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Abstract: The use of low-cost environmental sensors has gained significant attention due to their
affordability and potential to intensify environmental monitoring networks. These sensors enable
real-time monitoring of various environmental parameters, which can help identify pollution hotspots
and inform targeted mitigation strategies. Low-cost sensors also facilitate citizen science projects,
providing more localized and granular data, and making environmental monitoring more accessible
to communities. However, the accuracy and reliability of data generated by these sensors can be a
concern, particularly without proper calibration. Calibration is challenging for low-cost sensors due
to the variability in sensing materials, transducer designs, and environmental conditions. Therefore,
standardized calibration protocols are necessary to ensure the accuracy and reliability of low-cost
sensor data. This review article addresses four critical questions related to the calibration and
accuracy of low-cost sensors. Firstly, it discusses why low-cost sensors are increasingly being used
as an alternative to high-cost sensors. In addition, it discusses self-calibration techniques and how
they outperform traditional techniques. Secondly, the review highlights the importance of selectivity
and sensitivity of low-cost sensors in generating accurate data. Thirdly, it examines the impact of
calibration functions on improved accuracies. Lastly, the review discusses various approaches that can
be adopted to improve the accuracy of low-cost sensors, such as incorporating advanced data analysis
techniques and enhancing the sensing material and transducer design. The use of reference-grade
sensors for calibration and validation can also help improve the accuracy and reliability of low-
cost sensor data. In conclusion, low-cost environmental sensors have the potential to revolutionize
environmental monitoring, particularly in areas where traditional monitoring methods are not
feasible. However, the accuracy and reliability of data generated by these sensors are critical for their
successful implementation. Therefore, standardized calibration protocols and innovative approaches
to enhance the sensing material and transducer design are necessary to ensure the accuracy and
reliability of low-cost sensor data.

Keywords: low-cost sensors; water quality; air quality; calibrations

1. Introduction

Climate change is a significant challenge for environmental sustainability [1,2], and to
address this issue effectively, it is crucial to advance scientific knowledge by collecting and
comprehending information on various aspects related to climate change [3]. This requires
a comprehensive understanding of the global environmental system and data collection is
the most crucial part of this process.

The environment is facing significant challenges worldwide, particularly in terms of
pollution which substantially degrades it. These challenges are largely due to a combina-
tion of factors, including population growth, the ageing of infrastructure, the impacts of
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climate change, and ongoing global development [4,5]. Environmental pollution including
water, air and soil pollution has become prevalent globally. More research needs to be
conducted to effectively monitor and understand the sources, concentrations, and effects
of environmental pollutants to aid policymakers and citizens in developing strategies for
preventing pollution and protecting the environment, particularly in vulnerable regions.

Thus, there is an urgent need to develop a more effective and rapid method of moni-
toring environmental pollution given that the traditional methods of collecting data and
samples which often involve laboratory analysis are expensive, time-consuming, and
labour-intensive. Also, traditional data collection methods are not real-time and lack
the fast data collection and dissemination which are needed for an effective and timely
response to protect the environment [6,7]. The traditional method of monitoring the en-
vironment, e.g., water and air quality parameters, involves manual collection of samples
from different areas and carrying out several laboratory analyses to process, analyse and
characterise samples. These traditional methods for environmental monitoring are now
seen as inadequate for effectively monitoring the environment, partly because they are
also prone to human error [6,8]. This has led to several researchers emphasising the need
for developing low-cost, robust, and standard methods and sensors for identifying and
quantifying pollutants in the environment.

Environmental attributes such as the quality of water, air, and soil are usually observed
through traditional sensors located at established monitoring stations. These conventional
in-situ methods, employing stationary sensors, come with limitations in data resolution
and necessitate intensive training and maintenance. Meanwhile, when using satellite data,
challenges arise due to disparities in spatial and temporal scales compared to environmental
occurrences [9]. Furthermore, the need for increased data collection density has surged
over the last two decades, driven by population growth and escalating levels of air and
water pollution.

Recent advancements in digital electronics, wireless communication technologies, and
sensor manufacturing [10] have generated a growing demand within the field of environ-
mental science for low-cost sensor networks (LCSNs). These networks are increasingly
valuable for addressing both fundamental research inquiries and practical management
challenges [11,12]. This shift in approach is driven by the accessibility of low-cost sensors
(LCSs) equipped with user-friendly technologies and calibration methods that yield data
with enhanced spatial resolution [13–15]. Several factors, including the decreased costs of
microcontrollers for sensors, environmental sensor components, and straightforward com-
munication modules, have played pivotal roles in bringing about this shift. Additionally,
the expanded spatial coverage afforded by LCSs enables the generation of fresh insights
into environmental dynamics [16].

The term ‘low-cost’ sensor does not define a specific price range, as the cost can vary
depending on the specific parameters being measured. It can be defined as a sensor that is
relatively inexpensive to produce, purchase, and maintain compared to other sensors with
similar functionalities [14].

Low-cost sensors are the latest and most innovative technology used in monitoring
water and air quality in real time. The use of low-cost sensors for environmental sensing
and monitoring is increasing due to the availability and affordability of low-cost sensors,
internet facilities, and cloud computing services [8,17]. Low-cost sensors also require fewer
human interventions to operate and thus are less biased compared to traditional techniques
and can be deployed in remote and inaccessible locations.

Wireless network sensors, for example, have become popularly employed by re-
searchers for environmental monitoring of factors such as water quality parameters e.g., tem-
perature, pH, dissolved oxygen, turbidity, water flow rate, and conductivity [18,19]. They
have also been used to measure air quality parameters such as particulate matter, carbon
monoxide, and nitrogen dioxide [20,21]. For example, in the past 10 years, studies such
as [6,22] have attached water and air quality sensors, respectively, to Arduino controllers;
an open-source, user-friendly, and simple platform to measure and monitor water qual-
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ity parameters including dissolved oxygen, pH, temperature, nitrates, and turbidity in
their studies.

The real-time water quality data from the above studies were acquired, processed,
and automatically transmitted through Internet of Things (IoT) systems. A network of
low-cost sensors that can collect real-time data will aid in the detection and understanding
of the sources and pathways of pollution in the environment large and remote. This will be
significant in effectively modelling and monitoring the vulnerability of human health and
the ecosystem to environmental pollution.

However, any sensor that is more affordable than the instrumentation needed to meet
regulatory requirements for the parameter under study is categorized as low-cost [22]. In
this context, the cost of sensors typically increases when additional components such as
microprocessors, data loggers, memory cards, batteries, and display units are incorporated.

The increased adoption of low-cost sensors (LCSs) in recent studies can be attributed
to the user-friendly nature of these sensors, which allows for a cost-effective expansion
of spatial coverage that has been traditionally limited. While the existing literature ac-
knowledges the value of LCSs as a valuable addition to the commonly used measurement
tools, it consistently highlights the potential for sensor misuse leading to more frequent
inaccuracies. It is important to note that data collected from these sensors are indicative
of specific locations and their ambient conditions, suggesting underlying factors affecting
sensor measurements. In essence, the selectivity of a sensor refers to its ability to differ-
entiate between the intended target and any interfering elements [23]. For example, a gas
sensor designed to detect one type of particle often exhibits sensitivity to other particles,
which can interfere with the accurate measurement of the target pollutant or particle. This
phenomenon is known as sensor cross-sensitivity and can be assessed by exposing the
sensor to other pollutants [24].

A standard reference sensor tends to show a higher sensitivity to particles, therefore is
more precise, and more selective to measure a specific variable of interest. Therefore, accord-
ing to WMO reports, low-cost sensors should be used under established quality assurance
and quality control protocols [25–27]. Further, a more precise calibration approach will be
attained with selectivity and sensitivity of a low-cost sensor at any location. Therefore, to
use an LCS instrument, a published standard set of criteria must be followed which should
be provided by regulatory agencies. Selectivity and sensitivity are two essential factors to
take into account while considering an LCS for any given investigation.

Low-cost sensors with higher spatial resolution can provide us with better regional
accuracy and offer us even more liberty to choose the variables that are appropriate for
the region. The existing literature demonstrates, however, that low-cost sensors suffer
from significant uncertainties because of large data outliers, weak correlations, and low
data precision [28,29]. The selectivity of the sensors may improve the evaluation, but more
thorough calibration procedures that address the difficulties that have been raised can
produce improved results.

Sensor calibration is the process of comparing the output of the instrument or sensor
under test against the output of an instrument of known accuracy when the same input
is applied to both instruments [30] by developing a mathematical function that describes
the relationship between the uncalibrated variables and the reference [28]. However, the
relationship between uncalibrated and reference is not a direct proportion; there exists the
influence of multiple other parameters. Therefore, the calibration function can be improved
by utilising cross-sensitive parameters that influence the parameter of interest. Automatic
and semi-automatic calibration methods are two calibration methods that are largely used
for LCSs [13,28,31,32]. This review article aims to answer several questions related to
the increasing popularity of low-cost sensors as an alternative to high-cost sensors. The
article explores why selectivity and sensitivity of sensors are crucial factors in low-cost
sensors, and how calibration functions can improve accuracy. Additionally, the article
discusses ways to enhance the accuracy of sensors, providing insights into the development
of low-cost sensing technologies.
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2. Literature Survey Approach

The literature survey is conducted in a structured approach which covers identification,
screening, eligibility assessment, and final inclusion. The PRISMA Statement, which
outlines the Preferred Reporting Items for Systematic reviews and Meta-Analyses, was the
principal criterion used in this study. PRISMA can be defined as guidelines that provide a
structured framework for authors to follow when writing and reporting systematic reviews
and meta-analyses [33]. Its use by Cochrane Collaboration defines the systematic review
as “an examination of a clearly formulated questions that uses systematics and explicit
methods to identify, select, and critically appraise relevant research and to collect and
analyse data from the studies that are included in the review. Statistical methods may or
may not be used to analyse and summarise the results of the included studies” [34,35].
The primary search criteria applied for identification of the articles in each database are as
follows: “(“water quality” or “air quality” AND ‘low-cost sensors’ AND “calibration”)”
and with time-period 2013 to 2022. The number of articles identified from the databases
SCOPUS, Science Direct, and Web of Science are 127, 12, and 1, respectively. The returned
articles were uploaded to the Rayyan online platform [36] for screening and preselection of
publications for further review of articles. We excluded papers that were not in English,
unpublished, or duplicates, resulting in 70 papers being selected for further review. In
the subsequent phase, eight of the authors independently evaluated the title, abstract, and
conclusions of these 70 papers based on specific inclusion and exclusion criteria detailed
in Table 1 to determine their relevance. This process identified 46 relevant papers and a
thorough full-text review of the 46 shortlisted papers was conducted. To write this study,
we looked at more than just the aforementioned papers and book chapters to determine
the types of sensors for each relevant parameter since there are numerous sensors made
explicitly for monitoring specific parameters. The PRISMA diagram as applicable to this
systematic review study is shown in Figure 1.
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Table 1. Inclusion and exclusion criteria used for the systematic review.

Criteria Inclusion Exclusion

Type of sensors Low-cost sensors only Not low-cost sensors

Type of study Water and air quality studies Other studies such as soil quality, UAV and photogrammetry

Calibration Sensor calibration is done Sensor calibration is not done

Field sensors Sensors are used in the field Sensors have not been used in the field

Language English Non-English

3. LCSs for Monitoring Air and Water Quality

This article looks at the calibration and validation methods of low-cost sensors with
exclusive focus on water and air quality sensors. Table 2 provides a number of selected key
studies related to the use of LCSs on air and water quality. The literature shows that in the
past decade, the use of LCSs for air-quality assessment has improved rapidly.

Table 2. Summary of articles considered for the review.

Sr. No Ref. Study Focus

Air Quality

1 [37] PM2.5 trend analysis using Beta Attenuation Monitor (BAM) and low-cost sensors Purple Air (PA) and
Atmos low-cost PM2.5.

2 [38] To study London’s air pollution and evaluate the uncertainties in 100 LCSs.

3 [39] This study aims at testing Portable Air Pollution Sensors’ performance in the development of exposure
surfaces (Traffic-Related Air Pollution) for nitrogen dioxide (NO2) and ozone (O3).

4 [40] Used low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban
ambient air.

5 [41] Developed an environmental chamber for evaluating the performance of low-cost air quality sensors under
controlled conditions.

6 [42] Investigated the PM2.5 and NO2 concentrations collected using low-cost sensors in Peñuelas, Puerto Rico.

7 [43] Evaluated performance of inexpensive laser-based PM2.5 sensor monitors for typical indoor and outdoor
hotspots of South Korea.

8 [44] Studied the calibration process of low-cost sensors (PM) in ambient conditions.

9 [45] Study was conducted to investigate particle size selectivity of low-cost sensors.

10 [46] Evaluated the performance of a low-cost air sensor network for a period of approximately 18 month at the
community scale.

11 [47] Compared the results for PM from two devices: GENT stacked Filter Unit sampler and a microcontroller
board with low-cost sensors.

12 [48] Developed a hierarchical air quality measurement network, grounded in high-quality, compliant reference
stations and extended to neighbourhood scale using low-cost sensors.

13 [49] This study aims to define the applications of low-cost sensors (LCS) in measuring air pollutants and to show
the effect of sensor place and car velocity in the performance of LCS.

14 [50] Measured air quality after the commonwealth games in Australia and determined any impacts of the games.

15 [51] Assessed the spatial extent and distribution of PM2.5 in Kenya.

16 [52] Assessed the accuracy and potential of low-cost sensors in modelling the spatial distribution of PM2.5 and
the population exposure to PM2.5 coming from domestic wood-heating.

17 [53] Explored the potential of a network of low-cost air quality sensors through evaluation of spatiotemporal
variability and sources of PM in the study area (Memphis).

18 [54] Evaluated the field performance and accuracy of 12 low-cost sensors under the same ambient conditions.
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Table 2. Cont.

Sr. No Ref. Study Focus

19 [55] Investigated satellite data (MODIS data) validity with low-cost sensors to improve the accuracy of both in
measuring air quality.

20 [29] Evaluated the accuracy of machine learning techniques for in-field low-cost sensor calibrations.

21 [56]
Measured PM2.5 and PM10 concentrations in three different locations in the city of Nablus by using

calibrated low-cost sensors ((PMS) 3003, PMS 1003, PMS 5003, which are sourced from ‘Air sensor Toolbox’,
United States Environmental Agency (Washington, DC, USA)

22 [57] Determined PM2.5, O3, NO2 concentrations in Denver, Colorado using nine different air pollution sensors.

23 [58] Measured air pollutants CH4, TNMHC, CO, and CO2 in Los Angeles, USA.

Water quality

1 [59] Leveraged simple, low-cost microprocessors, electronics, and housing components to design and construct
open-source Optical Backscatter Sensors (OBSs).

2 [60] Developed a cost-effective optical sensor for continuous in-situ monitoring of turbidity and suspended
particulate matter concentration (SPM).

3 [61] Used digital images to accurately calculate water leaving reflectance.

4 [62] Evaluated a printable device which can measure the Secchi depth and water colour.

5 [63] A 3D-printed IoT-based water quality monitoring system (WQMS) is developed and deployed, using only
solar energy.

6 [64] Developed a low-cost digital camera colorimetry setup to investigate quantitative relationships between
water colour indices and concentrations of optically active constituents (OACs).

3.1. LCSs for Air Quality

The selection of LCSs for air quality depends upon the parameter of interest and its
characteristic. For instance, sensors for particulate matter (PM) and gaseous pollutants (GL)
are different. Furthermore, the cross-sensitivity of the parameter also plays a major role
in selecting the sensor. International and national level health organisations have created
several protocols for standardised pollutants in the air. For example, the World Health Or-
ganisation (WHO) has updated a global air quality guideline for both particulate matter and
gaseous pollutants in the air; in the European Union (EU), as part of the ‘European Green
Deal’ proposed directives that align with WHO standards, the directive 2011/850/EU [65]
is the most recent legislation passed to reduce pollution concentration thresholds. Sen-
sors for measuring air quality can be broadly divided into two groups: (1) sensors for
estimating particulate matter concentrations (PMx), and (2) sensors for estimating gaseous
contaminants in ambient air. In the sections that follow, we go over them.

3.1.1. LCSs for Particulate Matter

PM is a mixture of airborne solid particles and liquid droplets that can be inhaled
with air. Particle mass concentration (Pmass) and particle number concentration (Pnum)
are the two basic metrics used to measure atmospheric particulate matter (PM). Pnum is
the number of particles in a given volume (particles/cm3), and Pmass is the mass of the
particles in a given volume (typically g/cm3) [66]. PM in general is characterised by its
shape, size, and composition (Table 3). The diameter of the particle sub-categorises PM; for
example, PM2.5 and PM10 are for particulate matter of diameter 2.5 and 10 micrometres,
respectively. The particle concentration (either mass or number) is measured throughout a
range of different particle sizes and is referred to as the particle size distribution (Psd).
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Table 3. Particulate matter characteristics.

Metrics Equipment Size Range Detection Limits

Particle mass

Gravimetric filters 150 nm< 10 µg/m3<

Photometer (40–100 nm)–10 µm 0.001–200 mg/m3

Low-cost photometers N/A 0–600 µg/m3

Particle number

Condensation particle
counter/CPC (full flow) 2.5–15 nm< <1 × 104–1 × 106 particles/cm3

CPC (mixing) 2.5–15 nm< <1 × 104–1 × 106 particles/cm3

Optical particle counter/OPC 0.3–20 µm <1 × 104 particles/cm3

Diffusion size classifier/DiSC 10–700 nm <5 × 102–1 × 106 particles/cm3

Particle size distribution

Impactors 1 µm–10 µm N/A

Scanning mobility particle
sizer/SMPS 2.5–1000 nm 1–1 × 107 particles/cm3

Aerodynamic particle
sizer/APS 0.5–20 µm 1000 particles/cm3

Fast mobility particle
sizer/FMPS 5–560 nm N/A

Particle surface area Nanoparticle surface area
monitor/NSAM 10–1000 nm <10,000 µm2/cm3

Currently, a typical commercially available LCS for PM sensing uses the light-scattering
principle, with the sensor consisting of three major components: a light emitting diode,
photo-transistor, and a lens to focus the diode light [67,68].

The common reference/validation techniques for LCSs monitoring PM are ‘Tapered
Element Oscillation Microbalance’ (TEOM) and ‘Beta Attenuation Monitor’ (BAM), both of
which measure properties directly associated with Pmass [69].

3.1.2. LCSs for Gaseous Pollutants

Gaseous pollutants include the following pollutants in their gaseous state emitted by,
for example, an engine: carbon monoxide (CO), total hydrocarbons (HC), oxides of nitrogen
(NOx), and other greenhouse gases (GHG); NOx being nitric oxide (NO) and nitrogen
dioxide (NO2), expressed as NO2 equivalent, and GHG includes carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O) [70–72]. The gas sensors detect the presence of
these pollutants (gas concentrations) in the environment using different sensing materials.
The main objective of gas sensor development is to establish an array of multifunctional
gas sensor technologies that can monitor air pollution at a low cost and be used to create
an electronic nose [73]. Different types of gas sensors include electrochemical sensors,
metal-oxide semiconductors, catalytic combustion type, acoustic-wave based, and optical
gas sensors [73,74] and the selection depends on the gas types, which can be flammable,
combustible, and toxic. These sensors are chosen for their affordability, portability, elegant
design, limited sensitivity, and selectivity, and the requirement for extra equipment [75]
during use. Among them, metal-oxide semiconductor sensors are particularly popular due
to their several unique features, such as high sensitivity, rapid response and recovery times,
simple manufacturing process, robust stability, easy operation, and low expense [74,75].
Table 4 lists several sensors used for air-quality measurements. PurpleAir is the most used
LCS for air-quality parameters due to its easily accessible and cost-effective approach.
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Table 4. Various low-cost sensor models used for air-quality monitoring from the literature.

Author Ref. Sensor/Model Cost Detected/Detectable Parameters

[37] PurpleAir (PA-II-SD) and Atmos PA-II-SD: USD 299,
Atmos: USD 369

PA-II-SD: PM2.5, pressure, temperature and
humidity; Atmos: PM1, PM2.5 & PM10 µg/m3,

Temperature, Relative Humidity

[38] AQMESH v. 3.5 units USD 173.40 CO, NO, NO2, O3,
Temp, RH

[39] Aeroqual
portable monitors, S500 - NO2, O3

[40] Dylos DC 1700 PM sensor USD 400 PM2.5 and PM10

[42]
OEM sensors/OPC-N2 Particle

Monitor/Mocon
piD-TECH/CairPol CairClip

<USD 2500

The CairClip useS a gas-specific inlet filter
combined with dynamic air sampling in an
integrated system to measure real-time NO2

concentrations with a detection limit of 1 ppb;
the OPC-N2 uses light particle counting to
measure the concentration of suspended

particles in the air sampled via an internal
pump and has a detection limit of 0.1 µg/m3

[43]

GRIMM180 (GRIMM Aerosol,
Ainring, Germany)/ESCORTAIR

(ESCORT, Seoul, Republic of
Korea)/PurpleAir (PA)

<USD 300

The performance of the two IRMs (one OPC,
that is, ESCORTAIR and one photometer, that

is, PA) costing less than USD 300 were
simultaneously compared with those of

high-cost devices (USD 10,000 or so), that is,
research-grade laser photometers including
PDR-1500 (Thermo Scientific, Waltham, MA,

USA) and SIDEPAK AM510 (TSI, Inc.,
Shoreview, MN, USA)

[44] PMS 5003 sensors and GRIMM
EDM 180 dust monitor USD 22.76 PM1, PM2.5, PM10 mass concentrations

[45]

Plantower PMS5503, Nova
SDS011, Sensirion SPS30, Sharp

GP2Y 1010AU0F, Shinyei PPD42,
Omron B5W

- PM1, PM2.5, PM4, PM10

[46] PurpleAir II - PM2.5

[47]

A microcontroller board and
low-cost sensors including dust
sensor, smoke sensor, liquefied
petroleum gas sensor, carbon
dioxide (CO2) sensor, carbon

monoxide (CO) sensor,
temperature, and
humidity sensors

- PM2.5

[51] Plantower PMS7003 sensors and
cyclone samplers (BGI 400S)

USD 30 for the
PMS7003 sensors PM2.5

[52] PurpleAir (PA-II) units <USD 300 PM2.5

[53] Alphasense OPC-N2 sensor - PM2.5, wind direction, temperature and
relative humidity (RH)

[54]

Shinyei PM Evaluation Kit,
Alphasense OPC-N2, TSI

AirAssure, Hanvon N1, Airboxlab
Foobot, Kaiterra LaserEgg,

PurpleAir PA-II, HabitatMap Air
Beam 1, SainSmart Pure Morning

P3, IQAir AirVisual Pro, Uhoo
and Aeroqual AQY

USD 1000, USD 450,
USD 1000, USD 200,
USD 200, USD 200,
USD 230, USD 200,
USD 170, USD 270,
USD 300, USD 3000

PM2.5
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Table 4. Cont.

Author Ref. Sensor/Model Cost Detected/Detectable Parameters

[55] MetOne NPM, PurpleAir PA-II,
and Alphasense OPC

USD 2000, USD 250,
USD 350 PM2.5

[29] AQMESH v. 3.5 units NA NO2, NO, CO, O3, PM2.5, PM10, temperature,
relative humidity and pressure

[56]
Plantower Particulate Matter
Sensor (PMS) 3003, PMS 1003,

PMS 5003

USD 22.93, USD 19.24,
USD 21.45 PM2.5 and PM10

[57]

Aeroqual SM-50, TSI AirAssure,
AirCasting AirBeam, Cairpol

CairClip, Dylos DC1100/DC1100
Pro, AlphaSense OPC-N2, Shinyei
PMS-SYS-1, AirViz Speck, TZOA

PM Research sensor.

N/A PM2.5, O3, NO2

[58]
Single Sensor—CH4,
Multi-sensor—CH4,

Multi-sensor—TNMHC.
N/A CH4, TNMHC, CO, CO2

[50] 9 low-cost sensors (KOALA) N/A PM2.5, CO

[76] Teledyne T400, Teledyne T640 N/A PM2.5, O3

[55] Met-One NPM (25 sensors),
PurpleAir PA-II (9 sensors)

PurpleAir sensors:
(sub-USD 250 each),

NPM: (sub-USD
2000 each)

PM2.5

[77] Random forest (RF) model N/A O3, NO2

EUR converted into USD at EUR 1 = USD 1.08.

3.2. LCSs for Water Quality

The quality of water determined by its chemical, physical, and biological properties
plays an important role in human health. Monitoring water characteristics including
conductivity, pH, salinity, temperature, dissolved oxygen, residual chlorine, and turbidity
is essential to maintaining its quality; therefore, water quality monitors are widely used.

Just like in air-quality monitoring, international and national-level health organisations
have created several protocols for a standardised range for monitoring water quality. For
instance, the Guidelines for Drinking Water Quality (GDWQ) are produced by the World
Health Organization (WHO) through regular revisions, of which the most recent is the
GDWQ 4th edition. Europe established its own water quality norms by adapting from
WHO guidelines known as EU Water Framework Directives (WFD), the most recent being
Directive 2006/118/EC [65]. The challenge of maintaining water quality standards is
great, and continuous monitoring using a conventional approach is cost-effective and
often unable to produce real-time data. Low-cost water quality sensors can overcome this
constraint whilst enhancing the spatial density of data. Primary cost components of water
quality sensors are designing, installing sensors with power supply utility, communication
equipment, access, lighting, security, and environmental conditions of the location.

Two primary approaches for water quality measurement are direct measurement of
constituents, and surrogate measurement which are chemical concentrations that indicate
the presence of undesired contaminants in the water [78,79]. The following are the most
common water quality sensors used to measure key parameters:

3.2.1. Chlorine Residual Sensor

The most popular method of disinfection to lessen water contamination is chlorination.
The theory of chlorination is straightforward: When chlorine comes into direct contact
with microorganisms in water, it destroys their cellular structure, causing disinfection.
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Monitoring residual chlorine, which refers to the effective chlorine remaining in water after
chlorination, is generally essential to mitigate the risk of chlorine residuals [80]. Although
adding a lot of chlorine to the treated water will increase disinfection efficiency, doing so can
also cause unpleasant odours, formation of a lot of carcinogenic disinfection by-products,
faster distribution system corrosion, and certain health hazards [80,81]. Electrochemical sen-
sors (amperometry and ion-selective electrodes), spectrophotometric sensors (colourimetry
and fluorescence), and biosensors are the three main chlorine residual monitoring devices
Amperometry sensors, which track changes in current, are the most economical and widely
used sensors [82,83]. Moreover, these sensors trigger less with the presence of dissolved
oxygen, temperature, pH, and other oxidants than do biosensors and fluorescence sensors.

3.2.2. Total Organic Carbon (TOC) Sensor

TOC measures organic compounds in pure water and aqueous systems and is primar-
ily used in treating wastewater and testing drinking water contamination. The fundamental
methods for measuring TOC are based on organic matter oxidation to detect CO2 through
conductometry and IR spectroscopy [84,85]; however, the process is time-consuming and
expensive. Through low-cost sensors it is possible to monitor TOC regularly, rapidly, and
with affordability. Campanella et al. 2002 [85] developed a sensor that measures the amount
of CO2 created by the UV-assisted photodegradation of organic matter which is improved
by nanosized TiO2 (anatase). TiO2 anatase is a colourless, metastable mineral form of
titanium dioxide, which is a suitable photocatalyst in the photodegradation of toxic organic
molecules due to its high activity, nontoxicity, and chemical inertness [86], and it is widely
regarded as the most suitable photocatalyst for TOC contamination studies [86–88].

3.2.3. Turbidity Sensor

Turbidity is the most highlighted parameter, which is also known as haziness of a fluid
due to suspended solids [89]. The WHO [90] standard for turbidity in ideal drinking water
is below 1 NTU (Nephelometric Turbidity Units), as higher levels of turbidity in water
produce favourable conditions for contagious pathogens [91]. As in other water quality
measures, the fundamental approach to turbidity monitoring is through laboratory analysis
due to its reliability and accuracy. However, these products are economically unviable at
large scale, therefore for such products spatio-temporal scales reduce drastically, which is
not viable for continuous monitoring. Further, these systems require significant preparation
and regular management.

Low-cost sensors filling these gaps and mostly used for turbidity are developed
with other sensing parameters such as dissolved oxygen, Ph, phosphorous, etc. Low-cost
turbidity sensors typically use transmitted light detection (optical sensor) to monitor the
haziness of water, though the accuracy and reliability of these sensors can be lower [92].

3.2.4. Conductivity Sensor

Significant increases in water conductivity indicate that the water is contaminated,
unsafe for drinking, and may harm aquatic creatures. Conductivity comes under physical
water quality parameters like turbidity, hardness, and temperature. With advancing
technologies, sensors that measures the conductivity of water can be made rapidly using
materials that are readily available; however, the price of a conductivity sensor is still too
costly for good coverage of spatial resolution [93].

3.2.5. pH and ORP Sensors

The pH of water indicates alkalinity characteristics, whereas ORP (Oxygen-reduction
Potential) gives an insight into the level of oxidation/reduction reactions occurring in the
water. The pH for drinking water should be between 6.5 and 8.5, whereas ORP is not a
mandatory parameter according to WHO and EU standards. However, the ORP value is a
valuable parameter to estimate the physicochemical properties of water [94]. The ORP is
primarily useful to check the oxygen reductions happening in water due to contamination.
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Electrodes are usually used to analyse these two parameters. Both parameters come under
the inorganic category [95] and are inversely proportional to each other, which means as
pH decreases, ORP increases, and vice-versa [94].

Most water quality parameters are measurable with higher accuracies using con-
ventional laboratory assessments. However, this time-consuming task is not feasible for
monitoring of large spatial networks and real-time values. With the advancements in sensor
technologies, an overarching approach has been developed to study a selected range of
parameters depending upon the geographical location, risks, and usual contamination
history. Several attempts have been made to identify a range of water quality parameters
with sensor technology; nevertheless, Internet of Things (IoT) has been the most recent
advancement in continuous monitoring of water quality. Sensing of parameters like pH,
turbidity, temperature, conductivity, and dissolved oxygens are regularly monitored using
IoT. [96] developed IoT to track water quality using Thing Speak (IoT technology) which
sends data from numerous sensors to Arduino via the cloud.

Lakshmikantha et al. 2021 [97] introduced LED additions to an IoT-based water
monitoring system which is connected to a Raspberry Pi using Java. Several sensors were
used to determine the range of water quality, and accordingly these LEDs lit up. Salunke &
Kate 2017 [98] developed a sensor network with the Intel Galileo Gen 2 board to test water
monitoring and demonstrated improved results. On an application to assess agriculture
water quality, Paepae (et al., 2021) [99] used a virtual sensing system to demonstrate
physical sensor methods with clear results. These water quality sensors typically are
exposed to environmental conditions such as rainfall, dust, and wind. To overcome this
challenge, [63] developed a 3D printing system, with a method of fabrication which is
durable in the long term. Brewin et al. 2019 [62], developed a pocket-size hand-held device
with marine-resistant materials using a 3D printer to measure water clarity and colour in
lakes, estuaries, and nearshore regions. Despite the fact that these innovations are brand
new for IoT sensor applications for water-quality measurement, there is a lot of room for
improvement in terms of artificial algorithms for accurate calibration.

4. Self-Calibration Techniques

Self-calibration techniques refer to methods and processes that enable a system, device,
or instrument to automatically calibrate itself without the need for external reference
standards or manual intervention [100]. They have been gaining attention in various fields,
including engineering, metrology, and sensor technologies [100]. These techniques are
particularly valuable in situations where traditional calibration methods may be impractical,
time-consuming, or cost-prohibitive [101]. Self-calibration techniques are employed in
various fields such as in-situ calibration, sensor fusion, machine learning calibration, and
environmental monitoring [15,102–104].

Studies by [15,24,102,105–107] highlight the numerous benefits of self-calibration
techniques. These advantages include real-time adjustment capabilities, allowing for
continuous monitoring and adjustment of measurement equipment to maintain accuracy
over time. Unlike traditional calibration methods, self-calibration reduces the need for
human intervention, minimizing downtime and interruptions to equipment operation.
Additionally, self-calibration enhances accuracy by continuously monitoring and correcting
measurement deviations, reducing the risk of drift or changes between calibration sessions.
Automation in calibration processes also decreases the likelihood of human error, ensuring
more consistent and reliable calibration results. Moreover, self-calibration systems adapt to
environmental changes and operating conditions, maintaining accuracy despite variations
in external factors. While initial implementation may require investment, the potential for
reduced manual labour and increased efficiency offers long-term cost savings.

Self-calibration methods vary depending on the type of sensor and the specific factors
being addressed. For instance, the approach for self-calibration differs between chlorine
sensors and sensors for gases like CO or HC [108]. These methods typically comprise several
steps to ensure precise and dependable measurements. For example, zero calibration is the
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initial step, involving placing the sensor in a solution with zero chlorine concentration, such
as deionized water, to establish a baseline reading. This calibrates the sensor to a reference
point in the absence of chlorine. Subsequently, span calibration requires immersing the
sensor in a known concentration of chlorine solution to calibrate its response at a specific
chlorine concentration. Adjustments are then made by comparing sensor readings with
expected values at zero and span calibration points, aligning the sensor output accordingly.
Regular maintenance checks and calibrations are crucial for monitoring sensor accuracy
over time, considering factors like sensor drift, environmental conditions, and aging.
Some advanced chlorine sensors may provide automated calibration features or routines,
necessitating adherence to the manufacturer’s instructions for effective utilization. Finally,
verifying sensor performance involves testing it with known chlorine concentrations to
ensure ongoing accuracy and reliability. These steps collectively ensure the precision and
functionality of chlorine sensors for environmental monitoring applications.

Although there are multiple advantages in self-calibration methods, they do have
some drawbacks in terms of accuracy, limited calibration range, and maintenance re-
quirements [108]. It is important to recognize that the sensor’s properties undergo gradual
changes over time, resulting in decreased accuracy. Therefore, regular calibration is essential
to maintain precision. Additionally, determining the optimal calibration frequency depends
on the specific application and is typically established through practical experience.

It is also crucial to acknowledge that self-calibration procedures may not be suitable
for all applications or industries [109]. Traditional calibration methods, involving manual
calibration by qualified specialists on a regular basis, remain prevalent and trusted in many
industries [110].

5. Calibration Techniques and Developments in Their Accuracy

The design of an experiment and its sensor calibration methods may be more effectively
directed if it is understood how LCSs differ from standard instruments. A widely reported
issue with LCSs is that they suffer from large uncertainties relating to low data precision
and accuracy [28,30,31,51]. This uncertainty in performance can be related to various
limitations such as low-signal-to-noise ratios for different sensors, environmental factors,
and low selectivity. Due to the different types of air quality sensors used, it is often difficult
to compare data from different studies. For example, the same air quality parameter
(PM2.5) was measured in similar sites in Nairobi, Kenya by Kiai et al. 2021, and Pope et al.
2018 [51,111]. However, there was a difference in the scaling factor used for calibration of
the low-cost sensors and this can mainly be related to the differences in the type of low-cost
sensors used [51].

In order to address these difficulties, LCSs may need extensive calibration processes.
Sensor calibration is defined as ‘a process to determine the mathematical function (cali-
bration function) that defines the relation between independent and dependent variable’.
There are various methods used to obtain calibration data, for example, field calibration and
laboratory calibration. For low-cost sensors, the calibration processes generally employed
are automatic and semi-automatic techniques. The literature shows several methods that
have been used to validate the calibrations obtained from LCSs, such as Tapered Element
Oscillating Microbalance (TEOM), nephelometer, GRIMM EDM 180 monitor, and predomi-
nantly a gravimetric Federally Equivalent Method (FEM) instrument known as Attenuation
Monitor (BAM).

Calibration models are applied during pre-deployment of sensors to deal with errors
that occur in mapping raw sensor measurements; the fundamental methods here are
offset and gain calibration [112]. ‘Gain’ describes the sensor’s response to rising pollutant
concentrations, and ‘offset’ describes the sensor’s response to total absence of the target
pollutant. In combination, they create the calibration curve.

For instance, Shi et al. 2021 [93] performed a simple one-point calibration before the
sensor deployment (Equation (1)), the calibration offset here is the difference between air
and depth sensors.
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d =
pabs − pair − ecal

ρwater × g
(1)

where d is water depth (m), pabs is the absolute pressure (mbar), pair is the ambient air
pressure (mbar), ecal is the calibration offset (mbar) and ρwater is the density of water at a
specific temperature (kg/m3), and g is the gravitational acceleration constant (9.81 m/s2).

There are other errors reported from the environment such as temperature, wind
speed, relative humidity, and turbulence. Fang & Bate 2017 [28] studied cross-sensitive
parameters between multiple parameters (Equation (2)) by adding the interaction terms
into the calibration function. However, they concluded that using only a single parameter
to calibrate low-cost sensors in urban environments is likely to be insufficient.

Y = β′
0 + β′

1·X1 +
(

β′
2 + β′

3·X1
)
X2 (2)

where Y is the dependent variable, X1 and X2 are independent variables which can be noise,
and β is the calibration coefficient.

Data evaluation in LCSs typically includes outlier detection, inter-sensor comparisons,
and comparison with traditional monitors [113], all of which contribute to data loss for a
network, reducing the spatial resolution. Table 5 provides a summary of low-cost sensors
from the literature review and the standard validation and accuracy methods employed
in their studies. For instance, Fienberg developed a network of 20 sensor pods to study
air quality at the Shelby Farm monitoring site, where three sensors never operated, six
failed during operation, and with R2 threshold of 0.5, only six sensor pods met the data
quality objective. Such sensor failure and data loss has been detected from other sensor
networks as well [48,113–115]. Outlier detection is defined as the detection of values that
are statistically significantly distinct from the other normal values at a given time and
location [113]. Detection of outliers is a crucial element in finding erroneous values and
removing them; they occur due to faults in sensors, weather patterns, and dirt attachment
to sensors. For assessment of air-quality sensors, many calibration models, primarily Linear
Regression (LR), Multivariate Linear Regression (MLR), or a variety of Machine Learning
(ML) algorithms, including artificial neural networks, random forests, and support vector
regression, among others, were used [29,116].

Water quality monitoring sensors are mostly deployed in water for a long period
of time, therefore require protection from fouling/biofouling which leads to uncertainty
in values [8]. Various studies [8,117,118] indicated that biofouling may be the cause for
degraded water quality monitoring data, and their proposed solution is to design sensor
nodes that are suitable for wiper cleaning. Another calibration uncertainty in water quality
sensors is due to sensor drift, a temporal shift in the sensor’s response under constant
physical and chemical conditions brought on by sensor damage from water pressure and
water fluxes [119]. The literature showed that the major drawback concerning non-contact
LCSs is practically observed [63] when the turbidity sensor stopped function after one
month due to attachment of dirt such as mud/silt/microorganisms which need to be
cleaned off regularly. Therefore, a sensor with a self-cleaning mechanism can improve
the calibration results. Further, higher linearities for the signals received from sensors
compared to actual measurements indicate a reduction in accuracy. Wong et al. 2021 [63]
developed a 3D-printed water quality sensor which showed turbidity within the range of
10 to 1000 FNU and gives more accurate results, where optimum measurement ranges for
the ultrasonic and temperature sensors are 2–400 cm and 10–50 ◦C, respectively. Calibration
techniques mentioned in Table 5 provide insights into the calibration of both air quality
and water quality sensors, including techniques such as MBE, RMSE, determination of
correction factors of optical sensors using cyclone samplers, nephelometer, linear regression
equation, MLR, LR, ANN, Mini-Vol configuration, correlations, ordinary least square
regression, FRM, FEM, multiple linear regression, etc.
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Table 5. Summary of low-cost sensors from the literature review and the standard validation and
accuracy methods employed in their studies.

Author Ref. Location
Calibration Methods Used

Standard Measurement Validation Calibration Techniques

Air Quality

[44] Patras city in Greece Compared with GRIMM EDM
180 monitor. MBE, eMBE, rMAE, RMSE, R2.

[51] Kenya

A standard Andersen dichotomous
impactor (Sierra Instruments Inc.,
Monterey, CA, USA) was used to

calibrate the low-cost sensors for four
days by collocation.

Correction factor of the optical sensors
(PMS7003) was determined from the

cyclone samplers (BGI 400S).

[52] Australia

The PurpleAir (PA-II) low-cost sensors
were collocated with three reference
sensors: Tapered Element Oscillating
Microbalance (TEOM), nephelometer,

DustTrak monitors.

TEOM sensors were related to the
nephelometer using an equation. The

low-cost sensors were calibrated (hourly
and daily) using a relationship (equation)

with the nephlometer and TEOM.

[53] USA
TEOM federal equivalent method (FEM)
monitor was used for reference sensor

and collocation.

Linear Regression equation for the
reference monitor (TEOM) and the

low-cost sensors.

[54] USA

A Met One Beta Attenuation Monitor
(BAM); a gravimetric FEM instrument

was used as the reference monitor
and collocation.

Least squares linear regression,
MBE, MAE.

[55] USA, Rwanda, Malawi
and DR Congo

BAMs were used as the reference monitor
and collocation. Linear regression, MAE.

[29] Serbia
Automatic Monitoring Station (AMS)
Stari Grad was used as the reference

monitor and collocation.

NRMSE, LR, MLR, MBE and ANN
Square Difference (uRMSD).

[56] Palestine, Nablus
AirUs were calibrated for local PM using

a filter-based, low-volume air sampler
Mini-Vol configured for PM2.5 collection.

Mini-Vol configured for PM2.5 collection.

[50] Australia Correlation between the KOALA and
TEOM over a 12-month period.

(R2 = 0.89), >0.90 for the daily averages
between the TEOM and KOALA for

PM2.5.

[49] N/A Fan-based. Correlations (R).

[120] USA

Calibration performed with reference to a
reference ozone analyser (Thermo 49i), is

manufactured by Thermo Fisher
Scientific, located in Waltham, MA, USA

Ordinary least squares (OLS) regression.

[121] China

Calibration and validation were
performed with reference to US federal

reference methods (FRMs; TEOM-FDMS,
BAM, SHARP).

Linear regression, RH adjusted
linear regression.

[122] USA
Calibration and validation was

performed with reference to federal
equivalent method (BAM).

Multiple linear regression with the BAM
PM2.5, RH, and T as predictors.

[58] USA Validation with reference to federal
reference method (FRM).

Validation with reference to federal
reference method (FRM) and federal
equivalent method (FEM) monitors.

[123] USA Proxy model developed from a
reference instrument.

Proxy corrected sensor data and
K-means clustering.
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Table 5. Cont.

Author Ref. Location
Calibration Methods Used

Standard Measurement Validation Calibration Techniques

Water quality

[61] Taihu Lake and Yuqiao
Reservoir

Based on synchronous measurements
with a field spectrometer, the results

were validated.
RMSE, MRE, R2.

[62] UK and destinations in
the South Atlantic

An iButton temperature logger was
attached to the mini-secchi disk and it

was calibrated against a NIST-traceable
(and NPL-traceable) Hart Scientific.

Comparison between the housed iButton
and the NIST-traceable probe with the
difference in average, median, absolute
average, median absolute in N number

of samples.

Linear regression (LR), Normalized Root Mean Squared Error (NRMSE), Multivariate linear regression (MLR),
Mean Bias Error (MBE), Mean Absolute Error (MAE), and Artificial Neural Network (ANN), Coefficient of
correlation (R), coefficient of determination (R2).

Most of the current studies utilizing low-cost sensors for air pollution measurement use
simple linear regression to calibrate low-cost sensors in relation to the reference device to
improve accuracy. However, linear regression cannot model this relationship since several
non-linear and environmental variables can affect the accuracy of low-cost sensors [29].
Thus, to truly account for these variables, machine learning techniques may prove very
useful [46,68,107].

There are several metrics that were employed to estimate the accuracy of sensor moni-
tored values (Table 6). These metrics are designed to capture the main aspects of the time-
series behaviours. The accuracy between these sensors and standard measures changes
due to the seasons, location, and meteorological/water quality conditions of air/water. The
accuracy of Plantower PMS7003 sensors was evaluated by Kiai et al. 2021 [51] and they
showed that the sensor’s level of accuracy is high; earlier studies on Plantower sensors
demonstrated better accuracies as well. These studies aid scientists and other interested
parties in choosing a low-cost sensor for their research.

Table 6. Summary of accuracy assessment formulae from literature.

Ref Description Formula

Air Quality

[51] Accuracy assessment.

A = 100 − |X−R|
R × 100

where A = accuracy %, X = average concentration for
sensors, and R = average concentration for reference

sensor. Using this equation, they calculated the accuracy
of their low-cost sensors to range from 81.47% to 98.60%.

[52] Calibration of low-cost sensor using reference sensor.

neph = 0.023 × PA2.5 + 0.03 (hourly averages)
where neph = nephelometer measurements,

PA2.5 = PurpleAir measurements. The correlation;
R2 = 0.99.

[54]

The measurement and accuracy of the twelve
sensors were evaluated against a reference

instrument for three years using Least squares linear
regression, Mean Bias Error (MBE) and Mean

Absolute Error (MAE).

The linear equation used is Y = mX + b
where Y = PM2.5 measurement for a low-cost sensor (1-h

average), X = PM2.5 measurement for the reference
sensor; Met One Beta Attenuation Monitor (1-h average).

m = slope and b = intercept. Only six of the twelve
sensors had an average correlation; R2 ≥ 0.70.

[57]
Linear regression between the reference monitor
(TEOM FEM monitor) and seventeen low-cost

OPC-N2 sensors.

Y = mX + C where Y = measurements from low-cost
sensors and X is the measurement from the reference
sensor. Only six of the seventeen deployed OPC-N2

sensors achieved regression R2 > 0.5.
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Table 6. Cont.

Ref Description Formula

Water quality

[63]
Linear regression between Standard formazin

solutions (reference) and turbidity sensors using the
ratiometric method.

Y = 0.001x + 0.0116 where Y = low-cost sensor signals
and x = reference signal. The correlation; R2 = 0.992.

[63] The actual distance of 2–400 cm of water level was
compared with the distance measured by the sensor.

Y = 1.0119x + 0.5114 where Y = actual distance (from
2–400 cm) and x = distance measured by sensor (from

2–400 cm). The correlation; R2 = 0.9999.

[63]
Low-cost sensor temperature values were compared

with analogue signals transmitted by the
temperature sensor.

Y = 1.9689x + 122.92 where Y = Analog signal and
x = Observed temperature. The correlation; R2 = 0.9936.

Rapid changes in meteorological conditions/water quality affects a sensor’s detected
values and when the accuracy is assessed, the sensor shows large fluctuations [63,124].

From the literature, it can be seen that the calibration for any such LCS should be
carried out using five primary indicators. They are (i) environment and its condition,
(ii) pollutant/contaminant parameter(s) to be monitored, (iii) sensor specifications with its
lower and higher accuracy range, (iv) validation instrument that was/were to be used, and
(v) the type of regression model/models one uses to study the parameters [16].

6. Conclusions and Future Research Directions

This review article thoroughly explores the complex domain of low-cost sensors (LCSs),
particularly those designed for monitoring air and water quality. The study also provides a
brief insight into their advancements and barriers. Emphasizing the crucial contribution of
LCSs to environmental research and public health, the discussion highlights their growing
availability and cost-effectiveness as key facilitators.

Improved technologies and efforts in understanding environmental pollution are
making low-cost sensors more available for research and understanding of the environment.
The current study reveals that recent research has focused heavily on PM sensors in relation
to air quality sensing. This may be due to the affordability of low-cost PM sensors and
the growing public awareness of the health crisis caused by air pollution. However, these
inexpensive sensors have faced significant difficulties due to the capital costs associated
with installation, communication networks, maintenance, and the instruments for data
interpretation [10].

The study also showed that, in contrast to air pollution, there is little research being
done on the potential of water quality sensors. This may be as a result of a lack of regula-
tions pertaining to water quality sensor technologies, as well as poorly defined categories
of contaminants and exposure levels. The usage of LCSs in water quality applications,
however, may rise as a result of growing concern over poor water quality and the cost
benefits associated. To give good results, and to avoid malfunctioning, it is recommended
to use sensors with a self-cleaning mechanism. For water quality measurement, the need
for low-cost sensor devices with antifouling characteristics should be investigated and
developed for commercial use [8], and additionally, standard algorithms for sensor drift
should be developed [119]. However, these facilities demand a good power source and self-
cleaning mechanism, which again is not adequately attainable with inexpensive sensors.
For measurement of air pollution, several studies revealed that meteorological parameters
such as relative humidity (RH), temperature (T), pressure (P), and wind impact the perfor-
mance of low-cost sensors and therefore there is a need to use standard reference-grade
monitoring stations for evaluation and validation. It is further advised to not rely on
low-cost air-quality sensors at higher RH value locations [125].

In addition, the study also summarized self-calibration techniques and their contribu-
tion to enhancing accuracy, efficiency, and reliability. Calibrating low-cost environmental
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sensors presents both challenges and opportunities in the realm of air and water quality
monitoring. While these sensors offer cost-effective solutions and increased spatial data
density, they often suffer from uncertainties related to accuracy and precision. Challenges
such as sensor drift, environmental factors, and limited calibration ranges underscore the
need for robust calibration techniques. Various calibration methods, including automatic
and semi-automatic techniques, have been employed to address these challenges, with a
focus on offset and gain calibration models. Despite these challenges, advancements in
self-calibration techniques and machine learning algorithms offer promising opportuni-
ties to improve sensor accuracy and reliability over time. Studies have highlighted the
benefits of self-calibration, such as real-time adjustment capabilities and reduced reliance
on manual intervention, leading to increased efficiency and cost savings in the long run.
Additionally, machine learning algorithms have potential to act as a powerful tool for
modelling complex relationships between sensor readings and environmental variables,
enhancing the accuracy of low-cost sensor measurements.

The literature study further reveals that most of the correlations used were of the R
square form and RMSE for measurement error analysis. Further, the accuracy of the sensors
depends upon the environmental conditions, geological location, standard reference used,
and the regression models [16]. Further, the literature review showed that Purple Air is the
most used for air quality whereas many experiments on water quality have relied on IoT to
monitor multiple parameters.

There is still a lack of regulatory bodies to maintain gathered data and oversee process-
ing and usage of data for these sensors. Regular processing and maintenance of LCSs for
commercial entities and scientific bodies is very challenging due to limited budgets. Citizen-
owned networks with regulatory bodies may help to overcome part of this challenge.

To build confidence in low-cost sensors for real-world monitoring, regular calibration
and validation with a co-located standard instrument is critical [125]. Improved statistical
methods, IoT-based platforms, and space-based sensors can all improve methodological
approaches for environmental pollution. Additionally, an inclusive approach using in-
stalled LCSs, standard measuring units, remote sensing, smart networks with effective
communication, and data preservation can constitute best practice, while cutting-edge
computational techniques like machine learning can make it easier to make a reliable
forecast estimate for the future. For IoT sensors, an optimum maintenance time is required
to ensure performance and cost-effectiveness of the system. Although there are still many
issues related to LCSs that need to solved, their potential has been expanding due to the
growing need for a clean environment and the climate change crisis in addition to the need
to involve citizens in monitoring the local environment. The participation of citizens and
their recognition of the obligation to maintain pollution metrics, such as indoor, outdoor
air quality and water quality, has markedly expanded LCSs at the citizen level and is
contributing to further advancements in sensor technologies.

However, it is essential to recognize that calibration procedures may not be suitable for
all applications, and traditional calibration methods remain prevalent in many industries.
Furthermore, ongoing research is needed to address the limitations of low-cost sensors,
such as sensor drift and environmental factors, and to develop standardized calibration
protocols for widespread adoption.
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