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ABSTRACT
Visual Sensor Networks (VSNs) exploit the processing and
communication capabilities of modern smart cameras to han-
dle a variety of applications such as security and surveillance
and critical infrastructure protection. The performance of
various tasks in such applications, such as activity recogni-
tion, tracking, etc., can be severely affected by the detec-
tion module especially when considering low-cost embedded
smart cameras with limited processing capabilities. Hence,
this paper presents research towards the development of op-
timization algorithms and decision making solutions to im-
prove the detection performance of such VSNs. Specifically,
it introduces a probabilistic detection model that can be
used to characterize the detection capabilities of cameras,
and shows how it can be used to reconfigure VSNs. Exper-
imental as well as simulation results indicate that the pro-
posed solution is able to effectively improve the robustness
and overall detection performance of VSNs.
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1. INTRODUCTION
Visual Sensor Networks (VSNs) consist of networked cam-

eras that can communicate to collaboratively monitor an
area by detecting, recognizing, and tracking targets, while
observing a scene [2]. Modern smart cameras offer advanced
sensing and processing capabilities and collaboration capa-
bilities that facilitate their deployment in a wide range of
applications ranging from security and surveillance to indus-
trial monitoring and personalized healthcare [14], [15]. The
overall performance in these applications relates directly to
the detection module capabilities of each camera in the net-
work, since tasks such as recognition and tracking require
capturing multiple instances of each target to update its
state (speed, velocity, etc.). Hence, it is of key importance to
develop models and algorithms that are able to characterize
the behaviour of a camera detection module and reconfigure
the VSN in order to improve its detection performance.

The majority of existing works assume that the detection
module of the cameras in VSNs operate under perfect con-
ditions, and do not take into account the possibility that
a camera may not detect a target that is located within in
its Field-of-View (FoV). However, in real-world applications

even cameras featuring sophisticated visual sensors and on-
board processors for decision-making, are inherently error
prone due to the probabilistic nature of the detection algo-
rithms that rely on machine-learning. This becomes more
apparent for low-power and low-cost camera systems [16],[6]
that can be integrated into ubiquitous cyber physical sys-
tems but do not have the necessary resources to run demand-
ing state-of-the-art object detection algorithms. Hence, such
embedded systems either lower the resolution or run less de-
manding algorithms both of which compromise the perfor-
mance of the object detection module. However, there is
limited research in dealing with this issue in VSNs.

This paper presents research towards incorporating detec-
tion performance as a key metric that can be used to recon-
figure VSNs in order to improve their efficiency. To this end,
the contribution of this work is twofold. First, it proposes
a flexible probabilistic model that can be used to study the
impact of degrading detection performance in VSN appli-
cations, and also characterize the detection capabilities of
each camera in the network. Second, an optimization al-
gorithm is formulated that utilizes the respective detection
performance achieved by each camera per target, in order
to set a new pan and tilt angle for each camera that results
in maximizing the overall detection performance of the net-
work. The optimization algorithm allows to maximize the
detection performance for multiple targets rather than only
a single target. We show the application of the model and
optimization algorithm in an active network of Raspberry-
Pi-based pan-tilt smart cameras that monitor targets in the
field. Also, we show how the results are affected through
simulations for varying number of cameras and targets.

The rest of this paper is structured as follows. Section 2
outlines some key areas of emerging research in VSNs. In
Section 3 we formally introduce the problem as well as as-
sumptions for the visual sensors, targets, and the proposed
detection model. Also, in this section we formulate an opti-
mization algorithm that utilizes detection probability infor-
mation in order to identify new camera configurations that
maximize the overall target detection probability. In Sec-
tion 4 we present the evaluation results for the proposed
model and optimization algorithm both experimentally and
through simulations. Finally, Section 5 provides concluding
remarks and discusses directions for future work.

2. RELATED WORK
There has been an increasing amount of emerging research



in VSNs towards developing collaborative and distributed
vision algorithms, with an emphasis on PTZ cameras [5]
and networks [9], as well as dynamic network reconfigura-
tion [17]. For example, [7] and [8] deal with the problem of
naivety in static VSNs where not all cameras observe all tar-
gets, but need to maintain a state estimate for each target.
To address this problem the authors introduce a multi-target
information consensus algorithm that handles the issues of
naivety as well as estimation errors in tracking and data as-
sociation. The work in [10] formulates a game-theoretic ap-
proach, so that cameras can opportunistically identify time
instances where the network can reconfigure in order to meet
tracking requirements of targets. The work in [18] investi-
gates how to model the probability of targets entering or ex-
iting from certain areas in order to steer the cameras towards
monitoring those areas, whereas in [13], the authors consider
a 3D environment where the height of targets plays an im-
portant role in the application, and reconfigure the network
of cameras based on an activity relevance map. Finally, the
authors in [12] propose a reconfiguration scheme for SCNs in
order to reduce the uncertainty in the targets location and
movement. As such, existing models and approaches used
in VSNs assume that a visual sensor will always detect a
target that is present in its FoV, and do not consider the
uncertainty in the detection module of a smart camera. In
this paper, we present research towards the development of a
probabilistic detection model that captures the behaviour of
the detection module and can thus provide additional input
to decision-making and dynamic configuration algorithms.
Additionally, we formulate an optimization algorithm that
can take advantage of probabilistic detection information,
such as the one provided by the proposed model, in order
maximize the overall detection performance.

3. PROBLEM DESCRIPTION AND SOLU-
TION OVERVIEW

We consider an active network consisting of NC smart
camera nodes i that belong in the set C and NT targets j in
the set T that are present in the area that is monitored. The
objective is to configure the pan and tilt angles of the net-
work cameras so that the overall cumulative detection prob-
ability of all targets is maximized (or equivalently minimize
the miss–detection probability), thus effectively maximizing
the expected number of detected targets.

3.1 Visual Sensor Model
Cameras in the network are considered to be active, in

which case they have some degrees of freedom and can ad-
just their point of view based on collective or local infor-
mation. For instance, it is possible that they can move in
space, thus changing their location (xCi , y

C
i ), or they can re-

main in a specific location but change their pan ΘP
i and tilt

ΘT
i parameters (Fig. 1). All cameras i have a sensing range

Ri, and are located at a height Hi. The camera monitors
a specific area which is denoted as FL

i and represents its
local (current) FoV, and is a subset of the total area that a
camera is able to monitor, denoted as FG

i . We assume that
a camera can change the pan and tilt angles by a fixed step
and so the set of all configurations is finite. Specific values
of these parameters correspond to a single configuration k
that camera i can have from all possible finite configurations
Ki. The active configuration for each camera i is specified
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Figure 1: Camera Detection Model

by a binary variable xik which is equal to one if the cam-
era employs configuration k ∈ Ki and zero otherwise. We
also assume that the cameras in the network are calibrated
so that associations between them can be established, and
that geometric information is available so that cameras can
localize targets. It is assumed that the location (xTj , y

T
j ),

and distance dij of target j from camera i can be deter-
mined on the scale size and resolution that it the target is
detected. Each camera uses the above information to coor-
dinate with other cameras regarding common target views.
We assume that targets can move within the monitored area
with a speed that permits their detection from the cameras.

VSN applications are associated with a moving target that
can change its position and viewpoint orientation, and thus
may affect the detection performance of a camera especially
as its distance from the camera increases which decreases the
its pixel resolution. Hence, camera i can detect the targets
that are inside its local FoV FL

i primarily depending on how
far they are from it. Hence, the probability of detection is
based on the sensing range Ri and local FoV of each camera.

Through the following model we attempt to capture how
the resolution of the target in the camera image affects the
detection probability. The main characteristics of the model
are also shown in Fig. 1. First, the global FoV of camera
i is segmented into m detection zones, Zim, m = 1, · · ·, Nz,
where Nz is the last zone that is located further away from
the camera location. Depending on its current local FoV
FL
i a camera views a subset of the m zones as shown in Fig.

1. Within each zone, a target can be detected with a range
of probabilities. Thus we characterize each zone with an
average probability and assume a uniform constant detection
probability for simplicity. Hence, when a target is in zone
Zim of camera i it is assumed that on average is detected
with probability Pim. A zone Zim has a higher detection
probability if it is closer to camera location (xCi , y

C
i ), Pim

> Pin, for m < n. A camera can establish the zone Zim

that a target j is detected through trigonometry using the
pan and tilt angles of current configuration k. Hence, we
define the detection probability of camera i for target j using
configuration k as pijk = Pim, and subsequently the miss–
detection probability is qijk = 1− pijk.

3.2 Optimization Algorithm for Configuration
Assignment

In order to improve the detection capabilities of a VSN



we formulate an appropriate optimization algorithm that
utilizes the information from the aforementioned camera de-
tection model in Section 3.1 to select an appropriate configu-
ration for each camera i in the network in order to maximize
the overall detection probability (and also maximize the ex-
pected number of observed targets). A key step in this pro-
cess is to identify all possible configurations and subsequent
targets that can be monitored with non-zero probability.
This can be done through a systematic process where given
that all target j positions are known (which can be achieved
through wide-view static cameras [12]), each camera i gen-
erates all possible configurations k ∈ Ki and determines the
set of target located within each FL

i . We will not focus on
the process of identifying camera configurations and target
sets as it goes beyond the scope of this paper and since the
optimization algorithm can operate either on an exhaustive
list of configurations, or one where only a significant subset
is present.

The above problem is equivalent to the minimization of
the overall miss–detection probability. Hence, when multiple
cameras cover the same target j then the overall detection
probability for that target can be found using the product
of the miss–detection probabilities as 1−

∏
i∈C

∏
k∈Ki

q
xik
ijk

when the detections are uncorrelated. Hence the algorithm
can be formulated as:

min
∑
j∈T

∏
i∈C

∏
k∈Ki

q
xik
ijk (1a)

s.t.
∑
k∈Ki

xik = 1, i ∈ C, (1b)

xik ∈ {0, 1}, i ∈ C, k ∈ Ki (1c)

Notice that the objective of (1) is nonlinear and solution
with standard solvers is not possible. To deal with this issue
we transform the problem into an equivalent problem based
on [3]. Let 2−zj =

∏
i∈C

∏
k∈Ki

q
xik
ijk . Taking the logarithm

of both sides gives zj = −
∑

i∈C
∑

k∈Ki
xik log2(qijk), zj ≥

0, and the formulation becomes:

min
∑
j∈T

2−zj (2a)

s.t. Constraints (1b) - (1c), (2b)

zj = −
∑
i∈C

∑
k∈Ki

xik log2(qijk), j ∈ T , (2c)

zj ≥ 0, j ∈ T (2d)

The new formulation (2) is an integer programming prob-
lem with the objective function composed of separable mono-
tonically increasing convex terms 2−zj . Following the anal-
ysis from [11], each of these terms can be tightly approxi-
mated from the convex envelop φ(zj) of a number of piece-
wise linear functions. Towards this direction, let us assume
that each term 2−zj is approximated by Lj linear segments
with slopes α1,j ,...,αLj ,j and start-points β1,j ,...,βLj ,j . Let

us also assume that βLj+1,j = zmax
j . Because 2−zj is convex

and monotonically increasing, the envelop approximation
φ(zj) will also be convex and the slopes will have mono-
tone increasing values: α1,j < α2,j < ... < αLj ,j . Let
ξlj , l = 1, ..., Lj be the value of zj corresponding to the lth
linear segment so that 0 ≤ ξlj ≤ βl+1,j − βl,j , l = 1, ..., Lj .
Under the assumption that ξij = βi+1,j −βi,j , i = 1, ..., l− 1

when ξlj > 0, it is true that zj =
∑Lj

l=1 ξlj and also that

φ(zj) =
∑Lj

l=1 αl,jξlj . In other words, zj can be replaced
by the sum of variables ξlj , l = 1, ..., Lj if we can ensure
that the solution of the optimization problem will always
be such that each ξlj is nonzero only when the variables
ξlj , i = 1, . . . , l − 1 have obtained their maximum value.
As mentioned earlier, α1,j has the smallest slope value and
hence ξ1j will be the first variable associated with zj to be
assigned a nonzero value. Only when ξ1j has been assigned
its maximum value variable ξ2j will be assigned a nonzero
value and this procedure will continue until zj becomes equal
to the sum of the nonzero variables. Thus, the assumption
stated above is satisfied and formulation (2) becomes:

min
∑
j∈T

Lj∑
l=1

αl,jξlj (3a)

s.t. Constraints (1b) - (1c), (3b)

Lj∑
l=1

ξlj = −
∑
i∈C

∑
k∈Ki

xik log2(qijk), j ∈ T , (3c)

0 ≤ ξlj ≤ βl+1,j − βl,j , l = 1, ..., Lj , j ∈ T (3d)

Formulation (3) is a MILP optimization problem that can
be solved with standard solvers. To compute the slopes and
start-points of 2−zj we employ a piecewise linear approx-
imation scheme that minimizes the number of linear seg-
ments limiting the maximum approximation error to a de-
sired value as proposed in [19].

4. EVALUATION RESULTS

4.1 Experimental Setup
To evaluate the proposed model and optimization algo-

rithm we have developed a network of smart cameras based
on the Raspberry Pi single-board computer [6]. Each Rasp-
berry Pi is connected with a webcam that is mounted on a
motorized two degrees-of-freedom (DoF) pan-tilt stage, as
shown in Fig. 3. The servo motors are controlled by the
Raspberry Pi and the control electronics using a pulse width
modulation (PWM) approach. Communication between the
camera stations is realized via a dedicated local Wi-Fi net-
work. Each camera station is also fitted with programmable
LEDs that indicate the status of the system. The cameras
were also able to calculate an estimate of the targets posi-
tion in a global reference system using geometric informa-
tion and the current angle configurations. The target objects
were remote controlled cars. For this reason, we trained an
image classifier capable of detecting cars using the Cascade
Object Detection Algorithm [20] with Local binary Pattern
(LBP) features which is available in the OpenCV computer
vision library [4]. The training set was constructed using the
database from [1] and was enhanced with additional sample
images with a total of 800 positive and 3200 negative sam-
ples. The experiments were conducted in non-controlled en-
vironments with ambient light. For the camera detection
model we employed a 3-zone approach and the detection
probabilities for each zone were 90% for the proximal zone,
50% for the intermediate zone and 20% for the distant one.
A different number of zones can be employed with respective
detection probabilities, however, depending on the applica-
tion scenario and operating environment.
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Figure 2: Detection results from a single camera for successive frames (n is number of frame). Notice that
the detection performance deteriorates (less bounding boxes) for targets located further from the camera.

Figure 3: Setup of Raspberry-Pi Cameras in the
network monitoring the targets
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Figure 4: New configuration applied by the opti-
mization algorithm

4.2 Experimental Results
The extracted values and model were used to configure

the camera stations for the experiments. Each station runs
a supervised learning machine trained to detect the object of

Table 1: Per Camera and Overall Detection proba-
bilities for the configuration produced by the opti-
mization algorithm

Camera ID Outcome
Target ID

1 2 3 4

Camera 1
Expected 0.9 0 0.5 0

Experimental 0.85 0 0.51 0

Camera 2
Expected 0.2 0 0.5 0

Experimental 0.17 0 0.65 0

Camera 3
Expected 0 0.2 0 0.9

Experimental 0 0.16 0 0.88

Overall
Expected 0.92 0.2 0.75 0.9

Experimental 0.97 0.17 0.89 0.88

interest, and communicates wirelessly with a central server
that runs the optimization algorithm and transmits back
the new configuration parameters. Information exchanged
between the stations includes a notification with the cam-
era’s ID each time a target was detected, the target’s coor-
dinates (derived from its position in the image and the joint
rotations of the pan-tilt stage) as well as the detection prob-
ability for the target (corresponding to the spatial zone in
which it was detected). The targets were placed in various
positions within the field and the cameras proceed to calcu-
late the corresponding detection probabilities and available
configurations depending on the targets. The central server
received all the data and computed new pan and tilt an-
gles for each camera that maximized the network detection
performance based on the outcome of the optimization algo-
rithm. Following, we calculated the corresponding detection
probabilities achieved for each target.

The optimization algorithm outcomes were verified using
the three camera setup and up to four car targets in the mon-
itored area. In Table 1 the detection probabilities achieved
by individual cameras as well as the overall combined prob-
abilities for each target are shown for a specific scenario.
Furthermore, it also shows the expected value using the de-
tection model from Section 3.1 and the actual measured de-
tection probability. In this particular example we can ob-
serve how the optimization algorithm operates in order to
produce a solution. Cameras 1 and 2 are configured to focus
on targets 1 and 3 as they add more value towards maximiz-
ing the detection probability. Also notice that the measured



5 10 15 20 25 30
0

5

10

15

20

25

30

Number of Targets

S
um

 o
f D

et
ec

tio
n 

P
ro

ba
bi

lit
ie

s
4 Cameras
8 Cameras
12 Cameras
16 Cameras

(a)

4 6 8 10 12 14 16 18 20 22 24
2

4

6

8

10

12

14

16

18

20

Number of Cameras

S
um

 o
f D

et
ec

tio
n 

P
ro

ba
bi

lit
ie

s

5 Targets
10 Targets
15 Targets
20 Targets

(b)

Figure 5: Combined Detection Probability as (a)
the number of cameras increases. (b) the number of
targets increases

values are indeed close to the expected ones. Minor discrep-
ancies are due to the fact that the cameras may detect the
target at the same time instance, in which case the combined
values will be lower that the sum, or at different times, in
which case the value will approach their sum.

4.3 Simulation Results
The simulation scenarios involved a square area where tar-

gets were generated at random positions and moved at pre-
determined structured paths. An equal number of cameras
are placed at each side of the square field and we assume
that there are no obstacles in the area. We performed simu-
lation studies for different number of targets (ranging from
5 to 20, with a step of 5) and cameras (ranging from 4 to 16,
with a step of 4). For each combination of targets and cam-
eras we run 1000 different scenarios and averaged the results
across all runs. First Fig. 5 shows the combined detection
probability (sum of all combined target probabilities) for all
network cameras. Second, Fig. 6 shows the effective number
of targets that are covered by the network of cameras (i.e.
targets detected with a probability greater that zero). To-
gether these two figures illustrate how the algorithm behaves
with the increasing number of cameras and targets. As ex-
pected with a few cameras and high number of targets, the
network is not able to fully cover all the targets. In such a
case the optimization algorithm will configure the cameras
to focus on the targets with a high detection probability. As
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Figure 6: Effective number of monitored targets as
(a) the number of cameras increases and (b) as the
number of targets increases
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Figure 7: Minimum detection probability that the
targets are monitored with

the number of cameras increases the optimization approach
manages to find solutions which maximize the overall detec-
tion performance and all the targets can be covered, also it
tries to increase overlaps between cameras so that the miss–
detection probability is reduced. Another important result
that stems from Fig. 7, that shows the minimum detection
probability out of all targets, is that through this analysis
we can determine how many cameras must be placed in an
area in order to guarantee that a targets will be detected



with a given probability. Again notice that as the number
of cameras increases and the targets covered by multiple
cameras are increased, the minimum detection probability
with which a target can be detected with is also increased.

5. CONCLUDING REMARKS
This paper presented research towards improving the de-

tection performance of VSNs consisting of low-cost embed-
ded smart cameras. Through the utilization of a model to
characterize the detection behaviour of smart cameras and
an optimization algorithm that can make use of such infor-
mation, we were able to improve the overall detection per-
formance by reconfiguring the cameras in the network. We
have evaluated the proposed model and optimization algo-
rithm though experiments using real smart cameras, as well
as through simulations studies.

The effort going forward will be on identifying possible
improvements on the proposed solution. Some issues that
require further research concern the efficient and optimal
identification of the possible configurations that a camera
can have, and how to achieve fairness so that no target re-
mains uncovered. Finally, it is worth exploring a distributed
implementation of the optimization algorithm so that it can
be run on the cameras themselves and thus reduce commu-
nication overheads.
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