

Deliverable D7.5

Project Title: World-wide E-infrastructure for structural biology

Project Acronym: West-Life

Grant agreement no.: 675858

Deliverable title: A HADDOCK server for EM

WP No. 7

Lead Beneficiary: 1: UU

WP Title Joint research

Contractual delivery date: Month 30

Actual delivery date: Month 31

WP leader: JOSE MARIA CARAZO CSIC

Contributing partners: UU

Deliverable written by Mikael Trellet and edited by Alexandre Bonvin

2 | 18

West-Life Deliverable D

Contents
1 Executive summary .. 3
2 Project objectives ... 4
3 Detailed report on the deliverable .. 4

3.1 Background ... 4
3.2 New HADDOCK webserver .. 6

3.2.1 Motivation .. 6
3.2.2 Technical details ... 6
3.2.3 New user database ... 8
3.2.4 Implementation ... 10
3.2.4.1 Input data ... 10
3.2.4.2 Input parameters .. 13
3.2.4.3 Docking parameters ... 14
3.2.4.4 Docking run submission ... 15

3.3 Future developments .. 16
Appendix 1: Web server requirements .. 17
References cited ... 18

3 | 18

West-Life Deliverable D

 1 Executive summary

 The Joint Research Activity of West-Life is aimed at exploring new ways to use

existing or close to existing services so that broader user communities will be reached.

Based on the capability of HADDOCK software to handle EM maps as input to drive the

docking, and in the objective of interconnecting services that manipulate EM data,

deliverable 7.5 is presenting a new version of the HADDOCK webserver. This new

version, beyond introducing the processing of EM maps as input, together with EM-

related parameters, has also been built on new technologies to improve user experience

and administration by UU.

The complete rewrite of the web portal framework started from the observation that

adding new features with the former framework was time-consuming and with limited

possibilities to improve user experience on the website. Moreover, protocols and

technologies used within the former framework started to be outdated and prevented the

deployment of webserver instances on new machines with up-to-date systems.

The new web server is based on python Flask framework, a well-known framework

(~22.000 questions on StackOverflow) that allows for website fast-prototyping. It is up

and running is its development version on a local machine accessible at

https://nestor.science.uu.nl/haddock. Main basic together with EM-related features are

available through this URL but new features are added on a daily basis.

We detail in this deliverable the workflow of the new webserver, from the technical

details of the implementation to the end-product feature as seen by the users.

https://nestor.science.uu.nl/haddock

4 | 18

West-Life Deliverable D

2 Project objectives

With this deliverable, the project has reached or the deliverable has contributed to the following

objectives:

No. Objective Yes No

1 Provide analysis solutions for the different Structural Biology approaches X

2 Provide automated pipelines to handle multi-technique datasets in an

integrative manner

X

3 Provide integrated data management for single and multi-technique projects,

based on existing e-infrastructure

 X

4 Foster best practices, collaboration and training of end users X

 3 Detailed report on the deliverable

 3.1 Background

HADDOCK is a data-driven approach for the modelling of molecular complexes [1]. Its capability

to use experimental data to drive the docking process interfaces it with many experimental data

types. NMR chemical shifts, mutagenesis data, crosslinks, etc. are some of the data that can be

used as input to HADDOCK. The last years have seen the cryo-electron microscopy (cryo-EM)

field develop into a powerful structural biology technique due to various technological and

software developments. The resulting density maps, even if they don’t reach atomistic

resolution, can indicate the spatial positioning and orientation of several molecules interacting

with each other. We have previously demonstrated in [2] that it is possible, given an EM map

and an atomistic model, to fit the atomistic model within the density map with a relative high

accuracy. A webserver, based on the software developed in the mentioned study is available

under the West-Life portfolio (https://milou.science.uu.nl/services/POWERFIT).

https://milou.science.uu.nl/services/POWERFIT

5 | 18

West-Life Deliverable D

Partially based on this work, UU published a protocol dedicated to the use of Electron-

Microscopy (EM) maps as input for HADDOCK [3]. This protocol allows to use cryo-EM maps as

spatial anchors for the atomistic models of the proteins to be docked. As a first step, the fitting

algorithm used in PowerFit identifies centroids’ coordinates, corresponding to the most likely

location of the center-of-mass of the fitted models. Those centroids are then used in HADDOCK

to define distance restraints that will drive the proteins towards their potential position in the

map. Later on in the HADDOCK pipeline, the models are directly refined against the cryo-EM

map, using cross-correlation values to assess the quality of the orientation/positioning of the

proteins into the map.

As of today, this specific protocol was only accessible when using a local version of HADDOCK

and not supported by the current web server [4]. However, the majority of HADDOCK users do

not use the local version but prefer to use its user-friendly webserver. The server has gathered

over 11.000 registrations to date and handles about 25.000 submissions per year, making it the

main entrance point for HADDOCK users. In order to support the new cryo-EM protocol

described above, the webserver needed to be updated.

The webserver of HADDOCK is built on top of a legacy framework that has successfully and

reliably handled HADDOCK submissions for almost 10 years. This framework mainly relies on a

homemade and high-level python-based wrapper around other python scripts. Although very

reliable since its creation, the modularity and flexibility of the framework is rather limited. The

first limitation comes from its intrinsic complexity, each addition to the framework triggers

changes to be made at several locations. The second limitation comes from the framework

design itself that has been built for serving static templates and render them as html.

Interactivity at the user interface (UI) level and communication between the web client and the

webserver is not possible or would require significant efforts to be setup. Those different

limitations, and the will to deploy several new features that have been postponed for some time

convinced us that the complete redesign of our webserver would be a very profitable long-term

investment.

The shift towards a new framework for deploying the HADDOCK web portal has been even

more relevant after the successful deployment of two new web portals within the West-Life

umbrella, namely DisVis and PowerFit. Both web services rely on the Flask framework and are

now up and running for a bit less than 2 years. The new HADDOCK server is named

6 | 18

West-Life Deliverable D

HADDOCK2.4 webserver, to stay in line with the local HADDOCK software version it operates

(haddock2.4, which will become the official HADDOCK software release once the new server

will be in production).

 3.2 New HADDOCK webserver

3.2.1 Motivation

One of the main feature of the new HADDOCK 2.4 webserver is the splitting of a previously

unique form submission step into 3 different steps. This splitting was motivated by the desire to

enhance the user experience by providing more feedback along the submission process, trying

to reduce as most as possible potential errors that would occur during the execution of the

HADDOCK workflow. This is done by carefully validating each data provided and warn the user

if anything is wrong among the data he provided. Different levels of warning exist, from the

simple flash message that pops-up after data processing, often related to a set of data that is

rather unusual but went through the validation steps, to an error message, trying to report as

accurately as possible the source of the error, preventing the user to go further in the

submission process.

This is significantly different from the actual webserver where all data are submitted at once and

their validation/processing is distributed over two steps.

3.2.2 Technical details

As mentioned previously, the core module behind the new web server is Flask. The Flask

framework (http://flask.pocoo.org/) is a python-based framework broadly used in the scientific

community. It offers the possibility to fast prototyping a new webserver with simple layouts

without the need, at a simple level, for extensive knowledge of web development’s standards.

Many tools and pipelines associated to HADDOCK, and HADDOCK itself, are relying on the

python language, making it a perfect language for a webserver framework. The implementation

of existing pipeline for the validation and processing of data is then straightforward. On top of its

default package, Flask offers many extensions that add features commonly found on other

websites. Among them, we can cite, in no precise order:

• User data management (Flask-Login / Flask-session)

7 | 18

West-Life Deliverable D

• User/admin mailing system (Flask-Mail)
• Authentication through SQL database usage (Flask-SQLAlchemy / Flask-Migrate)
• Forms creation and validation (Flask-WTF)
• html/css/js framework (Flask-Bootstrap)
• Admin management (Flask-script / Flask-Admin)

The entire workflow has been tested with python 3.6. In terms of dependencies, the web server

relies on standard python libraries available through the Python package manager pip

(exhaustive list available in Appendix 1). Only one third-party tool, Reduce (from Molprobity –

version 3.24.130724), needs to be installed.

The entire new workflow is started as a set of docker containers (https://www.docker.com/)

handled by docker-compose (https://docs.docker.com/compose/). Three different containers are

fired to have the workflow up and running, as illustrated in Figure 1.

Figure 1 - Illustration of the docker-compose configuration made of 3 independent but interconnected
containers.

https://docs.docker.com/compose/)

8 | 18

West-Life Deliverable D

First container configures and starts nginx (https://www.nginx.com/), an HTTP server and

reverse-proxy, that serves static content and handles the SSL connection between the web

browsers and the web server. Our PostgreSQL (https://www.postgresql.org/) database is

running in a third container. Flask web portal is lying in the middle and relies on both containers

to run properly. This management through docker-compose allows for a self-contained web

portal setup that can be triggered on any Virtual Environment where docker is installed.

3.2.3 New user database

One of the main feature of the new HADDOCK2.4 web server is its usage of a user database to

handle user data and jobs. As of today, HADDOCK user management was done through a

secured text file grouping all users’ information. Consequently, any action involving the need to

identify a user was requiring the parsing of this file. Statistics, data management were therefore

quite limited. The evolution towards a user database allows us to extend the information and

experience of users by automating many steps and securing most of the location displaying

user-related data (jobs, personal details, services subscription, etc.), which is particularly

relevant in the context of the General Data Protection Regulations. This also reduces the risk of

errors when manually editing, adding or deleting data. Most of our pages are now designed with

respect to the connected users, who even get different content depending whether they are

logged in or not. In the same way, any user-related content requires login and a permission

check is done to match the data owner to the logged in user.

The database allows us to easily assign special permissions to users that impact the quantity of

information accessible to them. This mainly concerns the docking parameters as detailed in

section 3.2.4.3. We simplified the former easy/expert/guru levels to only two levels: easy and

expert. The latter being the most permissive, allowing access to all parameters of HADDOCK.

An admin level is also present, allowing a limited number of developers and/or operators of the

HADDOCK portal to access protected pages and admin interfaces. Those admin interfaces

allow modification of the databases including the “User”, grouping all user details, and “Job”,

grouping all jobs submitted to HADDOCK, ones.

Equivalent to permissions, groups have also been introduced in the DB. They do not prevent or

allow access to specific “advanced” features but can restrict or lift the sampling range limitations

9 | 18

West-Life Deliverable D

of a docking run or allows for some priority in the queuing system for instance. As of today, 4

groups have been created: default/course/team/special:

• Default is the group assigned to all external users

• Course is used for training purposes, resulting in an automated reduction of sampling

parameters to allow get results in a limited time for demonstration purposes

• Team is reserved to the HADDOCK developers and member of the Utrecht group

• Special is used for specific, high-priority usage, for example to run CAPRI (the blind

docking experiment) targets.

10 | 18

West-Life Deliverable D

3.2.4 Implementation

As we emphasized in section 3.2.1, the need to improve the user experience by providing

instantaneous feedback on input data or parameters that could prevent HADDOCK to run and

could lead to misleading results was our top priority (next to implementing the cryo-EM support)

for this new version. To do so, we divided the submission pipeline of HADDOCK into 3 different

steps:

1. Input data submission

2. Input parameters submission

3. Docking parameters submission

3.2.4.1 Input data

Figure 1 - Input data interface for one molecule.

11 | 18

West-Life Deliverable D

At this step (Figure 2), the user submits the 3D coordinates of the molecular components she/he

wants to dock. This can be done either by providing a local file stored on the user working

station or by downloading it from the RCSB/PDB repository. Both PDB and mmCIF formats are

supported. Some basic information about the system type (protein/DNA/…), the chain ID to be

considered or the charge on the Cter/Nter of the molecule can also be provided. Some fields are

mandatory (highlighted in the interface). Moreover, any mandatory field where no data has been

input prevents the user to go further (deactivation of the submit button). Aside the 3D

coordinates of the molecules, a new section dedicated to EM restraints has been added. This

section groups every parameter required to run the EM protocol of HADDOCK. Mandatory fields

are the EM map and its resolution as well as the centroids absolute coordinates. These are only

mandatory if the density/XREF restraints button is checked. If not, a regular HADDOCK protocol

will be performed with the molecular 3D data provided. We limit the size of the map to 200MB.

We consider that this size is

enough to contain the

necessary data HADDOCK

needs. It is worth noting that

this size cap is reduced for

PDB files whose size cannot

exceed 10MB.

 Upon submission (the “Next”

button), the input data provided

at this stage undergo several

validation and processing

steps. Those are listed in

Figure 3 where the generic

pipeline is also represented.

Each of the step is wrapped up

within the Flask framework and

done sequentially upon

submission. The user is

informed of the process

progression through a

Figure 2 - Interface for EM restraints. Note the blurred "Next"
button because of missing mandatory data.

Figure 3 - Input data step pipeline upon submission.

12 | 18

West-Life Deliverable D

progression bar that appears as soon as he/she presses the submission button. A large part of

the data type validation is made internally as part of the Flask logic. Those steps verify the type

of the data provided and, depending on the data requirements, validate it or not. Any wrongly

formatted data will trigger a stop of the process and will output a pre-formatted error message

visually associated to the erroneous field (see bottom right of Figure 3). If all data submitted are

properly formatted then HADDOCK-related processing steps are started. First the atomic

structures are checked for formatting issues using our own format checking script. Syntactic,

coherency and integrity checks are made at this stage to be sure that the PDB will be read

successfully by CNS and that the parameters associated (chain ID, molecule type) are

consistent with the PDB data. Once data type and PDB format have been validated (if mmCIF,

conversion is made to PDB for internal usage, same validation is performed on the new PDB

file), several processing steps are performed on the input data. First, some PDB information are

extracted: sequence, length, accessibility, etc. Those pieces of information will be either used

for the following processing steps or at the UI level to enhance the user experience. Then the

structure itself will be checked for potential gaps. If gaps are detected, a set of unambiguous

restraints will be created to maintain the structure during the docking. The next step is the

detection of ligands and their processing using PRODRG [5] to obtain topology and parameters

for those molecules for the docking. This step is currently under development (it is present in the

old server but needs to be adapted to the new framework). The next step in the pipeline is the

detection of Histidines and assignment of their protonation states. This is done using Reduce

[6], from the Molprobity package. Reduce is called from the Flask environment as a

synchronous process. If successful, a dictionary of histidine positions and their associated

protonation states is made available. If a nucleic acid partially or totally formed as an helix has

been provided as one of the docking partner we automatically create a set of CNS-formatted

restraints to maintain the helical structure and base-pairing during the docking. This step, which

used to depend on an external software called 3DNA (http://x3dna.org/), has now be ported to

python, which removed the dependency towards 3DNA. Finally, the EM map is processed and

converted, if needed, into a CNS format. The conversion is made at the python level and does

not rely on any third-party software.

If all previous steps have been successful, the data are stored in the temporary directory

created at the beginning of the pipeline and the 2nd submission step tab is opened.

http://x3dna.org/)

13 | 18

West-Life Deliverable D

3.2.4.2 Input parameters

The input parameters stage mainly

gathers parameters that either

further define the input data or rely

on them to be defined. One of the

first and main improvement of the UI

between the former and new version

of the webserver is the use of

processed data to guide user during

the choice of her/his parameters.

Thanks to that, any step involving

the selection of residues can be

complemented by an interactive

sequence viewer that, on top of

providing the sequence of the

protein, is also displaying some

basic secondary structure

information. One illustration can be

seen in Figure 4. Among the steps

that rely on this viewer, the active and passive residue selection and the flexible or fully flexible

segments definition. It is of course possible to directly input the list of residue IDs in the text

input field associated to the viewer. Any residue ID that is not present in the PDB file will be

indicated by a red message that will disappear as soon as all residue IDs are correct. If the user

chooses to check the option to automatically define the passive residues from the list of active

ones, an option to choose the radius of the search sphere will be presented to the user.

Histidine protonation states, as calculated by Reduce, are displayed for each Histidine and the

protonation state can be manually changed. If Reduce could not assign the protonation state of

a specific Histidine, a warning message will be displayed and the user will have the possibility to

define it manually.

Figure 4 - Input parameters interface with interactive residue
IDs selection.

14 | 18

West-Life Deliverable D

Only basic validation is made upon submission of the input parameters. Since most of the

options have been restricted to the input data, only few mistakes can be done at this stage. It is

important to note that users with “easy” access will have to provide at least one set of active

residues for one molecule and a set of active or passive residues for the second molecule.

Some logic validation on the active/passive combination are performed upon this second stage

submission to be sure that the docking run will go through. Users with “expert” access can go

through without providing active and/or passive but will have to provide some restraints input

files at the last step.

When all needed parameters have been added, the user can proceed to the step and, upon

validation of the parameters, be redirected to the 3rd and last step of the submission.

3.2.4.3 Docking parameters

Docking parameters are all parameters that

define the specificities of the docking protocol

that will be performed with the input data

provided before. They do not directly rely on

the input data at this stage of development.

Next steps of the development process will

involve a dynamic change of those

parameters depending on the system studied

extracted from input at the previous stages.

We published several specific protocols

[7,8,9] that deals with different types of

molecular complexes: protein-peptide,

protein-DNA, protein-ligand, etc. They all use

customized parameters to better deal with the

particularity of the system. In the future, these

will be automatically set depending on the

system to be docking.

About 300 parameters can be tuned at this

stage of the submission. Some of the restraints parameters can be defined multiple times to

Figure 5 - Docking parameters submission interface.

15 | 18

West-Life Deliverable D

repeat their action over different part of the system. For those parameters, a dynamic interface

only displays them when users decide to define some. This significantly lightens the interface

and allows to define, a priori, a maximum number of restraints that can be manually input.

Parameters are split between different categories to ease the navigation.

3.2.4.4 Docking run submission

Upon submission, several

actions are performed. First, as

for the previous stages, the

data types are validated. If this

step goes through, a logical

validation is made to make sure

that the combination of

parameters is coherent. A

significant part of this step

addresses the restraints

definition to avoid redundancy

and/or incompatibility. Several

messages can also be sent at

this stage, warning the user

about unusual combination parameters that won’t prevent the submission but might lead to

misleading results. If the previous two steps are successful, the input files generated along the

submission process are copied to a temporary directory where they will be further processed by

HADDOCK software framework. A results directory is also created and some information about

the job are written to a database. Among those information, the job id, user id, job submission

time, job status (“Processed” at this stage), number of partners, type of the partners and number

of residues of each partner. Finally, the user is redirected to a status page where a message

indicated him the success of his submission and where a basic summary of the parameters is

provided (Figure 6). This page is refreshed every minute indicating the updated status of the

job.

Figure 6 - Status page example with job information summary.

16 | 18

West-Life Deliverable D

 3.3 Future developments

With the new version of the server supporting cryo-EM data now available online in a devel

version, we will proceed with the implementation of the missing features from the old server

(e.g. the support for small molecules). We are also planning to invite selected users from our

large user community to test the new interface and give us feedback. This will allow us to further

improve the user experience prior to putting the server in production mode. Since the server is

building on a new user registration and management system, which will cover all services

running at the Utrecht partner site, this is also the logical place where to implement a single-

sign-on (SSO). system that will connect to the WestLife or EGI-checking SSO.

17 | 18

West-Life Deliverable D

Appendix 1: Web server requirements

alembic==0.9.8
biopython==1.70
blinker==1.4
certifi==2018.1.18
click==6.7
dominate==2.3.1
eventlet==0.22.1
freesasa
Flask==0.12.2
Flask-Admin==1.5.1
Flask-Bootstrap==3.3.7.1
Flask-Login==0.4.1
Flask-Mail==0.9.1
Flask-Migrate==2.1.1
Flask-Script==2.0.6
Flask-Session==0.3.1
Flask-SocketIO==2.9.6
Flask-SQLAlchemy==2.3.2
Flask-WTF==0.14.2
greenlet==0.4.13
gunicorn==19.7.1
itsdangerous==0.24
Jinja2==2.10
Mako==1.0.7
MarkupSafe==1.0
numpy==1.14.1
psycopg2==2.7.4
pycountry==18.2.23
python-dateutil==2.6.1
python-editor==1.0.3
python-engineio==2.0.3
python-socketio==1.9.0
six==1.11.0
SQLAlchemy==1.2.5
style==1.1.0
update==0.0.1
visitor==0.1.3
Werkzeug==0.14.1
WTForms==2.1
uwsgi

18 | 18

West-Life Deliverable D

References cited

[1] Dominguez, Cyril, Rolf Boelens, and Alexandre MJJ Bonvin. "HADDOCK: a protein− protein docking
approach based on biochemical or biophysical information." Journal of the American Chemical
Society 125.7 (2003): 1731-1737.

[2] Van Zundert, G. C. P., et al. "Fast and sensitive rigid-body fitting into cryo-EM density maps with
PowerFit." AIMS Biophysics 2.2 (2015): 73-87.

[3] van Zundert, Gydo CP, Adrien SJ Melquiond, and Alexandre MJJ Bonvin. "Integrative modeling of
biomolecular complexes: HADDOCKing with cryo-electron microscopy data." Structure23.5 (2015): 949-
960.

[4] Van Zundert, G. C. P., et al. "The HADDOCK2. 2 web server: user-friendly integrative modeling of
biomolecular complexes." Journal of molecular biology 428.4 (2016): 720-725.

[5] SchuÈttelkopf, Alexander W., and Daan MF Van Aalten. "PRODRG: a tool for high-throughput
crystallography of protein–ligand complexes." Acta Crystallographica Section D: Biological
Crystallography 60.8 (2004): 1355-1363.

[6] Chen, Vincent B., et al. "MolProbity: all-atom structure validation for macromolecular
crystallography." Acta Crystallographica Section D: Biological Crystallography 66.1 (2010): 12-21.

[7] Trellet, Mikael, Adrien SJ Melquiond, and Alexandre MJJ Bonvin. "A unified conformational selection
and induced fit approach to protein-peptide docking." PloS one 8.3 (2013): e58769.

[8] van Dijk, Marc, et al. "Solvated protein–DNA docking using HADDOCK." Journal of biomolecular
NMR 56.1 (2013): 51-63.

[9] Kurkcuoglu, Zeynep, et al. "Performance of HADDOCK and a simple contact-based protein–ligand
binding affinity predictor in the D3R Grand Challenge 2." Journal of Computer-Aided Molecular Design
32.1 (2018): 175-185.

	Deliverable D7.5
	Deliverable written by Mikael Trellet and edited by Alexandre Bonvin
	Contents
	1 Executive summary
	2 Project objectives
	3.1 Background
	3.2 New HADDOCK webserver
	3.2.1 Motivation
	3.2.2 Technical details
	3.2.3 New user database
	3.2.4 Implementation
	3.2.4.1 Input data
	3.2.4.2 Input parameters
	3.2.4.3 Docking parameters
	3.2.4.4 Docking run submission
	3.3 Future developments
	References cited

