Aqua da Vida Living Lab Adaptation of agricultural water management to climate change

Target Grant 3.0 Shaping soil retention as an element of counteracting agricultural drought and rational water management

Subtask 1: Running a LivingLab focusing on optimizing and disseminating practices that promote soil water retention

Subtask 2. Carry out monitoring of the status of flooding/waterlogging for the implementation of Package 9 Water Retention - Agri-environmental and Climate Action of the RDP and generate a map of areas

KODEKS DOBRYCH PRAKTYK WODNYCH w rolnictwie

Spis treści

Wstęp7	
Administracja wodna w Polsce7	
Zmiany klimatu w Polsce	

2. Wytyczne dla dobrych praktyk zarządzania wodą	
na obszarach wiejskich	15
2.1 Lokalne Partnerstwa ds. Wody	15
2.2 Mała i duża retencja	16
2.3 Sieci melioracji - utrzymanie rowów melioracyjnych	22
2.4 Racjonalne systemowe zarządzanie zasobami	32
2.5 Planowanie przestrzenne pod kątem zapobiegania	
skutkom susz	37
2.6 Wielokierunkowe wykorzystanie wód na obszarach	
wiejskich, usługi ekosystemowe obszarów wiejskich,	
w tym wód	50

Dobre praktyki zarządzania wodą w gospodarstwach	51
3.1 Dobre praktyki oszczędzania wody	51
3.2 Zbieranie deszczówki	52
3.3 Instalacje wody szarej	54
3.4 Mała retencja w gospodarstwach	55

4. Dobre praktyki rolnicze na gruntach ornych74
4.1 Organizacja produkcji roślinnej, gospodarka
płodozmianowa74
4.2 Zwiększanie retencji glebowej oraz ochrona zasobów glebo-
wych i próchnicy. Konserwująca uprawa roli
4.3 Zapobieganie zanieczyszczeniom zasobów wód przez
rolnictwo
4.4 Ograniczenie parowania z upraw124
5. Dobre praktyki rolnicze na użytkach zielonych127
5.1 Odwodnienia i nawodnienia podsiąkowe (grawitacyjne)127
5.2 Przyrodnicze aspekty dobrych praktyk - ochrona
śródpolnych wysp środowiskowych134
6. Dobre praktyki w nawadnianiu145
6.1 Precyzyjne nawadnianie147
6.2. Wskazania dotyczące planowania nawodnień –
zastosowanie harmonogramu nawadniania i różnych
÷ ,

Praktyki utrzymania żyzności i zdolności retencyjnych	
gleb na terenach wyżynnych, podgórskich i górskich.	
Melioracje przeciwerozyjne18	87
7.1 Agrotechnika przeciwerozyjna18	88
7.2 Nawożenie gleb dostosowane do położenia pola w rzeźbie	Э
terenu	70
7.3 Odpowiedni dobór i następstwo roślin w płodozmianie19	70
7.4 Korekta granicy rolno-leśnej	93

Code of Good Water Practices in Agriculture

- Landscape level
- Municipality/village level
- Farm level

Drought Mitigation Program >. Code of Good Water Practices in Agriculture> Living Lab

How effective are the practices and how much does it cost to implement them?

European Network of Living Labs http://enoll.org

Living Lab:

Living labs are open innovation ecosystems in real-world environments, using iterative feedback processes across the innovation lifecycle to create lasting impact. They focus on co-creation, rapid prototyping and testing, and scaling innovations and businesses, providing (different types of) shared value to the stakeholders involved. In this context, living labs act as intermediaries/organizers between citizens, research organizations, companies and government agencies/levels.

Why AdV LL?

SourceKozyra J., Praktyczne korzystanie z systemu monitoringu suszy. <u>www.susza.iung.pulawy.pl</u>. Kościerzyn, 18.03.2016

1700 m^3 per person ~ 65 x 10⁹ m^3 (average EU – 4600 m^3)

Poland. Current climate

Agricultural drought for spring cereals in spring 2018 (1.IV-10.VI) IUNG-PIB, 2018)

Poland. Current climate

Etp~300mm P~ 20mm

Climatic water deficite ~ 280mm

Weak sandy soils with ckacked limestone bedrock

Maximum air temperature and daily precipitation totals from July to August in 2015 in Kosiorowo (commune of Laziska, Opole Lubelskie District. Source: Kozyra J., IUNG-PIB)

Poland future climate

Prognozed (2007) drought frequency in 2020

Future return period [years] of	less frequent	no change			more	frequent
droughts with an intensity of today's	4					
100-year events:	<	100	70	40	10	>

Okolice Puław, wrzesień 2015

Phot. J. Kozyra

Phot. R. Wawer

Poland future climate

Percent difference of water-limited yield for wheat

A1B scenario, HadCM3, 2030–2000 (baseline)

Percent difference of water-limited yield for wheat A1B scenario, ECHAM5, 2030–2000 (baseline)

Źródło: IPCC, 2014

Water deficits "day after tomorrow" – simulatiob with SWAT

Future climate will forse change towards irrigated agriculture

Analyses of climatic water balance and outflow for Local Water Partnerships (1 pilot) Badora D., Wawer R., 2021. Klimada2 and SWAT model

CWB severely lower bedside a 10% increase of annual precipitation.+10%

County	Year	IV-IX CWB [mm]	Outflow [mm]
grojovski	2020	-147	14
grajewski	2050	-232	31
konoski	2020	67	25
копескі	2050	-17	31
miechowski,	2020	63	16
proszowicki, cieszyński	2050	-20	21
kutnowski	2020	-186	26
Kuthowski	2050	-238	32
kraćnicki	2020	67	17
KIASIIICKI	2050	-17	20
canacki	2020	63	18
Sanocki	2050	-20	34
siadlocki	2020	-185	19
Siedlecki	2050	-237	20
kościerski,	2020	-147	19
sepoleński	2050	-232	37

AdV LivingLab: organization

- Base farms under the control of IUNG-PIB
- 1 stage: innovative farms
- 2 stage: education of farmers, monitoring, experiments
- 3 stage: demonstration experiments, youtube channel
- 4 stage: extension of LL to other stakeholders

Automatic monitoring systems have been implemented (eAgronomist, ZENTRA Cloud, FarmCloud, A-Ster): Soil moisture Weather Surface water level Ground water level Water quality

For the sake of:

Assessing the availability of water resources Assessing the impact of selected practices (Code of Good Agricultural Water Practices) on soil water stress and the cost of their implementation Development of a publicly available practical vademecum for farmers to implement water practices

Elements of precision farming

Zoning

- Assessing soil variability: mapping and zoning;
- Variable applicaiton rates of fertilisation, water, plant protection.
- Seeding adopted to soil;

Monitoring:

- Assessing the variability of plant condition, spot detection;
- Precise adjustment of the location and doses of plant protection
- Assessment of water stress and selection of the time and dose of irrigation.
- Selective harvest.

Automation -> autonomic machines and robots

- Irrigation;
- Practices following tracks;
- Autonomical machinery;
- Autonomical systems of field/crop/farm management.

Trend: SMART FARMING!

Rys. 4. Mapa dystybucji przestrzennej wegla organicznego na pod stawie analizy 398 próbek. Debaene, Niedźwiecki, 2011

Variable rate applicators

Autonomicval solutions

Source: Global Agriculture Drones and Robots Market - Analysis and Forecast (2018-2028). BIS Research 2019.

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Rozwoju Regionalnego

Rolnictwo 4.0

Digital technologies can support farmers to produce "more with less" and find sustainable solutions to today's and tomorrow's challenges.

Aqua da Vida Living Lab: organization

- RZD IUNG-PIB
- Private farms

- Schools
- Companies
- Local governments
- NGOs
- Citizens
- 3/10 RZD 2 regenerative farms 2 organic farms 3 intensive farms

Rys. 1. Rozmieszczenie przestrzenne Rolniczych Zakładów Doświadczalnych IUNG-PIB

https://www.iung.pl/o-instytucie/struktura/rzd/

Living Lab

Rys. 4. Mapa dystrybucji przestrzennej węgla organicznego na podstawie analizy 398 próbek.

Rys. 2. Widma glebowe w zakresie VIS-NIR (528 próbek).

Spektrofotometr VIS-NIR, pomiary laboratoryjne

na poddeg goog (pegg) deg g

Rys. 3. Przewidywane vs. mierzone wartości Corg (%), niebieski– kalibracja, czerwony – walidacja.

iung Institute of Soil Science and Plant Cultivation

Living Lab

Living Lab

Institute of Soil Science and Plant Cultivation

Show Field, Osiny

Regulacja melioracji i małej retencji

Institute of Soil Science and Plant Cultivation

Living Lab, Pulki

Living Lab Gdynia Alvtu o Sopot O Gdańsk Elblag E28 zczecin Białystok Bydgoszcz Poland E30 E65 Warsav Brest Siedlor Łódź Bautze Wrocław Częstochowa Zamoso Katowice E55 155 Prague Kraków E40 Lviv Львів о ardubice Ostraval Bielsko-Biala Przemyśl Czechia Nowy Sacz

https://www.facebook.com/profile.php?id=100081577208993

https://aquadavida.mendixcloud.com/

Institute of Soil Science and Plant Cultivation

https://www.facebook.com/profile.php?id=100081577208993

https://aquadavida.mendixcloud.com/

Institute of Soil Science and Plant Cultivation

