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ABSTRACT 

Visual Sensor Networks (VSNs) exploit the processing and 

communication capabilities of modern smart cameras to handle a 

variety of applications such as security and surveillance, industrial 

monitoring, and critical infrastructure protection. The 

performance of VSNs can be severely degraded because of errors 

in the detection module. As a result, the performance of the 

higher-level application such as activity recognition, tracking, 

etc., also suffers due to the fact that in most cases the decision 

making process in VSNs assumes ideal detection capabilities for 

the cameras. Realizing that it is necessary to introduce robustness 

in the decision process this paper presents results towards 

uncertainty-aware VSNs. Specifically, we introduce a flexible 

uncertainty model that can be used to study the behaviour of 

missed detections in a camera network. We also show how to 

utilize the model to develop uncertainty-aware coordination and 

decision making solutions to improve the efficiency of VSNs. Our 

experimental results in an active vision application indicate that 

the proposed solution is able to improve the robustness and 

reliability of VSNs. 
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1. INTRODUCTION 
Visual Sensor Networks (VSNs) consist of networked cameras 

that can communicate and perform multiple vision tasks (activity 

recognition, tracking, etc.) while observing a scene [1]. Recently, 

emerging VSNs offer advanced sensing and processing 

capabilities and collaboration capabilities that facilitate the 

development of a wide  range of applications ranging from 

security and surveillance, automated transportation systems, 

personalized healthcare, industrial monitoring and augmented 

reality [2], [3]. The performance of these applications relates 

directly to the detection module capabilities of the VSN as missed 

detections can cause unpredictable behaviour and compromise the 

decision making process. Hence, it is of key importance to 

develop models, algorithms, and systems that take into 

consideration different uncertainties in VSNs and use them to 

increase the robustness of the application. 

The majority of existing works assume that VSNs operate under 

perfect conditions, and do not take into account the possibility that 

a camera may not detect an object even if it is visible by the visual 

sensor. Realistically, even cameras featuring sophisticated visual 

sensors and on-board processors for decision-making, are 

inherently error prone due to the probabilistic nature of the 

detection algorithms, and so may provide wrong decisions for 

different reasons. For example, if a camera fails to detect a 

specific target, due to a slight change in viewpoint or insufficient 

representative pixel resolution, then that camera would falsely 

report that the target is not present, while it moves inside its Field-

of-View (FoV). This becomes more apparent for low-cost camera 

systems [5] which do not have the resources to efficiently run 

state-of-the-art detection algorithms and so either lower the 

resolution or run less demanding algorithms both of which 

compromise detection performance. Only a few works have 

considered issues that relate with unreliability in the context of 

VSNs. For example, the work in [4] investigates the impact of 

errors in the horizontal orientation (i.e., pan) of cameras during 

target tracking, due to initial calibration inaccuracies (modelled as 

Gaussian noise) and external effects that cause the camera 

orientation to take arbitrary values. 

Motivated by the importance of dealing with uncertainties in VSN 

applications this paper presents an effort to introduce uncertainty 

awareness into VSNs to improve their efficiency. To this end, the 

contribution of this work is twofold. First, we propose a flexible 

uncertainty model based on detection-probability/confidence 

zones that can be used to study the impact of degrading detection 

accuracy in VSN applications. To the best of our knowledge, this 

is the first attempt to develop an uncertainty model for VSNs. 

Second, we utilize the model to characterize the detection 

capabilities of each camera and use it to improve the coordination 

and decision making in collaborative VSNs. We show the 

application of this confidence zone model in an active vision 

scenario using a network of Raspberry-Pi-based pan-tilt smart 

cameras, where cameras need to reconfigure in order to reduce the 

uncertainty by which they monitor a target. 

The rest of this paper is structured as follows. Section II outlines 

some key areas of emerging research in VSNs. In Section III we 

introduce the network, sensing, target and uncertainty models and 

the underlying assumptions. Section IV presents the details of a 

decision-making mechanism, and a dynamic pan-tilt (PT) 

reconfiguration scheme that utilize the proposed confidence zone 

model. In Section V we experimentally evaluate the validity of the 

model and apply the dynamic reconfiguration scheme to an active 

vision problem where cameras collaboratively decide on how to 

adjust their parameters in order to meet the required confidence 

level. Finally, Section VI provides concluding remarks and 

discusses directions for future work. 



2. RELATED WORK 
Emerging research developments in VSNs have led to customized 

smart camera systems [5], and distributed vision algorithms (e.g., 

[6]); both of which have enabled new applications but 

simultaneously introduced new challenges. One such challenge 

concerns pan-tilt-zoom (PTZ) cameras and how to use them 

efficiently. Thus, there has been a lot of emerging research 

concerning PTZ cameras and networks [7], as well as dynamic 

network reconfiguration [8]. Improving the performance, image-

based control, and automated tracking aspects of single PTZ 

cameras has been the subject of many works in the literature 

[9],[10],[11]; as this can also provide higher efficiency when 

considering a network of such cameras. Consequently, there has 

also been an increasing amount of research effort, towards 

improving various aspects of VSNs by utilizing information from 

multiple cameras. For example, [12],[13] deal with the problem of 

naivety in static VSNs where not all cameras observe all targets, 

but need to maintain a state estimate for each target. The work in 

[14] reconfigures a network of PTZ cameras to maintain the 

overall network coverage in order to compensate for changes in 

the viewpoint of cameras that opportunistically zoom into an area 

to take high-resolution images. However, in their majority, these 

works do not consider uncertainties in the camera detection 

modules and how this can degrade performance. As such, existing 

models and approaches assume that a visual sensor will always 

detect a target that is present in its FoV. In this paper, we present 

research towards the development of an uncertainty model that 

can describe the detection behaviour of a camera and can thus 

provide input to decision-making and dynamic configuration 

algorithms in order to improve their outcome. 

3. MODEL DESCRIPTION 
A visual sensor network is considered consisting of 𝑁𝐶 static 

camera nodes 𝐶𝑗 that belong to the set 𝓒 = {𝐶1, 𝐶2, … , 𝐶𝑁𝐶
} and 

𝑁𝑇 targets 𝑇𝑖 to the set 𝓣 = {𝑇1, 𝑇2, … , 𝑇𝑁𝑇
} that need to be 

monitored. Furthermore, the camera can detect a target with 

varying probability based on its position, and viewpoint with 

regards to it. The assumptions and network model are described 

next. 

3.1 Visual Sensor Model 
Cameras in the network may be static, in which case their 

orientation and position does not change. In the case of an active 

network, the cameras have some degrees of freedom and can 

manipulate their point of view based on collective or local 

information. For instance, it is possible that they can move in 

space, thus changing their location (𝑥𝑗
𝐶 , 𝑦𝑗

𝐶), or they can remain in 

a specific location but change their pan 𝛩𝑗
𝑃 and tilt 𝛩𝑗

𝑇 parameters 

(Fig. 1). All cameras 𝐶𝑗 have a sensing range 𝑅𝑗, and are located at 

a height 𝐻𝑗. The camera monitors a specific area which is denoted 

as 𝐹𝑗
𝐿 and represents its local (current) FoV, and is a subset of the 

total area that a camera is able to monitor, denoted by Fj
G and 

Fj
L  ⊆ Fj

G, by changing its parameters (pan, tilt, zoom, etc.). The 

network can consist of heterogeneous cameras that have different 

features such as different FoV, and motion capabilities. Finally, 

we assume that target associations between cameras can be 

established, and that ground plane information is available so that 

cameras can localize targets. 

3.2 Target Model 
Applications such as target detection and tracking are associated 

with a moving target that can change its position and viewpoint 

orientation, and thus may affect the detection performance of a 

camera especially as its distance from the camera increases which 

decreases the its pixel resolution. It is assumed that the location 

(𝑥𝑗𝑖
𝑇 , 𝑦𝑗𝑖

𝑇) , and distance 𝑑𝑗𝑖  of each target can be determined by the 

camera based on the scale size and resolution that it is detected, as 

well as ground plane and camera calibration information [10]. 

Each camera uses the above information to coordinate with other 

cameras regarding common target views. 

3.3 Visual Sensor Uncertainty Model 
The proposed uncertainty model is based on the sensing range  𝑅𝑗 

and local FoV 𝐹𝑗
𝐿 of each camera. Through this model, we attempt 

to capture how the resolution of the target in the camera image 

affects the probability of detection, as it will be shown in Section 

V. We capture this behaviour in the following way and as shown 

in Fig. 1: 

• The global FoV Fj
G of a camera 𝐶𝑗 is segmented into 𝑚 

detection zones 𝑍𝑗𝑚, 𝑚 = 1, … , 𝑁𝑧, where 𝑁𝑧 is the last zone 

that is located further away from the camera origin. 

• A camera views a subset of the 𝑚 zones which belong to its 

local FoV Fj
L.  

• Within each zone, there is a set of different detection 
probabilities. However, for simplicity we average the 
probabilities within the same zone and assume a uniform 
constant detection probability. 

• The average detection probability (i.e., confidence) within a 
zone 𝑍𝑗𝑚 for camera 𝐶𝑗 is 𝑃𝑗𝑚.  

• A zone 𝑍𝑗𝑚 has a higher detection probability if it is closer to 

camera location (𝑥𝑗
𝐶 , 𝑦𝑗

𝐶), 𝑃𝑗𝑚 > 𝑃𝑗𝑛, 𝑓𝑜𝑟 𝑚 < 𝑛. 

• A camera can establish the zone 𝑍𝑗𝑚 that a target 𝑇𝑖 is 

detected through trigonometry using the pan and tilt angles 

(𝛩𝑗
𝑃, 𝛩𝑗

𝑇) and height 𝐻𝑗. 

• When a target is in zone 𝑍𝑗𝑚 it is assumed that on average is 

detected with rate  𝑃𝑗𝑚. 

• Different cameras can have different probability zones 𝑍𝑗𝑚, 

detection rates 𝑃𝑗𝑚 and different FoV ranges. 

 

Figure 1. Active camera model and confidence/probability 

detection Zones 



4. COLLABORATIVE ZONE-BASED 

DECISION MAKING 
The presented uncertainty zone-based model, described in the 

previous section, can be utilized to improve the efficiency of 

VSNs. The detection performance degrades with the distance, 

change of viewpoint, and resolution of the target. As such, the 

probability/confidence of the camera as to how well it can detect a 

target depends on the position of the target. As such, the 

probability/confidence of a camera detection module as to how 

well it can detect a target depends on the position of the target. 

The camera detection module has a higher probability of 

observing targets closet to it and thus has a higher detection-

rate/confidence than those for which the target is located further 

away. Taking this into consideration, we first propose a decision-

making scheme were we use the zone  𝑍𝑗𝑚 to determine the 

confidence 𝑤𝑗𝑚 with which each camera detects target 𝑇𝑗and so 

we accordingly weight its overall contribution to the voting 

process. The confidence measure 𝑤𝑗𝑚 is proportional to the 

detection probability 𝑃𝑗𝑚. Along the same philosophy, we also 

show how to increase the overall detection probability of a 

network of cameras with regards to a target. We do so by 

selecting a number of cameras from the network that will 

collectively provide the highest possible detection rate. This 

camera selection process is directed according to the probabilities 

𝑃𝑗𝑚 of each camera zone 𝑍𝑗𝑚. 

4.1 Zone-Based Weighted Voting Scheme 
We first employ the zone-based model to develop a decision-

making mechanism that can be used to reach an agreement 

regarding the state of a target based on camera uncertainties.  

Through this scheme, cameras that do not detect a target due to it 

being in a low probability zone, will be informed by other 

cameras which detect the target at a higher probability zone and 

remain aware of the targets state. It is based on a voting scheme 

(outlined in Algorithm 1) for collaborative decision making where 

each camera camera 𝐶𝑗 maintains a voting vector 𝑉𝑗  for 𝑇𝑗 to store 

the decision of neighbouring cameras. First, a target 𝑇𝑗 enters the 

Fj
L of a camera 𝐶𝑗 and is positioned in a zone 𝑍𝑗𝑚. Then the target 

can be detected with a probability 𝑃𝑗𝑚 and localized by each 

camera, using ground plane information, to a position (𝑥𝑗𝑖
𝑇 , 𝑦𝑗𝑖

𝑇). 

This information is transmitted to other cameras which also 

estimate its position which if it is outside the Fj
L then 𝑃𝑗𝑚 is zero 

and they do not take part in the voting process. Otherwise, the 

camera outcome is weighted with a zone weight 𝑤𝑗𝑚, and is 

multicast to the other cameras. An example of this is illustrated in 

Fig. 2. Once this information is received by all cameras, they 

update decision vector Vj, aggregate it, and threshold the result to 

reach to an agreement regarding the state of a target. 

 Algorithm 1: Zone-Based Voting Scheme 

For 𝐶𝑗  𝜖 𝓒 do 

For 𝑇𝑖𝜖 𝓣 and detected 

1. Establish (𝑥𝑗𝑖
𝑇, 𝑦𝑗𝑖

𝑇) using ground plane 

information 
2. Establish detection Zone 𝑍𝑗𝑚 using (𝑥𝑗𝑖

𝑇, 𝑦𝑗𝑖
𝑇) 

3. Establish confidence weight  𝑤𝑗𝑚 based on zone 

𝑍𝑗𝑚 

4. Multicast ground plane information (𝑥𝑗𝑖
𝑇, 𝑦𝑗𝑖

𝑇) and 

weighted confidence 𝑤𝑗𝑘 to other cameras 

end 
end 
 
For 𝐶𝑗  𝜖 𝓒 do 

If received multicast information 

If (𝑥𝑗𝑖
𝑇, 𝑦𝑗𝑖

𝑇) inside 𝐹𝑗
𝐿 

• Aggregate information 𝑉𝑗 and  establish 

overall decision 
• If overall decision outcome is greater than a 

voting threshold then the target is present 
   end 

end 
end 

 

 

Figure 2. The vote of camera C1 will have a higher weight in 

the voting and combined decision making since the target is 

at a higher probability zone for that camera. The vote of  C2 

will have a lower weight since the target is at a lower 

probability zone for that the camera.  

 

Figure 3. Algorithm for adjusting camera parameters in 

order to achieve the desired collective detection rate.  

 



4.2 Zone-Based Configuration Mechanism for 

Active Vision 
In this section, we show another application of the proposed 

model where cameras can request the assistance of other cameras 

in the network, whenever a target is in a lower confidence zone 

and an acceptable decision confidence is not achieved. In this 

event, one or more of the assisting cameras will need to adjust 

their state in order to meet the confidence requirements. The 

overall process is outlined in Fig. 3, and is initiated once one of 

the cameras detects an object. First, the cameras exchange 

information regarding the object they detect such as position 

coordinates and detected zone. Each zone is characterized by a 

detection confidence, which is the probability that a target can be 

detected. This detection confidence can help determine whether 

other cameras also need to monitor the target. If one or more 

cameras detect an object with a collective confidence 𝑃𝑡𝑜𝑡𝑎𝑙 that is 

less than a predetermined threshold 𝑃 (i.e., the object will not be 

detected with the required probability), then if other cameras are 

available one of them is selected to participate in the detection of 

that object in order to increase the overall confidence. The camera 

that will be selected can be chosen in different ways depending on 

the objective. For example, the objective can be to select the 

camera which will require the least amount of movement in order 

to conserve energy, or it can be to select the one closer to the 

target which will add the highest amount to the collective 

confidence. Regardless of the criterion, the selected camera will 

then update its parameters to move to the location where it will 

monitor the target. If one camera is not sufficient to achieve the 

desired confidence then the process is repeated again and so more 

cameras are added until it is met. Of course, an acceptable 

solution may not always be feasible due to the initial camera 

placement, in which case, the cameras will reconfigure to achieve 

the highest possible collective detection probability. 

5. EXPERIMENTAL SETUP & 

EVALUATION RESULTS 
To evaluate the proposed model and decision-making process we 

have developed a network of smart cameras based on the 

Raspberry Pi single-board computer [15]. Each Raspberry Pi is 

connected with a webcam that is mounted on a motorized two 

degrees-of-freedom (DoF) pan-tilt stage, as shown in Fig. 4-a. The 

two angular positions are controlled independently using a 

corresponding servo motor and they are equipped with 

potentiometer-type position sensors. The sensory feedback 

information allows accurate angular positioning of the pan-tilt 

system. The servo motors are controlled by the Raspberry Pi and 

the control electronics using a pulse width modulation (PWM) 

approach. Communication between the camera stations is realized 

via a dedicated local Wi-Fi network. Each camera station is also 

fitted with programmable LEDs that indicate the status of the 

system (e.g., object detected). A grid field (1,5 × 1,5 𝑚2) was 

used over the surface where the cameras were positioned, that 

provided a global coordinate system and facilitated registration 

between the reference frames corresponding to each camera 

station. The cameras were also able to calculate an estimate of the 

targets position in a global reference system using trigonometry 

and the current angle configurations. The target objects were 

remote controlled cars. For this reason, we trained an image 

classifier capable of detecting cars using the Cascade Object 

Detection Algorithm with Local binary Pattern (LBP) features 

based on the seminal work by Viola and Jones [16] which is 

available in the OpenCV computer vision library [17]. The 

training set was constructed using the database from [18] and was 

enhanced with additional sample images. The experiments were 

conducted in non-controlled environments with ambient light. 

5.1 Zone-Based Confidence Model Evaluation 
We first evaluated the validity of the proposed uncertainty model 

using the developed Raspberry-Pi smart camera station. The 

station was configured with different orientations (looking straight 

and at different tilt angles) and for each one the detection rates of 

the target object were measured and averaged for multiple runs for 

100 consecutive frames, at different positions covering the whole 

field. The results for these experiments are shown in Fig. 5, where 

we first show the effective FoV area that the camera can monitor 

out of the 25𝑐𝑚 × 16𝑐𝑚 area in front of the camera. Notice how 

the effective FoV is different for angled and straight looking 

cameras. Also Fig. 5 illustrates the detection probabilities within 

the effective FoV of a camera. Notice that as the distance of the 

 

Figure 4. Experimental Setup: (a) The developed Raspberry-Pi pan-tilt smart camera station. (b) The network of cameras 

collaboratively monitoring a target. Notice that the cameras (e.g. camera 3) can have different initial orientations.  



target increases the detection rate deteriorates. This is because as 

the object resolution decreases, and is represented with less pixels, 

slight variations in a few pixels can cause the detection module to 

produce the wrong outcome. Of course, the dimensions and 

specific detection rates depend on the camera resolution as well as 

the detection algorithm itself. We have used the state-the-art 

Cascade detection algorithm found in the OpenCV computer 

vision library [17] which is a typical and widely used example of 

a detection algorithm. Hence, the general trend is expected to 

remain and the model to be applicable for different camera 

configurations, with only the actual probability values changing 

which would require some additional experiments in order to be 

determined. Using the model, we can then extract the probability 

zones that can be used for camera coordination purposes. 

5.2 Application to Active Vision 
The extracted values and model have been used in an active vision 

experiment. For this experiment, we used three smart camera 

stations that communicated wirelessly in order to exchange 

information and coordinate their actions.  Information exchanged 

between the stations included a notification with the camera’s ID 

each time an object was detected, the object’s coordinates 

(derived from its position in the image and the joint rotations of 

the pan-tilt stage) as well as the detection probability for the 

object (corresponding to the spatial zone in which it was 

detected). The target was placed in various positions within the 

fields and the cameras responded by accordingly adjusting their 

configurations in order to meet the necessary overall detection 

probability. Cameras were placed at the same height at arbitrary 

initial orientations. At every station, the control computer 

executed a program implementing the abovementioned algorithm 

in order to reconfigure according to the previously described 

process (Fig. 3). 

Each time a target is identified by at least one camera the network 

reacts appropriately. When an object is detected with a 

satisfactory probability then the camera configurations are 

maintained. Otherwise, in the case where the object was 

positioned and detected in a camera zone with a non-satisfactory 

detection probability, the cameras initiate the new camera 

selection process. After processing the available information, the 

minimum required number of cameras is selectively employed to 

ensure the desired detection probability using the proposed zone 

model. The selected camera(s) were able to determine their new 

pan and tilt angles by using trigonometry and the calculated 

distance of the target. 

Based on the analysis in the previous section we employ a 3-zone 

model and the assigned detection probabilities were 90% for the 

proximal zone, 55% for the intermediate zone and 25% for the 

distant one. These parameters were the same for all cameras. In 

Table I three representative test cases are reported where the 

target position was varied. The table also indicates the zone 

probability values of the cameras when the target is present in 

their Fj
L. Hence, in each case the system had to employ a different 

  
(a) (b) 

  

(c) (d) 

Figure 5. (a) Field Area Monitored by straight looking cameras. (b) Field Area Monitored by angled camera. (c) Detection probability 

degradation for straight looking cameras. (d) Detection probability degradation for angled camera  



number of cameras in order to provide the required detection 

probability. The required detection probability in the experiments 

was set to 80%, however, this threshold can change depending on 

the targeted application. The theoretical total detection rate 

achieved by the cameras can be calculated using probability 

theory, given that the detection events generated by the cameras 

are independent. The experimental combined detection rates were 

measured by combining the detection results of the cameras for 

100 consecutive frames and averaging for multiple runs, after the 

new configuration was set. In the first case, camera 1 was enough 

to monitor the target with sufficient rate. In the second case 

camera 2 detects the target at zone 2 with a lower detection rate 

than required. Hence, Camera 1 (which has the minimum 

distance) is selected to add the remaining rate. Camera 3 did not 

view the target so the maximum possible rate was reached. 

Finally, in the last case camera 1 detects the target and both 2 & 3 

were selected to contribute with their corresponding probability 

based on the target position in the respective zones. Since the 

model zone probabilities are the average of each region there is 

the possibility that we may go over or under the theoretical value, 

as in case 1 and 2. In addition, some detection events may overlap 

between the cameras and hence the theoretical maximum may not 

be achieved, as in case 3. Overall, the experiments verified the 

validity of the proposed zone-based model and how it can be used 

to direct decision making and reconfiguration in VSNs. 

6. CONCLUSIONS 
This paper presented research towards the realization of a camera 

uncertainty model that can be used to improve the robustness and 

reliability of VSNs for various applications. We have 

demonstrated the validity of this model and how it can be utilized 

in order to collaboratively and dynamically configure a network 

of smart cameras to maintain a predefined detection probability. 

The model presented herein can serve as the basis for future work 

and can be further developed to capture and characterise the 

behaviour of smart cameras in VSNs. The effort going forward 

will be on enhancing the model by compensating for occlusions 

and handling false detections.  
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Table 1. Theoretical and Experimental Detection Rates (%) 

 Theoretical (%) Experimental (%) 

 Camera 1 Camera 2 Camera 3 Total Camera 1 Camera 2 Camera 3 Total 

Case 1 90 - - 90 99 - - 99 

Case 2 55 55 - 79 51 44 - 71 

Case 3 55 25 25 74 68 17 32 79 

 


