

Software Deposit and Preservation Policy

and Planning Workshop Report

Edited by Christopher Brown, Jisc; Neil Chue Hong, The Software Sustainability
Institute; Mike Jackson, The Software Sustainability Institute.

DRAFT

doi:10.5281/zenodo.1250310

15th May 2018

This work is published under a Creative Commons Attribution 4.0 International
License (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/

Contents
1. Introduction .. 4

1.1. Terminology .. 4

1.2. Acknowledgements ... 5

2. A review of software deposit tools ... 6

2.1. Deposit tool limitations ... 6

2.2. Metadata limitations... 7

3. Software deposit workflows ... 9

3.1. Manual deposit ... 9

3.2. Event-driven deposit from repository hosting service ... 10

3.3. Interval-driven deposit from repository hosting service .. 11

3.4. Manually triggered deposit from repository hosting service ... 12

3.5. Manually triggered deposit from local source code repository ... 13

3.6. Manually triggered deposit from local directory .. 14

3.7. Metadata ... 14

3.8. Deposit tool configuration .. 15

3.9. Pros and cons .. 16

4. A review of the software deposit workflows .. 17

4.1. Terminology .. 17

4.2. Encouraging software deposit .. 17

4.3. Comparing workflows ... 17

4.4. When is software ready for deposit ... 18

4.5. Combining content from different sources .. 18

4.6. Source code repositories .. 18

4.7. Deposit dates versus publication dates .. 18

4.8. Copyright, IP and licensing .. 18

4.9. Additional source code repositories, repository hosting services and digital repositories .. 19

4.10. Reviewing deposits ... 19

4.11. Post-deposit activities ... 20

5. Software deposits and documentation .. 21

5.1. How a deposit will be used ... 21

5.2. Deposit content... 21

5.3. Documentation ... 22

6. Software metadata ... 24

6.1. General .. 24

6.2. CodeMeta.. 24

6.3. Collecting metadata .. 25

6.3.1. Observational metadata ... 25

6.3.2. Approaches to collecting metadata .. 25

6.3.3. Metadata sources ... 25

6.3.4. Validating collected metadata .. 26

6.4. Metadata for software preservation .. 26

6.5. Metadata for linkage with other research objects ... 27

6.6. Metadata for software discovery.. 28

6.7. Metadata for research credit .. 29

7. Best practice development and adoption... 31

7.1. Delivering best practice and guidance .. 31

7.2. Incentives .. 32

7.3. Mandates .. 33

7.4. Recommendations .. 33

7.4.1. Best practice and guidance ... 33

7.4.2. Schemas, ontologies, specifications, templates ... 34

7.4.3. Policy ... 35

7.4.4. Research .. 35

7.4.5. Deposit tools ... 35

1. Introduction
On 7th March 2018, Software Sustainability Institute1 and Jisc2 organised a Software Deposit and
Preservation Policy and Planning Workshop at Jisc’s London offices. This workshop brought together
members of pilot institutions from Jisc’s Research Data Shared Service3 (RDSS) and other institutions
interested in research software preservation.

The workshop presented work done by the Software Sustainability Institute to examine the current
workflows used to preserve software as a research object as part of research data management
procedures. The attendees discussed these workflows, the nature of software deposits, how to
collect software-related metadata and what metadata should be collected to satisfy the
requirements of researchers, research data managers (RDMs), institutions and funders. The
workshop concluded with a discussion of the best practices required for software preservation and
ways to ensure that these can be adopted in research communities.

The outputs from this workshop are intended to guide the development of a reference
implementation for a software deposit tool that supports common workflows, complemented with
guidance on metadata collection and software deposit content. These will be presented at a second
workshop, planned for summer 2018.

This report summarises the key findings and outcomes from the workshop.

1.1. Terminology

In this report, the following terminology is used.

Research software or software is any collection of scripts or code written for, or used within, a
research context. For example, 50 lines of bash shell commands, 250 lines of R, or 10,000 lines of
Fortran using MPI are all, for the purposes of this report, research software.

Source code repository is a version control tool, revision control system, source code management
tool or source code repository i.e. any tool that manages versions of source code and related files.
For example, Git, Mercurial, Subversion or Microsoft Team Foundation Version Control4.

Repository hosting service is a service that hosts version control repositories within an institution,
within a community, or for myriad individuals and communities. For example, GitHub5, BitBucket6,
GitLab7, CCPForge8, or Microsoft Visual Studio Team Services9.

Digital repository is a repository, archive or service that hosts digital artefacts, including research
outputs such as papers, presentations, data sets and software. For example, Zenodo10, Figshare11,
DSpace12, or Samvera13.

1 The Software Sustainbility Institute, https://www.software.ac.uk
2 Jisc, https://www.jisc.ac.uk
3 Research data shared service, https://www.jisc.ac.uk/rd/projects/research-data-shared-service
4 Use Team Foundation Version Control, https://docs.microsoft.com/en-us/vsts/tfvc/overview
5 GitHub, https://github.com/
6 BitBucket, https://bitbucket.com/
7 GitLab, https://gitlab.com/
8 CCPForge, https://ccpforge.cse.rl.ac.uk/gf/
9 Microsoft Visual Studio Team Services, https://www.visualstudio.com/team-services/
10 Zenodo, https://zenodo.org
11 Figshare, https://figshare.com

Digital preservation system is a repository, archive or service that also hosts digital artefacts,
including research outputs, but also implements strategies to afford long term access to the digital
artefacts, in the face of technological changes. For example, Archivematica14, Preservica15 or Arkivum
Perpetua16.

1.2. Acknowledgements

Many thanks are due to those who contributed their time and expertise to this report. In particular
to all those who contributed to the workshop: Steffan Adams, Cardiff University; Matthew Addis,
Arkivum; Alessia Bardi, ISTI-CNR; David Clipsham, National Archives; Maria Guerreiro, eLife;
Matthew Herring, University of York; Catherine Jones, STFC; Somaya Langley, University of
Cambridge; Joanna Leng, University of Leeds; James Long, University of Plymouth; Mary McDerby,
University of Manchester; Rachel MacGregor, University of Lancaster; Martin O'Reilly, Turing
Institute; Edward Ransley, University of Plymouth; Ben Samuels, University of Lincoln; Matthew
Siekier, University of Huddersfield; Justin Simpson, Artefactual Systems; Mark Woodbridge, Imperial
College; Wei Xing, Crick Institute.

Jonathan Cooper, UCL, provided information about the Research Software Dashboard.

Naomi Penfold, eLife, provided feedback on a draft copy.

The work described in this report was funded by Jisc.

12 DSpace, http://www.dspace.org
13 Samvera, http://samvera.org
14 Archivematica, https://www.archivematica.org/
15 Preservica, https://preservica.com/
16 Arkivum Perpetua, https://arkivum.com/perpetua/

2. A review of software deposit tools
Prior to the workshop, tools for creating a software deposit, collecting related metadata and
submitting these into digital repositories were reviewed. These deposit tools, and target digital
repositories, are shown in Table 1: Software deposit tools.

Workflow Tool Zenodo Figshare DSpace Nature Language
Manual Y Y Y
Event-
driven

Zenodo-GitHub
integration17

Y Service Python

Event-
driven

Figshare-GitHub
integration18

 Y Service Unknown

Event-
driven

fidgit19 Y Service Ruby

Interval-
driven

Manually-
triggered
(hosted)

Mozilla Science
Code as a Research
Object2021

 Y Service JavaScript

Manually-
triggered
(hosted)

EasyDeposit2223 Y Service
Library for service
development

PHP

Manually-
triggered
(local)

PyRDM24 Y Y Y Library for service or
application
development

Python

Manually-
triggered
(directory)

Table 1: Software deposit tools

From these tools, a set of common software deposit workflows, that are currently supported, or
could be supported in future, were identified. These are discussed in section 3 Software deposit
workflows.

2.1. Deposit tool limitations

The deposit tools have several limitations. These include:

17 Making Your Code Citable, https://guides.github.com/activities/citable-code/, 10/2016. Service used
02/2018.
18 How to connect figshare with your GitHub account, https://knowledge.figshare.com/articles/item/how-to-
connect-figshare-with-your-github-account-1. Service used 02/2018.
19 Fidgit, https://github.com/arfon/fidgit, release 0.0.3, aadf295e1102c75f16aec9f4aac1f94bf7a4cc40,
20/10/13; 7bb64db3c3991c69abe885601a215d5dd1da3e50, 07/11/17 (updates to documentation only).
20 Code as a Research Object, http://mozillascience.github.io/code-research-object/. Service used 02/2018.
21 Code as a research object, https://github.com/mozillascience/code-research-object/,
e44d3d7e3733e38982b77fc3720b960ce343fe37, 28/12/14.
22 EasyDeposit Client, http://easydeposit.swordapp.org/example/github/. Service used 02/2018 to submit to
DSpace 6.2 Demo Server, https://demo.dspace.org/.
23 EasyDeposit Client, https://github.com/stuartlewis/EasyDeposit,
f887cdd7f41661a60494991debaed31a5dd42e9d, 11/04/16.
24 PyRDM, https://github.com/pyrdm/pyrdm/, v0.3, 2fd0d507b84d76c8539fcaae28fac1ae261700fd, 16/06/16;
e5a0c5516e3f82197c1d7b5f437ac31c9f169374, 24/10/17 (update to documentation only).

 Only Git is supported: Zenodo-GitHub integration, Figshare-GitHub integration, fidgit,
Mozilla Science Code as a Research Object, EasyDeposit and PyRDM can only be used with
Git source code repositories. Researchers might instead be using Mercurial, Subversion,
Microsoft Team Foundation Version Control, for example, or they might not be using a
source code repository at all.

 Only GitHub is supported: Zenodo-GitHub integration, Figshare-GitHub integration, fidgit,
Mozilla Science Code as a Research Object, and EasyDeposit can only be used with GitHub.
Researchers might instead be using BitBucket, GitLab, CCPForge or Microsoft Visual Studio
Team Services, for example.

 Only GitHub “release” events are handled: Zenodo-GitHub integration, Figshare-GitHub
integration, and fidgit only trigger deposits on receipt of GitHub “release” events. Other
repository hosting services for Git repositories, for example BitBucket and GitLab, do not
support the concept of “releases” or “release” events.

 Deposits latest commit on default branch only: Figshare-GitHub integration can initially
only deposit the latest commit in the default branch of a Git repository. A researcher cannot
choose another branch or a specific commit for their initial deposit.

 Assumes Git “master” branch exists: Mozilla Science Code as a Research Object and
EasyDeposit can only deposit the latest commit on the “master” branch of a Git repository. It
cannot be guaranteed that a Git repository has a “master” branch.

 Assumes Git repository was cloned: PyRDM assumes that the local Git repository is a clone
of another repository. In practice, the Git repository might only exist locally.

 Assumes Git clone has “origin” remote: PyRDM assumes that the local Git repository clone
has a remote called “origin”. A clone cannot be guaranteed to have a remote called “origin”.

 Scrapes GitHub web pages: EasyDeposit scrapes GitHub web pages for the message
associated with the latest commit, rather than accessing this via the GitHub API.

The workflows of the next section have been defined to remove these limitations.

2.2. Metadata limitations

The review of the deposit tools revealed some of the issues that can arise when trying to
automatically collect metadata for software deposits. These include:

 Metadata unavailable via repository hosting service APIs: When using the Figshare-GitHub
integration, a researcher must enter values for the Figshare fields “Categories” and
“Keyword(s)” before their initial deposit. The Figshare-GitHub integration, the GitHub API
and its webhooks cannot provide this information.

 Inconsistent versioning: When using the Figshare-GitHub integration, a researcher may end
up with a version tagged “Release 0.0.4” on GitHub having a version number of 2 in Figshare
with no record of the association between the two version numbers. Zenodo and Zenodo-
GitHub integration do preserve this association.

 Contributors may not be synonymous with authors: Zenodo-GitHub integration derives an
author list based on the contributors. However, as Markus Ankerbrand notes25, the software
might have evolved sufficiently that it can be considered a new research output, for which
the original contributors would warrant being cited, rather than listed as co-authors.

25 Ankenbrand, A. (2016) “How to properly use zenodo DOIs for derived software?”, 08/09/2016.
https://openscience.uni-bielefeld.de/985/how-to-properly-use-zenodo-dois-for-derived-software

 Limitations in metadata conversion: EasyDeposit can deposit software into DSpace via the
SWORD26 API with METS27 and SWAP28-encoded metadata. However, DSpace’s SWAP-to-
DSpace Internal Model crosswalk29 supports only a handful of SWAP values. For example,
the values “publisher”, “subject”, “rights”, and any type that is not “JournalArticle” are not
supported.

More generally, each digital repository exposes different APIs and differ in what they view to be
mandatory or optional metadata.

26 Jones, R. and Lewis, S. (eds). SWORD 2.0 Profile, 2011, http://swordapp.org/sword-v2/
27 Metadata Encoding and Transmission Standard (METS), http://www.loc.gov/standards/mets/
28 SWAP Scholarly Works Application Profile (SWAP),
http://www.ukoln.ac.uk/repositories/digirep/index/Eprints_Application_Profile
29 DSpace SWORD SWAP ingest cross-walk,
https://github.com/DSpace/DSpace/blob/master/dspace/config/crosswalks/sword-swap-ingest.xsl
e0bd496e644d170789f3b15811a481f5c263e9cb, 24/11/16 (marked as “work in progress”).

3. Software deposit workflows
From the review of deposit tools, a set of common software deposit workflows, which are currently
supported or could be supported in future, were identified.

The following aspects were considered out-of-scope when identifying these workflows (however,
this should not be interpreted to mean that these aspects are in any way unimportant):

 Incremental software deposits i.e. uploading software in groups of files at separate intervals
over time. A deposit is considered as a single zipfile/tarball containing the software,
submitted along with complementary metadata.

 Post-deposit activity, including any review of a deposit by an RDM, archivist or other
stakeholder, or subsequent updates to related metadata, by researchers, their
representatives or other stakeholders, after the initial deposit.

 Authentication and authorisation, whether source code repository-, repository hosting
service- or digital repository-specific. Delegation of rights, for example a researcher who
makes a deposit, but wants to allow colleagues to update its related metadata, can be done
out-of-band.

 Binary deposits, for example deposits that consist primarily of executables, binary libraries
(e.g. JAR files, LIB files, DLLs), Docker or Singularity containers, or virtual machine images.

3.1. Manual deposit

Within this workflow there is no deposit tool. A researcher is responsible for gathering both their
software and metadata and making their deposit into the digital repository manually e.g. via a web
form offered by the digital repository.

3.2. Event-driven deposit from repository hosting service

GitHub, GitLab and BitBucket all support APIs to access zipfiles/tarballs and metadata for specific
versions of code held within Git repositories and, for BitBucket, Mercurial repositories also. GitHub,
GitLab and BitBucket also all support webhooks that are raised when repository-specific events
occur. GitHub supports “release” events that are triggered when a new release is created. Though
GitLab and BitBucket have no concept of releases, they do, as does GitHub, support events related to
tags:

 GitHub “create” (new branch/tag) event.
 BitBucket “push” (new branch/tag) event.
 GitLab (new) “tag” event.

Within this workflow, the deposit tool subscribes to the repository hosting service. When an event is
created e.g. in response to a release being created on GitHub, the deposit tool gets the version of
the software from the repository hosting service, compiles associated metadata and makes the
deposit into the digital repository.

The use of a tag pattern allows a researcher to define a naming convention, so that only versions
tagged in a specific way, defined by the researcher, will be deposited by the deposit tool.

This workflow was inspired by Zenodo-GitHub integration, Figshare-GitHub integration, and fidgit.

3.3. Interval-driven deposit from repository hosting service

This workflow is like the event-driven deposit from repository hosting service workflow. However,
instead of deposits being triggered by events from the repository hosting service, the deposit tool is
configured with a query interval. At each interval, the deposit tool queries the repository hosting
service for new releases, for GitHub, or tags matching a specific pattern, for Github, BitBucket or
GitLab, compiles associated metadata and makes the deposit into the digital repository.

None of the reviewed deposit tools supports this workflow. Instead, this workflow was inspired by
University College London’s Research Software Dashboard30 which provides up-to-date status
information on research software under development at UCL. One of UCL’s motivations for using
interval-driven deposit was to avoid the need for researchers to configure webhooks in GitHub,
BitBucket or GitLab, thereby removing a barrier to use by researchers.

30 Research Software Dashboard, UCL, http://www.ucl.ac.uk/isd/services/research-it/research-
software/dashboard

3.4. Manually triggered deposit from repository hosting service

GitHub, GitLab and BitBucket all support APIs to access zipfiles/tarballs and metadata for specific
versions of code held within Git repositories and, for BitBucket, Mercurial repositories also. A version
can be the latest version on the current/default branch, the latest version on a named branch, a tag,
a specific commit or, for GitHub a release.

Within this workflow, a researcher requests that a deposit of their software be made. This might be
done by running a command at the command-line, running an application, entering a URL into a web
form, or dragging and dropping a URL onto a bookmarklet.

Depending upon the nature of the deposit tool, the researcher might specify the version to deposit
or the available versions might be presented to them by the deposit tool, after it has queried the
repository hosting service. The deposit tool gets the version of the software from the repository
hosting service, compiles associated metadata and makes the deposit into the digital repository.

This workflow was inspired by Figshare-GitHub integration, Mozilla Science Code as a Research
Object, and EasyDeposit.

3.5. Manually triggered deposit from local source code repository

zipfiles/tarballs of specific versions of Git, Mercurial and Subversion source code repositories can be
created using Git’s “archive” command, Mercurial’s “archive” command and Subversion’s “export”
command (for local or remote source code repositories). A version can be the latest version on the
current/default branch, the latest version on a named branch, a tag, or a specific commit.

Within this workflow, a researcher requests that a deposit of their software be made. This might be
done by running a command at the command-line, running an application, entering a directory into
a web form, or dragging and dropping a directory onto a bookmarklet or application.

If using Git, the deposit tool could be exposed via an “archive” remote and, whenever a researcher
wants to start a deposit, they push to this remote31. The “archive” remote is exposed by the deposit
tool and handles the deposit from thereon. A similar approach could be done within Subversion with
a deposit triggered by a post-commit hook triggered via a copy to a "tags" directory with a tag name
conforming to some naming scheme.

Depending upon the nature of the deposit tool, the researcher might specify the version to deposit
or the available versions might be presented to them by the deposit tool, after it has queried the
source code repository.

The deposit tool gets the version of the software from the repository hosting service, compiles
associated metadata and makes the deposit into the digital repository.

31 Thanks to Mark Woodbridge for this idea. Mark comments that “it’s the Heroku model i.e. push somewhere
other than origin in order to trigger an action.”

This workflow was inspired by PyRDM.

3.6. Manually triggered deposit from local directory

This workflow was added post-workshop for completeness.

Within this workflow, a researcher requests that a deposit of their software be made. The deposit
tool creates a zipfile/tarball of a folder containing the software, compiles associated metadata and
makes the deposit into the digital repository.

This workflow was inspired by the previous workflow, but without the assumption that a researcher
is using a source code repository.

3.7. Metadata

Metadata for software deposits can originate from myriad sources. These include: researchers who
deposit software, directories with software, source code repositories, repository hosting services
(including their APIs and events) and existing items in digital repositories (e.g. for deposits
corresponding to a previous version of the software).

3.8. Deposit tool configuration

Configuration required by deposit tools to support each workflow is summarised in Table 2:
Workflow configuration.

 Manual Event-
driven

Interval-
driven

Manually-
triggered
(hosted)

Manually-
triggered
(local)

Manually-
triggered
(directory)

Repository hosting service
connection

 Y Y Y

Source code repository
URL

 Y Y Y

Source code repository
directory

 Y

Source code directory Y
Digital repository
connection

 Y Y Y Y Y

ID of digital repository
item to update

 Y Y Y Y Y

Tag pattern e.g. [0-
9]+(\.[0-9]+)*
(optional)

 Y Y

Default metadata
(optional, digital
repository-specific,
researcher and/or deposit

 Y Y Y Y Y

tool could provide
defaults)
Query interval Y

Table 2: Workflow configuration

3.9. Pros and cons

The pros and cons of each workflow can be summarised as in Table 3: Workflows pros and cons.

 Manual Event-
driven

Interval-
driven

Manually-
triggered
(hosted)

Manually-
triggered
(local)

Manually-
triggered
(directory)

Deposit made exactly
when researcher wants

Y Y Y Y

Deposit fully automated
once configured

 Y Y

Researcher does not have
to enable webhooks

Y Y Y Y Y

Researcher does not
need to use repository
hosting service

Y Y Y

Many deposits could be
triggered, consuming
archive resources and
possibly violating
"acceptable use" or other
terms of service.
Researcher needs to be
aware of these.

 Y Y

Researcher must add/edit
metadata

Y

Researcher may need to
add/edit metadata

 Y Y Y Y Y

Researcher may have to
create item before initial
deposit

 Y Y Y Y Y

Researcher must upload
zipfile/tarball

Y

Data files or temporary
files might be deposited

Y Y

Table 3: Workflows pros and cons

4. A review of the software deposit workflows
The following observations relating to software deposit workflows arose during the workshop.

4.1. Terminology

The term “repository” can mean different things to researchers, research software engineers (RSEs),
software developers, research data managers or librarians. This motivated the inclusion of section
1.1 Terminology in this report.

4.2. Encouraging software deposit

Encouraging researchers to deposit their software into a digital repository is a fundamental
challenge.

There is not always a requirement, from institutions, publishers or funders, to deposit software or
software descriptions, as supplementary material for research publications such as journal papers.

Software is often not part of any peer review process.

Principal investigators can be very protective of their ideas and may be reluctant to deposit research
software for others to access.

Software should be deposited not only for preservation, but also for reuse.

It can be challenging to encouraging deposits for reuse, if it is unclear that the software will be
reused.

Some communities will be more willing to deposit software, and use a specific workflow, than
others. It depends upon both context and project.

Digital preservation needs to be integrated into software development processes from the outset. It
is very hard to apply as an after-thought.

4.3. Comparing workflows

Researchers can publish their research outputs in many different digital repositories.

Even within a single institution, a whole range of processes and tools (e.g. source code repositories
or repository hosting services) will be used, often siloed from other parts of same institution.

Different workflows are required for different institutions or communities and for different projects,
within the same institution or community.

There will always be a need, and desire, for the manual workflow, as it represents the “lowest
common denominator”. There are a lot of researchers who work within this manual world. For
example, a case study for Cambridge University is software that can arrive on a USB flash drive, as
part of the associated materials for a PhD thesis.

A disadvantage of the manual workflow is that researchers might not deposit their software,
because this workflow requires the most action from them.

Deposits from a local repository or directory could be considered the option with least overhead.

A deposit from a local directory may incur the risk of (possibly large or large numbers of) data files,
temporary files, or scratch files, being inadvertently included as part of a deposit.

Interval- or event-driven workflows can be termed “automatic harvesting”.

Event-driven workflows can help researchers move away from manual deposit.

For bigger projects, interval- or event-driven workflows may be preferable.

An institutional digital repository might impose limits on deposits (e.g. number or size) and either
block deposits that exceed these, or charge researchers if they exceed their limit. If using an interval-
or event-driven workflow, a researcher might get a bill they did not expect.

Digital repositories could be modified to prompt a researcher to publish, or provide a reference to,
software, if the researcher deposits a data set with analysis results.

4.4. When is software ready for deposit

Researchers may not understand the concepts of software releases and release management. They
may lack the skills or knowledge to assess whether their software is in a suitable state for release, or
deposit. This is complicated by the constantly evolving nature of software.

4.5. Combining content from different sources

A software deposit that forms a single usable bundle, or intellectual entity, might be a combination
of files from different locations e.g. code on GitHub plus some local scripts in a folder. A more
advanced version of the manually triggered workflows would be to allow content from multiple
sources to be pulled together into a single deposit. An alternative is to create multiple, related,
deposits.

4.6. Source code repositories

Many workflows assume the use of a source code repository. However, getting researchers to use a
source code repository is a significant challenge. Many researchers do not use them or do not see
their value.

Using a source code repository could help to encourage researchers to deposit their software once
the initial configuration of a deposit tool is done. However, researchers still need to make the effort
to do this initial set up.

4.7. Deposit dates versus publication dates

The choice of both workflow, and when a deposit is published, can be affected by when a researcher
wants to publish their software. For example, a researcher may want deposits to be done routinely
during their project. Alternatively, they may want to delay publishing their software until they have
published results, derived from the software, in a related paper.

There is a distinction between the time when software is deposited into a digital repository and the
time when it is published.

Researchers should be made aware of the embargo features of digital repositories.

Deposit tools need to allow researchers to configure any embargo-related features of the digital
repositories with which they interact.

4.8. Copyright, IP and licensing

Not all software can be assumed to have an open source licence, or any licence at all.

Publishing source code in a digital repository does not imply that the software is open source.

Requiring researchers to select a licence within a deposit tool could ensure that all deposited
software has a licence. However, mandating this selection places an additional burden upon the
researcher.

Some digital repositories adopt a default licence (e.g. CC-BY-4.0 for Zenodo) unless explicitly
overridden by a researcher.

It is unclear whether a researcher can be considered to have given their informed consent for a
choice of licence if a licence is automatically selected by default.

A default licence may be more permissive or open than a researcher might prefer.

If the software deposit itself has a licence, then selection of a default licence by a digital repository
can result in two, very possibly inconsistent, licences, the one within the software deposit and the
one recorded within the metadata held by the digital repository.

A principal investigator, or another stakeholder, may need to decide upon a licence, not the
developer of the research software (for example, if a research software engineer is temporarily
working with a research group) or the researcher who is responsible for depositing the software. It is
essential that all stakeholders agree on how the software is to be published, and under what
licence(s), before a deposit workflow is adopted.

4.9. Additional source code repositories, repository hosting services and digital
repositories

In addition to Git, Mercurial, Subversion, GitHub, GitLab and BitBucket other source code
management systems are also used, or mandated, by universities. For example, researchers using
Microsoft Visual Studio Team Services can use either Git or Team Foundation Version Control.

CCPForge is a repository hosting service offered by Jisc, STFC32 and EPSRC33. CCPForge can host Git,
Subversion and CVS source code repositories.

Institutions can have their own services, for example the University of Edinburgh’s DataShare34,
DataVault35, currently under development by the Universities of Edinburgh and Manchester, or
institution-specific Microsoft SharePoint36 services.

4.10. Reviewing deposits

Depending upon the workflow, there are three points at which a software deposit could be
reviewed:

 Prior to deposit e.g. by a researcher, their peers, or a research software engineer within
their project or institution.

 Post-deposit but pre-publication e.g. by a digital repository manager or a research software
engineer.

 Post-publication e.g. by the research community.

32 STFC, http://www.stfc.ac.uk/
33 EPSRC, https://www.epsrc.ac.uk
34 Edinburgh DataShare, https://datashare.is.ed.ac.uk
35 DataVault, https://github.com/DataVault/datavault
36 Microsoft SharePoint, https://products.office.com/en-gb/sharepoint/collaboration

A review could range from a simple visual inspection, following a checklist, through to an attempt to
build and run the software.

Automated testing and continuous integration could afford some form of automated checking of
deposits.

The nature and degree to which a software deposit can be reviewed depends upon the expertise,
time and effort available.

4.11. Post-deposit activities

Ease of maintenance depends on the quality of the software and its related documentation.

Both researchers and digital repositories may want to remove deposits that are deemed to be no
longer worth keeping. For example, if a software deposit has a major bug it might be worth
removing that deposit, replacing it with a “tombstone” page explaining why it has been removed.

It may be desirable to keep only specific versions of software that enable reuse and are considered
to have long-term value.

To promote reuse, digital repositories could support a Docker-type preview of the research software
they host, so a researcher can see if some research software may be useful to them.

5. Software deposits and documentation
The following observations relating to the nature and content of a software deposit arose during the
workshop.

5.1. How a deposit will be used

Software should be deposited not only for preservation, but also for reuse.

Carole Goble, in “Reproducibility, Research Objects and Reality”37, slide 23, provides definitions for 5
“Rs” of research: rerun, repeat, replicate, reproduce, reuse.

Three common scenarios for the use of software deposits are:

 Look at the source code to see how data is generated or to spot bugs. This is a minimum
requirement.

 Rerun the software to validate research findings i.e. check whether using the same software
on the same data produces the same results.

 Rerun the software with different data i.e. reuse the same software on different data.

Software that is executable today may not be executable in the future. Language features are
deprecated and removed, libraries become unavailable, HPC services reach their end date and are
shut down etc. Consequently, a software deposit that can be used for reproducibility and reuse
today, may only serve as a historical record in future.

5.2. Deposit content

A deposit could consist of any of:

 Source code.
 Build scripts e.g. Makefiles.
 Binary executables.
 Container/image files e.g. Docker38, Singularity39, with a runtime environment and

dependencies.
 Virtual machine images, with a runtime environment and dependencies.
 Ansible40 playbooks.
 Sample input and output data.
 etc.

A software deposit should have, or be complemented with:

 Licence, which might not necessarily be an open source licence.
 README.
 Documentation.
 etc.

37 Goble, C. (2016), Reproducibility, Research Objects and Reality, Leiden Bioscience Lecture, 24 November
2016, https://www.slideshare.net/carolegoble/reproducibility-research-objects-and-reality-leiden-2016
38 Docker, https://www.docker.com/
39 Singularity, http://singularity.lbl.gov/
40 Ansible, https://www.ansible.com/

A software deposit should not contain IP addresses, usernames, passwords or personal or sensitive
information or data that the researcher does not want to be exposed.

5.3. Documentation

Documentation is important for reproducibility.

It is not enough to publish software, there is a need to complement with information on how to
build and deploy a running instance of the software.

A significant challenge is that many researchers struggle with the basics of all aspects of software
development e.g. using source code repositories, documenting code, and managing releases.
Researchers may not have the time, effort, skills or expertise to perform these activities.
Consequently, documentation is often incomplete or inaccurate. The problem is not how to describe
software, it’s how to make it easy for researchers who develop, and use, research software to
provide these descriptions.

Researchers should document, for both reproducibility and reuse:

 Runtime environment e.g. operating system, hardware.
 Configuration e.g. parameters, settings, command-line options.
 Input and output formats.
 Sample inputs and expected outputs/errors.
 Third-party dependencies e.g. libraries, software, infrastructure, services.
 How to build/create a running instance of the software.
 Skills needed to install, use, inspect, develop the software.

See, for example, the documentation for ffmprovisr41

Common Workflow Language (CWL)42 and GA4GH Task Execution Schema (TES)43 both offer ways to
more formally represent software, processes, inputs, outputs and the relationships between these.
CWL can represent inputs, outputs, parameters, processes and command-line tools. TES can
represent inputs, outputs, processes and resources.

Documentation should include a point-of-contact, in case a researcher experiences problems in
trying to use the software.

Research software can depend upon other software, services and infrastructure to which access by
other researchers may not be readily available. For example, proprietary software (e.g. Matlab or
Autodesk), embedded software (e.g. within instruments), online services (Software-as-a-Service),
university, community and national HPC services, virtual digital environments and science gateways.
Researchers should record these dependencies too. However, it is not always clear how this could be
done. For example, a service can evolve over time, unknown to the researchers using it. In such
circumstances, the notion of a “version” becomes problematic.

The FORCE 1144 Software citation principles45 are of value when describing dependencies.

41 ffmprovisr, https://amiaopensource.github.io/ffmprovisr/
42 Common Workflow Language (CWL), http://www.commonwl.org/
43 GA4GH Task Execution Schema (TES), https://github.com/ga4gh/task-execution-schemas
44 FORCE 11, https://www.force11.org/
45 Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Working Group. (2016) Software Citation
Principles. PeerJ Computer Science 2:e86. doi: 10.7717/peerj-cs.86. https://peerj.com/articles/cs-86/

Templates and lists of important information may help to deliver improved documentation.

Documentation that is machine-readable could contribute to automated metadata extraction, but
development of templates for such documentation would take more time.

6. Software metadata
The following observations relating to software metadata arose during the workshop.

6.1. General

As for documentation (see section 5.3 Documentation), the problem is not how to describe
software, it’s how to make it easy for researchers who develop, and use, research software to
provide these descriptions.

Different researchers working in different fields may have different views as to what metadata is
important.

To mint a digital object identifier (DOI)46, a digital repository (or human agent such as a librarian)
usually requires a certain minimum set of metadata to be completed.

What should be mandatory and what can be optional can vary, depending upon what the metadata
is required for and the context in which it is to be used. For example, metadata for software
discovery may differ from metadata for software credit. As another example, a researcher making or
checking a citation, a researcher trying to replicate research results, and a researcher looking for
research software to use for a specific purpose all have different metadata requirements.

The semantics of metadata is important, especially when it can be defined by individual researchers
or projects. For example, topics attached to Git source code repositories on GitHub might, for one
researcher, be used to describe the software and what it does, for another they might describe the
readiness of the code e.g. alpha, beta, or production. Similarly, for tag names used within Git,
Mercurial or Subversion repositories.

Certain metadata is immutable or static. For example: depositor, date, version, operating system,
programming language, authors) at the point of deposit.

Other metadata is mutable or evolves over time. For example: descriptions, keywords, related
references, citations, applicable domains, tested platforms.

Some metadata fields may be more sensitive than others and might need to be access-restricted or
controlled. It could be possible to infer commercially sensitive information from certain metadata.

6.2. CodeMeta

CodeMeta47 is a schema specifically designed to “assist the transfer of software and software
metadata between the entities that author, archive, index and distribute and use the software”. It is
based on schema.org48 terms, and adds terms for software that have no equivalents in schema.org.
CodeMeta is complemented with cross-walks to other metadata schemas. CodeMeta could be used
as a means to preserve metadata that would otherwise be lost when a deposit passes through APIs
(as mentioned in section 2.2 Metadata limitations).

46 Digital Object Identifier System, https://www.doi.org/
47 The CodeMeta Project, https://codemeta.github.io/
48 schema.org, https://schema.org

6.3. Collecting metadata

6.3.1. Observational metadata

Making a wrong assertion about the value of a piece of metadata, is worse than not making any
assertion at all.

Observational metadata views metadata not as assertions, but as observations, statements made by
some agent at a specific point in time.

PREMIS49 and PROV50 are metadata schemas which enable observational metadata to be captured
and represented.

Metadata should be captured as observational metadata. For example, if an email address is taken
from GitHub’s API by a deposit tool, the metadata can record not just the email address, but that it
originated from GitHub’s API, was captured by the deposit tool, and the date when this occurred.

Like several digital repositories or digital preservation systems, Archivematica can derive some
metadata from deposits themselves. For example, for an audio file, how long it is. However,
Archivematica also captures the source of such metadata, Archivematica itself in this example.

6.3.2. Approaches to collecting metadata

Calcyte5152 is a work-in-progress tool that supports the capture and management of metadata for
data files. Researchers record their metadata in an Excel spreadsheet. Calcyte converts this into an
RDF-A53 metadata schema, supported by schema.org, which can be embedded into HTML web pages
so it can be crawled by search engines. It bundles static HTML repositories for distribution via BagIt54
in a format called a Data Crate55. One possible strength of this approach is that spreadsheets are
very accessible and familiar to all.

Technical metadata (e.g. programming language) can be derived automatically, but not always
correctly.

Components that harvest metadata could use algorithms to extract metadata by analysing files (e.g.
README and LICENCE files) or using Natural Language Processing (NLP), for example to extract
keywords from descriptions. The Digital Public Library of America56 uses these techniques.

There is no one best way to collect metadata. Metadata can come from different, possibly multiple,
sources.

6.3.3. Metadata sources

Metadata that could be provided by researchers who write software includes:

 Author

49 PREMIS, Library of Congress, http://www.loc.gov/standards/premis/
50 PROV, W3C, https://www.w3.org/TR/prov-overview/
51 Sefton, P. (2017) Calcyte: A simple tool for describing, packaging and publishing data collections. eResearch
Australasia, October 2017. https://conference.eresearch.edu.au/2017/08/calcyte-a-simple-tool-for-describing-
packaging-and-publishing-data-collections/
52 Calcyte, https://codeine.research.uts.edu.au/eresearch/calcyte/
53 RDF-A, W3C, https://www.w3.org/TR/rdfa-primer/
54 The BagIt File Packaging Format (V0.97), https://tools.ietf.org/html/draft-kunze-bagit-14
55 Research Data Crate, https://github.com/UTS-eResearch/datacrate
56 Digital Public Library of America (DPLA), https://dp.la/

 Date
 Version
 Licence
 Description
 Documentation, or location thereof.
 Link to source code repository.
 Platform.
 Dependencies and requirements.
 Subject or area of research.
 Optional descriptive metadata, possibly specified using CodeMeta.

Metadata that could be automatically derived includes:

 Author
 Date
 Version
 Contributors
 Description
 Language
 Size
 Test coverage
 Quality-assurance
 Benchmarks
 README file location.
 Licence
 Virus checking results.

Metadata that can be provided by users of the software:

 Does the software work.
 Their opinion as to the quality, utility, and usability of the software.

6.3.4. Validating collected metadata

Automatically derived metadata might not be correct.

Researchers need to check metadata, especially that which has been automatically derived.

For an institutional digital repository, it is important that a human agent checks the metadata, for
example, a librarian or other repository officer.

Metadata guidance for researchers can also serve as guidance for librarians or repository officers.

6.4. Metadata for software preservation

There is significant overlap between documentation, discussed earlier, and metadata for software
preservation. A lot of information that should be within documentation e.g. languages, operating
systems, dependencies, input and output formats etc. can also serve as valuable metadata.

PREMIS 357, p33, states that “The only mandatory semantic units that apply to all categories of
Object (Intellectual Entity, Representation, File, and Bitstream) are “objectIdentifier” and
“objectCategory””. PREMIS can serve as a starting point for metadata but it is inadequate for
enabling software reuse.

At a minimum, the following metadata needs to be collected for preservation:

 What the software is.
 What it is for.
 Creator
 Rights and licensing.

It is not unreasonable to expect researchers to provide such descriptive metadata. However, the
quality may vary.

Rights and licensing are important to allow other researchers to know whether they have the right
to retain and edit the software to keep it usable.

There is a need for a software equivalent to DataCite58.

Many schemas and ontologies for software metadata, and resources from which such an equivalent
schema and ontology could be derived or expanded, already exist. These include:

 Common Workflow Language (CWL).
 GA4GH Task Execution Schema (TES).
 CodeMeta.
 The Software Sustainability Institute’s Software Evaluation: Criteria-based Assessment59.
 The Software Sustainability Institute’s Checklist for a Software Management Plan60.
 STFC’s The Significant Properties of Software: A Study61.
 researchobject.org62’s Research Object ontology63, for describing workflow-centric research

objects.

6.5. Metadata for linkage with other research objects

Software does not necessarily sit alone from other digital content e.g. software might be a script
that works alongside processing large collection of images etc.

Research objects related to software can include:

57 PREMIS Editorial Committee (2015) PREMIS Data Dictionary for Preservation Metadata version 3.0, June
2015. http://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf
58 DataCite, https://www.datacite.org/
59 Jackson, M., Crouch, S. and Baxter, R. (2011) Software Evaluation: Criteria-based Assessment. The Software
Sustainability Institute, November 2011. https://www.software.ac.uk/software-evaluation-guide
60 The Software Sustainability Institute. (2016). Checklist for a Software Management Plan. v0.1. Available
online: https://www.software.ac.uk/software-management-plans.
61 Matthews, B., McIlwrath, B., Giaretta, D., and Conway, E. (2008) The Significant Properties of Software: A
Study, STFC, March 2008.
https://www.webarchive.org.uk/wayback/archive/20100624233431/http://www.jisc.ac.uk/media/documents
/programmes/preservation/spsoftware_report_redacted.pdf
62 researchobject.org, http://www.researchobject.org
63 Soiland-Reyes, S. and Bechhofer, S. (eds.) (2016) Research Object ontology, 1.0.0-SNAPSHOT, 28 January
2016, http://wf4ever.github.io/ro/2016-01-28/

 Publications
 Data, both input and output.
 Data management plans, for the above data.
 Software management plans, for the software.
 Other research software.
 Experimental observation equipment.
 Publicly funded facilities and services.

To link research objects to software requires the following metadata:
 For research software:

o Authors
o Location
o Date
o Version e.g. unique identifier and/or timestamp.

 For relationships to other research object:
o Nature/semantics of relationship to other research object.
o Type of other research object.
o Version (unique identifier/timestamp).

Taken together, research software, data, facilities, equipment and an overarching research question
can be viewed as a research activity or experiment, worthy to be published.

Conversely, a publication can be considered as a narrative that describes how the research objects
are used together to reply to the research question.

Establishment of a research object relationship semantics, neither too broad nor too narrow, is
essential.

The RDSS canonical data model64 defines a “RelationType” with relations between research objects
including, but not limited to, “cites”, “isCitedBy”, “references”, “isReferencedBy”, “continues”,
“isContinuedBy”, “documents”, “isDocumentedBy”, “isDerivedFrom” etc.

6.6. Metadata for software discovery

Software should be catalogued for discovery and reuse.

The following metadata can contribute to assisting the discovery of research software:

 Deposit date.
 Version
 Contributors, which may not just be those who wrote the actual code.
 Subject-specific keywords.
 Relevant identifiers e.g. organisation identifiers.
 Algorithms implemented within the software, to allow for the discovery of more generic

functionality which could be used elsewhere. For example, another researcher may be
interested in the implementation of a specific algorithm within the software, rather than the
software itself.

64 JiscRDSS Data model documentation store, https://github.com/JiscRDSS/rdss-canonical-data-model/, v3.0.0,
88658d7b6aa32a4696b6d0d34ea905daa186c37b, 14/03/18.

 References/citations to the use of the software elsewhere e.g. in conjunction with or within
other software.

 Number of downloads. This can be used as an indicator of quality.
 Source code e.g. statements which import or include modules, packages or libraries.

6.7. Metadata for research credit

Citation is still the currency in academia.

Mandatory metadata for research credit, with an indication of the ease or otherwise of capturing
this metadata, could include:

 Identities of the contributors (Easy).
 Funders, represented as unambiguous identifiers (preferably ORCiD65) (Easy).
 DOI, that both:

o Resolve in such a way that the software can be found (Easy).
o Unambiguously identify a version of the software, and thereby the contributors

(Easy).
 Licence (Easy).

Optional metadata could include:

 A distinctive, memorable name (Easy).
 Contributors’ affiliations at time of publication (Easy). This should be derivable from an

appropriately populated ORCiD record.
 Nature of contributors’ roles e.g. Project manager, Developer, Maintainer, User support etc.

(Easy)
 Degree of contribution (Difficult). This could be determined by the number of commits to

the source code repository, the number of lines of code changed, influence on design or
quality etc.

 Component(s) contributed to (Difficult).
 Associations with relevant journal articles i.e. papers that have used the software. This is a

transitive link. (Easy).

There is a risk of DOI proliferation.

Overarching DOIs which exist for the lifetime of a piece of software, with all contributors, but which
are associated with individual DOIs for specific versions, can help to preserve the relationship
between different versions of software that has been deposited.

A CONTRIBUTOR file could include contributor names with the weights of their contributions.

However, automated credit assignment is unreliable. This is true for a binary “is a contributor”
assignment and, especially, for contribution weights.

Alternatively, contributors could be assigned to one or more contribution areas from a defined
project credit taxonomy.

A citation can be viewed as an endorsement, or as a criticism, depending upon the rationale for the
citation.

65 ORCiD, https://orcid.org/

The ability to alter or revoke both contributors or associations with other research objects may be
desirable for practical, ethical or other reasons.

The original authors of long-lived, highly influential software could find their contribution “diluted”
within an ever-growing list of contributors.

It may be appropriate for an institutional RSE service to be acknowledged instead of, or in addition
to, individuals. It may also be appropriate for an institutional RSE service to request such
acknowledgement.

If research software has been developed by an institution’s central funds, rather than via research
grants, recognition on the institution’s research management system may even be more important
than authorship of or acknowledgment within a published paper.

One can debate whether there is a role for “software” at all or whether the primary entities are
research conclusions (presented in papers) and the people who delivered these (lab scientists,
software developers etc).

Many of these issues are not necessarily unique to research software.

7. Best practice development and adoption
From the foregoing, many challenges were identified. These include:

 How to encourage researchers to deposit their software in the first place.
 There is not always a requirement, from institutions, publishers or funders, to deposit

software or software descriptions, as supplementary material for research publications such
as journal papers.

 Software is often not part of any peer review process.
 Researchers can be very protective of their ideas and may not want to share their research

software out of a concern for being “scooped” or losing opportunities for commercial
exploitation.

 Many researchers struggle with the basics of all aspects of software development e.g. using
source code repositories, documenting software, and managing releases.

 Researchers may not have the time, effort, skills or expertise to perform these activities and
may lack the skills or knowledge to assess whether their software is in a suitable state for
release or deposit.

 Digital preservation needs to be integrated into software development processes from the
outset. It is very hard to apply as an after-thought.

The workshop attendees discussed the development of best practices to address these challenges,
and how to achieve adoption in communities. The most important observations were that:

 Researchers need to be encouraged to use source code repositories to more effectively
document their software, and to deposit their software.

 There is a need to understand what would make researcher’s life easier in terms of
preparing software for deposit, documenting and describing their software, and depositing
their software.

 Researchers need to want to adopt best practices and, for this to happen, there need to be
clear benefits for them to do so e.g. time saved, greater impact, additional funding, and
enhanced reputation.

 Best practices need to be community-driven.
 Guidance for stakeholders e.g. researchers, research data managers, institutions and

publishers, needs to speak their respective languages, not require significant time or effort
to apply, and be free of developer jargon.

 Research software development needs to be cost-effective for all stakeholders.
Demonstrating that best practices can reduce costs for all stakeholders may help
stakeholders to either adopt those best practices and incentivise or mandate them.

7.1. Delivering best practice and guidance

RSEs, RDMs, repository managers, research IT teams, research administration and support services
and infrastructure managers within institutions, and funders and publishers can all play a part in
promoting and delivering best practice and providing guidance.

Institutions should be a researcher’s first port of call. However, relationships with an institution are
often temporary, so best practices that a researcher can readily take with them and apply at other
institutions are highly desirable.

RSEs and RDMs not always aligned. A stronger alignment between RSEs and RDMs, between
research software development and archiving and preservation, could help to deliver a more unified

and consistent view of research software best practices to researchers. For example, well
documented software with a licence, can provide all the information needed to complete metadata
fields when the software comes to be deposited.

RSEs may be best placed to mediate between researchers and RDMs.

Researchers could be encouraged to produce a software management plan early on. This could help
RSEs to identify what guidance a specific researcher will need and at what time.

Best practices and guidance needs to be promoted and delivered by trusted, independent
authorities for information dissemination and who understand local factors affecting researchers.

OpenAIRE and Zenodo, for example, could support RDMs.

7.2. Incentives

Promoting best practices in themselves may not be sufficient. If adopting a best practice does not
affect impact, there is less, if any, incentive for researchers to implement it.

If the benefits of adopting best practices can be easily identified and assessed by researchers, then
this can drive their adoption. For example, researchers may be more open to depositing research
software in digital repositories if they know that if such deposited software, citable and with a DOI,
can be submitted as a REF-able research output.

Institutions, funders, publishers, and government should all be encouraged to recognise the value of
research software as a first-class citizen of research.

Digital repositories should be encouraged to treat research software as distinct class of research
output (not just a type of data), complemented with software-specific metadata.

Evidence of impact for software, that should be considered by institutions, funders and government,
for example as part of REF, could include:

 Number of citations for a DOI for software, and not just a related paper that describes or
mentions that software.

 Number of downloads.
 Exploitation and reuse within the institution (for both teaching and research), research

community, within other research communities, and within industry.
 Royalties received or licences sold.
 Commercialisation e.g. spin-outs.

Other financial or reputational incentives for recognising the adoption of best practices by
researchers can include:

 Digital badges.
 Financial incentives or prizes.
 Free passes to future conferences.
 Discount in article processing charges (APCs) for a future submission/publication.
 Altmetric66 statistics.
 Social media or press coverage etc.

66 Altmetric, https://www.altmetric.com/

The issuer of incentives such as digital badges needs an agent both with the authority to assess
whether a badge should be issued and who is widely recognised. For example, the Software
Sustainability Institute could issue badges, but there is a question as to whether the Institute is
widely recognised.

Badges could be issued by digital repositories automatically. For example, pages for software
deposits onto Zenodo using the Zenodo-GitHub plugin are marked with “Available in GitHub”, which
implies that the researcher is both using a source code repository and a repository hosting service.

There is a question as to who receives recognition, an individual researcher, their institution, or
both. For example, researchers can take papers with them to other organisations.

7.3. Mandates

Institutions, funders and publishers often mandate the deposit of, and long-term access to, research
data.

The RDSS project is driven by funders having requirements for publication in open access digital
repositories and to make underlying data publicly available.

Institutional policies often reflect mandates from funding bodies. However, there is a need for
consistent policies across institutions, as researchers can move between institutions.

Institutions, funders and publishers could mandate the deposit of, and long-term access to, research
software.

Publishers can mandate that software be provided as supplementary information, if the software
underpins the published research. Publishers need to be convinced of the merits of this.

If deposits are to be mandated, then there need to be checks for compliance to these policies.
Appropriate penalties for non-compliance are also required.

7.4. Recommendations

Recommendations for future activities to develop and encourage best practices are as follows.

7.4.1. Best practice and guidance

Provide guidance on software deposit and deposit workflows, supported by currently maintained
deposit tools. This should include the pros and cons of deposit workflows, which digital repositories
support embargoes, and how these can be used.

Provide guidance on what should be included in a source code software deposit. This should include
how check source code, documentation and other files to ensure no personal or secure information
is inadvertently exposed.

Provide guidance how to document a source code software deposit, focusing on what needs to be
provided to promote both reproducibility and reuse.

Provide guidance on software licence types and which licences are suitable for which purposes e.g.
reproducibility, reuse, protecting intellectual property etc. This should not be restricted to solely
open source licences.

Provide guidance on how to describe dependencies including third-party software, libraries,
embedded software, online services, HPC platforms, virtual digital environments and science
gateways.

Develop short guides on software management plans, data management plans and how they
complement each other. Consider contributing these as Software/Data/Library Carpentry lesson.

Provide guidance on methods for researchers to gather information on the use of their software,
especially in a non-academic context, to be able to demonstrate its impact. This should include
licences that require attribution to be given; CITATION files; restricting access to and use of research
software via accounts or keys; number of downloads, forks or clones; community surveys; web
searches etc.

Provide guidance on what should be included in other types of software deposit e.g. containers or
virtual images. This should include how check source code, documentation and other files to ensure
no personal or secure information is inadvertently exposed.

Provide guidance how to document other types of software deposit e.g. containers or virtual images,
focusing on what needs to be provided to promote both reproducibility and reuse.

Develop a guide on “4 easy ways to boost your impact via software deposition”, drawing upon the
foregoing, which can be completed by researchers within a few hours. Consider contributing this as
a Software/Data/Library Carpentry lesson.

Provide guidance on the circumstances in which a deposit corresponding to a specific version of
research software could be “demoted” or removed.

Provide guidance on what types of deposit (source code, binaries, containers, images) effectively
serve what purposes (rerun, repeat, replicate, reproduce, reuse) and the pros and cons of each type
of deposit.

Provide guidance on how software deposits can best be reviewed and quality assured, pre-
publication, pre-deposit and post-deposit. This should include when the software is reviewed, who
performs the review, how it is reviewed, what review criteria can and should be used, to what extent
it can be reviewed, and the pros and cons of various approaches. A review could range from a simple
visual inspection, following a checklist, through to an attempt to build and run the software.

Provide guidance on how software deposits can be maintained in the short-, medium- and long-
term. This should include whether maintenance should be done at all, who performs the
maintenance, the nature of the maintenance, what resources within or related to the software are
needed to maintain it, how this maintenance is funded, and the pros and cons of various
approaches.

Develop a software-equivalent of the FAIR67 data principles.

Provide support to deliver Software/Data/Library Carpentry lessons, mentioned above, to anyone
who currently delivers these workshops e.g. RSEs, librarians, and RDMs.

7.4.2. Schemas, ontologies, specifications, templates

Develop mappings from GitHub and other repository hosting service APIs to the RDSS data model.
This could possibly be done using via CodeMeta crosswalks between, for example, GitHub’s API and
CodeMeta and CodeMeta and the RDSS data model.

67 Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, et al. 2016.
“The FAIR Guiding Principles for scientific data management and stewardship.” Scientific Data 3 (1): 160018.
doi:10.1038/sdata.2016.18. http://dx.doi.org/10.1038/sdata.2016.18.

Develop standard formats for README files and related files (e.g. LICENCE, CONTRIBUTORS) that
allow for metadata to be automatically extracted.

Develop shareable, machine-readable, descriptions of software, infrastructures and services.

Develop, or customise an existing, research object relationship semantics for expressing linkages
between research software to other research objects.

Develop a project credit taxonomy to express contributions to research software.

7.4.3. Policy

Lobby funders and government to recognise software as a first-class research output and to adopt
ways of assessing the impact of research software that are best suited to software.

7.4.4. Research

Survey what researchers needs are and evaluate who the stakeholders are. A Sustainable Software
Sustainability workshop run by Digital Archiving and Networked Services (DANS) and the Software
Sustainability Institute68, identified the following stakeholders: researchers, software developers,
institutes, funders, industry and innovation centres, publishers, and the cultural (heritage) sectors.

Investigate how users of research software could be involved in validating its metadata.

Investigate whether, and how, source code itself should, and could, be made searchable, via a digital
repository API, to aid discovery, or whether searches should be restricted to over metadata only.

Investigate whether if software is submitted to an institutional, subject area or general digital
repository, whether information required for preservation be collected and the deposit
automatically submitted to a central digital preservation system. Similarly, if an associated software
paper exists, investigate whether information be gathered on submission to enable automatic
submission to the central digital preservation system on acceptance or publication. This would help
to reduce duplicated effort in gathering information related to deposits.

From a publishers' perspective, there is a desire for solutions for the permanent archival of software
associated with published papers. Investigate Software Heritage69 and other digital preservation
systems as possible options.

7.4.5. Deposit tools

Develop deposit tool(s) that support multiple workflows.

Prototype a deposit tool that supports licence selection.

Prototype a deposit tool that supports embargo specification.

Prototype a deposit tool that captures observational metadata from researchers, directories, source
code repositories and repository hosting services using PROV or PERMIS.

Test deposit tool(s) with Jisc-RDSS services.

68 Aerts, Dr. (PhD) P.J.C. (DANS) (2017): Sustainable Software Sustainability – Workshop report. DANS.
https://doi.org/10.17026/dans-xfe-rn2w
69 Software Heritage, https://www.softwareheritage.org/

