
Creating DOIs with rich
metadata using DSpace

Open Repositories, June 2024

Who we are

● Sheila Rabun, Lyrasis
● Kelly Stathis, DataCite
● Pascal Becker, The Library Code
● Claudio Cortese, 4Science

Agenda

● DataCite DOI and Metadata Basics
○ What is a DOI?
○ DataCite account structure
○ DOI registration process
○ The DataCite Metadata Schema

● Configuring DSpace to register DataCite DOIs
○ DSpace 7
○ DSpace-CRIS 7

● Getting involved

DataCite
DOI and Metadata Basics

What is a DOI?

● Digital Object Identifier - persistent
identifier (PID) for outputs & resources

● Registered through a DOI registration
agency such as DataCite or Crossref

● DOIs:
○ contain open metadata describing the object
○ redirect to a landing page containing

information about the object
○ can be used with other PIDs to connect related

entities
○ support the FAIR Principles, making outputs

and metadata more Findable, Accessible,
Interoperable, and ReusablePID Graph as of October 2023

DOI Structure

DOI system
proxy server

Prefixes assigned to
DataCite by the

International DOI
Foundation

Suffixes assigned by
repository or

automatically by
DataCite

PROXY PREFIX SUFFIX//

https://doi.org 10.5438 n138-z3mk//

Why DOIs?

DOIs help to ensure that outputs & resources can continue to be found, accessed, and used over time
despite changes in the location (URL) of the object - avoiding the “404 Page Not Found” error.

DataCite DOI Registration Agency

● Global non-profit membership organization
● Started in 2009 as part of an effort to make data more citable
● As of 2024, DataCite DOIs can be assigned to 30 different resource types
● 3000+ repositories in the world provide DataCite DOIs for data and other research

outputs.
● One of 12 official DOI registration agencies worldwide

DataCite account structure

● All DataCite Direct Members or Consortium Organizations have two types of
live/production and sandbox/testing DataCite accounts:
○ Direct Member or Consortium Organization Account - only one per

organization, used for managing information about the organization and
creating repository account(s)

○ Repository Account(s) - can have multiple per organization, used for
registering DOIs and updating DOI metadata and URLs

● DOIs are created using the Repository Account credentials:
○ Account ID (e.g., ABCD.EFGH)
○ Password

DOI registration process

● DataCite offers two APIs that enable DOI registration:
○ REST API
○ MDS API

● Users authenticate with DataCite Repository Account credentials
● Options for DOI registration:

○ Build your own integration using a DataCite API
○ Use the DataCite Fabrica web interface
○ Work through a repository platform, including DSpace, that integrates with a

DataCite API

DataCite Metadata Schema

● The DataCite Metadata Schema is used for DataCite DOIs.
● DataCite members create metadata during the registration of a DOI which

provides information about the relevant resource.
● Includes 20 metadata properties.
● Intended for accurate and consistent identification of a resource for citation

and retrieval purposes.

DataCite Metadata Schema Properties

● The schema consists of 20 metadata properties (sometimes called “fields” or
“elements”).

● Hierarchical structure: some properties have sub-properties.
● Six properties are mandatory; six are recommended; eight are optional.
● Some can be repeated.
● Some have controlled list values, some allow free text.

Mandatory Properties

6 Mandatory
<identifier identifierType="DOI">10.21384/example</identifier>
<creators>

<creator>
<creatorName nameType="Personal">Garcia, Sofia</creatorName>

</creator>
</creators>
<titles>

<title xml:lang="en-US">Minimal DataCite XML Example</title>
</titles>
<publisher xml:lang="en">DataCite</publisher>
<publicationYear>2023</publicationYear>
<resourceType
resourceTypeGeneral=”Other”>Example</resourceType>

resourceTypeGeneral

6 Mandatory
Audiovisual
Book
BookChapter
Collection
ComputationalNotebook
ConferencePaper
ConferenceProceeding
DataPaper
Dataset
Dissertation
Event
Image
Instrument
InteractiveResource
Journal

JournalArticle
Model
OutputManagementPlan
PeerReview
PhysicalObject
Preprint
Report
Service
Software
Sound
Standard
StudyRegistration
Text
Workflow
Other

All Properties

6 Mandatory 6 Recommended and 8 Optional

Why include robust metadata?

We can answer questions about works, people, and organizations, such as:

● How many papers cite this dataset?
● What software was used to create this dataset?
● What research outputs were produced by this researcher (person)?
● Which datasets are associated with a particular research institution?
● What works were funded by a particular organization?

Understanding the scholarly record

DataCite Commons
DataCite Commons (https://commons.datacite.org) is
a portal where anyone can go to search the entire
DataCite metadata catalog as well as several other PID
resources. You can find:

● Works: Search the metadata catalog of all
DataCite DOIs, as well as a large number of
Crossref DOIs.

● People: Search for researchers with ORCID iDs.

● Organizations: Search for organizations with
ROR IDs.

● Repositories: Search for DataCite repositories
and repositories with re3data records.

DataCite resources

● DataCite support site: https://support.datacite.org/
○ Account structure: https://support.datacite.org/docs/datacite-account-types
○ Testing guide: https://support.datacite.org/docs/testing-guide

● DataCite Metadata Schema website: https://schema.datacite.org/
● DataCite Metadata Schema docs:

https://datacite-metadata-schema.readthedocs.io/en/4.5/

Getting started

If you are using DSpace but not registering DOIs yet, you can enable DataCite DOI
registration using the integration - we’ll demonstrate how today.

● To register DOIs, you’ll need a DataCite Repository account, whether as a Direct
Member or as part of a Consortium.

● More information on how to join DataCite:
https://datacite.org/become-a-member/.

If you are already registering DOIs through DSpace, this workshop will show you
how to make the most of the integration.

DOI registration through DSpace integration

https://support.datacite.org/docs/mds-api-guide

Getting involved

DataCite community

● Become a DataCite member
○ If you are not yet a member or part of a consortium, get in touch with us:

https://datacite.org/become-a-member/
● Help shape the DataCite Metadata Schema

○ Suggest changes here: https://schema.datacite.org/contribute.html
● Contribute to the Global Access Fund

○ Support underrepresented communities in accessing PID infrastructure:
https://datacite.org/global-access-fund-call-for-support/

● Reach out to us at support@datacite.org with any questions

DSpace community

● Join DSpace communication channels
○ DSpace community mailing lists: https://wiki.lyrasis.org/display/DSPACE/Mailing+Lists
○ DSpace Wiki: https://wiki.lyrasis.org/display/DSPACE/

● Register your DSpace instance
○ Submit this form: https://registry.lyrasis.org/registry/register-your-site/ to show up on the

global DSpace registry list/map:
https://registry.lyrasis.org/?gv_search&filter_10=DSpace&filter_4_6&filter_3&filter_20&filter_28
&mode=all

● Contribute to the community
○ Become a DSpace member organization:

https://www.lyrasis.org/programs/Pages/DSpace.aspx
○ Participate in community governance: https://dspace.lyrasis.org/governance/
○ Contribute code and other expertise: https://dspace.lyrasis.org/community-contributors/

DOIs with DataCite and DSpace
Workshop at Open Repositories 2024

Göteborg, June 3rd, 2024

Pascal-Nicolas Becker

https://lib-co.de/or24

Overview

Agenda
- DOI support in DSpace

- How to mint DOIs with DataCite and DSpace

- Sending metadata to DataCite, enriching your metadata

- Filtering which items get a DOI

- Listing persistent identifiers in submission

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 4

DOI support in DSpace
- Minting of DOIs with DataCite introduced in 4.0 (Dec. 2013)

- DSpace can create DOIs
- DSpace send metadata to DataCite
- DSpace can register URLs for DOIs at DataCite

- Filtering which items get DOIs assigned introduced in 7.1 (Nov. 2021)
- Only mint DOIs for items that contain a file, have or do not have certain metadata, are included in some

specific collections, …
- Allow administrators to manually and retrospectively mint DOIs for item that don’t have one

- Show identifiers in submission introduced in 7.5 (Feb. 2023)
- Show the identifiers an item will get once it is accepted in the repository
- Allows people to include the DOI into a file they want to publish

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 5

Basic concepts
- DataCite assigns a DOI prefix to each of its members, example: 10.5072

- You can mint any DOI that starts with this prefix and a slash:
ü 10.5072/dspace-is-great-123
ü 10.5072/xa.9823-6lk_j2390
✗ 10.5072.aklj-klj
✗ 10.123/dspace-is-great-123

- DSpace normally assigns sequential numbers for DOIs: 10.5072/1, 10.5072/3, …

- DSpace introduced the concept of “namespaces”, so that you can use one prefix with multiple
DSpace installations
- A namespace is just any static string, between the prefix and suffix of a DOI, e.g. 10.5072/edu-repository-

123, 10.5072/edu-repository/123

- DataCite uses different credentials for their test and production environment

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 6

States of a DOI
- DataCite requires DOI registrants to send metadata and URLs for a DOI to get fully registered

- Sending metadata is a prerequisite for sending URLs to which a DOI should be redirected

- In DSpace, we refer to sending metadata as "reserving" a DOI, because it semantically associates a
DOI with an item (or its metadata)

- In DSpace, we call sending URL(s) for a DOI "registration", because this is what finally makes the
DOI usable and active

- If DSpace should “register” a DOI for which no metadata has been sent yet, it will detect this and
automatically send metadata first

- A DOI can have different states: it can exist only in DSpace, metadata but not URLs could have
been sent to DataCite, or it can exist in DSpace, metadata and URLs have been sent to DataCite

- A DOI can be marked at DataCite as being no longer “active”

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 7

Storing DOIs within DSpace
- DOIs are metadata of an item and stored as such

- This is true for DOIs minted externally (publishers) and internally (directly by your DSpace instance)
- DSpace stores metadata in the database table metadatavalue

- For the DOIs minted by DSpace, DSpace must track their status and send updates to DataCite
- DSpace stores DOIs it minted and their status in the database table ‘doi’
- See https://github.com/DSpace/DSpace/blob/main/dspace-

api/src/main/java/org/dspace/identifier/DOIIdentifierProvider.java for a list of states and their internal
IDs (states are stored as integers)

- If an item with a DOI gets deleted, DSpace still stores the DOI and its status “deleted” in the database
table ’doi’

- DOIs minted by DSpace will be added as metadata to an item, after all information has been sent
successfully to DataCite

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 8

https://github.com/DSpace/DSpace/blob/main/dspace-api/src/main/java/org/dspace/identifier/DOIIdentifierProvider.java
https://github.com/DSpace/DSpace/blob/main/dspace-api/src/main/java/org/dspace/identifier/DOIIdentifierProvider.java

When does DSpace mint DOIs?

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 9

Later a cronjob sends information to DataCite and
stores the DOI also as metadata, so it shows up on the
item view

A user submits an item

Reviewers accept and archive the item, DSpace mints
a DOI and stores it in the doi table only

DataCite‘s DOI APIs
- DataCite offers different APIs to register DOIs

- DSpace currently (as of version 8.0) uses the MDS (metadata store)
- https://support.datacite.org/docs/mds-api-guide

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 10

https://support.datacite.org/docs/mds-api-guide

Minting DOIs

11

Preconditions
- You need a DOI prefix and credentials from DataCite

- Normally you need a membership directly at DataCite or via a DataCite consortium

- If you do not have a test and production account, you can request those

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 12

Basic Configuration I
- In DSpace you can override any setting of any *.cfg file in local.cfg. It’s up to you if you make the

following changes in dspace.cfg or in local.cfg

- Configure the username, password, doi prefix, namespace, and DOI publisher:
identifier.doi.user = DATACITE.USERNAME
identifier.doi.password = TOP-SECRET!1!!
identifier.doi.prefix = 10.5072
identifier.doi.namespaceseparator = dspace-
crosswalk.dissemination.DataCite.publisher = My University

- Add “doi” to the default DOI Event Consumers:
event.dispatcher.default.consumers = versioning, discovery, eperson,
harvester, doi

- Restart tomcat after changing this configuration

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 13

DOIIdentifierProviders vs.
VersionedDOIIdentifierProvider
- The only differences between the DOIIdentifierProvider and the VersionedDOIIdentifierProvider is

the way they generate DOIs for versions of items

- The DOIIdentifierProvider always concatenates the DOI prefix, a slash, the namespace (if set) and a
number: 10.5072/dspace-1, 10.5072/dspace-2, …

- The VersionedDOIIdentifierProvider does the same for first versions of items and adds a dot and
the version number to following versions of the same item: 10.5072/dspace-1, 10.5072/dspace-1.2,
10.5072/dspace-1.3, …

- The ISO norm 26324:2012 states: “The DOI name is an opaque string for the purposes of the DOI
system. No definitive information may be inferred from the specific character string of a DOI
name.”

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 14

Basic Configuration II
- DSpace uses Spring to configure alternative versions of source code

- You need to modify dspace/config/spring/api/identifier-service.xml

- Activate: DOIIdentifierProvider or VersionedDOIIdentifierProvider and the DataCiteConnector (just
remove comment signs <!-- -->)

- Configure if DataCite‘s test or production system should be used:

<property name='DATACITE_HOST‘ value='mds.test.datacite.org‘/>

Or

<property name='DATACITE_HOST‘ value='mds.datacite.org‘/>

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 15

Mint DOIs!
- Once DSpace is configured to mint DOIs and you have restarted tomcat, submit an item

- If you have configured the collection to use review steps, make sure the item has been accepted in
all review steps and is archived in the repository

- You will not see the DOI in the Item view, as the DOI is not stored as metadata yet

- Check via the command line, if the DOI is queued to be sent to DataCite:

- [dspace-install]/bin/dspace doi-organiser -l

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 16

Command line options and cronjobs
- [dspace-install]/bin/dspace contains the command line tool of DSpace

- [dspace-install]/bin/dspace doi-organiser is the command line tool to handle
DOIs

- [dspace-install]/bin/dspace doi-organiser --help prints the online help

- [dspace-install]/bin/dspace doi-organiser –l lists up all internally stored
DOIs, whose state should be changed

- There are commands to reserve DOIs (send metadata to DataCite, as updates or for the first time)
or to register them (send URLs or metadata and URLs to DataCite)

- Run this as a cronjob automatically

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 17

Cronjob

[dspace-install]/bin/dspace doi-organiser -u -q

[dspace-install]/bin/dspace doi-organiser -s -q

[dspace-install]/bin/dspace doi-organiser -r -q

[dspace-install]/bin/dspace doi-organiser -d –q

[dspace-install]/bin/dspace doi-organiser -u -q

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 18

Caveats
- When a DOI is registered successfully, the DOI is stored as metadata in the item

- When an item is changed, DSpace wants to send the updated metadata to DataCite

- When a DOI gets registered, it will be immediately marked as needing to send a metadata update
to DSpace, because of the added DOI

- Just run dspace doi-organiser -u again

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 19

Metadata

Sending Metadata to DataCite
- The cronjob you activated before, sends metadata to DataCite

- DSpace stores metadata fields for each item, DataCite has its own schema to represent metadata
information (see https://schema.datacite.org)

- DSpace produces XML representing the metadata of an item and XSLT to transform this XML into
XML that DataCite expects

- XSLT is a functional language to transform XML into another XML structure or even other formats
- We cannot cover this here, but there is a ton of information about this on the internet

- To change what information is sent to DataCite you can edit the file
dspace/config/crosswalks/DIM2DataCite.xsl

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 21

https://schema.datacite.org/

DIM2DataCite.xsl

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 22

DIM2DataCite.xsl

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 23

DIM2DataCite.xsl

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 24

Changing the metadata transformation
- You can change the DIM2DataCite.xsl, to use or add information from local metadata fields

- To see the XML the XSLT processor works on, run:

- [dspace-install]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk
dim 123456789/3
- This expects that an item with the handle 123456789/3 exists
- Of course, you can use any handle of any item in your repository

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 25

Testing the metadata transformation
- The XSLT transformation must produce XML that is valid DataCite XML

- Read the information at https://schema.datacite.org

- Create the XML that will be sent to DataCite by running:

- [dspace-install]/bin/dspace dsrun org.dspace.content.crosswalk.XSLTDisseminationCrosswalk
DataCite 123456789/3
- If the DOI is not stored as metadata of this item, it will not be in the XML
- DSpace checks automatically if the DOI is in the metadata and will add it if necessary before it sends the

metadata to DataCite

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 26

https://schema.datacite.org/

Item filter

Do we want to mint DOIs for all items?
- How about bibliographic entries without files? -> No

- How about previously published items that already have a DOI? -> Yes
- We run repositories, to ensure that their contents are accessible
- We want to have DOIs that are not forwarding to paywalls, but to Open Access Repositories
- If we publish pre- or post prints, the page count may differ from the original publication

- How about restricted content, that can be read only within the campus? -> Probably No

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 28

Mint DOIs selectively
- Different repositories require different criteria for whether to mint DOIs for a given item

- Some will mint DOIs depending on the item’s owning collection, some depending on metadata,
some on permissions, some depending on number of files

- Inspired by filters in XOAI, The Library Code introduced a logic framework to DSpace
- Spring service that is reusable anywhere
- Logical statements are defined as Spring beans in XML

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 29

Logic, Filters, and Conditions…
- Filters define rules, by using a single operator (AND / OR / NOT), or a single condition

- Each condition references a Java class that inspects an item and returns true / false

- Each operator can include any number of conditions or operators

- Complete boolean algebra is possible in this configuration

- Filters are use logical operators to combine different conditions to create complex rules

- Filters can be used by other parts of DSpace, such as the DOIIdentifierProvider

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 30

dspace/config/spring/api/identifier-service.xml

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 31

dspace/config/spring/api/item-filters.xml

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 32

dspace/config/spring/api/item-filters.xml

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 33

Example of conditions
- MetadataValuesMatchCondition takes a list of regular expressions and a field.

True if at least one metadata value for the field matches one of the patterns.
Use cases: “any value”, types, identifier prefixes, subject, etc.

- ReadableByGroupCondition takes a group name and action.
True if the action (READ, ADD, DELETE, etc) is allowed by the group.
Use cases: public access, restricted items - if extended to collection DSOs, could be used with
workflow permissions

- BitstreamCountCondition takes a minimum and maximum and a bundle name.
True if the bundle has at least the minimum and at most the maximum. If just a minimum or
maximum was specified, the other is unbounded
Use cases: “has file”, “has one thumbnail”, “has more than three files”

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 34

Example of filters
- OpenAIRE filter has a list of required conditions to return true only if an item is compliant with

OpenAIRE guidelines

- DOI filter returns true only if an item identifier URI does not contain the DOI prefix and the item
contains at least one bitstream

- Filters can reference other filters, since filters, operators and conditions all implement the
LogicalStatement class

- … the possibilities are endless!

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 35

Filters in practice
- A filter must return true for an item to get a DOI

- Administrators can manually assign DOIs to item that were filtered out (Edit Item -> assign DOI)

- It’s up to you, to adapt the filters to your local requirements

- If the is-archived_condition is still part of the doi-filter, please remove it, as a new item is not
archived when the filter is applied.

- Documentation in the DSpace manual: https://wiki.lyrasis.org/x/2wsoCw

1. Define your filters in item-filters.xml

2. Test them on the command line (see link in the manual above)

3. Configure the DOIIdentifierProvider to use the filter (in identifier-service.xml, see Slide 30)

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 36

https://wiki.lyrasis.org/x/2wsoCw

Identifiers in Submission

Adding DOIs to your PDFs
- Authors might want to add the DOI of the document to the

PDF itself: „Cite as: …“

- How can we add the DOI, if it is minted after the item was
submitted and archived?

- DSpace can assign a DOI to an item that is still in
submission
- It shows the DOI the item will get, once it is archived
- If the item gets archived, it will get this DOI and no other one
- No information will be sent to DataCite before the item gets

archived, DataCite will not charge for the DOI until it is
registered

- A DOI assigned to a workspace item has the status
“PENDING” in DSpace’s database (table ‘doi’)

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 38

But if items get filtered?
- Assume only items that include at least one public file should get DOIs

- We want to show the DOI in the submission, even if no file was uploaded yet

- If the item is submitted without a file, no DOI should be minted/registered at DataCite

- You can define two filters in DSpace:
- One filter checks whether a DOI should be shown in the submission
- The other filter checks if this DOI should be registered when the item gets archived
- You can change the message in the message catalog, e.g. “If you upload a file, this item will get the

following DOI … Please include that in your PDF”
- You can ensure that DOIs are not assigned in submission to entities that should never get a DOI

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 39

General Configuration
- To be able to register DOIs for workspace/workflow items, you must change the default

configuration in [dspace]/config/modules/identifiers.cfg or add it to local.cfg:
identifiers.submission.register = true

- You can name a filter that is defined in item-filters.xml and decides if a DOI should be shown in
submission or not:
identifiers.submission.filter.workspace = always_true_filter

- Imagine an item matches this “workspace-filter” and is then changed in submission, so that it
doesn’t match anymore. You can configure DSpace to either still show the DOI or hide it, until the
item matches the filter again:
identifiers.submission.strip_pending_during_submission = true

- You can define whether to show handles and/or DOIs in submission:
identifiers.submission.display = handle
identifiers.submission.display = doi

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 40

Submission Configuration
- Activate the submission step “identifiers” in your submission-process in
dspace/config/item-submission.xml by removing the comment signs or adding the
step to your submission-process:

https://lib-co.de/or24 | Open Repositories 2024Creating DOIs with rich metadata using DSpace 41

contact@the-library-code.de
https://www.the-library-code.de

Managing DOIs within DSpace-CRIS 7

● DSpace-CRIS? What is it?
● DOI & DSpace-CRIS

● Configurations

DSpace-CRIS? What is it? Extended data model

● Extended Data Model as a core feature
for mapping the whole research
domain

● Based on the OpenAire information
space

● Pre-configured features and workflows
to support to broad scope of a modern
repository: publications, datasets,
projects, researchers profiles,
organizations, etc.

DSpace-CRIS what is it? At the Core of the Research
Ecosystem

- ROR integration

- Full ORCID integration

- DataCite integration

DOI & DSpace-CRIS

● Integration built on top of DSpace integration
DOI Digital Object Identifier - DSpace 7.x Documentation - LYRASIS Wiki

● On DSpace-CRIS, then it‘s «only a matter of configuration»:
dspace/config/spring/api/identifier-service.xml

● Customizing the DOI namespace generation
● Exposing ROR and ORCID to DataCite (connecting research outputs to further

entities)
● Compliancy with DataCite Metadata Schema 4.5

● Import of metadata from DataCite available since DSpace-CRIS 2023.01.00 (will be in
DSpace 8)

https://wiki.lyrasis.org/display/DSDOC7x/DOI+Digital+Object+Identifier#DOIDigitalObjectIdentifier-dspace.cfg

Configurations:
configurable DOI
namespace
generation

Examples

Configurations: DOI generation strategies

Configurations: DOI templates

Template based on DSpace-CRIS Refer Crosswalk Engine

Configurations: Item Export

● In order to generate the metadata deposited in Datacite, DSpace-CRIS uses the
Item Export functionality and the ReferCrosswalk instead than XSLT

● Easier to debug and immediate to check also performing an export from the UI

● The item export functionality allows users to export the metadata of one or
multiple items in a specific format among those configured. Based on the type
and number of entities to be exported, it is possible to obtain results with
different formats (XML, JSON, PDF, CSV etc…).

● Single item export and the Multiple items export.

Configurations: Item Export

● With the same type of entity to be exported, the cardinality of the items to be
exported (one or many) can affects the available export result formats.

● If you decide to export a single researcher profile the available formats could
be XML, JSON, PDF or RTF, while if you choose to export many profiles you
could do it in XML, JSON, CSV and XLS.

● The available formats are not static but can be configured: it is possible to
establish both the information to export and the structure of the file itself. The
configuration of export formats is based on a series of editable text files that
act as templates.

StreamDisseminationCrosswalk and ItemExportCrosswalk

● The export logic is implemented by a set of classes that implement the
ItemExportCrosswalk interface and that serialize in a specific format one or
multiple items.

● This interface extends StreamDisseminationCrosswalk interface and it allows
to distinguish the classes that can be used for exporting the item in the various
formats available.

StreamDisseminationCrosswalk and ItemExportCrosswalk

The current implementations used by the export functionality to obtain the items in a specific format are:

● ReferCrosswalk: Generates a textual representation of the item/items starting from a template file in

which there is a set of placeholders.

● DocumentCrosswalk: Generates a document starting from the chosen item in the configured format

(such as PDF or RTF). This implementation is based on an XSL transformation made from a template file

written with the XSL-FO (Formatting Objects) language.

● TabularCrosswalk: Abstract implementation that, starting from the items chosen for export, generates a

table structure with configurable headings starting from a template file. The actual format of the table is

determined by the classes that extend this abstract class. Currently available implementations are:

○ XlsCrosswalk: the data of the items in the tabular form is written into an xls file

○ CsvCrosswalk: items metadata are exported in csv format

● CSLItemDataCrosswalk: Generates textual representation using the Citation Style Language (CSL), an

XML-based format to describe the formatting of citations, notes and bibliographies.

Refer Crosswalk

● The ReferCrosswalk allows to serialize the metadata of an item in a textual
format that mirrors that of the configured template

● Examples of properties to be configured are:
○ templateFileName: the path of the template to use relative to the DSpace

configuration folder
○ mimeType: the format of the file obtained by processing the item; it should

be consistent with the configured template.
○ fileName: the default name of the file that can be generated starting from

the ReferCrosswalk result
○ entityType: the type of the items that can be processed by this instance of

the ReferCrosswalk

Refer Crosswalk

● The template that is used to produce the result in a given format is a text file
in which can be placed a series of placeholders: the result of the process
corresponds to a file similar to the template in which the data relative to the
processed items are inserted instead of these placeholders.

● Each line of the template can contain at most one placeholder; in case one
line does not contain a placeholder, this line will be reported identical in the
generated result. If a placeholder needs to be replaced by multiple values (for
example due to multiple values of a metadata) the entire row is duplicated for
each value to be written.

Refer Crosswalk

● The placeholders are marked with the @ and depending on the type the effect
on the output may be different. There are 5 type of placeholders:

○ metadata: can be used to indicate that the specified metadata value must be
entered instead of the placeholder. The syntax of this placeholder is
@<metadata-field>@, where <metadata-field> represents a metadata field with
the various sections divided by a period. Examples: @dc.title@,
@dc.date.issued@

Refer Crosswalk

● metadata-group: placeholder with which some lines of the template can be delimited
to indicate that the whole section must be repeated for each set of nested metadata
identified. The syntax of this placeholder is @group.<metadata-field>.start@ to
delimit the beginning of the section to be replicated and @group.<metadata-
field>.end@ to indicate the end, where <metadata-field> is the metadata representing
the group with its various sections separated by “-”

Refer Crosswalk

Refer Crosswalk

● virtual field: placeholder to be replaced with the results of the specified
virtual field. The syntax of this placeholder is @virtual.<name>.<qualifiers>@,
where name represents the virtual field identifiers and the qualifiers
represents a set of info useful for the virtual field processing divided by
period.

Refer Crosswalk

● relation: placeholder with which some lines of the template can be delimited to
indicate that the whole section must be repeated for each item which has a specific
relationship with the item being written. The syntax of this placeholder is
@relation.<relationName>.start@ to delimit the beginning of the section to be
replicated and @relation.<relationName>.end@ to indicate the end, where
<relationName> could be:
○ the metadata that contains the relationship with the other item through authority,

with the various sections separated by “-”
○ the last section of one of the discovery configuration named

RELATION.<entityType>.<relationName>, where entityType is the type of the item
being written.

Refer Crosswalk

@relation.oairecerif-author-affiliation.start@

<affiliation

affiliationIdentifier="@organization.identifier.ror@"

affiliationIdentifierScheme="ROR"

schemeURI="https://ror.org/"

>@dc.title@</affiliation>

@relation.oairecerif-author-affiliation.end@

Refer Crosswalk

● if: placeholder with which some lines of the template can be delimited to indicate that
the whole section must be printed or not based on a condition evaluation. The syntax
of this placeholder is @if.[not.]<conditonName>.[qualifiers.]start@ to delimit the
beginning of the section to be replicated and
@if.[not.]<condtionName>.[qualifiers.]end@ to indicate the end, where:
○ not is an optional section to negate the whole evaluation result
○ qualifiers are a set of data that can be used to evaluate the condition, separated

by period
○ conditonName is the name of the particular condition evaluator to be used to

evaluate the condition.

Refer Crosswalk

Bug fixes and improvements to be donated to DSpace

● DOI Organizer: if the doi table contains hundreds or thousands of
operations (create, update, delete) the process stucks, usually failing with
an out-of-memory or taking too long: fixed introducing pagination

● The ItemServiceImpl doesn't flag the DOI of deleted item in the proper way
in the doi table. This leads to subsequent failures when the doi-organiser -d
command is executed: fixed delegating deletion to the identifier service

What’s Next?

● DOI generation with
"multiple prefixes" in the
same DSpace-CRIS:
○ standard
○ thesis
○ report
○ etc.

