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Abstract—This paper introduces a game-theoretic framework
under bounded rationality to analyze the impact of strategic
behavior of flexibility service providers (FSPs) on the efficiency
of TSO-DSO coordinated flexibility markets. Four market struc-
tures are analyzed considering either joint, independent, or
sequential DSO-TSO procurement. For each market model, a
mathematical formulation is introduced for clearing the market
and optimally meeting the congestion management and balancing
needs of the different system operators. Then, best response
models of the FSPs are developed to define their optimal bidding
behavior. Finally, a k-level algorithm is proposed to simulate the
gradual bidding behavior of the FSPs using the derived best
response functions. As a result, the FSPs’ strategic bids are
obtained, enabling the analysis of their impact on the different
markets. The proposed approach is applied to four case studies,
which showcase that all markets can be affected negatively by
strategic behavior, but a joint procurement of services is less
affected by such behavior. The results highlight the increasing
effects of strategic bidding in situations with restrained liquidity,
market fragmentation, or market power due to congestion.

Index Terms—TSO-DSO coordination, flexibility markets,
strategic behavior, bounded rationality.

I. INTRODUCTION

The increasing penetration of variable renewable energy
sources and the growing electrification of end-users’ appli-
ances (e.g., e-mobility and electric heating) is driving countries
around the world to establish new market models for the pro-
curement of flexibility from the different voltage levels. Both
transmission (TSO) and distribution (DSO) system operators
can use those flexibility sources to balance their networks,
manage congestion, and control voltage, among others. In this
respect, a key challenge arises in terms of defining efficient and
coordinated market-based flexibility procurement processes
between the different system operators (SOs).

Several studies in the literature have tackled this challenge.
For instance, multiple TSO-DSO coordination market models
to allow SOs to procure flexibility have been proposed, both
conceptually [1], [2] and mathematically [3]–[6]. Their appli-
cability has been tested in various international demonstration
projects such as in [7], [8]. Some of their properties have
also been analyzed, e.g., the efficiency of the different market
models [9], [10], the financial settlement when system oper-
ators jointly procure flexibility [11], the impact of interface
flow pricing on the optimality of the market models [9], and
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the solution mechanisms and communication aspects of the
coordination models [9], [12].

One key aspect that has not yet been adequately eval-
uated is how different bidding behaviors of the flexibility
service providers (FSPs) impact the efficiency of the TSO-
DSO coordination mechanisms. The efficiency analyses of
different TSO-DSO coordination models performed so far in
the literature assume truthful bidding, but market designs can
open space for participants, being profit maximizers, to act
strategically in a way that can be harmful to the market
efficiency. Indeed, market participants can be expected to
behave in their self-interest when choosing their actions (e.g.,
setting bids), based on their own subjective evaluation of
likely events (e.g., market rules, grid status, flexibility needs,
etc.), and on the possible actions of competitors (e.g., other
FSPs) [13]. This economically rational strategic behavior can
be misaligned with the market objectives, reducing its overall
efficiency (e.g. FSPs bidding higher than their marginal cost
will increase the systems’ flexibility procurement costs). As
a result, understanding how market participants behave is
key to: 1) check if a designed market structure gives rise to
market power or any other behavior harming the optimality
of the market; 2) identify the reasons as to which those
markets can lead to such strategic behaviors; and 3) propose
countermeasures to avoid efficiency-decreasing behaviors.

To understand and measure the impact of strategic behavior
of market participants in the new TSO-DSO coordinated
market models, this paper proposes a game-theoretic method-
ology based on bounded rationality to model FSPs bidding
behavior when engaging in those markets. We assume a
bounded rationality scenario because, given the complexity
of the proposed coordination market models, FSPs might not
have the computational capabilities and information needed to
calculate and play their Nash Equilibrium [14]–[16] strategies.
Therefore, such bounded rationality is more likely to take
place in practice, making the presented analysis more realistic.
Moreover, to the best of our knowledge, this is the first
study analysing the impact of strategic behavior in TSO-DSO
coordinated markets. Four types of markets for balancing and
congestion management are analyzed: common, disjoint, frag-
mented and multi-level markets, which vary according to the
levels of coordination between the TSO and the DSOs seeking
to procure flexibility, and the access of SOs to flexibility
outside their own grids. As such, these four markets have
different relevance and applicability, as shown in [1], [7], [8],
meaning they suit different flexibility procurement contexts.
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For each of the markets, and considering nodal pricing in a
pay-as-cleared mechanism, best response functions are derived
to represent the FSPs’ optimal bidding behaviors. Then, a k-
level approach to simulate the FSPs behavior under different
levels of rationality is proposed. The approach is inspired by k-
level reasoning [15], in which an FSP’s strategic bid is derived
based on its observation of the bids submitted by the opponents
in the previous market round, i.e., FSPs best respond to the
opponents bids in the last level (i.e., k− 1). At the end of the
k-level run, FSPs’ strategic bids are defined for each market,
which allows the calculation and comparison of the different
markets’ efficiency when subjected to FSPs’ strategic behavior.
This methodology is tested in four case studies.

The rest of this paper is organized as follows: Section
II presents the methodology, market models, best response
functions, and the k-level approach), Section III present the
case studies, and Section IV concludes the paper.

II. METHODOLOGY

A. Systems and Notation

A nomenclature table is available in [17]. We consider an
interconnected network composed by one transmission system
T , operated by a TSO, connected to S = [1, . . . , S] distribu-
tion systems, each operated by a DSO. All systems are denoted
by a graph Gm(Im,Lm), in which Im is the set of nodes and
Lm is the set of lines of system m ∈M = {T}∪S. In the case
of the transmission system T , a subset IS ⊆ IT represents
the TSO nodes that are connected to a distribution system. For
the distribution systems m ∈ S , we define im0 ∈ Im as the
root node (connecting DSO-m to the transmission system).

To denote the different parameters and variables within the
systems, we use the following notation: 1) pmi for the net
real power injection at nodes i ∈ Im; 2) ami and bmi denote,
respectively, the vectors of anticipated base injection and load
at all transmission/distribution systems nodes; 3) Fmij denote
the real power flow over line {i, j} ∈ Lm; 4) Fm,max

ij are
the maximum thermal limits of those lines; 5) FT→m denotes
the power transfer to the distribution system DSO–m from a
transmission node; 6) FT→m

min and FT→m
max are, respectively, the

minimum and maximum limits of the interface flow; and 7)
λmi denotes the nodal prices.

All systems are represented by the linearized power flow
model using generation shift factors [18] (Gm(i,j),l), capturing
the change in the active power flow over line {i, j} due to a
change in injection or offtake at node l.

FSPs can be located in any of the systems’ nodes, and we
distinguish between upward and downward flexibility offers.
We denote U(i) and D(i) the sets of, respectively, upward
and downward offers from FSPs located in node i. They have
associated bid price πmn,i, maximum offered quantity xm,max

n,i ,
dispatch level xmn,i, and marginal cost cmn,i for n ∈ U(i)∪D(i).

B. TSO-DSO Coordinated Market Models

Four types of market models are considered, which vary
according to the levels of coordination between the TSO and
the multiple DSOs seeking to procure flexibility for balancing

and congestion management. In the first type, SOs jointly
procure flexibility from all voltage levels. Their congestion
and balancing needs are solved together, in one optimization
model, using the FSPs’ bids originating from the different
systems. In the other types, sequential sub-markets are defined,
where priority access to local flexibility is given to DSOs,
who procure flexibility to solve their local congestion needs
first. Then, the TSO clears its sub-market, in the second layer,
to resolve its congestion and balancing needs. As such, each
of the sub-markets requires its own market clearing which
is formulated based on separate (but linked) optimization
problems. Those models are differentiated by the level of co-
ordination and resources sharing between the layers. For more
information about the concepts behind TSO-DSO coordination
market models, the reader is referred to [1], [9], [11].

1) Common Market Model: This market represents the
setting in which all SOs jointly procure flexibility from a
common pool of resources, while abiding by the constraints
of all systems involved. The mathematical description of this
market clearing is formulated as follows:

gCM(π) = min
x

 ∑
m∈M

∑
i∈Im

 ∑
n∈U(i)

πmn,ix
m
n,i −

∑
n∈D(i)

πmn,ix
m
n,i


(1a)

Subject to:
pmi = ami − bmi +

∑
n∈U(i)

xmn,i−
∑

n∈D(i)

xmn,i : (λ
m
i ),

∀m ∈M,∀i ∈ Im \ {IS ∪ {im0 }m∈S},
(1b)

pTi = aTi − bTi +
∑

n∈U(i)

xTn,i−
∑

n∈D(i)

xTn,i − FT→m : (λTi ),

∀i ∈ IS ,m ∈ S, (1c)

pmi = ami − bmi +
∑

n∈U(i)

xmn,i−
∑

n∈D(i)

xmn,i + FT→m : (λmi ),

∀m ∈ S, i = im0 , (1d)∑
i∈Im

pmi = 0,∀m ∈M, (1e)

Fmij =
∑
l∈Im

pml Gm(i,j),l, ∀m ∈M,∀{i, j} ∈ Lm, (1f)

−Fm,max
ij ≤ Fmij ≤ Fm,max

ij , ∀m ∈M,∀{i, j} ∈ Lm, (1g)

0 ≤ xmn,i ≤ xm,max
n,i , ∀m ∈M, ∀i ∈ Im, ∀n ∈ U(i) ∪ D(i), (1h)

FT→m
min ≤ FT→m ≤ FT→m

max , ∀m ∈ S. (1i)
Equation (1a) is the objective function of this markets and

calculates the total cost of the flexibility procurement gCM(π),
when a vector of bid prices π is sent to the market. This
function is subjected to all networks’ constraints and bids’
limits. As such, constraints (1b), (1c), and (1d) calculate
the injection of, respectively, non-interface nodes, interface
nodes of the transmission system, and interface nodes of
the distribution systems. Constraint (1e) indicates that each
system should be balanced (including imports from/exports
to other systems). Constraint (1f) captures the power flow
over the lines, and (1g) imposes the thermal limits to the
lines. Constraint (1h) represents the limits of the bids. Finally,
constraint (1i) establishes the limit of the interface flows. Note
that nodal prices λmi are associated to constraints (1b)–(1d).
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2) Disjoint Market Model: This market represents the set-
ting in which no coordination between system operators exists,
nor resources are shared between the different SOs. Each SO
clears its market independently, using bids originating only
from its own system. To impose an alignment between the
operators in terms of interface flow, FT→m is fixed (i.e. taken
as a constant). As such, each DSO m ∈ S solves the following:

gDI
m(πm) = min

x

 ∑
i∈Im

 ∑
n∈U(i)

πmn,ix
m
n,i −

∑
n∈D(i)

πmn,ix
m
n,i


(2a)

Subject to:
(1b), (1d)–(1h), (2b)

FT→m = constant; (2c)
while TSO solves the following problem:

gDI
T (πT ) = min

x

∑
i∈IT

 ∑
n∈U(i)

πTn,ix
T
n,i −

∑
n∈D(i)

πTn,ix
T
n,i


(3a)

Subject to:
(1b), (1c), (1e)–(1h), m = T, (3b)

FT→m = constant. (3c)
One should note that, since FT→m are constant, no links

between the SOs’ problems exist, which means that they are
separable and can be solved in parallel. Moreover, the total
cost of the disjoint market can be defined as:

gDI(π) = gDI
T (πT ) +

∑
m∈S

gDI
m(πm). (4)

3) Fragmented Market Model: This market represents the
setting in which a sequential coordination in two layers exists,
but SOs have direct access only to bids coming from their
own systems. It resembles the disjoint market model, with the
difference that DSOs can indirectly use resources from the
transmission system by modifying the interface flow (which
induces limited imbalances to the TSO). This is done in
the first layer of the market. Afterwards, the TSO solves
its own needs while rectifying the generated imbalances by
the first layer. As such, the fragmented market model can be
formulated as follows:

Layer 1 (cleared for each DSO m ∈ S):

gFR
m (πm) = min

x

 ∑
i∈Im

 ∑
n∈U(i)

πmn,ix
m
n,i −

∑
n∈D(i)

πmn,ix
m
n,i


(5a)

Subject to:
(1b), (1d)–(1h), and interface: (1i). (5b)

Layer 2 (cleared for the TSO):

gFR
T (πT ) = min

x

∑
i∈IT

 ∑
n∈U(i)

πTn,ix
T
n,i −

∑
n∈D(i)

πTn,ix
T
n,i


(6a)

Subject to:
(1b), (1c), (1e)–(1h), m = T, (6b)

FT→m = solution of DSO-m, ∀m ∈ S. (6c)

The total cost of the fragmented market can be defined as:

gFR(π) = gFR
T (πT ) +

∑
m∈S

gFR
m (πm). (7)

4) Mulit-level Market Model: This market is a sequential
market composed by two layers that provides priority access
for DSOs to distribution-level flexibility in the first layer, while
also giving access to such resources to the TSO in the second
layer. To capture this setting, the first layer is equal to the first
layer of the fragmented market, but the second layer resembles
the common market model with updated needs and bids based
on the outcomes of Layer 1. As such, the multi-level market
model can be formulated as follows:

Layer 1 (cleared for each DSO m ∈ S): same as (5)
gML
m (πm) = gFR

m (πm). (8)

Layer 2 (cleared for the TSO):

gML
T (πT ) = min

x

 ∑
m∈M

∑
i∈Im

 ∑
n∈U(i)

πmn,ix
m
n,i −

∑
n∈D(i)

πmn,ix
m
n,i


(9a)

Subject to:
(1b)–(1i), (9b)

ami = am
∗

i +
∑

n∈U(i)

xm
∗

n,i , ∀m ∈ S, ∀i ∈ Im, (9c)

bmi = bm
∗

i +
∑

n∈D(i)

xm
∗

n,i , ∀m ∈ S, ∀i ∈ Im, (9d)

xm,max
n,i = xm,max∗

n,i − xm
∗

n,i , ∀m ∈ S,∀i ∈ Im, ∀n ∈ U(i) ∪ D(i).
(9e)

Constraints (9c) and (9d) are, respectively, the update of
the base injection and load of the distribution systems nodes,
considering am

∗

i and bm
∗

i as the original injection and load,
and xm

∗

n,i as the optimal dispatch of resources of layer 1.
Similarly, constraints (9e) is the update of the distribution
upward and downward bid limits, considering xm,max∗

n,i as the
original bid limits sent to the market. Moreover, the total cost
of the fragmented market can be defined as:

gML(π) = gML
T (πT ) +

∑
m∈S

gML
m (πm). (10)

C. Best Response Functions

In the four types of TSO-DSO coordinated market models
under analysis, the offers to fulfil the SOs needs are provided
by FSPs, which are market participants seeking for sustainable
profitability. To analyze their strategic behavior, the market
clearing problem must be examined from their point of view,
instead of from the point of view of the SOs procuring
flexibility at a minimal cost. The FSPs, when entering the
TSO-DSO markets and offering their flexibility as bids, are
expected to aim at maximizing their profits (constituting a
rational economic behavior). Moreover, their revenue, as well
as their optimal bids, will be influenced by what other FSPs are
bidding, the market structure, and the network configuration.

To represent those aspects, we propose best response (BR)
models, in which FSPs determine their best bid (strategy) as a
response to opponents’ bids. In mathematical terms, consider
the set of all FSPsN =

⋃
m∈S
i∈Im

U(i)
⋃
m∈S
i∈Im

D(i) offering flex-

ibility to the four different markets σ = {CM, DI, FR, ML}.
Each FSP n ∈ N has a marginal cost/value cmn,i. Their bid
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prices are their strategies (i.e., each FSP aims at choosing
its optimal bid price), which are represented by πm,σn,i . The
opponents’ vector of bid prices is denoted as πσ−n. Nodal
prices (λm,σi ) and the cleared quantities (xm,σn,i and xσ−n)
are a result of the market σ, when a vector of bid prices
(πm,σn,i ,π

σ
−n) is submitted. Using this generalized notation, the

best responses for FSPs offering flexibility in market σ can be
defined as:
BRσn(π

σ
−n) = πm,σ

∗

n,i = argmax
πm,σn,i

|λσ,mi − cmn,i|x
m,σ
n,i , (11a)

Subject to: πm,σn,i = [πm,σn,i,1, . . . , π
m,σ
n,i,Π] (11b)

λσ,mi , xm,σn,i = fσ(πm,σn,i ,π
σ
−n) (11c)

Objective function (11a) refers to the utility of FSP n,
which is calculated by the absolute value1 of the nodal price
from the node where the FSP is submitting the bid minus its
marginal cost/value, times its cleared quantity. This function
is subject to the vector of possible bid prices FSP n can send
to market σ, defined in constraint (11b), and to the result of
the market clearing of σ when an specific bid πm,σn,i together
with opponents’ bids πσ−n are sent to the market, defined in
constraint (11c). Function fσ(·) is calculated using model (1)
when σ = CM, models (2) and (3) when σ = DI, models (5)
and (6) when σ = FR, and models (8) and (9) when σ = ML.

D. K-Level Approach

In a strategic bidding setting as the one analyzed in this
paper, each FSP’s revenues are impacted not only by their
own bidding behavior but also by the bidding behavior of the
opponents, as described by the best response functions defined
in (11), giving rise to a game-theoretic framework. Under fully
rationality, standard game theory analyzes and seeks a Nash
equilibrium (NE) [14]: a context in which each player plays
optimally against the optimal decision of others. However, in
practice, this considers that all players will be playing their
Nash equilibrium strategy. As such, if one player diverges (due
to, e.g., limited computational power or information, not al-
lowing the player to compute its NE strategy), different players
can be better off diverging as well [15], [16], [19]. In addition,
this full rationality assumption considers fundamentally that all
players have the computational capabilities and information to
reach their NE strategies, which can face practical challenges.

Therefore, we consider strategic bidding in the TSO-DSO
market models under bounded rationality, which is more likely
to take place in practice [15]. The approach is inspired by k-
level reasoning [15], in which players are rational and best
respond to opponents who they believe are (k-1) rational.
Following this logic, an FSP’s strategic bid is derived based on
its observation of the bids submitted by the opponents in the
previous market round. Under this approach, at each level k,

1We use absolute value to cover both upward and downward offers, given
that the profit of upward offers is a function of the nodal price minus their
marginal cost, and the profit of downward offers is a function of their marginal
value minus the nodal price. Notice that an FSP n bids either upward or
downward flexibility.

the FSPs choose the bid that optimizes their profit, considering
that the other FSPs bid at the previous level (i.e., at level
k − 1). As such, this provides gradual levels of rationality
in the derivation of the optimal bidding strategy, through the
increase in k.

In mathematical terms, the players solve the best responses
developed in Section II-C taking into account πσ−n being
equal to the opponents’ best responses in the past level, which
correspond to, and is revealed through, their submitted bids
in the previous market round. Considering that FSPs have
K levels of thinking, the rationalization process of the FSPs
is represented in Algorithm 1. This process returns the set
of optimal bids πσ

∗

K that the FSPs would submit to market
type σ ∈ {CM, DI, FR, ML} after K levels of thinking.
By running market σ with this set of bids, it is possible
to measure the impact on the market efficiency due to the
strategic behavior of its participants.

Algorithm 1 K-level Approach to Simulate FSPs Strategic
Behavior in the TSO-DSO Markets
Input: Levels of thinking (K), market model (σ ∈
{CM, DI, FR, ML}), grid parameters

Output: Best bid vector at level K of market model σ (πσ
∗

K ), market
σ efficiency measurement when best bids of level K are sent
(gσK(πσ

∗
K ))

1: Initialize bid vector πσ
∗

0 with FSPs’ marginal cost/value (c);
2: for k = {1, . . . ,K} do
3: for all n ∈ N do
4: Calculate FSP n best response πm,σ

∗

k,n,i = BRσn(π
σ∗
k−1,−n)

using (11) for market model σ;
5: end for
6: end for
7: Run market model σ to calculate gσK(πσ

∗
K ) of K (models (1),

(4), (7) and (10));
8: return πσ

∗
K , gσK(πσ

∗
K );

III. NUMERICAL RESULTS

The proposed k-level approach is applied to four case
studies considering an interconnected transmission-distribution
system. The transmission network is represented by the IEEE
14-bus system, which is connected to two distribution net-
works, represented by the Matpower 69-bus (DN 69) and 141-
bus (DN 141) systems [20]. An initial base case is considered,
in which injections and loads of the nodes are adapted to create
an anticipated negative imbalance (total load surpassing total
generation) in the interconnected system, resolved by upward
flexibility. In addition, the lines’ upper limits are adjusted
to create anticipated congestion in the networks. Upward
and downward flexibility bids are randomly generated and
allocated to the nodes. Their quantities are aligned with the
nodes’ base injection/load and their marginal values are in
the range [10, 26] C/MW for downward, and marginal costs
in the range [30, 73] C/MW for upward, totaling 536 bids.
This is the base case, i.e., k = 0 (the truthful bidding setting
in which the prices comprise the marginal costs/values) from
which bids are modified in accordance to the strategic behavior
of the FSPs for higher k levels. We then identify the resulting

4

This article is a pre-print. Please cite the published version: 10.1109/SEST57387.2023.10257391



Fig. 1. Impact of strategic behavior on market efficiency under high liquidity

impacts on the TSO-DSO coordinated market efficiency. The
full data set is available in [17].

We consider three levels of thinking (third-order rationality),
which was chosen to comply with empirical measures of the
levels of rational thinking. For instance, experiments in [21]
show that most of the subjects have a level k = 3 reasoning.
Moreover, we consider that each FSP n chooses the possible
bid prices vector in (11b) according to its opponents’ best
bid prices with the same sense (i.e., upward or downward)
in k − 1 (πσ

∗

k−1,−n) as follows: for an upward FSP n, the
vector of possible bid prices includes all upward opponents
prices that are higher than its marginal cost, together with
those values minus a small epsilon (i.e. 10 ¢), a price cap for
upward offers (i.e. 3,000 C/MWh) – which can be imposed
by the market operator platform as e.g., in [22] – and this cap
minus epsilon; for a downward FSP n, the vector of possible
bid prices also includes all downward opponents prices that
are lower than its marginal value, together with those values
plus a small epsilon (i.e. 10 ¢), a price cap for downward
offers (i.e. 0 C/MWh), and this cap plus epsilon. The addition
of values plus or minus epsilon is done as a tie-break rule, i.e.
when two FSPs are bidding the same value, only one of them
might be selected, which can encourage them to bid a slightly
lower (for upward) or higher (for downward) price than the
opponent.

A. Case 0: High Liquidity

In this case, all 536 bids from the different systems are
kept, and efficiency results of running the k-level described
in Algorithm 1 for the four TSO-DSO coordination market
models are shown in Fig. 1. As can be seen, the strategic
behavior of the FSPs leads to an increased cost in all market
models, as some in-the-money FSPs have the opportunity
to bid higher than their marginal cost (or lower than their
marginal value). However, this increase is dampened by the
high liquidity available in the markets, as the the last in-the-
money FSPs can not bid higher (for upward) or lower (for
downward) than the next opponent’s bid price, as they would
otherwise no longer be cleared. The total cost of the SOs when
FSPs behave strategically (k = 3) is 1.05 times higher than the
truthful case (k = 0) in the common market, and 1.07 times
higher in the disjoint, fragmented, and multi-level markets.

Fig. 2. Impact of strategic behavior on market efficiency in a case of low
liquidity in the transmission system

B. Case 1: Low Liquidity in Transmission System

In this case, the same network and distribution bids list of
case 0 are used, but 40% of the bids located in the transmission
system were deleted. Efficiency results of running the k-level
to this case are shown in Fig. 2. Here it is possible to see that,
when the market liquidity at transmission level is reduced, the
effect of strategic behavior further increases. For instance, the
total cost to the SOs when FSPs behave strategically (k = 3) is
1.17 times higher than the truthful case (k = 0) in the common
market, 48.05 times higher in the disjoint, 50.45 times higher
in the fragmented, and 19.39 times higher in the multi-level.
The impact is more pronounced in the disjoint and fragmented
markets due to the additional market fragmentation, which
creates opportunities to some FSPs to exert market power
(e.g. bidding at price cap) in the second (transmission) layer.
Although the multi-level is also a two layers market, the effect
is reduced if compared to the disjoint and fragmented, since
its second layer pools bids from the different grids, which
increases its liquidity. Nonetheless, the impact is higher than
if all needs were solved jointly, as in the common market.

C. Case 2: Limited liquidity in Distribution Systems

In this case, the same network and transmission bids list of
case 0 are used, but 98% of the bids located in the distribution
systems were deleted. This deletion is not done randomly,
but rather considers the congestion present in the distribution
systems to capture the effects of low liquidity. In this regard,
the bids in case 0 which were needed to solve the congestion
were kept in the list, in order to avoid infeasibilities, and
some additional bids were also kept to increase competition.
Efficiency results of running the k-level to this case are shown
in Fig. 3. As can be seen, when the market liquidity at
distribution level is reduced, the effect of strategic behavior
increases when compared to case 0. However, this increase is
not as high as compared to the increase in cost at low liquidity
in the transmission system (case 1). For instance, the total
cost to the system operators when FSPs behave strategically
(k = 3) is 1.12 times higher than the truthful case (k = 0)
in the common market, 1.16 times higher in the disjoint, and
1.14 times higher in the fragmented and multi-level.
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Fig. 3. Impact of strategic behavior on market efficiency in a case of limited
liquidity in the distribution systems

Fig. 4. Impact of strategic behavior on market efficiency in a case with
critically low liquidity in the distribution systems

D. Case 3: Low Liquidity in Distribution Systems leading to
Market Power due to Congestion

This case is a variation of case 2 in which only the necessary
bids of the distribution systems are kept in the bids list.
Efficiency results of running the k-level to this case are shown
in Fig. 4. Here, it is possible to see that, when the market
liquidity at distribution level is critically low, the effect of
strategic behavior is significant, and impacts all market models
similarly. For instance, the total cost to the SOs when FSPs
behave strategically (k = 3) is 6.47 times higher than the
truthful case (k = 0) in the common market, 6.40 times higher
in the disjoint, and 6.35 times higher in the fragmented and
multi-level. The impact is more pronounced in the common
market due to: 1) it is the most efficient market when FSPs bid
truthfully (leading to a lower denominator in the calculation),
and 2) the FSPs which are necessary for the congestion
management of the distribution systems strategically bid at the
price cap (exerting market power) in all market models, which
means that the final cost is comparable in all the markets. The
common market is still slightly more efficient under k = 3
than the rest of the market models, but the difference is less
pronounced as compared to the case under truthful bidding.

IV. CONCLUSION

In this paper we proposed a game-theoretic methodology
based on bounded rationality to analyze the impact of the
FSPs’ strategic behavior on the efficiency of TSO-DSO coor-
dinated market models for the procurement of system services

(balancing and congestion management). Four types of market
models were analyzed (common, disjoint, fragmented, and
multi-level), which vary according to the levels of coordination
between the TSO and the DSOs seeking to procure flexi-
bility. Best response functions were derived for each market
model, and a k-level approach was proposed to simulate the
bidding behavior of the FSPs when joining those markets.
The methodology was applied to four case studies, showcasing
that: 1) all markets can be affected negatively by the FSPs’
strategic behavior, but the common market can be less affected,
2) the impact of strategic behavior is higher in situations
with restrained liquidity, specially in the transmission system,
and 3) the impact of strategic behavior can be significant in
situations of market power due to available congestions.
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