐾 scalar multiplications and sums in MPC to aggregate, which 
is essentially free. 

2. The parties wish to keep their dataset size private as well. Now we need to 
perform a secure multiplication for each summand, but these can be done in 
parallel, so the computation is still cheap. This is known as an inner product. 
Additionally, we compute 𝑛𝑛 separately with 𝐾𝐾 sums, and reveal the value prior 
to division. 

3. In the most private scenario, the parties are unwilling to leak even the 
complete dataset size 𝑛𝑛 across all parties. In this case, we again compute 𝑛𝑛 
privately, but instead of revealing it, we must compute a single secure division. 

In a simplified scenario, one can assume that all parties use the same number of data 
points. 

Unsurprisingly, this has already been covered in the existing research literature [29, 
30, 31]. Lately, researchers have also explored securing other aggregation methods 
than FedAvg [32, 33]. 

Applying DP using MPC is more complex, but still feasible. Mohamad et al [34] have 
surveyed the state of secure aggregation, and list a number of techniques and ideas 
based on different primitives, like FL and DP. Combining FL with DP is an active 
research field, to which both academia and many of the large technology companies 
contribute to this effort [35, 36]. 

We finish this section with a brief discussion of some of the options that MPC may 
provide us. 

We assume 𝐾𝐾 clients in the FL scenario. However, not all need to participate in the 
computations. Instead, they may appoint a low number, say 𝑁𝑁, of trustees. Each of 
the 𝐾𝐾 then create 𝑁𝑁 shares of their data and distribute the shares to the trustees. 
These perform the computation on behalf of the clients. 

A share is the technical term for how data in MPC is distributed. We briefly describe 
two common methods to illustrate. 

1. Given a secret number 𝑎𝑎, choose 𝑁𝑁 random numbers 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑁𝑁 such that 
they sum to 𝑎𝑎. Send the share 𝑎𝑎𝑖𝑖 to player 𝑖𝑖. If all do the same, then the 
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computing players may easily sum and scale the shares. Multiplications 
intuitively require more communication to compute the cross-terms. 

2. Notice that we need two points to uniquely determine a line. This 
generalises to us needing 𝑛𝑛 + 1 points to uniquely determine a polynomial 
of degree 𝑛𝑛. By choosing a random polynomial 𝑝𝑝 of degree 𝑡𝑡 − 1, and setting 
the constant term to our secret 𝑎𝑎, we can distribute the share (𝑖𝑖, 𝑝𝑝(𝑖𝑖)) to 
player 𝑖𝑖, for arbitrarily large 𝑖𝑖 [37]. One can show that it is easy to sum 
shares, how to multiply, and that any  𝑡𝑡 players suffice to reconstruct the 
secret. 

 

Generally, fewer players give more efficient protocols, and much of the current MPC 
research is oriented towards efficient 2-party or 3-party protocols. 

MPC also gives the user a choice of security models. Generally, we assume the 
existence of an adversary that controls all dishonest parties. We must assess the 
capabilities of the adversary: 

• Honest: This adversary would not look at plaintext data and always behave 
according to the protocol. That would imply that no security was needed and 
should, therefore, be ignored in this context. 

• Semi-honest: This adversary is also called honest-but-curious or passive. It will 
follow the protocol but use any available data to learn secrets.  

• Covert: This adversary may deviate from the protocol, but not in such a way 
that it would be detected. 

• Dishonest or active: This adversary will deviate from the protocol at will.  

Defending against a dishonest adversary requires more work from the protocol than 
defending from a semi-honest adversary. One must assess the correct level per 
application. 

We must also determine the reach of the adversary. Common choices are assumptions 
that the adversary may corrupt less than a third of the players, less than half, or more 
than half. As before, stronger adversaries require more from the protocol. 

As a result, several protocols have been devised and implemented by cryptographers. 
These protocols can be used to run generic programs. The MP-SPDZ software [38] 
provides a nice benchmarking and testing platform for such protocols and programs. 

 

3.2.3 Work Plan  

3.2.3.1 Approach and Tools 

Based on the 3GPP Technical Specification 23.700 (Rel. 17), NWDAFs can be deployed 
across various areas within a large Public Land Mobile Network. These are distributed 
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to handle local data analytics close to the network functions they are associated with, 
such as the User-Plane Function (UPF) or Session-Management Function (SMF). In the 
specification, FL is proposed as a possible solution to handle issues such as data privacy 
and security, and model-training efficiency in this setup. For example, with a multiple-
level NWDAF architecture, NWDAFs may be co-located with a 5G Core Network 
Function (e.g., UPF, SMF), and the raw data cannot be exposed due to privacy concerns 
and performance reasons. In such case, FL will be a good way to let a Server NWDAF 
coordinate with multiple localised NWDAFs to execute an ML algorithm. 

In the context of our development, the local NWDAF instances will be positioned near 
the gNodeBs, which provide communication for the UEs, in proximity to the end users, 
whereas the NWDAF aggregator will be situated either on the service provider's side 
or hosted in the cloud.  

Regarding the development of FL, Flower1 will be used. Flower is an open-source 
Python library designed for federated learning, offering a flexible and modular 
framework that seamlessly integrates with popular ML tools like TensorFlow and 
PyTorch. It supports efficient model updates and aggregation through a lightweight 
communication protocol, reducing overhead in data transmission between the server 
and numerous client devices. Flower's architecture is built for scalability, capable of 
handling large-scale deployments and distributed processing. It also enhances privacy 
and security, incorporating techniques such as DP and secure aggregation to protect 
data integrity. Moreover, Flower allows for high customisation in aggregation 
strategies and client behaviour, making it a robust choice for our experiments that 
require precise and adaptable FL strategies. 

Opacus2 is a PyTorch library specifically designed to facilitate the training of machine 
learning models while ensuring DP and safeguarding user data. This library seamlessly 
integrates into existing PyTorch workflows with minimal required adjustments and 
supports a wide variety of PyTorch models and training setups. 

At the core of Opacus's architecture is the PrivacyEngine, which orchestrates the DP 
mechanisms. The engine alters the training process to include critical features such as 
per-sample gradient computation, gradient clipping, and the addition of noise. These 
features ensure that the model training adheres strictly to DP standards. Furthermore, 
Opacus employs Privacy Accountants, particularly using the Rényi DP (RDP) 
framework, to meticulously track the privacy budget. The RDP accountant method 
enables the accumulation of privacy costs associated with each operation, ensuring 
that the total privacy expenditure remains within set limits.  

 
1 https://flower.ai/ 
2 https://opacus.ai/ 
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We have not yet finalised our choice of an MPC framework for our FL secure-
aggregation process. This decision, which will be made in the coming months following 
a thorough analysis of the specific threat model and protocol that best suits our 
project's needs, will be documented in Rel. B of D3.1. 

 

3.2.3.2 Experiments, Evaluation and Next Steps 

Building upon the Key Performance Indicators (KPIs) defined in deliverable D2.1 "6G 
threat landscape and gap analysis" [3], we must develop an experimental setup 
tailored to rigorously evaluate these KPIs across various model configurations. This 
setup will involve comparative analyses across two primary dimensions: centralised 
versus federated models, and private versus non-private models. 

In the centralised versus federated dimension, we will compare the performance of 
models trained in a traditional centralised manner against those trained using our FL 
approach. This comparison will help us measure the impact of distributing the learning 
process across multiple nodes on metrics such as accuracy loss, detection time, and 
the ability to handle adversarial workers. 

For the private versus non-private dimension, experiments will focus on comparing 
models that implement privacy-preserving techniques to those that do not. This will 
allow us to assess the trade-offs between privacy and utility, specifically how privacy 
measures affect model accuracy, sensitivity to data changes, and the model's 
resilience against adversarial privacy attacks. 

This dual comparative approach ensures a comprehensive evaluation of the models 
across all critical aspects mentioned in the KPIs, providing a clear picture of how our 
security and privacy enhancements affect overall system performance. 

 

3.2.4 Current status and next steps  

3.2.4.1 Explanatory Data Analysis of 5G Core Network Data 

The models developed in the context of “Trustworthy AI model building”, are 
consuming the 5th version of NCSRD-DS-5GDDoS dataset described in section 2.2.2. 
The dataset is composed of multivariate time series-data, which includes multiple 
variables recorded in regular time intervals. Each series in this dataset consists of 
various metrics related to 5G radio and core networks, capturing the performance and 
behaviour of network components during normal operation and sporadic DDoS 
attacks. This format enables us to observe the dynamics of network traffic and security 
incidents over time, making it suitable for temporal analysis and anomaly detection. 
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The temporal resolution of the dataset is granular, with metrics and events logged on 
every 5 seconds. The dataset encompasses a concentrated observational period with 
specified time frames, highlighting the onset and end of network traffic, as well as the 
precise start and end times of DDoS attacks. In the 5th version of the dataset, coverage 
includes: 

• A three-day window from March 20, 2024, to March 23, 2024, where normal 
traffic was generated and monitored between all 5G devices and two 
endpoints within the network. 

• Two distinct DDoS attack events on March 23, 2024, and March 24, 2024, each 
lasting one hour. 

To facilitate an in-depth analysis and enhance our understanding of the dataset, we 
developed an interactive dashboard utilising Streamlit3 for the application framework 
and Plotly4 for the interactive visualisations. The dashboard is designed with a multi-
select feature for metrics, allowing simultaneous visualisation of various metrics to 
compare their behaviours. Moreover, a rolling average can be applied to the selected 
metrics, with window-size options of 60, 120, 180, 240, 300, and 360 time steps, 
respectively. This functionality is used for smoothing the time series data, thereby 
mitigating the effects of short-term fluctuations and revealing underlying trends in 
metrics that exhibit high variability.  

Figure 3.4 showcases the dashboard’s utility, specifically showcasing the interface for 
the 'ul_bitrate' metric. It provides a clear visualisation of the uplink bitrate over time 

 
Figure 3.4: Screenshot of Streamlit application for explanatory data analysis 

 
3 https://streamlit.io/ 
4 https://plotly.com/ 
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across multiple devices. The vertical dotted lines within the visualisation distinguish 
the time intervals of DDoS attacks, offering immediate visual cues to the temporal 
correlation between the attacks and network behaviour. 

The results of the Exploratory Data Analysis (EDA) highlighte some deficiencies in data 
generation. Specifically, the following observations were made: 

• Devices of imeisv 3557821101183501, 8609960480666910, 8628490433231157, 
8642840401594200, 8677660403123800 were unsuccessful in conducting the 
first attack. 

• Devices of imeisv 3557821101183501, 8642840401594200, 8642840401612300, 
8642840401624200 were inactive during the period of benign operation. 

• There was a disconnection for all devices from 2024-03-23 18:38:00 PM to 
21:54:00 PM. 

For training the AI model, we used benign traffic data from active devices prior to their 
disconnection. For testing, we utilised benign traffic data collected after the second 
attack. 

 

3.2.4.2 Deep-Learning Model 

High-Level Overview of Model Architecture 
The model we have developed is an LSTM autoencoder, as shown in Figure 3.5, a type 
of neural network architecture that combines the capabilities of LSTM networks and 
autoencoders. This model is particularly suited for time-series anomaly detection due 
to its ability to capture temporal dependencies and learn data representations. LSTM 
is a type of RNN that is capable of learning long-term dependencies in sequential data. 
LSTM networks have a memory cell that can maintain information for an arbitrary 
amount of time, allowing them to process sequences of arbitrary length. They are 
particularly useful for tasks such as language translation, speech recognition, and 
time-series forecasting. 

Autoencoders are a type of neural network architecture used to learn efficient data 
encodings in an unsupervised manner. They work by encoding an input into a latent-
space representation and subsequently reconstructing the output from this 
representation, hence learning a compact representation of the data. 

LSTM autoencoders are a good fit for the time-series data due to their ability to handle 
sequential information over longer periods and their proficiency in reconstructing a 
learned sequence, making them ideal for identifying anomalies that manifest as 
deviations from the learned sequences [39]. The combination of LSTMs and 
autoencoders has been demonstrated to be effective in various time-series 
applications, from speech-signal processing to the prediction of complex industrial 
processes. 
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Figure 3.5: Architecture of an LSTM-based autoencoder for time series analysis, showing the flow from input 
multivariate signals, through encoding by two stacked LSTM layers, to reconstruction of the output signal. 

 

Model Input 
The LSTM network requires a three-dimensional input array. The first dimension 
represents the batch size, the second dimension represents the time steps, and the 
third dimension represents the number of units in one input sequence. To construct 
this three-dimensional input, we used a method of rolling overlapping windows on the 
multivariate time-series data. For each time step, we consider a fixed window of 
previous time steps and a fixed window of future time steps, with some overlap 
between the windows. This method segments the data into sequences where each 
sequence contains a predefined number of time steps. By sliding the window size over 
the original data by a certain number of steps less than the window size, each new 
sequence slightly overlaps with the previous, ensuring no temporal continuity is lost. 

The input is structured as a tensor with shape (batch_size, sequence_length, 
num_of_features), where batch_size is the number of sequences in a batch, 
sequence_length is the number of time steps in each sequence, and num_of_features 
is the number of features considered in each time step. 

Model Output & Reconstruction Loss 
The fundamental task of an autoencoder, including our LSTM autoencoder, is to 
perform data reconstruction. These models try to learn two functions: an encoding 
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function that transforms the input data, and a decoding function that recreates the 
input data from the encoded representation. Thus, although the processes of the 
hidden layers of both the encoder and decoder networks may change the 
dimensionality of the layers' output, the final output of the model must match the 
dimensionality of the original input. 

To measure the performance of the model in reconstructing the input data, 
reconstruction loss is used. The reconstruction loss is a measure of the difference 
between the input data and the output of the model. By minimising the reconstruction 
loss, we can train the model to learn a representation of the input data that can be 
used for anomaly detection. 

There are several reconstruction losses that can be used, depending on the specific 
requirements of the task. Some common reconstruction losses include: 

• Mean-Squared Error (MSE) also known as L2: This is a common loss function 
in ML which measures the average-squared difference between the input and 
output. 

• Mean-Absolute Error (MAE) also known as L1: This loss function measures the 
average absolute difference between the input and output. It is less sensitive 
to outliers than MSE but may not capture the full range of differences between 
the input and output. 

• Kullback-Leibler Divergence (KLD): This is a measure of the difference 
between two probability distributions. It is often used in generative models, 
where the input and output are probability distributions. 

Model Training & Experimentation 
To fine-tune the LSTM Autoencoder for optimal performance, we employed a 
systematic hyperparameter-tuning approach using Grid Search. This method involves 
defining a comprehensive search space and systematically evaluating the model's 
performance across all possible combinations of hyperparameter values. The process 
ensures that we identify the set of hyperparameters that yields the best results 
according to predefined metrics. 

The search space for our model was defined as follows: 

• Window Size: The number of time steps per sequence in the input data. We 
explored window sizes of 60, 90, and 120 to determine the optimal temporal 
context for modelling. 

• Model-Architecture Configuration: Variations in the model's architecture 
were considered by adjusting the dimensions of the hidden layers. 
Configurations ranged from smaller setups (25 units in the first hidden layer 
and 25 or 50 units in the second) to larger ones (50 units in the first and 100 
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units in the second), exploring the trade-offs between model complexity and 
performance. 

• Layer Normalisation: We tested the model both with and without layer 
normalisation to investigate its impact on training stability and performance. 

• Dropout rate: Dropout rates of 0.2 and 0.3 were tested to prevent overfitting 
by randomly omitting subsets of features at each training step. 

• Loss Function: The model was evaluated using both L1 Loss and Mean-Squared 
Error Loss, to compare their effectiveness in the reconstruction task. 

• Learning Rate: Learning rates of 0.0001 and 0.001 were examined to optimise 
the speed and convergence of training. 

Window size, model architecture configuration and layer normalization 
hyperparameters concern the details of the model architecture, while the rest concern 
the training process. 

The window size in an LSTM network, determining the amount of temporal context 
available per sequence, is crucial for capturing long-term dependencies essential for 
understanding patterns in time-series data. A larger window size can enhance the 
model’s ability to integrate and learn from extended historical data, thus potentially 
improving its accuracy in scenarios where past events influence future outcomes. 
However, it also increases model complexity and the computational load, which may 
lead to longer training times and higher memory usage. Additionally, while a larger 
window might help in smoothing out noise and focusing on underlying trends, it could 
dilute important short-term signals and delay the model's response time in real-time 
applications. Conversely, a smaller window size might make the model more sensitive 
to noise and less capable of detecting patterns or anomalies that occur over longer 
periods. Therefore, selecting an optimal window size involves balancing these aspects 
to align with the specific characteristics of the dataset and the operational constraints, 
aiming to optimise both the detection capabilities and computational efficiency of the 
model. 

Model-architecture configuration concerns the internals of the model. We have 
utilised a regularised overcomplete autoencoder, which is a type of autoencoder that 
has been regularised to learn useful features from the data distribution. It is 
overcomplete because the code dimension (h) is greater than the input dimension (x). 
This means that the autoencoder has more capacity than necessary to copy the input 
to the output, forcing it to learn meaningful representations of the data. 
Regularisation and dropout are used to prevent overfitting and encourage the model 
to learn substantial characteristics in a proper way.  

Dropout is a regularisation technique where randomly selected neurons are ignored 
during training, meaning their contribution to the activation of downstream neurons 
is temporally removed on the forward pass and any weight updates are not applied to 
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the neuron on the backward pass. By introducing dropout, we effectively reduce the 
likelihood of overfitting by ensuring that the model does not become overly 
dependent on any single neuron or pattern in the training data. 

Regularisation has been added to the model via the AdamW [40] optimiser, which is a 
variation of the Adam optimiser that corrects the way weight decay is applied in the 
original Adam [41]  algorithm. The main difference between Adam and AdamW lies in 
the handling of the weight-decay regularisation term. In traditional stochastic gradient 
descent (SGD), weight decay works by shrinking the weights by a small factor during 
each update, effectively imposing an L2 penalty. In the original Adam optimiser, the 
weight decay is added directly to the gradients, much like in SGD. However, Adam also 
scales the gradients by a running average of the magnitude of recent gradients. 
Because of this scaling, the effect of weight decay is also scaled, which can lead to an 
inconsistent application of weight decay. AdamW decouples the weight decay from 
the gradient updates. Instead of applying weight decay to the gradients, AdamW 
applies weight decay directly to the weights after the optimiser step. 

Regarding the loss function we decided to experiment using L1 Loss and MSE Loss, 
which are the most dominant reconstruction losses in the literature. As mentioned 
above, MSE Loss is highly sensitive to outliers. This sensitivity is beneficial for tasks 
requiring precise reconstruction, where large errors are especially problematic. 
Conversely, L1 Loss calculates absolute differences and is less affected by outliers, 
offering a more robust metric in environments with anomalies that do not necessarily 
signal model failures. 

The learning rate is a tuning parameter in an optimisation algorithm that determines 
the step size at each iteration while moving toward a minimum of a loss function. It 
essentially controls how much the weights of the model are adjusted with respect to 
the loss gradient. A suitable learning rate ensures efficient convergence to a minimum 
loss, balancing the speed and stability of the learning process.  

Choosing different values for the learning rate can significantly impact the model's 
training dynamics. Higher learning rates can lead to faster convergence but may 
overshoot the minimal loss points, causing the training process to be unstable or even 
diverge, while lower learning rates promote more stable and reliable convergence by 
taking smaller steps. However, they risk slowing down the training process, potentially 
leading to long training times and sometimes getting trapped in local minima. 
Experimenting with learning rates of 0.0001 and 0.001 allows us to find an optimal 
balance that maximises learning efficiency without compromising the stability and 
accuracy of the model's performance. 

Feature Selection 
After conducting the EDA, we identified eight features that could potentially be most 
relevant in identifying a DDoS attack on the network. Those are the following: 
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• dl_bitrate (Downlink Bitrate): Measures the rate at which data is received by 
a user's device from the network. Measured in bits per second (bps). 

• ul_bitrate (Uplink Bitrate): Measures the rate at which data is sent from a 
user's device to the network. Measured in bits per second (bps). 

• dl_retx (Downlink Retransmissions): Counts the number of times packets are 
re-transmitted on the downlink. Re-transmissions occur when packets are lost 
or corrupted during transmission. High downlink re-transmission rates can 
indicate network congestion or signal-quality issues. 

• dl_tx (Downlink Transmissions): This represents the total number of packets 
transmitted in the downlink direction. 

• ul_tx (Uplink Transmissions): This represents the total number of packets 
transmitted in the uplink direction. 

• ul_total_bytes (Uplink Total Bytes): Measures the total amount of data sent 
from the user devices to the network over a given period. 

• dl_total_bytes (Uplink Total Bytes): Measures the total amount of data 
received by the user devices from the network over a given period. 

Inference 
During anomaly detection with autoencoders, the inference process begins by passing 
test data through the trained autoencoder. The model calculates the reconstruction 
loss for each data point. A predefined threshold is set for this loss, and data points 
exceeding this threshold are classified as anomalies. This approach is based on the 
premise that the autoencoder, trained solely on normal data, should reconstruct such 
data with minimal error. Consequently, significant deviations in reconstruction loss 
indicate anomalies, effectively identifying unusual or atypical data patterns. 

To calculate the optimal threshold for anomaly detection, we used a method based 
on the Receiver Operating Characteristic (ROC) curve. The ROC curve is a plot of the 
true-positive rate (TPR) against the false-positive rate (FPR) at various threshold 
values. It provides a visualisation of the performance of a binary classifier, such as our 
autoencoder, in terms of its ability to distinguish between normal and anomalous 
data. 

The process involves first calculating the FPR and TPR for a range of threshold values. 
Next, we calculate the distances between the TPR and FPR values at each threshold. 
The threshold with the minimum distance is considered the optimal threshold, as it 
represents the balance between the TPR and FPR. 

By using this method, we can automatically determine the optimal threshold that 
maximises the detection of anomalies while minimising false positives. 
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Best Model & Results 
The dataset was divided into three subsets: training, validation, and test sets. The test 
set consists of user equipment (UE) traffic recorded from the end of the second attack 
to the conclusion of the recording period. The remaining benign activity was split for 
training and validation, with 80% of the data used for training and 20% for validation. 
The model configuration that yielded the best performance on the test set is the 
following: 

• Window Size: 120 
• Hidden Dim of 1st LSTM Layer (both encoder & decoder): 50 
• Hidden Dim of 2nd LSTM Layer (both encoder & decoder): 100 
• Layer Normalisation: False (no layer normalisation applied) 
• Dropout rate: 0.2 
• Loss Function: L1 Loss 
• Learning Rate: 0.001 

 

Figure 3.6 depicts the training process of the model with the above configurations in 
terms of training and validation loss. 

Throughout the training phase, the model demonstrates a consistent decrease in 
training loss, indicating effective learning and model fitting to the training data. 
Notably, the validation loss largely mirrors the downward trend of the training loss, 
suggesting that the model is generalising well to unseen data. There are occasional 
spikes in validation loss, which could be attributed to variations in the validation 
dataset; however, the overall trajectory remains downward. This convergence of both 

Figure 3.6: Training and validation L1 Loss during training epochs. 
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training and validation loss is indicative of a stable learning process, with no significant 
signs of overfitting, as the model's performance improves steadily over the epochs. 

The ROC curve depicted in Figure 3.7, reveals an area under the curve of 0.98. This 
large area indicates an excellent level of discrimination; the model is highly capable of 
identifying true anomalies while maintaining a low rate of false positives. The curve's 
proximity to the top left corner of the graph underscores the model's effectiveness, 
as it reflects a high TPR and a low FPR, which are desirable characteristics for reliable 
anomaly-detection models. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Receiver Operating Characteristic plot after model evaluation on test data. 



 
D3.1 – Decentralised Robust Security Analytics Enablers Rel. A 

 

www.privateer-project.eu © PRIVATEER Consortium Page 45 of 68 

Figure 3.8: Scatterplot of L1 loss for benign & malicious data points. 

 
The scatterplot in Figure 3.8 visualises the reconstruction loss, measured by the L1 
loss, for test data labelled as benign (blue) and malicious (red). Trained solely on 
benign data, the model has learned to reconstruct such behaviour accurately, 
resulting in the dense cluster of blue points near the origin, indicative of low 
reconstruction loss. Conversely, the malicious data points, shown in red, are scattered 
predominantly higher on the loss axis. This elevated loss of malicious data underscores 
the model's inability to reconstruct anomalous behaviour accurately, which it has not 
encountered during training. The distinct separation between the reconstruction 
losses for benign and malicious data validates the model's utility in recognising and 
flagging deviations from the learned benign patterns as anomalies. 

The detection metrics of the model evaluated on the test set are the following: 

• Accuracy: 0.9943 
• Precision: 0.9632 
• Recall: 0.9813 
• F1 Score: 0.9722 
• True Positives (TP): 995 (98.13%) 
• True Negatives (TN): 8937 (99.58%) 
• False Positives (FP): 38 (0.42%) 
• False Negatives (FN): 19 (1.87%) 

The performance metrics of our model demonstrate its high effectiveness in anomaly 
detection. Recall, or the true positive rate, stands at 0.9813, signifying that the model 
successfully captures 98.13% of all actual anomalies. The F1 Score, which balances 
precision and recall, is at a robust 0.9722, further underscoring the model's reliability. 
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In absolute terms, out of the anomalies present in the data, 995 were correctly 
identified as TP, and 8937 TN were accurately recognised, resulting in very few false 
alarms and missed anomalies, 38 and 19 respectively.  

Interpretation of the Model’s Behaviour 
In assessing the robustness of our model, we undertook a comprehensive analysis to 
understand the behaviour it has learned. One significant observation is the clear 
difference in absolute values and variance between benign and malicious time series. 
Our analysis focused on whether the DL model successfully extracted meaningful 
patterns that could differentiate these two distinct behaviours. 

Figure 3.9 highlights the distinctive patterns of uplink bitrate for various active devices 
during normal period and attack period. The upper charts, depicted in blue, represent 
the benign operation while the lower charts, in red, illustrate periods of malicious 
activity. 

 

To clarify the behaviour of the model, we aimed to quantify the disparity between 
data inputs for each class. This was achieved by applying L1-norm to each data sample, 
facilitating a comparative analysis of their distributions. The same metric was then 
employed to measure the distribution of the model's outputs. Figure 3.10 showcases 
the results of this analysis. 

 

Figure 3.9: Uplink bitrate for different devices during benign and malicious activity. 

Figure 3.10: Histograms of L1-norm (Norm1) for benign and malicious input data and model outputs. 
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The benign data points are characterised by lower L1-norm values, mostly 
concentrated under 60, indicating consistency in the benign class's behaviour. On the 
other hand, malicious data points are distributed over a broader range of norm values, 
indicating more varied behaviour with the potential for high norm values. When 
processed by the autoencoder, the resulting data points for both classes are bounded 
within a reduced norm range (<150), with malicious data points being heavily 
concentrated near the upper bound. The norm distribution for the benign data points 
has not altered significantly. This suggests that the autoencoder, which was trained 
exclusively on benign data, has learned a reconstruction function optimised for low-
norm vectors, effectively reducing reconstruction errors for benign time series. 

The second test we conducted to understand the behaviour of our model involved 
mitigating the influence of higher absolute values of malicious time series data during 
model inference. To achieve this, we applied distinct scalers to the benign and 
malicious segments of the time-series data. Then we tested our model on the scaled 
malicious data. The detection capacity of the model significantly deteriorated.  

This can also be illustrated by comparing the original and reconstructed time series 
from a device that exhibited both benign and malicious behaviour. This pattern is 
depicted in Figure 3.11. 

 

 

During benign operations, the model accurately captured the time series. In contrast, 
for the malicious activity, the model failed to replicate the high values observed. 
Instead, it consistently outputs a stable threshold value throughout the malicious 
phase.  

Overall, the LSTM-autoencoder model effectively distinguished malicious from benign 
traffic. This success was primarily achieved by focusing on the elevated values of 
relevant features, a behaviour that is expected during DDoS attacks. Interestingly, the 
model did not derive significant additional value from the intercorrelation of multiple 
features. Instead, it efficiently identified spikes in the absolute values within the 

Figure 3.11: Original vs Reconstructed Time Series 
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feature space, a strategy that, while somewhat simplistic in only considering DDoS 
attacks, proved to be quite effective. This simplicity invites further exploration to 
assess the model’s potential against other types of attacks, suggesting an interesting 
avenue for future research to repeat the process and identify how the model performs 
under different malicious conditions. 

The next steps involve implementing the privacy-preserving techniques outlined in the 
previous section on top of the developed model. 

 

3.3 Adversarial-Robustness Evaluation and Feedback 
3.3.1 Objectives 

Task 3.3 aims to use adversarial tools and techniques to test, evaluate and increase the 
adversarial robustness of AI models. The AI models’ robustness against different types 
of attacks will be evaluated. This will then feed into an adversarial training pipeline to 
increase the robustness of the AI models against these types of attacks. Task 3.3 has 
the following objectives: 

• Apply adversarial tools to assess the adversarial robustness of AI models from 
Task 3.2. This approach should evaluate the AI models’ robustness to attacks 
and indicate areas for improvement. 

• Explore techniques to increase the adversarial robustness of AI models through 
adversarial training, regularisation, and other methods. This will then be used 
to create an adversarial-training paradigm that will enhance the robustness of 
the AI models. 

• Evaluate the quality loss of the AI models for each method in the paradigm to 
ensure that the methods do not degrade the model beyond usefulness. 

 

3.3.2 State of the Art  

3.3.2.1 Evasion Attacks/Adversarial Examples 

An attack based on adversarial examples perturbs the input to the models in a way 
that may force the model to misclassify. The changes to the input need to be so small 
that it still behaves in the same general way [42]. A typical example of this involves 
adding an imperceptible layer of noise to an image forcing the model to classify it as a 
different object, even though the image still looks like the original object to the human 
eye [43]. The exact mechanism for how adversarial examples work is not entirely 
understood and it is not always necessary to have the exact model to create adversarial 
examples that fool the model. If two models are trained to solve the same general 
problem, chances are that an adversarial example created to fool one of them may 



 
D3.1 – Decentralised Robust Security Analytics Enablers Rel. A 

 

www.privateer-project.eu © PRIVATEER Consortium Page 49 of 68 

fool both [44]. As this is an attack in the test phase of the model, the effects and 
defences against it should be similar, both inside and outside an FL context. 

 

3.3.2.2 Membership-Inference Attacks 

Membership-inference attacks are a group of attacks in which an attacker is able to 
deduce whether a data point was part of the training set of a trained model. This may 
implicitly leak sensitive information. For instance, an attacker can check whether a 
specific person was part of the training set of a model designed to predict the 
probability of cancer within a patient [45]. 

 

3.3.2.3 Attribute-Inference Attacks 

Attribute-inference attacks are similar to membership-inference attacks but differ 
slightly in that an attacker with partial knowledge about a data point may be able to 
learn unknown values about that data point. This can be used to infer sensitive values 
used in training [45]. 

 

3.3.2.4 Poisoning Attacks 

In poisoning attacks, an attacker with access to the training dataset may be able to 
manipulate the training set in order to influence a model to behave in a certain 
undesirable way. An attacker can use this to create a backdoor into the model for 
evasion or similar. For instance, an attacker could force a security model to classify 
certain malicious activity as benign [46]. 

 

3.3.2.5 Adversarial Training and Robustness 

Adversarial training is one of the most common defensive strategies against 
adversarial attacks, where the model is trained against adversarial examples 
constructed to fool the model [43, 44, 47].  

A Generative Adversarial Network (GAN) architecture [48], as shown in Figure 3.12, 
can be used for such adversarial training. A GAN network contains two interconnected 
networks: a generator and a discriminator. The generator network generates 
adversarial examples based on a randomly drawn vector from the latent space, while 
the discriminator network is trained to correctly classify both the original and the 
constructed examples [44]. The latent vector can be seen as a reduced dimensionality 
sample, as the generator uses the latent vector to generate a full sample. 
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Figure 3.52: Example of a GAN Architecture 

Other defences include using provable robust ML models, input transformation, using 
DP, and using detection mechanisms for adversarial examples [44]. Using provable 
robust ML models may provide the strongest defence but may provide a lower 
accuracy and may suffer scalability issues with complex neural networks [43]. Training 
a model using DP techniques may help to make the model more robust against 
adversarial attacks as they introduce “benign” perturbations into the training set [49]. 
DP shows many similarities to adversarial training in both method and effects. It can 
be shown that adversarial training can achieve a good trade-off between privacy and 
model accuracy  [50, 51, 52]. 

Input transformation is a model-agnostic method that attempts to improve robustness 
by removing any adversarial elements from the input. This can be done, e.g., by adding 
random noise to the input to try to counteract the small adversarial perturbations [44, 
47]. A GAN-based de-noising technique has also been proposed [47, 49]. 

Detecting adversarial examples before they are presented to classifier model can 
effectively eliminate the problem of misclassifying adversarial examples. This can be 
done by observing how a neural network behaves when faced with adversarial 
examples. For example, dimensional properties, feature attribution scores, and 
distances between adjacent classes may behave differently with adversarial examples 
[49]. The use of a variational autoencoder has also been proposed for detecting 
adversarial examples [49]. 

 

3.3.2.6 Robustness Frameworks 

There are several different robustness frameworks available for machine learning 
models. The Adversarial Robustness Toolbox (ART) is a Python-based open-source 
framework created by IBM for generating adversarial attacks and defences [53]. It 
provides a variety of different attacks for evasion attacks, poisoning attacks, and 
inference attacks. It also provides defences such as adversarial example detection, 
poisoning detection, general adversarial training, and data preprocessing defences 
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[53]. In addition, it also provides several robustness metrics, such as Empirical 
Robustness, Loss Sensitivity and CLEVER [53, 54]. 

Foolbox is another Python-based open-source framework and provides adversarial 
attacks, defences and robustness metrics [55]. 

There are other frameworks available, such as Cleverhans, though this is focused 
mainly on computer vision models [56]. 

 

3.3.3 Selected Attacks  

This task will start looking into membership inference attacks. Next, the task will 
investigate poisoning attacks. The task may then investigate attribute inference, 
evasions attacks and model extraction attacks. 

 

3.3.4 Work Plan 

The work plan of the task can be divided into three phases.  

Phase one will start with threat modelling of the attack scenario (membership-
inference attacks). The attack scenario will be used for initial experiments using ART  
[53], and testing on simplified datasets and models. The attacks used will feature 
adversarial examples and evasion attacks using GANs and GAN-like methods. ART will 
mainly be used as it is an actively developed framework implementing both attacks 
and defences in addition to robustness metrics. Other frameworks may also be tested 
to complement or replace the ART framework wherever it seems beneficial. 

Phase two will consist of applying the selected attacks on the LSTM-model and dataset 
from Task 3.2. This will be evaluated, and adversarial examples will be provided for re-
training the model. If possible, other mitigation methods to improve robustness of the 
models from Task 3.2, such as gradient masking, regularisation, and adversarial 
example detection, will also be explored. 

Phase three of the task will consist of evaluating the newly trained models and 
assessing their robustness against the selected attacks. In addition, the quality loss of 
the model will be evaluated. 

Phase two and phase three will be repeated for at least poisoning attacks, and, time 
permitting, attribute inference, evasions attacks and/or model extraction attacks. 
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3.3.5 Evaluation Set Up 

In general, the evaluation will compare the number of attacks achieved before and 
after mitigations are applied and assess the quality loss of the model after mitigations 
are applied. In addition to evaluating the success rate of attacks, several robustness 
metrics of the models will be evaluated. This will include Empirical Robustness, Loss-
sensitivity and CLEVER [53, 54]. 

 

3.4 XAI-driven decision support 
3.4.1 Objectives 

Task 3.4 aims to provide insight in a human-understandable manner in the 
decentralised AI built for security analytics in Tasks 3.2 and 3.3. The primary objective 
is to offer explanations on the decision-making process through eXplainable AI (XAI) 
techniques, particularly focusing on aiding anomaly detection and threat 
classification.  

Through the utilisation of XAI methodologies, the objective is to provide insights into 
how the security-analytics models arrive at their decisions. In an ideal 
implementation, it could include model and decision interpretability for a given threat 
and anomaly detection. Additionally, techniques such as counterfactual information 
can assess how confidently a decision was made by the model and if particular data 
points alter the decisions significantly.  

Explanations require the input data derived from the processed 5G NWDAF, as 
established in Tasks 3.1 and 3.2, and leverage the anomaly-detection models from 
Tasks 3.2 and 3.3, which identify and categorise threats within the security-analytics 
platform. From the outputs of these tasks, XAI models are developed to provide 
explanation either by model-agnostic implementations such as SHAP or LIME, or white 
models such as Decision Trees or Naïve Bayes that provide a clear understanding of 
their decision-making process. 

The outcomes of this task are expected to encompass the integration of XAI 
approaches within a federated system, ensuring that explanations are provided both 
at the core and edge systems compatible with FL and anonymisation pipelines. Next, 
the task will design and implement a specialised decision-support framework for 
PRIVATEER’s use cases. This framework will incorporate a variety of XAI algorithms 
tailored to complement objectives such as interpretability and explainability at both 
local and global levels. It is imperative that this decision-support framework 
accommodates state-of-the-art DL algorithms trained with private anonymised data, 
all within a federated and distributed environment. 
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3.4.2 State of the Art 

Explainability in Artificial Intelligence (XAI) can be defined as an approach aimed at 
enhancing the transparency and comprehensibility of AI decision-making processes. 
This methodology, while not aggressively assertive, strives to simplify the inherent 
complexity of ML models, facilitating a more accessible understanding without 
compromising performance significantly. XAI aims to strike a balance between 
technical complexity and the human ability for comprehension and trust in intelligent-
system decisions.  

There are key concepts when exploring XAI models to explain model decision. One is 
explainability which pertains to the XAI model's capacity to elucidate the reasons and 
mechanisms behind a specific prediction or its internal behaviour. Another one is 
interpretability which refers to the human user's capability to comprehend the 
explanations offered.  

Apart from the previous definition, XAI models have a set of desirable properties such 
as transparency, interpretability, trustworthiness, fairness, transferability, bias 
detection, robustness, and domain understanding. Each of these properties are 
important to define and characterise XAI models which are reliable for human 
interpretability [57]. 

 

3.4.3 XAI Models and Taxonomy 

XAI models are used to explain decisions made by traditional known black-box models. 
In the literature, there is a clear distinction between white- and black-box models 
fundamentally based on a human ability to be able to review and understand how an 
ML model created a decision [58]. 

Our interest is in the exploration of instance-based decisions. This is, evaluating the 
contribution of each input feature to the output of a model for generalisation 
purposes. 

One model-agnostic XAI model is the Local Interpretable Model-agnostic Explanations 
(LIME) algorithm [59]. LIME [59] operates by building a simplified, understandable 
model that mimics the classification-model's behaviour. This simplified model is 
trained using local data points and is then used to explain the classification model’s 
decision. The process encompasses the following stages: 

• Selection of an instance for explanation. 
• Perturbation of the instance to generate a dataset comprising similar 

instances. 
• Assignment of weights to similar instances based on their resemblance to 

the instance being explained. 
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• Training of a local, interpretable model using the weighted dataset. 
• Utilisation of the local model to provide explanations for the complex 

model's decision.  

A different model-agnostic approach can be found in SHAP (Shapley Additive 
Explanations) [60]. SHAP is a technique designed to explain individual predictions, 
leveraging the game-theoretically optimal Shapley values. Shapley values, derived 
from cooperative game theory, offer favourable attributes. In this context, the feature 
values of a data instance are analogous to players in a coalition, and the Shapley value 
represents the average marginal contribution of a feature value across all potential 
coalitions. 

Yet another model-agnostic approach to XAI for DL algorithms is Integrated Gradients 
[61]. It is a model-agnostic approach aimed at assigning significance to each input 
feature within a deep neural network. Its objective is to evaluate the contribution of 
each input feature to the network's ultimate prediction by assessing the extent to 
which the prediction alters when varying that particular feature. 

 

3.4.3.1 Counterfactual Explanations 

Counterfactual explanations refer to hypothetical instances or scenarios that are 
generated to explain model predictions. One strategy for explanation is through 
counterfactuals, which reveal what changes in an instance could lead to a different 
outcome [62]. By presenting these hypothetical scenarios, users can gain a better 
understanding of the decision-making process of the AI model and identify potential 
biases or areas for improvement. 

There are different strategies to produce counterfactual explanations: 

• Optimisation: Counterfactual explainers utilising optimisation strategies 
formulate a loss function incorporating desired properties and employ existing 
optimisation algorithms to minimise it; 

• Heuristic-Search Strategy: Counterfactual explainers employing heuristic 
search strategies aim to discover counterfactuals by making local and heuristic 
choices at each iteration to minimise a specific cost function; 

• Instance-Based: Instance-based counterfactual explainers generate 
counterfactuals by selecting the most similar examples from a dataset; 

• Decision Tree: Counterfactual explainers based on DT approximate the 
behaviour of the black-box model with a decision tree and then utilise the tree 
structure to identify counterfactual explanations. 

There are other proposals for explainability methods, as proposed in [63]. This 
strategy aims to classify strategies based on their functioning approach: 
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• Local Perturbations: The modification of the inputs of a model to assess 
confidence in the decision, assert feature importance and robustness of a 
decision; 

• Leveraging Structure: Leveraging the internal structure of models to identify 
and build explanations. In the field of DL, it is common to look at internal 
gradients to ascertain feature importance; 

• Meta-Explanation: Usage of alternative XAI methods to create explanations 
based on the decision model. It might involve dedicated heuristics developed 
for a specific use case; 

• Architecture Modification: Altering the decision model, trying to make it 
simpler and thus more understandable; 

• Examples: Use past examples as explanations for current classifications. 

Yet another alternative is proposed by by McDermid et al. [64]. This classification is 
influenced by the result of an explanation to create its categories: 

• Feature Importance: identification of the most important features for the 
explanation of a decision based on a model and instance of input; 

• Surrogate Models: usage of simpler, self-explanatory models to approximate 
the decision process of more complex models; 

• Examples: a strategy that aims to explain decisions based on similar examples 
from previous inputs. 

Apart from categories, explanations also should take into consideration XAI scope and 
stage [65]. Regarding scope, it can be either local, restricted to the instance being used 
or global, considering the whole model. The stage is related to whether the 
explanation is devised before or after the application of an ML algorithm. 

 

3.4.3.2 Time Series, XAI and FL 

Techniques used for analysing time-series data are often adapted from computer 
vision and natural-language processing domains [66]. Their aim is to emphasise the 
specific signal components that receive the most focus from the model during 
classification. However, these methods may overlook certain characteristics inherent 
to time-series data, such as recurring spatio-temporal patterns and correlations 
among multiple channels or sensing modalities [67]. 

In the case of time series data, XAI models employ different strategies based on XAI 
theory [68], such as: 

• Time Points-Based Explanations: Assign a relevance score or weight to every 
time point of a time series; 

• Subsequence-Based Explanations: Identify sub-parts of a time series 
responsible for the classification outcomes; 
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• Instance-Based Explanations: Rely on the whole time series instance to 
express the reasons for the classification. 

Time series have implications in problems and algorithms used. XAI requires 
specialised approaches to capture the temporal data dependencies between 
instances. Nevertheless, approaches using simple XAI processes although able to be 
used with relative success, fail to link temporal relationships. 

Implementations of federated XAI are available in the literature [69]. They follow the 
same strategy as federated learning. This means that XAI models may be trained and 
maintained at the edge node, using the federated mechanism to merge different XAI 
models for the same domain on a central server [69]. A critical concept here is the 
ability to merge XAI models in a convergent path able to produce quality explanations 
both at the central node and the local nodes. 

 

3.4.4 Work Plan 

The current work plan defined for Task 3.4 is to review the outputs from the previous 
tasks and understand the data and algorithms used for threat classification and 
anomaly detection. In the current approach, an LSTM model will be employed 
together with time-series data. With this reality, we aim to employ XAI models as 
digital twins for the black box models in the security analytics platform.  

In order to achieve the results, our work plan involves an initial stage of 
experimentation and selection of a relevant XAI model for the PRIVATEER security-
analytics platform. These initial tests aim to assess and produce proofs of concept 
(PoCs) that explain decisions on threat identification and anomaly detection. At this 
stage, the initial PoC, based on explanation dashboards, will aim to support the 
classification model with XAI explanations ante-hoc and post-hoc and both global and 
local in nature. 

A second stage aims to specialise the XAI models to the problem domain, namely time-
series telecommunication data. Time series are a special subset of problems and 
require special treatment in order to produce quality explanations. 

At a third stage, the federated nature of the problem will be taken into consideration. 
Preparation for potential extension of the XAI models for the federated scenario will 
be specified and the corresponding theoretical framework will be devised. 

At a fourth and final stage, an XAI decision toolkit will be implemented for the use 
cases selected, with the previous work from the latter stages. This toolkit should 
demonstrate the application of XAI for the security-analytics platform in the 
PRIVATEER project and offer modularity, different strategies, and extensibility in the 
implementation of XAI models. 
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3.5 Edge analytics accelerators 
3.5.1 Objectives 

The objective of Task 3.5 is to facilitate the implementation of hardware-accelerated 
data-analytics applications at the edge, aiming for both low latency and energy 
efficiency while having a secure operation.  

Initially, the focus is on accelerating AI/ML methodologies for anomaly-detection tasks 
such as threat identification and classification. Additionally, optimisation and 
approximation techniques will be applied in order to maximise energy efficiency (i.e., 
by reducing the precision of computations).  

The required input data and anomaly-detection AI model will derive from Tasks 3.1 
and 3.2. aiming to classify threats within the security-analytics platform. Hardware 
accelerators such as FPGAs or GPUs will be examined with the ultimate goal of 
enhancing the energy efficiency of the given AI model on the inference process when 
compared with the execution on a general-purpose processor (i.e., CPU).  

 

3.5.2 State of the Art 

The aim of this paragraph is to assess the current state of development regarding 
hardware accelerators for various devices, including GPUs, FPGAs, and several 
approximation techniques. 

For Task 3.5, we opt to examine Xilinx FPGAs or Nvidia GPUs as representative device 
types, along with their associated tools. This choice is motivated by their current 
market dominance, widespread adoption by major cloud providers, and the potential 
impact of these novel compute elements on edge systems. 

Hardware accelerators, including devices like the Xilinx Alveo or MPSoC FPGA family, 
as well as Nvidia GPU devices, are commonly interfaced with CPUs via PCI-Express or 
integrated as complete system-on-a-chip (SoC) solutions with peripherals [70, 71, 72]. 
The hardware or tool manufacturers provide an interface layer, such as a shell design 
in the FPGA or a driver for the specific GPU, along with corresponding software 
components comprising necessary libraries executed on the server(s) or host side. 
Xilinx Vitis environment includes a comprehensive core development kit to seamlessly 
build accelerated applications for both server and SoC Xilinx FPGAs. Vitis AI 
development environment is a separate specialised development environment for 
accelerating AI inference on Xilinx platforms in a more automated way. Regarding the 
GPU development, Nvidia Cuda Toolkit is a development environment for building 
GPU-accelerated applications, including libraries, debugging and optimisation tools, a 
C/C++ compiler, and a runtime library. Also, Nvidia Cuda-X which is built on top of 
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Nvidia Cuda, is a collection of libraries, tools, and technologies that deliver higher 
performance in multiple application domains in a more automated way. 

Applications ranging from accelerating basic signal processing functions such as Fast 
Fourier Transform (FFT) [73], data encryption such as Advanced Encryption Standard 
(AES) [74] or even DL applications [75, 76, 77] are constantly being developed using 
emerging technologies from both software and hardware domains. Wherever low 
latency and power efficiency are vital, FPGA or GPU devices can be leveraged to 
offload the computation of the CPU and process the most compute-intensive part of 
the applications while the CPU is free to perform other important tasks. 

 

3.5.3 Work Plan 

The work plan of Task 3.5 is to deliver solutions for accelerating security analytics 
workloads. Specifically, within this task, an optimised hardware kernel will be 
developed, considering balancing energy versus performance trade-offs for 
hardware/software co-design targeted for anomaly-detection application. Also, 
approximation-computing techniques will be applied to enhance the energy efficiency 
of the algorithm compared to CPU software execution. 

Specifically, below is the work plan in distinct steps: 

1. Identification of target kernel for acceleration: Extensive discussions with 
the AI model providers from Task 3.2 have taken place in order to determine 
the appropriate ML or DL model that will be targeted for hardware 
acceleration. The AI model has parallelisation potential; thus, it will benefit 
from being deployed on a hardware-accelerator platform such as FPGA or 
GPU.  

2. Development of the first version of accelerated AI model: High-Level 
Synthesis will be utilised for developing the model for FPGAs or CUDA 
programming model for developing the model for GPUs. Also, advanced 
tools for automating the creation of firmware for hardware, particularly in 
the context of DL algorithms, will be examined if needed. 

3. Approximation techniques will be examined to further enhance the energy 
efficiency on the hardware-accelerated models. This might include any of 
the following:  quantisation, precision scaling, loop perforation or 
approximate function memorisation. 

4. The kernels will be integrated with the rest of the security-analytics 
application. 
  

Below in Figure 3.13 is the custom development flow for both FPGAs and GPUs when 
targeting the trained AI analytics model that will result from Task 3.2. The output 



 
D3.1 – Decentralised Robust Security Analytics Enablers Rel. A 

 

www.privateer-project.eu © PRIVATEER Consortium Page 59 of 68 

kernel will be able to perform inference of the model using FPGA or GPU hardware, 
achieving higher energy efficiency than CPU. 

 

Figure 3.13: Custom development flow for FPGAs and GPUs. 
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4 Conclusion 
In summary, all five tasks of WP3 have started successfully. A detailed work plan has 
been provided for all technical tasks within the WP3. Their interdependencies have 
been analysed and are respected in the WP advancements for optimal collaboration 
and multitasking.  

As described in the present report, a thorough data and feature analysis has been 
performed regarding the 5G NWDAF dataset containing a DDoS attacks. Following the 
EDA and general considerations for the 5G landscape regarding anonymisation needs 
and data suitability for ML purposes, within the Tasks 3.1 and 3.2 anonymisation 
pipelines for location data and a security-analytics DL model have been constructed 
and implemented. These constitute the basis for further developments within Tasks 
3.2, 3.3, 3.4 and 3.5 during the second phase of the PRIVATEER project.  

Crucial next steps will involve the adversarial hardening against specific attacks in Task 
3.3, explainability methods in Task 3.4, and HW acceleration in Task 3.5. In Task 3.2, 
several privacy and security settings will be explored by employing DP and MPC, and 
the privacy-utility trade-off will be investigated in depth for real-life use cases and, in 
particular, use cases 1 and 4 of PRIVATEER as elaborated in deliverable D2.2 [78]. 
Systematic federated DL experimentation set ups will be created for the anomaly-
detection algorithms. Computational experiments will be conducted in all significant 
parameters related to security and privacy, such as the privacy budget or the stage of 
applying DP, in order to reach conclusions regarding an optimal privacy-utility balance 
for PRIVATEER’s use cases.  Secure-aggregation mechanisms will be investigated with 
respect to their effectiveness and efficiency, in order to be implemented into the 
federated security-analytics framework.
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