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Abstract Here we will show that the q-integers, the q-analogue of the integers that we can find
in the q-calculus, are forming an additive group having a generalized sum similar to the sum of
the  Tsallis  q-entropies  of  independent  systems.  The  symmetric  form of  q-integers  will  be
studied too. We will see that these numbers are linked to the Kaniadakis \kappa-calculus. In
the article,  a final  discussion will  be devoted to the link of the q-integers to the Mersenne
numbers. Besides the discussion of the previously mentioned numbers, the general aim of the
paper is that of popularizing the existence of the q-calculus.
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Introduction  Several mathematicians have contributed to a calculus that today is known as

the q-calculus [1-6]. As a consequence of the many contributions, we find that it is known as

“quantum calculus,” or “time-scale calculus”, or “calculus of partitions” too [5]. It is also called

the “calculus without  limits”,  because it  is  equivalent  to the traditional  infinitesimal  calculus

without  the  notion  of  limits.  Besides  being  known  with  different  names,  the  q-calculus  is

expressed by means of different notations or, as told in [5], by different “dialects”. Here we will

use the approach and the notation given in the book by Kac and Cheung [6]. 

The first aim of the work here proposed is that of showing the following fact. The q-integers,

the q-analogue of the integers that we can find in the q-calculus, are forming a group having a

generalized sum which is similar to sum of the Tsallis q-entropies of independent systems.

After, we will see that the symmetric form of q-integers is linked to the Kaniadakis calculus. We

will conclude the discussion considering the Mersenne numbers and their link to the q-integers.

Let us stress that, besides the discussion of the previously mentioned numbers, the general

aim of the paper is that of popularizing the existence of the q-calculus.

The q-integers 

Let us start defining the q-integers.

In the q-calculus, the q-difference is simply given by: 

dq f =f (qx )−f ( x )



From this difference, the q-derivative is given as:

(1) Dq f =
f (qx )−f ( x )

qx−x

The q-derivative reduces to the Newton’s derivative in the limit q→1 . (1) is also known as

the Jackson derivative, after Frank Hilton Jackson (1870 – 1960), the English clergyman and

mathematician who worked at the beginning of the XXth century on the q-calculus.  

Let us consider the function f (x )=xn . If we calculate its q-derivative, we obtain:

(2) Dq xn=
(qx )n−xn

qx−x
=qn−1

q−1
xn−1

Comparing the ordinary calculus, which is giving (xn ) '=n xn−1 , to Equation (2), we can

define the “q-integer”  [n]  by:

            

(3) [n]=qn−1
q−1

=1+q+q2+.. .+qn−1

Therefore Equation (2) turns out to be:

Dq xn=[n ] xn−1

As a consequence,  the  n-th q-derivative of  f (x )=xn ,  which is obtained by repeating  n

times the q-derivative, generates the  q-factorial:

[n ] !=[ n ][n−1 ]. . .[3 ] [2 ][ 1]

Form the q-factorials, we can define q-binomial coefficients:

  

[n ]!
[ m ] ![ n−m ]!

This means that  we can use the usual Taylor  formula,  replacing the derivatives by the q-

derivatives and the factorials by q-factorials (in a previous work, we have discussed the q-

exponential and q-trigonometric functions [7]). Then, in the q-calculus, the q-integer [n] acts as

the integer in the ordinary calculus.



The group of q-integers

We known that the set of integers consisting of the numbers ..., −4, −3, −2, −1, 0, 1, 2, 3, 4, ...,

having as operation the addition, is a group. Therefore, let us consider the set of q-integers

given by (3) and investigate its group.  In particular,  we have to determine its operation of

addition.

Let us remember that a group is a set A having an operation • which is combining the elements

of  A. That is, the operation combines any two elements  a,b  to form another element of the

group denoted a•b.  To qualify (A,•) as a group, the set and operation must satisfy the following

requirements.  Closure:  For  all  a,b  in  A,  the  result  of  the  operation  a•b  is  also  in  A.

Associativity:  For all  a,b and c in A, it holds (a•b)•c = a•(b•c). Identity element: An element e

exists in A, such that for all elements a in A, it is e•a = a•e = a. Inverse element: For each a in

A, there exists an element b in A such that a•b = b•a = e, where e is the identity (the notation is

inherited from the multiplicative operation).

A further requirement is the commutativity: For all a,b in A, a•b = b•a.  In this case, the group is

known as an Abelian group. 

Therefore,  to qualify  a group as an Abelian group,  the set  and operation must satisfy five

requirements  which  are  known  as  the  Abelian  group  axioms.  A  group  having  a  non-

commutative operation is called a "non-abelian group" or "non-commutative group". For an

Abelian group, one may choose to denote the group operation by +  and the identity element

by 0 (neutral element) and the inverse element as −a  (opposite element). In this case, the

group is called an additive group. 

First, we have to define the operation of addition. It is not the sum that we use for the integers,

but it is a generalized sum which obeys the axioms of the group.

Let us start from the q-integer [m+n ] :

[m+n ]=qm+n−1
q−1

= 1
q−1

(qm qn−1+qm−qm)= 1
q−1

(qm(qn−1)+qm−1)

[m+n ]= 1
q−1

(qm(qn−1)+(qm−1)+(qn−1)+(1−qn))= 1
q−1

((qm−1)(qn−1)+(qm−1)+(qn−1))

Therefore, we have: 

(4) [m+n ]=[m ]+[n]+(q−1)[m ][n]

Then, we can define the generalized “sum” of the group as: 

(5) [m]⊕[n]=[m ]+[n ]+(q−1)[m] [n ]



(for other examples of generalized sums see [8]).

If we use (5) as the sum, we have the closure of it, because the result of the sum is a q-

integer. Moreover, this sum is commutative. 

The neutral element is:

(6) [0]=q0−1
q−1

=0

Let us determine the opposite element [o] , so that:

 [o]⊕[n]=0

0=[0]=[o]⊕[n]=[o ]+[n]+(q−1)[o ][n]

−[n]=[o ]+(q−1)[o] [n]

(7) [o]=−
[n]

1+(q−1)[n]
=− qn−1

(q−1)qn
=q−n−1

q−1
=[−n]

The opposite element of q-integer [n] is the q-integer of  −n , that is [−n] .

Let us discuss the associativity of the sum.

It is necessary to have:

[m]⊕([n]⊕[l ])=([m ]⊕[n])⊕[l ]

Let us calculate:

[m]⊕([n]⊕[l ])=[m]⊕([n]+[l ]+(q−1) [n] [l ])

[m]⊕([n]⊕[l ])=[m]+[n]+[l ]+(q−1)[n ][ l]+(q−1)[m] [n ]+(q−1)[m] [l ]+(q−1)2[m ][n] [l ]

And also:

([m ]⊕[n])⊕[l ]=([m ]+[n]+(q−1)[m ][n])⊕[l ]

([m ]⊕[n])⊕[l ]=[m ]+[n]+(q−1)[m ][n]+[ l ]+(q−1)[m] [l ]+(q−1)[n ][ l]+(q−1)2[m ][n] [l ]

It is also easy to see that:

[m]⊕[n]⊕[ l ]=[m+n+ l ]



As we have shown, the five axioms of an Abelian group are satisfied. In this manner, using the

generalized sum given by (5), we have the Abelian group of the q-integers. 

The link to Tsallis calculus

Let us also note that the generalized sum (5) is similar to the sum that we find in the approach

to entropy proposed by Constantino Tsallis. 

In 1948 [9], Claude  Shannon defined the entropy  S of a discrete random variable Ξ as the

expected  value  of  the  information  content: S=∑i
p i I i =−∑i

pi logb p i [10].  In  this

expression, I is the information content of Ξ, the probability of i-event is pi  and b is the base

of the used logarithm. Common values of the base are 2, the Euler’s number e, and 10. 

Constantino Tsallis generalized the Shannon entropy in the following manner [11]: 

Sq=
1

q−1(1−∑i

pi
q)

Given two independent systems A and B, for which the joint probability density satisfies:

p( A , B)=p( A) p(B)

the Tsallis entropy gives:

(8) Sq ( A ,B)=Sq(A)+Sq(B)+(1−q)Sq ( A)Sq (B)

The sum of more than two terms of Tsallis entropies is discussed in [12].

The  parameter (1−q) ,  in  a  certain  manner,  measures  the  departure  from the  ordinary

additivity, which is recovered in the limit q→1 . 

Actually the group on which is based the Tsallis entropy, and therefore Equation (8), is known

as the “multiplicative group” [7,13,14]. As stressed in [15], the use of a group structure allows

to determine a class of generalized entropies. Let us note the group of the q-integers, with

addition (5), can be considered a “multiplicative group” too. 

Let us stress that we have a link of the multiplicative group to the Tsallis entropy. The group of

the n-integers had been studied in [16,17] too, but in these articles, a quite different expression

for  the  generalized  sum  had  been  proposed.  It  is  given  as  the  “quantum  sum”

[x ]⊕[ y ]=[x ]+qx [ y ] , where the link to the Tsallis calculus is less evident.



Symmetric q-numbers

In the previous discussion we have considered the group of the q-integers as defined by q-

calculus. In  [6] it is also defined the symmetric q-integer in the following form (here we use a

notation different from that given in the Ref.6):

(9) [n]s=
qn−q−n

q−q−1

Repeating the approach previously given, we can determine the group of the symmetric q-

integers. 

Let us start from the q-integer [m+ n ]s , which is according to (9):                                            

[m+ n ]s=
qm+ n−q−(m+ n)

q−q−1

and try to find it as  a generalized sum  of  the q-integers [m]s and [n]s .

By writing q=exp( log q) ,  the q-integer turns out into a hyperbolic sine: 

(10) [n]s=
qn−q−n

q−q−1 = en logq−e−nlog q

q−q−1 =2
sinh (n log q)

(q−q−1)

Apart from a numerical factor, this is the form of the generalized numbers proposed by G.

Kaniadakis in his k-calculus [18-22]. 

From (10), we can write also:

1
2
(q−q−1) [n ]s=sinh (n log q)

Therefore:

 [m+n ]s=
qm+n−q−(m+n)

q−q−1 =2
sinh((m+n) logq)

(q−q−1)

Using the properties: 

sinh(x+ y )=sinh xcosh y+cosh x sinh x  ; cosh x=√1+sinh2 x

we obtain:



[m+n ]s=
2

(q−q−1)
[sinh(m log q)cosh (n log q)+sinh(n log q)cosh (m log q)]

[m+n ]s=[m]s cosh(n log q)+[n]scosh (m log q)

[m+n ]s=[m]s √1+sinh2(n log q)+[n]s√1+sinh2(m log q)

Let  us define:  k=(q−q−1)/2  and then:  k [n]s=sinh (n log q) .  As  a consequence,  we

have the generalized sum of the symmetric q-integers as:

(11) [m]s⊕[n ]s=[m]s √1+k 2[n]s
2+[n]s √1+k2[m ]s

2

Let  us  stress  that  (11)  is  also  the  generalized  sum  proposed  by  G.  Kaniadakis  in  the

framework of a calculus [19-22], the details of which are given in [22].

By means of  (11), we can repeat the approach given previously for q-numbers (3) and study

of the group of the symmetric q-integers. 

The Mersenne numbers

In the case that q=2 , we have:

[n]=2
n−1
2−1

=2n−1

These are the Mersenne Numbers.  About these numbers, a large literature exists (see for

instance that given in [23]).  Among these numbers we find the Mersenne primes.

The numbers are named after  Marin Mersenne (1588 – 1648),  a French Minim friar,  who

studied them in the early 17th century.

Mersenne numbers are written as [23]: 

M n=2
n−1

Of course, because they are q-integers for q=2 , we have the generalized sum given in (5):

(5’) [m]⊕[n]=[m ]+[n ]+(2−1)[m ][n]=[m ]+[n]+[m] [n]

But we can repeat the calculus as an exercise.



We can start from the number M m+n  and calculate. 

 M m+n=2
m+n−1

M m+n=2
m+n−1=2m2n−1−2m+2m−2n+2n−1+1=2m(2n−1)−1+2m−2n+1+2n−1

M m+n=(2m−1)(2n−1)+2m−1+2n−1

Therefore, we can write the following generalized sum:

M m+n=M m⊕M n=(2m−1)(2n−1)+(2m−1)+(2n−1)

or:

                                        (12)  M m+n=M m⊕M n=M m+M n+ M m M n

(12) is the same as (5’). Let us stress once more that this is a generalized sum that we can find

in the case of the multiplicative groups [8]. 

Using (12), we can imagine for the Mersenne numbers the following recursive relation:

M n+1=M n⊕M 1=M n+M 1+ M n M 1

We can verify as follow:

2n+1−1=(2n−1)+(21−1)+(2n−1)(21−1)=2n+2n+1−2n−2+1=2n+1−1

The sum  (12) is associative, so that:

M m⊕M n⊕M l=M m+M n+M l+M m M n+M n M l+M m M l+M m M n M l

We cannot have a group of the Mersenne numbers, without considering also the opposites of

them, so that:

0=M n⊕Opposite(M n)

Therefore:

Opposite(M n)=−
M n

M n+1
=M−n

Explicitly: 

Opposite(2n−1)=−
(2n−1)

(2n−1)+1
=

(−2n+1)
2n =2−n−1

These numbers are the Mersenne numbers with a negative exponent. So we have:



M n−n=M n⊕M−n=M n+M−n+M n M−n

0=20−1=(2n−1)+(2−n−1)+(2n−1)(2−n−1)=2n+2−n−2+2n2−n−2−n−2n+1=0

Symmetric Mersenne  

Let us consider the symmetric q-integer in the case of q=2 . 

We can define the symmetric Mersenne in the following manner:

(13) M n
s=[n]s=

2n−2−n

2−2−1

By writing 2=exp (log 2) ,  (13)  turns out into a hyperbolic sine: 

(14) M n
s=2

n−2−n

2−2−1
= enlog 2−e−n log2

2−2−1 =2
sinh(n log 2)

(2−2−1)

Again, as previously told, apart from a numerical factor, this is the form of the generalized

numbers proposed by G. Kaniadakis.

Let us define k=(2−2−1)/2 ; we have the generalized sum of the symmetric Mersenne as:

(15) M m
s ⊕M n

s=M m
s √1+k2(M n

s)2+M n
s √1+k 2(M m

s )2

Of course, we have again the generalized sum proposed by G. Kaniadakis.

As a conclusion  we can note that,  by  means of  the generalized  sums,  we have found a

different approach to the Mersenne numbers too. In my opinion, it is also possible that it was

the form of the Mersenne numbers that inspired the Reverend Jackson to modify the usual

derivative into the definition (1) of the q-calculus.
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