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Design of a generalized platform for gathering 
protein sequence → function datasets at scale

Uses a pooled growth-based assay to quantify 
protein function for < $0.05/sequence.

Applicable to a wide variety of protein 
functions.

New functions can be onboarded by validating 
a gene circuit and establishing a set of 
calibration variants.

A proposed platform for gathering large protein 
sequence-to-function datasets.  

Reviewed
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Overview

Align’s protein function platform is designed to enable 
high-throughput collection of protein function datasets 
for a wide variety of functions. When complete, users 

will be able to send DNA samples to a collection facility for 
measurement, with costs that are subsidized or fully covered by 
Align. Users will receive their data as soon as it is available, and 
the data will also populate an open dataset after an embargo 
period.

The protein function platform uses a pooled, growth-based 
assay to quantitatively measure protein function in high-
throughput. It is compatible with measuring a wide variety of 
protein functions. 
Onboarding measurements of a new protein function requires:

1. Identifying a calibration ladder of around 20 protein variants 
with known function

2. Tuning a selection circuit or selection strain so that the 
doubling time of bacterial cells is tied to the function of the 
protein variant they express.

Once a function is onboarded, pools of up to 500k protein 
variants can be measured by creating a barcoded library 
of proteins, transforming the library into bacteria, growing 
the library in selective conditions (e.g. with antibiotic), and 
sequencing barcodes before and after growth to quantify 
differential growth rates. The calibration ladder is included 
in every pool, enabling quantitative measurement between 
batches.
To conduct the method, the pool is diluted into 96-well plates 
with varying selection strength (i.e. antibiotic concentration), 
grown, and samples are reserved for later sequencing. This 
process is executed five times to expand the operational 
range of the assay, with earlier time points capturing data on 
low-fitness variants, and later ones distinguishing high-fitness 
variants. The method can be executed by hand, but automation 
enables hands-off data collection with precise timings.

Long read sequencing associates the short barcodes 
with the full-length protein sequences, enabling functional 
measurements of complete ORFs.
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Introduction

Protein functions, such as enzymatic activities, binding 
interactions, and membrane transport, exist as islands 
in the “archipelago” of the protein function landscape, 

which has loose and yet not fully understood relations to 
the corresponding sequence landscape. Machine learning 
(ML) algorithms have tried to bridge this gap, but today’s ML 
methods are still unable to find a general solution for predicting 
any protein’s function from its DNA sequence. This project 
proposes to develop an experimental platform and unified 
data ontology for collecting datasets from different functional 
‘islands’ to build predictive models for individual protein 
functions. The experimental strategy uses a pooled, growth-
based assay measured with DNA sequencing to create a 
simple, yet adaptable system that can be easily expanded to 
encompass new functions.

Growth-Based Assays for Measuring Protein Function

Models trained on this data will first succeed at predicting 
protein function within a single ‘island’, an individual family of 
proteins with a single function. As the dataset grows and more 
islands are sampled, the models will become more generalized 
and capable of predicting the function of protein sequences 
that are increasingly distant from those that have been directly 
measured. This will likely require many millions of data points, 
but a general solution for predicting any protein function from 
sequence would catalyze a transformation in the field of biology.

Figure A1: Graphical abstract illustrating the goals of the Growth-Based Assays for Measuring Protein Function proposal.
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1. Proposal Summary

The goal of this proposal is to develop a platform for 
collecting protein function datasets to build models that 
can predict a given protein’s function from its sequence.  As 

the datasets grow and more islands are sampled, these models 
will become more generalized and capable of predicting the 
function of protein sequences that are increasingly distant from 
those that have been directly measured; eventually, models will 
be able to predict any protein function from its DNA sequence. 
Building predictive models for protein function will require 
massive amounts of data. This proposal approaches the 
challenge of collecting this data with pooled, growth-based 
assays. We will link the activity of a gene to the ability of a cell to 
grow under selective pressure (e.g., antibiotic resistance), create 
hundreds of thousands of variants of that gene in different cells,  
culture the altered cells and challenge them under selective 
pressure (e.g., an antibiotic), and then sequence the pools of 
cells to measure  abundance and quantify a protein’s function. 
These high-throughput assays can produce quantitative 
functional characterization for hundreds of thousands of 
proteins per experiment at a cost of approximately $0.05 per 
sequence. 
Crucially, growth-based assays can be used to quantify a wide 
variety of different protein functions, making this methodology a 
general-purpose platform for gathering large protein sequence-
to-function datasets. The proposed dataset infrastructure will 

Figure A2, A3: Overview of growth based assay workflow and onboarding. A2) High-level overview of the pooled, growth-based assays 
pipeline. The plasmid library of barcoded proteins is created and transformed into host cells. Then the cells are pooled, grown and challenged. 
The resulting cells are then sequenced,  counting the number of barcodes present, which can be translated back into a measurement of 
quantitative function. А3) Pipeline for onboarding, deploying, and analyzing of data for a new pooled, growth-based assay to measure protein 
function.

A2

A3

be developed with scalability in mind, and is designed to be 
flexible enough to accommodate different protein families and 
labs with different instruments, yet standardized enough to be 
easily parsable for ML.
Throughout this proposal, details are provided on the design for 
an experimental platform that leverages growth-based assays 
to collect quantitative data on individual protein functions. 
Broadly, this includes: 

1. Onboarding a new protein function
- Designing and tuning a plasmid system

- Selecting assay controls

- Optimizing the growth-based assay 

2. Running a pilot-scale experiment (~100K variants) 

3. Running full-scale experiments (>100K variants)

4. Conducting data analysis and model benchmarking

This platform is extensible to many protein functions simply 
by changing elements of the plasmid. This is demonstrated 
by applying the framework to the first two protein function 
targets: a DNA-binding dataset using transcription factors (at 
the National Institute of Standards and Technology, USA) and 
a protease specificity dataset (at The Francis Crick Institute, 
UK). The possible future expansion of this platform to additional 
protein functions at additional sites is also discussed.
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2. Definitions
Genetic Components:

Gene of interest (GOI): The protein sequence of which one is 
trying to determine the function. 

Action site: The sequence in the selection cassette with which 
the GOI interacts. In this proposal, the action site for transcription 
factors (TFs) is an operator and the action site for proteases 
is a substrate. For future protein function analyses, the action 
site could be large or small sequences or complex formations 
of several proteins, depending on the protein function being 
onboarded.

Selection cassette: A region of the plasmid that is specific to 
each function, containing  all variable components needed to 
form a circuit to interact with the GOI and report out its function 
(via antibiotic resistance, fluorescence, etc.) (described in 
section 4.2.4 Selection Cassette (Function-Specific)) .

Measurements: 

Fitness: The calculated exponential growth rate of all the cells 
containing a given genotype. There are multiple methods used 
to measure fitness consistent with this definition, but all of those 
methods may not give comparable results. So, for additional 
clarity, the following definitions for methods to measure fitness 
are included:

Barcode-counting fitness: Fitness measured using normalized 
barcode counts in a pooled assay.

End-point-density fitness: Fitness measured using optical 
density (OD) measurements at the end point of sequential 
cell cultures grown in 96-well plates. This method is meant to 
approximate the barcode-counting method using plate reader 
measurements.

Growth-curve fitness: Fitness estimated from a fit to a growth 
curve (i.e., OD vs. time).

Singleplex function: A low-throughput, high-fidelity measurement 
of the activity of the GOI measured in cells using, for example, 
calibrated fluorescent measurements on a cytometry/plate 
reader. Results from singleplex function measurements are used 
to calibrate the large-scale, pooled function measurements. 

Pooled function: A high-throughput measurement of the activity 
of the GOI is measured in cells using the pooled, growth-based 
assay.

Sequences and Plasmids:

Selection plasmid: The final plasmid  that will be used in the 
pooled assay with a set combination of antibiotic resistance 
(AbR) gene and a ribosome binding site (RBS).

Normalization controls (aka “always-on” genotypes): Pairs of 
sequences of the GOI and action site that result in constitutively 
high expression of the resistance gene used for selection (e.g., 
TetA). When incorporated into the selection plasmid, they are 
referred to as normalization plasmids.

Calibration controls: Pairs of sequences of the GOI and 
action site with measured function (e.g., transcriptional output, 
protease activity) that varies over the full range of the pooled 
assay. When incorporated into the selection plasmid, they are 
referred to as calibration plasmids.

Blank plasmid: A plasmid similar to the selection plasmid, but 
without fluorescent control. Used for background subtraction 
in fluorescent measurements of function on a flow cytometry 
or plate reader.
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Estimating a protein’s structure used to be an intractable 
problem that required long and tedious wet-lab 
experiments. A large leap forward occurred  in 2021 with 

the advent of AlphaFold, a model able to predict the structure 
of a protein solely from the DNA sequence encoding it with 
accuracy meeting or exceeding experimental approaches1. 
From a practical engineering standpoint, however, it is more 
valuable to know the function of a protein than its structure. 
The inevitable evolution of predictive models in protein 
engineering will be to craft a model that can predict a protein’s 
function, not just its structure, from a DNA sequence. 
The ability to predict the function of natural and designed 
proteins would accelerate both basic science and R&D by 
enabling researchers to focus attention on protein targets most 
likely to work for a given application, thus reducing the number 
of experiments to be performed. This is already proving to be 
true for predicting some properties, like stability, of natural 
proteins2. However, to generate these powerful predictive 
models for more protein functions and for designed proteins, 
high-fidelity datasets on protein must be designed from the 
start for machine learning. 

3. Context, Significance, and Impact
Expressing and measuring the function of proteins is 
expensive, time-consuming, and challenging; thus, the largest, 
consistent datasets tend to be collected by industry and kept 
private. Publicly-available datasets on protein function are 
overwhelmingly small in size, few in number, and reported 
in different  functional units. Until recently, there were 
approximately 10-15 open-source, high-quality datasets that 
relate protein sequence-to-function, all of which contain 
fewer than 100k data points (see Hsu, C. et al3: Figure 4; see 
Supplementary Table 1). These datasets address different 
protein functions, and were collected using different assays 
with different units. This poses problems for obtaining a 
consistent type of measurement that can be used to build 
generalizable models between multiple protein functions. To 
combat these issues, there has been an increase in efforts to 
curate2 or create larger datasets4. In order to move towards a 
generalizable model for protein function, there needs to be a 
continual push to align incentives and to increase the effort for 
generating large, consistent datasets in the public domain.

Figure A4: Examples of the wealth of circuits that can be onboarded from the existing literature. These include 
transcription factors; proteases8,9; two different circuits for measuring protein solubility10,11; polymerase promoter 
specificity12; two different circuits for measuring protein-protein interactions13–15; CRISPR specificity16; DNA binding 
proteins17; base editors18,19; and aminoacyl tRNA synthetases20.
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Several shortcomings with existing protein function datasets 
have prompted us to develop a platform for gathering a 
large sequence-to-function protein dataset. Our proposal will 
address these deficiencies as follows:
1. Datasets are small in size.
The proposed assay can gather hundreds of thousands of  data 
points at once, making it approximately one order of magnitude 
larger than the largest existing dataset each time an experiment 
is run.
2. Function datasets are few in number.
While this proposal demonstrates the utility of a  platform with 
protease and DNA-binding proteins, growth-based assays are 
also applicable to a wide variety of other protein functions (Fig. 
A4). The automation and analysis platform presented here 
need only be engineered once before it can be applied to a 
wide variety of protein functions by using different plasmids. 
3. Datasets are reported in different functional units.
All growth-based assays (such as the ones presented here) 
measure sequencing read counts, and using calibration 
controls generates quantitative function scores with real units. 
Additionally, the data acquisition methods and data ontology we 
present here are consistent across functions, so bioinformatics 
and machine learning can be applied to correct common failure 
modes and iteratively improve the platform. 
4. Function data is challenging to collect.
Growth-based assays are amongst the simplest ways to collect 
function data at this magnitude and are compatible with many 
institutions’ equipment capabilities. Additionally, many parts of 
the workflow, including sequencing, can be readily outsourced.

The proposed pooled, growth-based assay format was 
chosen because of its extensibility. Growth-based assays are 
compatible with a number of existing selection cassettes for 
additional protein functions and biophysical properties (Fig. A4). 
We have chosen two selection cassettes to demonstrate the 
versatility of this platform: DNA-binding proteins and proteases. 
These initial targets were selected because they provide a 
combination of low technical risk with high-value applications. 
DNA binding proteins are important regulators, with the 
proposed transcription factor (TF) protein families having varied 
but widespread clinical relevance (e.g., antibiotic resistance5) 
and importance in synthetic biology (e.g., chemical sensors6 
and logic gates7). Similarly, proteases have been used as 
therapeutics for many diseases8,9.  Both targets present a low 
engineering risk because the initial collaborating labs have 
previously worked with the function-specific circuits in their 
respective selection cassettes.

One limitation of growth-based assays worth 
mentioning is their inability to differentiate 
between factors impacting a protein’s functional 
measurement. For example, a poorly expressing 
protein with high activity could have a similar 
functional score to a highly expressing protein with 
low activity. As a future step, we plan to onboard 
measurements of protein expression, folding, 
stability, and other to help deconvolute these 
unknowns.



10DOI:  10.5281/zenodo.12521641

4.1 Host
This platform will be created for use in E. coli, but the exact strain 
will be depend on each protein function and its associated 
target proteins. It is ideal to have a strain with relatively high 
transformation efficiency, which is required for screening large 
protein libraries. As an example, MG-1655, a strain with the lac 
operon fully deleted, was one of the strains chosen for use 
in the Transcription Factor circuit due to the fact that LacI is a 
target protein for development. 
Any strain used for these experiments will have its genotype 
verified via whole genome sequencing before proceeding. The 
strain used for a particular growth-based assay experiment will 
be recorded in the experimental data. 
In future experiments, the host selection would ideally be 
expanded into multiple industrially and academically relevant  
hosts, like yeasts.

4.2 Plasmid Design
A single-plasmid system will be used for data generation in 
growth-based assays. Broadly, the plasmid has four sections: 
a barcode region, a plasmid backbone, a GOI region, and a 
function-specific selection cassette. The single-plasmid system 
allows for variations in the protein open reading frame (ORF) 
and/or circuit to be covered by the same nanopore sequencing 
read and eliminates the need for co-transformations or custom 
competent cells to support a two-plasmid system.

4.2.1 Barcode Region
The barcoding system involves tagging both the backbone and 
insert with “half” barcodes to allow the library to be assembled 
with a unique barcode for each variant. The priming locations 
for PCR-amplifying the barcode should be kept constant 
amongst different protein function circuits so that this set of 
primers only needs one validation. These barcodes will be 
ordered as primers (DNA oligos) that add the random bases 
onto the ends of the GOI or plasmid backbone fragment, plus 
the other sequences needed for cloning to adjacent segments 
of the plasmid. Click here to see the Benchling (Benchling, San 
Francisco, USA)  design of the complete barcode region.

4. Experimental Design Choices

4.2.2 Plasmid Backbone

Table A1: Barcode region design descriptions and rationale.

Component # of base pairs Explanation

Primer binding 
regions

24-27 Flank the barcodes that have been used in the past 
with success. Have GC content between 50-60%.

Spacer 
sequences

9 Sandwiched between the primer binding regions and 
the barcodes, making  the entire barcode region 160 
bp. A length for getting good coverage from an NGS 
read, while also producing a PCR product that can 
be easily distinguished from the long oligos used for 
the PCR.

Two “half” 
barcodes

33 each Design avoids multiple barcodes being assigned to 
the same GO/action site pair. Barcodes incorporate 
interspersed S and W nucleotides to aid analysis.

Homology 
region

25 For Gibson assembly. Has 52% GC content and a Tm of 
~65oC with hairpin structures avoided.

Overall length 160 Long enough to allow for robust magnetic-bead-based 
PCR cleanup, while being short enough so both half 
barcodes can be read within a 150 bp read from either 
direction.

Component Description

Barcode region This is the half of the barcode sequence in the plasmid backbone region 
(see Table A1).

KanR Kanamycin resistance gene marker for plasmid maintenance.

Ori p15A low copy origin of replication.

Terminators Used to insulate the plasmid backbone from the protein variant and circuit 
regions.

Table A2: Plasmid backbone component descriptions.

4.2.3 Gene of Interest (GOI) Region
The gene of interest region contains an operon with the 
protein sequence to be expressed in the opposite orientation 
to the genes in the circuit region. This prevents unintended 
expression of genes in the circuit. It also contains barcode and 
circuit region homology for ease of cloning.

Component Description

Half-Barcode This is the half of the barcode sequence in the gene of interest region 
(see Table A1).

Gene of Interest 
(GOI)

A promoter (constitutive or inducible) and medium-strength RBS drive the 
expression of the GOI. Tuning can be performed at the transcriptional 
level (different strength promoters) and at the translational level (variable 
RBS design). It is best to use a bicistronic leader peptide for context-
independent tuning of translation strength. 

Homology Region that is consistent across all plasmids and circuit designs. Provides 
a standard sequence for priming and/or scarless assembly.

Table A3: Gene of Interest (GOI) component descriptions.

4.2.4 Selection Cassette 
(Function-Specific)
The selection cassette is a region of the plasmid specific to 
each function. Figure A9 and Table A4 illustrate and describe 
the generalized parts that are relevant to the two protein 
functions being onboarded in this proposal; however, each 
newly onboarded function may or may not utilize all of these 
components. The selection cassette contains the function-
specific circuit components with which the GOI will (e.g., 
operators or substrates) and all of the necessary reporters 
produced by the interaction (e.g., antibiotic resistance gene 
(AbR) for fitness measurements and a fluorescent protein of 
choice used for function measurements during development). 
For protein functions that are onboarded in the future, the 
inclusion and positions of these components can be changed 
to suit the circuit and reporters for the function of interest.

Component Description

Antibiotic resistance 
gene (AbR)

Either tetracycline resistance or zeocin resistance, depending on the 
protein function.

Fluorescent Protein 
(FP)

Used for quantitative measurements of protein function. This could be any 
number of a variety of proteins dependent upon a particular circuit design. 

Function-specific 
circuit component

A circuit-specific region of the plasmid that interacts with the GOI. 
This functional element can repress or activate the expression of the 
downstream genes (AbR and FP). May contain the action site and the 
promoter for the downstream genes.

Homology Region that is consistent across all plasmids and circuit designs. Provides 
a standard sequence for priming and/or scarless assembly.

RiboJ element Used to give a more reproducible transcript start sequence. It self-cleaves 
at a defined position, causing the variable starting portion of the transcript 
to be  cleaved off.

Ribosome binding 
site (RBS)

Upstream of AbR and upstream of FP. Must be changeable to facilitate 
tuning for different proteins/functions.

Table A4: Selection cassette  component descriptions.

https://benchling.com/s/seq-ZOwiaQ1V6p0OCmuHQHwG/edit
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Figure A5-A9: Plasmid Design. A5) The generalized plasmid map including the protein backbone, barcode 
region, gene of interest region, and selection cassette. А6) Scheme of the barcoded region. A7) Scheme of the 
plasmid backbone. A8) Scheme for the gene of interest region. A9) Scheme for the selection cassette region.

A5

A6

A7

A9

A8
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4.3 Protein Target Selection 
Strategies
Under the archipelago of protein function metaphor, each 
protein function could be seen as an “island” composed of all 
of the protein families that exhibit the function of interest. To 
begin mapping out each functional island, an assay must be 
developed using well-characterized or prototypical members 
of a protein family. This allows for an assessment of whether 
or not  the assay is performing as expected when compared 
to published methods (e.g., the wild-type RamR (Uniprot ID: 
A0A0F6AY66) will be used  to develop the TF assay). During the 
pilot stage of development, much more of the local sequence 
space surrounding the initial development targets is sampled 
(e.g., more variants of RamR). Finally, during the large-scale data 
collection phase, an expanded set of the local sequence space 
variants can be explored, as well as divergent sequences and 
new protein families (e.g., adding both well-characterized and 
uncharacterized proteins in RamR’s family (the TetR family) and 
additional TF families).

4.3.1 Development and Control Targets
These targets are pairs of sequences for the GOI and action 
site, depending on the protein function being onboarded, that 
are used during assay development and as ongoing controls. 
These sequences should be previously validated or be well-
characterized in the literature. This group is composed of 
15-25 sequences outlined in Section 5: Onboarding a New 
Protein Function. For example, these sequences could include 
a wildtype (WT) protein sequence and sequences of its 
characterized point mutant variants spanning a range of activity, 
coupled with the same action site sequence (e.g., WT Lacl and 
a few of its characterized point mutant variants, coupled with 
the same operator sequence).

4.3.2 Pilot-Scale Targets
These targets should result from a deeper sampling of the 
types of sequences used for development and control targets, 
such as point mutations in a WT TF protein, or additional action 
site sequences, such as more operators. In general, the pilot-
scale pooled assay will be bottle-necked to a plasmid library of 
100,000 plasmids. These plasmids can contain combinations of 
variations in the sequence of the GOI and of the action site (e.g., 
TF and operator site or protease and cleavage site). Depending 
on the protein function being onboarded and the desired final 
predictive model, the resulting split between variation in the 
GOI and the region it is acting upon will change (i.e., the amount 
of TF diversity versus operator site diversity).

Figure A10: How to choose targets for large-scale data collection.

4.3.3 Large-Scale Targets
Depending on the protein function being onboarded, the large-
scale collection can increase diversity of proteins used as GOIs 
(e.g., additional proteases) and/or increase the diversity of 
sequences used in the action site (e.g., additional substrates). To 
increase GOI diversity, new proteins within the pilot experiment 
family can be analyzed, as can proteins from additional families 
within the same functional island. Ideally, each new protein 
family in a functional island will have the same distribution of 
well-characterized and uncharacterized protein sequences to 
be explored as GOIs. These include:

1. Proteins that are well-characterized to cross-validate results 
with existing literature.

2. Uncharacterized proteins of two types: those that can be 
predicted by some other means (e.g., using homology data) 
and those that cannot. This will allow us to see if the results 
align with those predicted by homology data and to extend 
the resulting model’s predictive power by adding proteins 
that cannot currently be predicted by other means.
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Each new protein function only needs one onboarding. 
The process for doing this is broken down into the 
following stages (Figure A11):

5. Onboarding a New Protein Function

Stage 1:

Tune selection stringency and 
optimize the selection plasmid.
• Identify tuning sequences to optimi-

ze the selection plasmid and select 
which antibiotic marker to use.

Stage 2:

Choose controls. 
• Choose normalization controls that 

have high fitness in every assay 
condition.

• Choose calibration controls that span 
the assay’s desired dynamic range.

Stage 3:

Conduct BarSeq validation and the first 
pooled assay.
• Validate the BarSeq protocol. 
• Run a first pooled assay with just 

the normalization and calibration 
plasmids. This step is designed to 
be quick to sequence and analyze, 
allowing for rapid troubleshooting and 
iteration of the first pooled assay.

Figure A11: Process diagram for  onboarding a new protein function.

5.1  Stage 1 - Tune Selection 
Stringency and Optimize the 
Selection Plasmid
The first stage of onboarding a new protein function is to detail 
the selection plasmid. To simplify method development and 
onboarding, the plasmid should be designed to use the same 
overall layout and many of the same specific components/
parts for all protein functions. However, each protein function 
will require some unique plasmid components and optimization 
of the control elements (e.g., promoters and RBSs). The 
components that need to be optimized are in the GOI region 

Figure A12: Components in the GOI region and selection cassette that can be varied to 
tune the selection plasmid.

and the selection cassette (function-specific). To avoid the 
expense and effort of a full combinatorial test of the plasmid 
design space, the plasmid optimization is separated into two 
steps: tuning the regulation components related to function and 
tuning the components used for the measurements (Fig. A12).
The function regulation components that may require tuning 
include the promoter and RBS controlling the GOI and any 
other regulatory components within the function-specific circuit 
region.  When tuning the function components, a fixed set of 
measurement components should be used: a medium-strength 
RBS controlling the zeocin resistance gene (AbR) and a strong 
RBS controlling the fluorescence protein.
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Tune the function regulation components in the following 
manner: 
1. Use previous experience with similar protein functions/

circuits or examples from the literature to choose the initial 
set of function regulation components. 

2. Measure the fluorescence response in at least two 
conditions that are expected to give very low and very 
high activity/function for the gene of interest using the 
Singleplex Assay for Function protocol21.
Note: The two conditions can be achieved using different 
sequence variants for the GOI and/or by using additives 
that modulate the function of the GOI. For example, 
the TF dataset will use the WT sequence of the RamR 
transcription factor both with and without induction with 
tetrahydropapaverine (THP). Based on past experience 
with RamR, the ratio of fluorescence measured with versus 
without induction is expected to be over 100. 
Analyze the resulting data from the function measurements 
according to the steps outlined in the  data analysis section 
of the Singleplex Assay for Function Measurements 
protocol21.

Once the appropriate function components have been 
identified, the measurement components can be tuned to 
determine the best combination of AbR gene and RBS strength 
to create the final selection plasmid. Different sequences for 
the GOI and/or different additives to vary the function will be 
used, and the influence of using different combinations of AbR 
gene and RBS strength on the measurable output range will 
be monitored using several different concentrations of the 
selection antibiotic. Ideally, in at least one of the tuning plasmids, 
the accessible output range should span two-three orders of 
magnitude when measured with different concentrations of the 
selection antibiotic. Whichever plasmid and RBS combination 
provides the best output range will be selected as the final 
selection plasmid.
The following steps are used to tune the measurement 
components and select the final plasmid:
1. Determine the function of the tuning plasmids in each 

condition by measuring the signal of the fluorescent 
protein expressed in series with the AbR gene. Cytometry 
is the best measurement method, but using a plate reader 
(FL/OD) is also acceptable if there is minimal change in the 

Stage Gate 1
The ratio of fluorescence measured between the 
high and low activity/function conditions must 
be large enough to cover the expected dynamic 
range. If it is significantly lower than expected, 
the strength of the function components must be 
adjusted and re-tested. As an example, the ratio for 
the transcription factor plasmids is expected to be 
greater than 100.

Stage Gate 2
The final selection plasmid (i.e., the proper 
resistance gene and RBS strength) must satisfy the 
following criteria:
• Fitness has a smooth, measurable change over 

the relevant range of function for one or more 
antibiotic concentrations.

• Fitness with zero antibiotic is approximately 
constant over the relevant range of function (i.e., 
the resistance gene does not cause a significant 
fitness defect).

• The function measurement should have a 
dynamic range that is not limited by the choice 
of the selection cassette components. 

If none of the initial circuit/plasmid designs satisfy 
these criteria,  build additional designs (i.e., re-tune 
the system).

growth phenotype (i.e., OD per cell density) over all assay 
conditions. These measurements should be calibrated 
using standards. To perform this measurement, follow the 
procedure outlined in the Singleplex Assay for Function 
Measurements protocol21.
a. Check that this function measurement has sufficient 

dynamic range for each protein type. In particular, 
ensure that the dynamic range of the fluorescent protein 
measurement is not significantly affected by the choice 
of RBS used to control the selection resistance gene. 
To do this, after measuring the function in plasmids 
with different RBS strengths, check that the measured 
dynamic range (ratio of the highest to lowest mean 
fluorescence) is comparable for each choice of RBS. 
If it is not, measure fitness and function with different 
versions of the plasmid (i.e., measure fitness with one 
choice of RBS and function with a different RBS).

2. Measure the fitness of each variant in each condition using 
a growth-based assay described in the Singleplex Assay for 
Fitness Measurements protocol22. This is similar to the final 
pooled assay but all plasmids are measured individually. 
Use the combinations of the following conditions with a 
minimum of two replicates (n=2) each:
a. Suggested antibiotic concentrations (for initial testing):

- For the Tet plasmids: 0, 0.625, 1.25, 2.5, 5, and 10 μg/mL.

- For the Zeo plasmids: 0, 25, 50, 100, 200, and 400 μg/mL.

b. Additives: depending on the assay.
3. Analyze the resulting data from the function and fitness 

measurements according to the data analysis section of 
the Singleplex Assay for Fitness Measurements protocol22  
to see if any of the antibiotic resistance x RBS strength 
combinations resulted in an acceptable circuit.
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Figure A13-A14: Normalization controls. A13) Process flow and decision tree diagram for developing 
normalization controls. A14) Example graphs from previous NIST experiments illustrating the fitness 
measurements of two different normalization controls. Note: the graphs for both of the normalization plasmids 
above are always constant and have high fitness.

5.2  Stage 2 - Choose Controls
This stage aims to identify normalization and calibration 
controls using the optimized circuit. These controls will be used 
to further validate the circuit and will be included in all future 
experimental pools. By the end of this stage, two normalization 
controls will be developed that have a high fitness at every 
antibiotic concentration (and with every additive). In addition, 
10-20 different calibration controls will be developed that 
densely sample the functional range and that can be used to 
calibrate and quantify function for other proteins in the library 
when the assay is run at scale. Each of the final controls will 
be assigned a permanent barcode sequence that matches the 
pattern of the library barcodes, but with the W and S positions 
switched. Selected controls will carry the permanent barcodes 
into the pooled assay context. 

5.2.1 Choose Normalization Controls
Normalized controls will be selected to be “always-on”, 
regardless of conditions, and will be used to normalize signals 
during the pooled assay. These protein sequences will be 
used in the pooled assay and have a permanent barcode. The 
sequences can be sourced in two ways:
1. After transforming a plasmid library, grow a diluted culture 

of the library with the selection antibiotic, then plate the 
resulting culture onto agar that also contains the selection 
antibiotic. Pick colonies to assay for verifying high fitness 
across conditions. 

2. Design or source from the literature protein sequences that 
are expected to be “always-on”.

Start by testing five normalization control candidates, because 
some of them may not have the desired fitness and/or may have 
unexpected sequences. Select the best two controls  for use in 
the final pooled assay. The goal is to generate graphs similar 
to the examples below for the normalization controls (Fig. A14).
Follow this general procedure to assess the normalization 
control candidates:
1. Verify the entire plasmid sequence for each plasmid 

individually using sequencing. Check each of the plasmids 
for unexpected mutations (i.e., to sections of the plasmid 
that should be constant) that might impact the measured 
function or barcode sequencing. 
a. After transformation, plate culture and pick three colonies 

for each plasmid, grow up to the stationary phase in liquid 
culture and make a glycerol stock for each colony/clone.

b. Then, use a scraping from that glycerol stock to start 

Stage Gate 3
The two selected normalization plasmids should 
have the following:
• No mutations in the plasmid barcode region 

and no homopolymer repeats longer than three 
bases in the barcode sequences (4.2.1 Barcode 
Region).
- If none of the initial set of five candidate plasmids 

satisfy these criteria, troubleshoot the plasmid 
assembly protocol or reagents (e.g., the oligos used 
as primers to add the barcodes).

• Constant, high fitness at all antibiotic 
concentrations and all additive conditions, ideally 
within 20% of the fitness with zero antibiotic.
- If none of the initial set of five candidate plasmids 

satisfy this criterion, re-evaluate the design or 
selection processes used to create the candidate 
normalization plasmids.

a new culture, grow up enough volume to stationary 
phase, then mini-prep plasmid and send it for whole 
plasmid sequencing. 

c. Those glycerol stocks should then last the duration of the 
project (across multiple library measurements) requiring 
whole-plasmid sequencing of it once.

2. Measure the fitness of each normalization plasmid in 
each condition following the Singleplex Assay for Fitness 
Measurements protocol22. Use combinations of the following 
conditions with a minimum of two replicates (n=2) each:
a. Antibiotic concentrations:
- If the Tet plasmid was chosen in stage 1: 0, 0.625, 1.25, 2.5, 5, 

and 10 μg/mL.
- If the Zeo plasmid was chosen in stage 1: 0, 25, 50, 100, 200, 

and 400 μg/mL.
- These concentrations may need to be adjusted after Stage 1 to 

match the best set of concentrations for the chosen resistance 
gene and RBS.

b. Additives: Use a similar set of additives and additive 
concentrations used in the pooled assay.

3. Analyze the resulting data from the fitness measurements 
according to the pipeline described in the data analysis 
section of the Singleplex Assay for Fitness Measurements 
protocol22 to determine which two of the variants have the 
highest and most stable fitness across all conditions (e.g., 
antibiotic concentrations or additives).

A13 A14
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5.2.2 Choose Calibration Controls
Select calibration controls to densely cover the desired 
dynamic range of the assay and use them to turn the pooled 
assay measurements into quantitative measurements of 
protein function. These protein sequences will be used in the 
pooled assay and need permanent barcodes. These protein 
sequences can be sourced in two ways:
1. Plate a diluted portion of a library that has been transformed 

into cells and then pick colonies. This is the simplest option 
for generating calibration sequences.

2. Design calibration sequences using prior knowledge from 
the literature.

Choose at least 10-20 calibration controls to have data density 
of 30 points spread across two to three orders of magnitude in 
function.
To assess the calibration control candidates, do the following:
1. Construct a ‘blank plasmid’. For all function measurements, 

measure the fluorescence background with a non-
fluorescent control. Modify an existing normalization plasmid 
to remove the fluorescent protein gene.  
a. The blank plasmid will not be used in the pooled assay, 

so it does not need to be barcoded.
2. Verify the entire plasmid sequence for each plasmid 

individually using sequencing. Check each of the plasmids 
for unexpected mutations (i.e., to sections of the plasmid 
that should be constant) that might impact the measured 
function or barcode sequencing.
a. After transformation, plate culture and pick three colonies 

for each plasmid, grow up to the stationary phase in liquid 
culture and make a glycerol stock for each colony/clone.

b. Then, use a scraping from that glycerol stock to start 
a new culture, grow up enough volume to stationary 
phase, then mini-prep plasmid and send it for whole 
plasmid sequencing. 

c. Those glycerol stocks should then last the duration of the 
project (across multiple library measurements) requiring 
whole-plasmid sequencing of it once.

3. Select a subset of the calibration sequences that sparsely 
span the range of function desired for the pooled assay.
a. Use at least three calibration sequences (with induction, 

this should result in~ 10 points).
4. For the selected subset, measure both fitness and function, 

using the Singleplex Assay for Fitness Measurements 
protocol22 and the Singleplex Assay for Function 
Measurements protocol21  respectively. The goal here is to 
verify that the pooled assay calibration procedure is likely to 
work using the singleplex fitness assay in place of barcode 
sequence counting. 
a. For function measurements, do not use the  selection 

antibiotic.
b. For both fitness and function, use the same set of 

additives and additive concentrations as planned for the 
pooled assay.

5. Analyze the function and fitness data following the data 
analysis section of the Singleplex Assay for Fitness 
Measurements protocol22  to produce a plot similar to that 
in Figure A16.

6. Use the fitness data to determine the length of incubation 
periods. For repeated growth cycles, the length of culture 
time must be adjusted so that the end-point cell density is 
either constant or slightly declining over the course of the 
repeated time points.

7. Use the fitness versus function data to determine the optimal 
antibiotic concentrations following the procedure described 
in the data analysis section of the Singleplex Assay for 
Fitness Measurements protocol22. Choose multiple antibiotic 
concentrations to provide good sensitivity over the entire 
range of functional output.

Figure A15-A16: Calibration controls. A15) Process flow and decision 
tree  diagram for developing calibration controls. A16) Example plot 
from previous NIST experiments illustrating fitness vs. function for three 
calibration controls. This plot was produced for a measurement that 
uses different concentrations of an additive (inducer) to access a range 
of function (the x-axis in the plot) for each of three calibration sequences 
(pTY1-lacI,  pTY1-lacI-RS-05, and pTY1-lacI-RS-14). The experiment also 
tested two different non-zero antibiotic concentrations (1.25, and 10 μg/
mL, plotted with different colors). 
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After passing the stage gate, continue to do the following:
1. Measure the function of each of the remaining calibration 

sequences following the Singleplex Assay for Function 
Measurements protocol21, with a minimum of two replicates 
(n=2) each:
a. For function measurements, do not use the selection 

antibiotic.
b. Use the same set of additives and additive concentrations 

as planned for the pooled assay.
2. Analyze the resulting data from the function measurements 

according to the data analysis section of the Singleplex 
Assay for Function Measurements protocol21 to determine 
which of the 10-20 variants best cover the dynamic range.
a. This data will also be used to validate that the first pooled 

assay was successful in order to  pass stage gate 6.

Stage Gate 4
For each antibiotic concentration, the fitness versus 
function values need to lie along a consistent curve; 
curves for different antibiotic concentrations must 
have systematic variation, with higher antibiotic 
concentration resulting in lower fitness. In the 
example plot in Fig. A16, all of the data shown in 
orange fall along a consistent curve (for three 
calibration sequences measured with 1.25 μg/mL 
tet), and all of the data shown in green fall along 
a different curve (for three calibration sequences 
measured with 10 μg/mL tet). The green curve 
shows lower fitness than the orange curve, as is 
expected.
If the fitness versus function values do not lie along 
consistent curves for each antibiotic concentration, 
try the following troubleshooting steps:
• Check the reproducibility of the singleplex 

fitness and function measurements.
• Select and measure a different subset of 

calibration sequences. Do just one or two 
sequences not follow a consistent curve?

• If the plates were pipetted with an automated 
liquid handler, check the log files to verify that 
each well was pipetted correctly.

Figure A17: Example gel image from previous NIST experiments.  
Ladder is on the left; three different BarSeq product samples are in 
the other lanes. The darkest band is at the expected size. Other bands 
(longer DNA) are normal for BarSeq prep. Gel extraction should NOT 
be used to remove the other bands. 

5.3 Stage 3 - Conduct BarSeq 
Validation and the First Pooled 
Assay
5.3.1 Validate the BarSeq Library Prep 
Protocol
This validation needs to be performed initially once for each site 
and then repeated only whenever new batches of reagents are 
used (e.g., magnetic beads, reagents, or primers). Use a culture 
grown from normalization and calibration variant mixture to test 
the BarSeq sequencing library prep protocol outlined in the 
Automated Bar-Seq Library Preparation and Pooling protocol23:
• Grow 100 mL culture up to the stationary phase, then mini-

prep or midi-prep plasmid.
- Use one aliquot of cells transformed with the library.

• Test the BarSeq library prep and magnetic-bead-based 
cleanup protocol with the  plasmid. 

- First do a manual test, pipetting manually instead of using a 
liquid handler, with a single forward sample multiplexing tag 
(i.e., primer), and a single reverse sample multiplexing tag. Test 
with 100 pmol/L and 250 pmol/L input plasmid concentration. 
Quantify the resulting cleaned-up product and run on a gel.

- Next, do an automated test using the liquid handler, with 24 
different combinations of eight forward and 12 reverse sample 
multiplexing tags. Test with 250 pmol/L input plasmid in each 
sample. Quantify the resulting cleaned-up product and run on 
a gel.
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5.3.2 Run a First Pooled Assay Using 
Control Plasmids
The control plasmids must now contain unique barcodes, 
and each barcode-control sequence combination should be 
recorded. If these plasmids do not have barcodes, reclone 
and sequence them individually before running the first pooled 
assay. For the pooled assay, run a measurement with a small 
library composed of the mixture of the selected normalization 
and calibration variants. Run this assay the same way as the 
large-scale pooled assay will be run; for example, use the same 
plate layout, antibiotic concentrations, and timings. Step-by-
step details of the pooled assay can be found in the Pooled, 
Growth-Based Assays protocol using the Control Variants 
branch24.
For this test pooled assay, only use Illumina (Illumina, San 
Diego, USA) sequencing to count barcodes, because each of 
the calibration variants will be sequenced individually; long-
read plasmid sequencing is not needed.

Use NovaSeq, as that will be used for the large-scale assays. 
It is possible to use iSeq or MiSeq instead, but these assays 
may conflict with some of the experimental decisions (e.g., 
how the BarSeq primers are designed).

Use the steps outlined in the data analysis pipeline to turn 
sequencing data of barcode counts into measures of fitness 
and use the function measurements from the calibration data to 
generate fitness versus function graphs. Fig. A20 shows plots 
that indicate whether or not the pooled assay works.

Stage Gate 6
• For each antibiotic concentration, the barcode-

counting fitness versus. function (measure 
in section 2.2.2) values must lie along a 
consistent curve. Curves for different antibiotic 
concentrations should have systematic variation, 
with higher antibiotic concentration showing 
lower fitness. 

• Verify that the measurable range of function 
(x-axis) spans the desired range and that the 
antibiotic concentrations are correct. 

• Verify that the barcode-counting fitness vs. 
function curves approximately match the 
singleplex fitness vs. function curves generated 
for stage gate 4.

If the Barcode-counting fitness versus function 
values do not lie along consistent curves for 
each antibiotic concentration, try the following 
troubleshooting steps:
• Check the reproducibility of the singleplex 

function measurements.
• Ignore  one or two calibration plasmids with 

outlying data if there are no other outliers. 
Check the full plasmid sequence for the outlier 
calibration plasmid(s) to determine if  there 
are any off-target mutations. Those calibration 
plasmids can be ignored or left out of the pilot-
scale experiment.

• Check log files when pipetting plates with an 
automated liquid handler to verify that each well 
was pipetted correctly.

Stage Gate 5
If the following QC checks are passed, proceed to 
performing the first pooled assay using the control 
plasmids. If not, you will need to troubleshoot the 
BarSeq method.
• The Barseq product yield should be 15-30 ng/uL 

(eluted into 45 uL).
• If there are bands in the gel at shorter length 

than the expected product (not present in Fig. 
16), troubleshoot  the PCR or suspect incomplete 
removal of BarSeq primers. 
- If there is incomplete removal of BarSeq primers, test 

the method with different bead-to- sample ratios.

The automated test should give results similar 
to the manual test, and consistent results for all 
24 samples. If not, troubleshoot the automation 
protocol by verifying volumes at each pipetting 
step.
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Figure A18-A20: First pooled assay with control plasmids. A18) Process flow and decision tree diagram for running and evaluating the first 
pooled assay using controls. 19) Process flow diagram for the first pooled growth-based assay protocol. 20) Example of barcode-counting 
fitness vs. function output for all controls from previous NIST experiments. Note: The y-axis on those plots is from the barcode-counting 
fitness in a pooled assay. The x-axis is from the independent measurement of protein function.
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As long as plasmids adhere to the above plasmid 
architecture diagram and meet the QC metrics 
outlined below, plasmid construction can proceed in 

various ways depending on the experimental goal. Options 
for generating sequence diversity in the GOI or action site  
may include: ordering mutated library synthesis; generating 
diversity via PCR; and/or using combinatorial approaches. 
Regardless of the diversity generation method, the GOI region 
and the plasmid backbone must be appended with appropriate 
half-barcodes (see Barcode region). Each team should use 
a scarless assembly method (such as Gibson) to insert the 
sequence of interest into the plasmid backbone. 
After generating the library, transform the cloned library 
into E. coli following the manufacturer’s instructions. After 
transformation, dilute and plate a fraction of the library culture 
on a plate to be evaluated during Stage Gate 7. Grow the rest in 
50mL liquid culture and freeze it in 1mL glycerol stock aliquots.

6. Plasmid Library Construction

Stage Gate 7
If the library passes the QC steps listed below, 
move on to the pilot-scale pooled assay.  If not, 
troubleshoot the library building methods and try 
again.
• Compute the number of transformants. Count 

the number of colonies on the plated fraction 
and use this to compute the total number of 
transformants in the entire pool (i.e.,  initial 
library diversity). Ensure that the number of 
transformants is at least as large as the desired 
library size before proceeding.

• Perform clonal sequencing validation of 
individual library members. Pick 20 colonies for 
whole-plasmid sequencing. Optionally, these 
variants can be stocked, and possibly added as 
additional calibration variants. Ensure that clonal 
variants have expected sequences before 
proceeding.
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In this stage,  growth manipulations are performed on a pooled 
library of ~100,000 members in the presence of the selective 
antibiotic, and samples are miniprepped  and prepared for 

sequencing.

7.1 Bottlenecking the Library to 
Achieve Target Diversity (100,000 
Members)
If the initial library diversity is significantly greater than 100,000,  
bottleneck the library to a diversity of 100,000 or less  for 
measurement. Bottlenecking ensures good sequencing 
coverage of the pilot experiment by delibrarely capping the 
number of library members.
There are two protocol options for bottlenecking the library 
outlined in the Library Bottlenecking Protocols25. The first protocol 
using a flow cytometer with a volumetric, positive-displacement 
sample introduction to count the number of cells per unit volume 
in a diluted sample of the library culture is preferred. The cell 

7. Pilot-Scale Pooled Assay (100,000 variants)

Figure A21: Process flow and decision tree diagram for running the pilot-scaled pooled assay.

count is used to prepare a bottleneck culture with a specified 
number of cells (~100,000). The second protocol uses basic 
microbial culture equipment to grow and pick a colony based on 
estimating colony forming units closest to the 100,000 target. It 
is less precise, but does not require any specialized equipment 
beyond what is needed for basic bacterial cell culture. Follow 
the protocols

7.2 Nanopore Sequencing and 
Pooling QC
Mutations (or assembly errors) in the assay plasmid can break 
the selection circuit and give a phenotype where the antibiotic 
resistance gene is always highly expressed. Nanopore results 
will be used to identify plasmid barcodes that should be ignored 
because of significant plasmid errors/mutations.
Culture one aliquot of library freezer stock; extract the plasmid 
and send for Nanopore (Oxford Nanopore Technologies, Oxford, 
UK)  sequencing of the library  (10 Gb for initial QC).

Stage Gate 8
If the bottlenecked library pool passes the QC described 
below, process the samples through the growth-based 
assay. If not, troubleshoot the plasma extraction procedure 
and library construction procedures. Analysis for these 
QC requirements are incorporated into the NIST team’s 
Github.
• Analyze the number of distinct barcodes. This should 

be comparable to the expectation based on the 
estimated number of transformants or the size of the 
bottleneck applied to the library after transformation.
- This will require barcode clustering with a tool like 

bartender1.1, which is normally used with the Illumina 
sequencing data, but can also be used directly with the 
nanopore data.

• Analyze the abundance distribution of each barcode 
(i.e., a histogram of the number of nanopore reads 
for each barcode). The number of distinct barcodes 
should be close to the expected library diversity (i.e., 
100,000), and the width of the distribution, measured 
as the ratio between the 99th quantile and the mode, 
should not be greater than 100.

• Analyze the distribution of barcode nearest-neighbor 
edit distances (Hamming or Levenshtein). With the 
barcode design proposed here, there should not be 
any barcodes with nearest neighbors with a distance 
of less than 4. 
- With the relatively high error rates of nanopore sequencing, 

there may be some apparent barcodes with nearest 
neighbors with distance less than 4. We should check that 
all of them are plausibly explained as nanopore read errors.

• Analyze the fraction of plasmids with complete 
assembly. More than 80% should have no missing 
parts.

• Analyze the rate of off-target mutations in the library 
(mutations outside the gene of interest, where the 
design should be constant). 

• Analyze the distribution of the number and location 
of mutations in the GOI and other variable sequence 
regions.
- The number of mutations per GOI and the locations of those 

distributions should be consistent with the expectations 
based on the methods used to generate library diversity.

- Or, if library diversity is not just due to point mutations (e.g., 
shuffling, chimeras), the number of distinct genotypes 
should be consistent with expectations based on the 
methods used to generate library diversity.
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This assay grows up the bacteria five times, generating data 
for four timepoints. Step-by-step details of the pooled assay 
can be found in the Pooled, Growth-Based Assays protocol 
using the Variant Library branch24.

The plates to include in this assay include: 
Plate 1 - First growth in a 96-well plate. This acts as a starter 
culture for the following plates.
Plate 2 - Zero antibiotic time point (t=1), but does contain 
different additives (e.g., ligands or inhibitors). This time point 
can be used to obtain a baseline for the abundance of each 
barcode before selection begins.

Plate 3 - First antibiotic time point (t=2). This first time point will 
best capture data for low-activity variants, which will quickly 
drop out of the pool as selection begins.
Plate 4 - Second antibiotic time point (t=3).
Plate 5 - Third antibiotic time point (t=4). This last time point 
will best capture data that distinguishes fitness amongst high-
activity variants, which will remain in the pool throughout 
selection.

Stage Gate 9
During this experiment, several QC steps are done to confirm 
that the assay is running  as intended. If the data passes all QC 
checks outlined below, then proceed to sequencing. If these 
QC checks fail, samples generated by the method do not 
proceed to sequencing. In case of failure,  review the manual 
sample loading steps and check liquid handling log files for 
accuracy.
• Analyze the number of distinct barcodes. This monitors 

bacterial growth by measuring absorbance. This protocol 
calls for growing bacteria in a heated shaking plate reader. 
If available, measuring growth curves is valuable as a way to 
roughly monitor the growth of the cultures. Samples might 
fail QC if the final optical density increases during each 
incubation step, indicating that the incubation time is not set 
properly or if the culture in one of the wells (e.g., without 
antibiotic) fails to grow as expected.

• Quantify DNA extraction. After extracting the plasmid from 
each sample, most of the extracted plasmid is used in the 
BarSeq library prep.  The remaining portion should be used 
to quantify the amount of plasmid DNA extracted for each 
sample at each time point using Qubit or an equivalent 
DNA quantitative measurement. Because DNA extraction 
is occurring on a small sample volume of a low-copy 
plasmid, yields are expected to be low; for the first time 
point, a typical yield should be approximately 1 ng/uL (in 
~50 uL). For subsequent time points, the yields will be lower, 

particularly for the samples grown with the highest antibiotic 
concentrations; yield for time points 3 and 4 may be below 
the detection limit for the Qubit measurement. Samples 
might fail QC if samples that are expected to have high DNA 
concentration (e.g., early time points and samples grown 
with zero antibiotics) have very low DNA concentrations 
(e.g., less than 10% compared with similar samples).

• Quantify sequencing-ready DNA. The amount of amplified 
DNA at the end of the BarSeq library prep should also be 
measured for each sample at each time point using Qubit 
or an equivalent DNA quantitative measurement. Expected 
yields are between 10 ng/uL and 30 ng/uL (in 45 uL), though 
some samples could have as little as 1 ng/uL (e.g., samples 
grown with the highest antibiotic concentration at the later 
time points). This DNA quantification should also be used 
to rebalance the DNA amount for each sample when the 
samples are pooled to be sent to the sequencer. The DNA 
product from the BarSeq library prep should also be run on 
gels for each time point and compared with results obtained 
during BarSeq method development. The gels should not 
have any visible bands that are shorter than the expected 
amplicon size (315 bp); shorter bands indicate incomplete 
PCR cleanup that could result in a very low sequence 
count from Illumina sequencing. As with the plasmid DNA, 
samples might fail QC if samples from early time points or 
samples grown with zero antibiotics have very low DNA 
concentrations (e.g., < 5 ng/uL).

7.3 Pooled, Growth-Based Assay

Figure A22: Process flow diagram for running the pooled, growth-based assay.

http://dx.doi.org/10.17504/protocols.io.5qpvokq1bl4o/v1
http://dx.doi.org/10.17504/protocols.io.5qpvokq1bl4o/v1
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7.4 Sequencing
In this step, the final pool is sequenced in two stages of 
increasing depth, interspersed with bioinformatic QC analysis.
The cells passaged in this assay only undergo an upper limit 
of at most ~10 doublings, so it is unlikely that any cells evolving 
mechanisms to evade selective pressure will take over the 
population and render the experimental results null. However 
‘cheaters’ can exist in the pooled assays. In these cases, 
some of the sequencing data will be lost to the adapted cell 
(proportional to the percentage of the adapted cells in the 
assay), but the remaining results will still be valid.
To prepare the pool for the sequencing provider, do the 
following (Fig. A23):
1. Pool each of the four replicates of a given condition from 

a single time point. This is done for time points 1-4 in the 
Pooled, Growth-Based Assays protocol using the Variant 
Library branch24.
a. Run the automated mini-preps immediately after each 

time point to give 24 plasmid DNA samples.
b. All four time points together give 96 plasmid samples.

2. Process those 96 plasmid samples with the BarSeq protocol 
to give PCR product samples.
a. Follow the Automated Bar-Seq Library Preparation and 

Pooling protocol23.
3. Pool the PCR product samples in a way to try to re-balance 

the amount of DNA from each. Send a single tube for 
sequencing.
a. Use only some of each sample to pool for sequencing 

(keep a portion of each of the 96 PCR products separate) 
in case the balance between samples for subsequent 
sequencing orders must change.

b. Follow the pooling protocols outlined in the Automated 
Bar-Seq Library Preparation and Pooling protocol23.

4. Send the pooled sample to a sequencing provider to be 
sequenced as a “pre-made library”. Order one lane of 
NovaSeq for initial data.

Stage Gate 10
If the sequencing data passes all of the QC checks 
outlined below, move on to analysis of the pooled data 
analysis and machine learning evaluation.  If not, order 
additional sequencing.
1. Inspect the redicted fitness of calibration variants. 

The first good indication of whether or not the assay 
worked is in the plots of fitness versus function for 
the calibration variants. The measured ‘fitness’ of 
calibration variants (their doubling time in growth-
based assay) should track the measured ‘function’ 
of the same variants (their measurements in lower-
throughput higher fidelity assay).

2. Inspect initial well-to-well variability of barcodes. At 
the first time point, all the samples should have the 
same distribution of barcode abundance (because 
no antibiotic was applied at that time point). Thus, the 
variability of barcode abundance from well-to-well in 
the first time point can also be checked. The barcodes 
should be evenly distributed amongst samples: As 
a baseline, the relative standard deviation for the 
barcode read fraction at the first time point should 
be consistent with Poisson sampling of the barcode 
reads: std(read fraction)/mean(read fraction)≅1/
sqrt(mean read count per sample). 

3. Inspect barcode abundance. Plot a histogram of how 
often each unique barcode occurs. All barcodes 
should exhibit good read coverage, with a minimum 
of 10 barcodes per sample at each time point. The  
barcodes should be relatively evenly distributed at 

early time points and should become more long-tailed 
at later time points as low-activity variants drop out. 
Specifically, for the first time point, the barcode count 
distribution should satisfy a QC check similar to that 
applied to the nanopore sequencing (Stage Gate 8): 
the width of the distribution, measured as the ratio 
between the 99th quantile and the mode, should not 
be greater than 100.

4. Inspect the total number of barcodes per sample. 
Sequencing has pooled together four replicates 
of 24 conditions at several time points. In this step, 
use bioinformatics to inspect whether or not samples 
were successfully pooled, or if uneven coverage of 
a particular sample requires more reads. Apart from 
intentional under-sampling of the first time point, most 
samples should have the same total number of reads 
within a factor of 3. A few samples, particularly at later 
time points, can have a read count more than 3-fold 
lower than other samples but if any samples have a 
read count more than 10-fold lower than the geometric 
mean for other samples, that low-count sample should 
be re-balanced (i.e., more of that sample included in 
pooling) if additional sequencing is run.

5. Order additional sequencing if necessary and 
repeat the QC for larger library diversities (>100k 
barcodes). Typically, one should order another lane of 
sequencing, but only for  a sample pooled from time 
points 2-5 (growth plates 3-5). 

http://dx.doi.org/10.17504/protocols.io.5qpvokq1bl4o/v1
http://dx.doi.org/10.17504/protocols.io.5qpvokq1bl4o/v1
http://dx.doi.org/10.17504/protocols.io.3byl49qdjgo5/v2
http://dx.doi.org/10.17504/protocols.io.3byl49qdjgo5/v2
http://dx.doi.org/10.17504/protocols.io.3byl49qdjgo5/v2
http://dx.doi.org/10.17504/protocols.io.3byl49qdjgo5/v2
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Figure A23-A25: Sequencing process. A23) Illustration for the two-step pooling and consolidation of samples coming out of the pooled, 
growth-based assay. The exact plate map will be dependent on the format of each new protein function being onboarded. 24) Barcode 
reads from previous NIST experiments. Top: A histogram plot of the total number of barcode reads for each variant (summed over all 
samples and time points). Bottom: Another example of a library undergoing six rounds of selection and becoming more long-tailed. 25) 
Barcode reads per sample from previous NIST experiments. The example of 96 samples is from 24 wells/conditions x 4 time points. 
Samples 1-24 are from the first time point, with intentionally less data for those samples.

A23

A24

A25
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8.1 Calculating Quantitative Protein 
Activity
The goal of these growth-based assays is to produce 
quantitative measurements of protein function. To achieve this, 
the plasmid system is designed to enable pooled assay formats 
using barcodes that can be compared to a standard curve 
created by the calibration controls. During the course of the 
pooled assay, cells are iteratively grown and challenged during 
five growth cycles. The pools of strains from cycles 3-5 are 
sequenced  to quantify the barcodes present in the samples 
(in general, each barcode represents a unique protein variant/
target combination). The strategy outlined below is used to 
translate the barcode counts for each variant in each condition 
into their respective quantitative functions.
An initial draft of a complete analysis pipeline can be found at: 
https://github.com/djross22/nist_lacI_landscape_analysis. 
In the long term, Align to Innovate will host a version of this 
analysis pipeline to be used for dataset expansion (additional 
sequences and new protein functions). 
At a high level, the steps of the analysis include:
1. Parse the barcodes. Here, the input is raw barcode 

sequencing data (Illumina), and the outputs are text files 
listing the barcode sequence, sample multiplexing tag 
sequence, and unique molecular identifier sequence for 
each read, with one file for the forward reads and one for 
the reverse reads.

2. Cluster the barcodes. Here, the inputs are the output files 
from the previous parsing step, and the outputs are files 
indicating the consensus sequence for each barcode 
sequence (i.e., cluster center), cluster IDs (typically an 
integer), and the sequencing read errors found in the 
dataset for each cluster ID.
a. Depending on the clustering algorithm used, an additional 

step may be added to merge clusters for barcode reads 
with in-del errors (resulting in different length barcodes).

3. Use the long-read Nanopore sequencing and the barcode 
clustering results to identify the genotype corresponding to 
each barcode ID: the sequence of the protein of interest, 
the DNA sequence it interacts with (e.g., operator, peptide 
substrate), and the sequences for all other portions of the 
plasmid.   

4. Sort the barcode reads by sample and count the number of 
reads for each barcode ID in each sample at each timepoint.

5. Use changes in the barcode counts versus time to calculate 
the fitness of each variant in each sample. Barcode counts 
are normalized by counts for the normalization variants.

8. Data Analysis and Machine Learning Evaluation
a. Depending on the method used for introducing 

sequence variability, it may be useful to combine the 
read counts for different barcodes that correspond to the 
same genotype and/or the same amino acid sequence 
for the protein of interest.

6. Use the fitness of each variant in each sample and the 
calibration variant data (fitness versus function) to convert 
fitness data to quantitative function estimates.
a. It is important in this step to use analysis methods that 

provide both a point estimate and an uncertainty estimate 
for the function(s) of each barcode variant.

Stage Gate 11
Evaluate data quality using the following steps:
1. Check reproducibility. Typically, there are some 

genotypes that are present with multiple copies 
in the library (with different barcodes). For 
example, with random mutagenesis strategies 
for library generation, the WT sequence will 
often be present with hundreds or thousands 
of copies. Sets of duplicate genotypes should 
be used to evaluate the reproducibility of the 
results within a pooled assay and to check the 
uncertainty calibration for resulting function 
estimates (Fig. A26).

2. Compare the function estimate from the pooled 
assay with the singleplex function measurement 
for the calibration sequences. This should give an 
upper bound on the fidelity of the measurement 
(lower bound on the typical RMSE).

3. Evaluate the distribution and variance of the 
data. If the data has a non-reproducible, strange 
distribution, running ML on it probably won’t be 
very useful nor will the data be of the quality we 
want to contribute to the project.

Figure A26: Function versus barcode count from previous NIST 
experiments. These are results for over 250 WT proteins with different 
barcodes.

https://github.com/djross22/nist_lacI_landscape_analysis
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8.2 ML Analysis Strategy for 
Pooled Assay Data
Through the collection of data using these high-throughput, 
pooled, growth-based assays, data analysis tools and machine 
learning models will be utilized to evaluate the data and ensure 
its quality for other machine learning applications. Use the 
methods outlined below, beginning with the pilot data collection, 
and iteratively throughout the large-scale data collection to 
continuously observe the dataset as it grows in size.

8.2.1 Data and Metadata Overview
The proposed data schema should work for all function data 
generated with the growth-based assay platform (Fig. A27). 
During methods development, the  schema will be updated 
to abide by common database schema recommendations 
and include all semantic data and linked data available. The  
schema should be flexible enough to incorporate diverse 
metadata. For example, being able to accommodate capturing 
all metadata relevant to a robot screening platform (e.g., gitlab.
com/larasuite). We will semantically annotate the data in a 
standardized way. The ontologies used will be selected during 
methods development to best suit this particular data and 
metadata well enough and will be useful for logic reasoning 
for machine learning (e.g. be decidable). The data will be 
stored in a unified format (JSON-LD,  XML, or YAML) for ease 
of consumption. The  schema proposed here is one possibility 
(Fig. A27), during the execution of the project, open schemata 
(e.g. in JSON-schema format) will be made publically available 
to describe the data and metadata.
The goal is to create a structure that is flexible enough to 
accommodate different protein families and labs with different 
instruments, yet standardized enough to be easily parsable 
for ML.  Along with the datasets, we will develop the protocols 
produced in a machine readable form, since these datasets will 
be later processed by artificial intelligence or ML applications 
advanced enough  to  «understand» the procedures.

8.2.2 Proposed Machine Learning 
Models and ML Metadata
Two main classes of ML models  should be  trained and deployed 
by users interacting with the Align datasets: models that need 
homologous sequences and encode specific mutations and 
models that are able to digest distant sequences (of different 
lengths.) One class of model may outperform another for a 
user’s specific engineering task, so several different model 
architectures should be trained and evaluated from both 
classes to provide a broad demonstration of the data:
1. Class 1: Models that need homologous sequences and 

encode specific mutations. These models will not be able 
to generalize beyond this homology. For non-probabilistic 
regressors predictive uncertainty can be determined from 
cross-validation ensembles.
a. Standard linear and nonlinear regressors on top of a 

simple encoding (1-hot of mutations, physico-chemical of 
substituted amino acids): 

- Ridge or Kernel-Ridge: strongly-regularized, simple regression 
algorithms which would work to an extent, and hopefully already 
be useful, even with small amounts of data3.

- Gradient boosted trees: out-of-the box regressors that would 
be expected to give good baselines on some of the encodings. 
The regressor collection can also contain neural network-based 
models suitable for small data.

- Neural networks for deep learning: such as a graph-based 
approach25 which has the advantage of encoding ligand 
information.

- Transformers that have been shown to powerfully predict protein 
fitness2.

- Lasso, Bayesian ridge, Gaussian Processes. 

b. LANTERN (landscape interpretable nonparametric 
model)26: a fully interpretable genotype-phenotype 
landscape model created and used by David Ross’s 
group at NIST.

- This model can turn changes in function into a linear combination 
of mutation effect vectors, providing  insight into how each 
mutation individually impacts the protein’s function.

Figure A27: Data scheme for all data and metadata to be collected during 
the pooled, growth-based assay experiments.
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- Additional models that may be tested of this type are the Mave-
NN27 and MoCHI28 models

2. Class 2: Models that are able to digest distant sequences 
(of different lengths.)
a. Models like 1a), but using transfer encodings from ‘large 

language models’ like ESM, UniProt etc.  All models in 
class 2 can also be applied in class 1, but a real advantage 
is only to be expected once you want to generalize to 
proteins that are not very close (by a number of point 
mutations) to the proteins already seen by the model. 
Ligand information can also be encoded as language.

b. Models using graph neural networks on computed/
estimated 3D-structures or  automated docking for such 
structures.

Metadata Collected With Each Model Run
All the models will have certain metadata in common, but 
some will have extra metadata. The guiding philosophy of this 
proposal is to capture and report all possible metadata for 
each of the proposed models using a consistent structure. We 
will create an infrastructure to capture all relevant metadata 
and the protocols used to perform ML analysis in a manner 
that allows for extensibility and  machine readability.
As an example, in the case of using a LANTERN model, the 
following metadata will be reported:

• Model parameters: Epochs, dimensions, learning rate.
• Hardware information: CPU, GPU, RAM in GB (AWS instance 

type, etc.).
• Elapsed time to train.
• Split strategy.
• Set number (e.g., train/dev/test1.)
• Performance metrics: 

- Loss (neg log likelihood) vs. epoch plot.
- Root Mean Squared deviation.
- R2 correlation.
- Spearman coefficient (weighted and unweighted).
- Pearson coefficient (weighted and unweighted).
- Kendall’s tau
- Median absolute deviation

8.2.3 Proposed Methods for ML 
Evaluation
ML models require evaluation to determine if sparsity in the 
data or nuisance variables are affecting prediction accuracy. 
Initial models built on the pilot-scale pooled assay will inform 
decisions on the size of the large-scale assays. If  lack of data is 
hindering accuracy, variant density mapped to protein structure 
can quickly reveal variant-sparse regions with 3D context, 
allowing for targeted library expansion. Models will be cross-
validated using the same sets of shuffled data to maximize 
robustness.

Cross Validation Strategy 
Due to the enormous combinatorial space of possible 
sequences, even the large-scale dataset will still be comparably 
small and could result in estimates with a high variance. To 
combat this issue, we will utilize a nested splitting strategy to 

form sets for cross-validation of the data.  The data will be pre-
split into multiple sets following the form outlined below,  so that 
all tested models will be benchmarked using the same splits. 
By training/testing on the same split, any sets that have unusual 
distributions can be identified.
The outer split creates train and test sets:
• Train (used for model selection/hyperparameter tuning), 

further split into:
- Train-train set

- Train-development set

• Test (used to report the average results on selected models)
Additionally, the following strategies will be implemented as 
additional evaluations according to the number of wild-type 
proteins being measured within an assay:
1. For experiments on mutations of one wild type:

a. Random splitting (yields estimates of prediction loss on 
new samples drawn from the same distribution)

b. Splitting across different mutations (yields estimates of 
prediction loss on samples containing new mutations).

c. Splitting across different positions (yields estimates of 
prediction loss on samples across positions.) Separate 
positions will  only occur in one split thereby estimating 
the extrapolative power of models.

2. For experiments on mutations of several wild-types:
a. Splitting within each group of homologous variants 

according to a) b) c) above (yields estimates of prediction 
loss on new samples homologous to samples the model 
has seen so one can see whether having seen the other 
groups improves predictions on one group).

b. Split between groups of homologous variants according 
to a) b) c) above  (yields estimates of prediction loss on  
proteins non-homologous to the ones seen in training; a 
hard case, but very relevant for the development of the 
field).

Model Evaluation Steps
1. Determine if any of the metadata not relevant to measured 

fitness or function (e.g., day of the week, barcode, site 
information, plate number, run-order, set number (train/
dev/test), etc.) are influencing fitness predictions (i.e., 
are nuisance variables). This determines if there is any 
consistent bias in the data from experimental conditions or 
equipment.

2. Evaluate if the mutational coverage is adequate 
(“Qualitation”). 
a. Do a structural analysis of the coverage of protein 

sequence/surface.
- Acquire structure/model of the protein and map all mutant 

positions observed; this provides a  3D heatmap of mutant 
hotspots.

- Calculate percent diversity across 1D sequence string.
- Calculate percent diversity across the surface area.
- Consider all of these metrics as variables for predictive power: 

how does 1D/2D/3D mutational coverage lead to the model’s 
predictive power?

b. Do QC in the initial model. Prior probability will be 
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examined as dimensions are added to the model.
- If large decreases in probability occur as dimensions increase 

(Fig. A28, left), the training data is influencing the model 
predictions within these reduced dimensions.

- If small, steady declines in the prior probability occur as 
dimensions are added (Fig. A28- right), the training data does 
not strongly influence model prediction. This implies there is not 
enough mutational coverage.

3. Determine dataset size for large-scale collection by 
checking how many variants are needed to build an 
accurate model.
a. Do this by checking how the metrics values change as 

the total number of data points used for the selected 
models varies. 

- Set the minimum number of data points as the amount that 
achieves the best metrics values (primarily the RMS deviation). 
If the best metrics achieved are still considered poor, estimate 
the relationship between total data points and model accuracy to 
determine how many additional points are needed.

4. Compare the differences between good and bad models. 
a. During step 2, identify “good” and “bad” baseline models 

during step 2 based on their metric values and compare 
them as the number of data points included is increased.

- If the difference between good models and basic/poor models 
increases, the data contains a real trend.

- If the difference does not increase, there is a deep flaw in the 
dataset.

5. Predict an initial set of variants to evaluate and validate the 
models (quantitation).
a. Determine the correlation to knowns. Predict the 

calibration+norm variants, plot observed fitness versus 
predicted, and determine if predicted and observed 
fitness are monotonously related.

b. Assess predictive power. Order 20-50 predicted protein 

Stage Gate 12
If at least one of the four ML models successfully 
passes the evaluation steps outlined above, 
proceed to large-scale data collection. If not, 
perform the following actions to improve model 
accuracy (ordered by increasing effort and cost):
• Adjust the model parameters (epochs, 

dimensions, learning rate, etc.).
- Define an acceptable range of n parameters to 

iterate through to prevent this becoming an endless 
process.

• Return to step 4.3 and repeat data collection 
using  another random aliquot of the library.

• Create targeted variant sets by analyzing 
mutational diversity as described in 5.2.3.2a and 
generating specific variants to fill in gaps

Note: After large-scale data collection, repeat 
the process with any failed models using the 
expanded dataset to determine if a lack of data was 
responsible for the failure.

sequences with phenotypes representative of the whole 
observed landscape; this number can be adjusted based 
on individual assay conditions for running one 96-well 
plate. Protein function will be determined using the 
procedure outlined in the Singleplex Assay for Function 
Measurements protocol21. Then, observed fitness versus 
model-predicted fitness will be plotted. 

The reported average performance on any test set will be 
an estimate of running the same model selection and fitting 
procedure on a similar training set and applying it to a similar 
test set. The test performance will not be used to perform a 
second round of model selection, because that would again 
bear the risk of ‘conceptual overfitting’.

Figure A28: Left: The desired highly predictive outcome of ‘large decreases’ in probability as dimensions are decreased. 
Right: An example of a model that is poorly predictive because there are very small decreases in variance as dimensions are decreased.

http://dx.doi.org/10.17504/protocols.io.dm6gpzwx8lzp/v2
http://dx.doi.org/10.17504/protocols.io.dm6gpzwx8lzp/v2
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Now that a new protein function has been onboarded and 
pilot-scale data has been collected and analyzed, the 
assay can be routinely run at a larger scale. The main 

difference between the pilot-scale and large-scale assay is 
the library size. In between batches, data will be inspected to 
determine if any assay condition adjustments are needed (e.g., 
choice of concentrations for antibiotics and other additives). 
Collection differs only in two ways:
1. Use of larger pool sizes. Initially, pools are bottlenecked 

to 100k variants. The results of the pilot-scale assay will 
be used to estimate how large the pool size can be for a 
target level of data accuracy and with constraints on the 
number of lanes of sequencing and gigabytes of Nanopore 
data. Additionally, insights from the ML analysis will enable 
the  evaluation of the number of data points needed to 
improve model accuracy. Full-scale data collection should  
be accomplished with larger pool sizes of 100k-500k per 
pool. To determine the optimal pool size after the pilot-scale 
pooled assay, determine how the measurement uncertainty 
for the pooled assay scales with the number of Illumina 
reads:
a. Identify several variants from the pilot dataset. Synthesize 

and measure those variants (as clonal variants), using the 
same high-fidelity measurement used to characterize the 
calibration variants. Use these high-fidelity measurements 
to check the calibration of the uncertainty estimates from 
the pooled assay data. If the pooled assay uncertainty 
is well-calibrated (or after the data analysis is adjusted 
to make it well-calibrated), use the empirical scaling 
of uncertainty with barcode read count to consider 
hypothetical scenarios such as measurement of a library 

9. Large-Scale Data Collection
with larger diversity (lower barcode count per variant) 
and smaller diversity (higher barcode count per variant).

b. The optimal pool size will also depend on these factors:
- Sequencing strategy (Nanopore and Illumina) and the return 

on investment for sequencing deeper versus adding additional 
targets.

- Number of assay conditions for the pooled assay (roughly the 
number of antibiotic concentrations times the number of additive 
conditions). With more conditions, the Illumina sequencing would 
need to be spread across more samples.

- Relative abundance distribution of variants in the library. With a 
more even distribution, a larger library with an equivalent amount 
of Illumina sequencing could be measured.

2. Measurement of diverse libraries. Multiple libraries 
generated using different library diversification techniques 
and/or user-provided samples can be measured during full-
scale data collection. These could consist of more divergent 
sequences, as well as new protein families (e.g., adding 
both well-characterized and uncharacterized proteins from 
the TetR family and additional TF families). 

When calculating quantitative protein activity, the predictive 
capabilities are only reliable within the data range of the 
calibration controls used to develop the standard curve (i.e., 
prediction starts to fall off quickly outside of this calibrated 
range). To continuously improve the dynamic range of the 
assay as more diverse libraries are explored, new calibration 
controls of higher fitness should be selected, validated, and 
incorporated into the growth-based assay. Throughout large-
scale collection, continuously look for better calibration control 
candidates and test them according to the procedures outlined 
in Section 5.2.2.
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10. Dataset Expansion

This proposal outlines a platform for collecting functional 
data and provides specific examples of two protein 
function datasets. The proposed pooled, growth-based 

assay format was chosen because of its extensibility. Growth-
based assays are compatible with several existing selection 
cassettes for determining additional protein functions and 
biophysical properties (Fig. 3). There is already interest in 
expanding this platform to examine new protein functions,  
and leveraging common plasmid designs, protocols, and 
analysis pipelines will facilitate onboarding new protein 
functions. Several scientists have already expressed interest in 
onboarding new selection cassettes into the platform, such as:
• A general solubility circuit to distinguish between proteins 

that express poorly versus proteins with low function [idea 
from Ben Lehner]. 

• Cas protein + gRNA pairs to focus on the gRNA pairing 
problem [idea from Marc Güell, Dimitrije Ivančić, and Noelia 
Ferruz]. 

• Aminoacyl-tRNA synthetases to challenge the field in terms 
of designing enzymes that interact with small molecules and 
RNA [idea from Ross Thyer and Erika DeBenedictis].

• Protein-protein binding [idea from Ron Koder (CUNY) and 
Erika DeBenedictis].

• Bacterial two-component systems [idea from Katie Hatsat 
and the DeGrado lab (UCSF)].

Literature searches can also be used to identify many additional 
circuits. For example, any molecular biology paper that uses 
flow cytometry to separate functional from non-functional 
protein variants can be converted into a growth-based assay 
by exchanging the fluorescent protein for an antibiotic protein. 
Additionally, several studies showcase another class of growth-
based selections that can be created with synthetic auxotroph 
strains. Using these strains in our platform  would allow us to 
link the function of any cell metabolism enzyme to growth.
Align is also incentivizing participation in this growing effort; 
Align will cover experimental costs, including sequencing, 

Component NIST Equipment Description

Liquid handling (growth-based assay) Hamilton STAR with 8-channel and 96-channel heads*; 
and MPE2 positive-pressure filter press (used for 
automated plasmid extraction)*

Hamilton STAR with 8-channel and 
96-channel heads*

Liquid handling (BarSeq library prep) Hamilton STAR with 8-channel and 96-channel heads, 
with magnet base and multiple heater-shakers*

None

Plate sealer Azenta (4titude) model a4s‡ Manual

Plate peeler/de-sealer Azenta (Brooks) X-Peel‡ Manual 

Centrifuge Hettich Rotanta 460⸸ Agilent V Spin↓

Multimode plate-reader Agilent (Biotek) Neo2↓ BMG Labtech Spectrostar Omega⸸

Flow cytometer Attune flow cytometer with autosampler▲ <>

Table A5: Equivalent automation equipment capabilities at NIST and The Francis Crick Institute. 
*Hamilton Company, Reno, USA; ‡Azenta Life Sciences, Burlington, USA; ⸸Hettich, Tuttlingen, Germany; ↓Agilent 
Technologies, Santa Clara, USA; ▲ThermoFisher, Waltham, USA; ⸸BMG LABTECH, Ortenberg, Germany.
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11. Suggested Reading

Below is a suggested curated reading list to better 
understand this document and its context:

This proposed dataset platform is part of Align’s Open Dataset 
Initiative, which pioneers new ways to identify, collect, and 
share large datasets in life science. Read more about the Open 
Datasets initiative here:
“What Biology Can Learn from Physics”, December 2023, 
Asimov Press

Growth based assays have previously been used to gather 
large sequence →  function datasets. See this paper for an 
example of collecting large datasets on the LacI protein:
“The genotype-phenotype landscape of an allosteric protein”, 
2021, Molecular Systems Biology

In addition to the proposed platform described in this 
document, three groups have proposed specific protein 
functions to onboard. See the following proposals for 
onboarding transcription factors, proteases, and aminoacyl 
tRNA synthetases.

“Design of growth-coupled measurements of transcription 
factor function”, 2024, Align to Innovate

“Design of growth-coupled measurements of protease 
function”, 2024, Align to Innovate

DOI:  10.5281/zenodo.12819109 1

Design of growth-coupled measurements of 
transcription factor function 

Uses a gene circuit to tie transcription factor 
activity to bacterial cell growth

Calibration variants span the dynamic range 
of activity enable quantitative function 
measurements

First dataset collection will focus on RamR, LacI 
and TetR transcription factor families.

A proposal for onboarding Transcription 
Factors to the protein sequence-to-function 
measurement platform.

Reviewed

DOI:  10.5281/zenodo.12819116 1

Design of growth-coupled measurements of 
protease function

Uses a gene circuit to tie protease activity to 
bacterial cell growth that relies on cleavage of 
lysozyme from a T7 RNAP

Calibration variants span the dynamic range 
of activity enable quantitative function 
measurements

First dataset collection will focus on TEV 
proteases.

A proposal for onboarding proteases to the protein 
sequence-to-function measurement platform.

Reviewed
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