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8 PREDICTIVE MODELING: FUN OR MISERY?
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¥ PREDICTIONS OFTEN GO WRONG
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B WHEN AN ERROR OCCURS

THIS 1S YOUR MACHINE LEARNING SYSTET?

YUP! YOU POUR THE DATA INTD THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE LIRONG? )

JUST STiR THE PILE UNTIL
THEY START LOOKING RIGHT.
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ABOUT US

Pramit Choudhary Aaron Kramer

-

Pramit Choudhary is a lead data scientist at DataScience.com. His Aaron is senior data scientist at DataScience.com. With experience
focus is on effective ways of optimizing and applying classical leading a w.ide variety of corporate reseqrch problems, he deyelops
(Machine Learning) and Bayesian design strategy to solve real-world tools, algorithms, and educational materials for modern applied data

science.
problems.
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B TEAMMATES @DATASCIENCE.COM

Andrea Ben
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B AGENDA

DEFINE MODEL INTERPRETATION

UNDERSTAND THE NEED FOR MODEL INTERPRETATION

VIR
\
QN

(.

DISCUSS DICHOTOMY BETWEEN PERFORMANCE AND
INTERPRETATION

INTRODUCE SKATER

DISCUSS FIT TO ANALYTICAL WORKFLOW

DATASCIENCE.COM

DEMO

* Q&A
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B WHAT IS MODEL INTERPRETATION?

e Definition is subjective

e High-level definition: Model interpretation is about understanding machine learning/statistical modeling
behavior

e With model interpretation, one should be able to answer the following questions:
o Why did the model behave in a certain way? What are the relevant variables driving the model

outcome?
o What other information can a model provide to avoid prediction errors?

o How can we trust the predictions of a “black box” model?
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B ERROR VS MODEL COMPLEXITY

Total Errc;r

Optimum Model Complexity

" Variance

Error

-

**Reference: Scott Fortmann-Roe

Model Complexity

Error(x) = Bias”? + Variance + Irreducible Error
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¥ WHY MODEL INTERPRETATION?

Helps in exploring and discovering latent or hidden feature interactions (useful for feature

engineering/selection)

Helps in understanding model variability as the environment changes (once the model is operationalized

[
and is functional in a non-stationary environment)

Helps in model comparison

Helps an analyst or data scientist build domain knowledge about a particular use case by providing an

understanding of interactions
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¥ WHY MODEL INTERPRETATION?

e Brings to decision making to enable
o Fair Credit Reporting Act (FCRA) U.S. Code § 1681

SUBCHAPTER III—CREDIT REPORTING
AGENCIES

§1681. Congressional findings and statement of

purpose
(a) Accuracy and fairness of credit reporting < |

The Congress makes the following findings:
(1) The banking system is dependent upon fair

and accurate credit reporting. Inaccurate credit Mandate by U.S. government on Fair and
reports directly impair the efficiency of the . . -
banking system, and unfair credit reporting Accurate Credit reporting. Predictive
methods undermine the public confidence which models should not be discriminative

is essential to the continued functioning of the

banking system. ( ) toward any group.

(2) An elaborate mechanism has been devel-
oped for investigating and evaluating the credit
worthiness, credit standing, credit capacity,
character, and general reputation of consumers.

(3) Consumer reporting agencies have assumed
a vital role in assembling and evaluating con-
sumer credit and other information on consum-

ers.
(4) There is a need to insure that consumer re-

porting agencies exercise their grave respon-
sibilities with fairness, impartiality, and a re-
spect for the consumer’s right to privacy.
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https://www.gpo.gov/fdsys/pkg/USCODE-2011-title15/pdf/USCODE-2011-title15-chap41-subchapIII.pdf
https://www.gpo.gov/fdsys/pkg/USCODE-2011-title15/pdf/USCODE-2011-title15-chap41-subchapIII.pdf

For example, we tried to benefit from an extensive set of attributes describing each of the movies in the
dataset. Those attributes certainly carry a significant signal and can explain some of the user behavior.
However, we concluded that they could not help at all for improving the accuracy of well tuned collaborative
filtering models. Beyond selecting which features of the data to model, working with well designed models is

also important ...
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http://www.netflixprize.com/assets/ProgressPrize2008_BellKor.pdf

B PERFORMANCE VS. INTERPRETABILITY

A
Simple decision
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-
Variable B
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¥ HOW ABOUT A MORE DIFFICULT RELATIONSHIP?

Learned Decision Boundary
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g Predictive Optimism
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B HOW DO WE SOLVE THIS PROBLEM?

e Problems:
o Data scientists are choosing easy-to-interpret models like simple linear models or decision trees over
high-performing neural networks or ensembles, effectively sacrificing accuracy for interpretability
o Community is struggling to keep pace with new algorithms and frameworks (H20.ai, sklearn, R
packages)

e Possible Solution: What if there was an interpretation library that... |:||:|. ‘ <> \ /J

o |s model agnostic

Provides human-interpretable explanation

Is framework agnostic (scikit-learn, H20.ai, Vowpal Wabbit) —~
Is language agnostic (R, Python) —
Allows one to interpret third-party models (Algorithmia, indico)

Supports analytical workflows during modeling process and post deployment

O O O O O
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INTRODUCING ...
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WHAT IS SKATER?

e Python library designed to demystify the inner workings of black-box models

e Uses a number of techniques for model interpretation to explain the relationships between input data and
desired output, both globally and locally

e One can interpret models both before and after they are operationalized
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SKATER USES

e Model-agnostic variable importance for global interpretation

o Helps in evaluating the importance of each independent input variable using variable perturbation
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SKATER USES

e Partial dependence plots for global interpretation

O
input variables to the model's response function

A visualization technique that can be used to understand and estimate the dependence of the joint interaction of the subset of

E] T T T T
— Mmean

20 ey

30
val N Cookies

Gradient of PDP el

-1’50 -1'25 -1/00 -0.75 —0.50 -025 0.00
DIS lel

One-way interaction with variance

&

YN,
&

2 | DATASCIENCE

y/
A\

Two-way interaction

Learn more at datascience.com | Empower Your Data Scientists

20



B SKATER USES

e Improved local interpretable model-agnostic explanations (LIME) for local interpretation
o A novel technique developed by Marco, Sameer and Carlos to explain the behavior of any classifier or regressor in an human

interpretable and faithful manner using surrogate models

Prediction probabilities
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https://arxiv.org/pdf/1602.04938v1.pdf
https://arxiv.org/abs/1602.04938

How do | understand my
models?
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B HOW DOES IT FIT INTO AN ANALYTICAL WORKFLOW?
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Define Handle Data
Hypothesis
Use relevant key Handle Missing
performance 1 Data
indicators

Data Partitioning

Model Interpretation: In-Memory Models

Model Interpretation: Deployed Models

. Model assessment : .
. ° Explore and explain model behavior
° Explain model at a global and local level . .
L . ° Debug and discover errors to improve
° Publish insights, make collaborative and orformance
informed decisions P
MU EVALUATE
Engineer and Build Model Deploy Model Test and Monitor
Select Model
Features Operationalize
lyti :
Build a predictive scalzglaeyRE;TasAPls 1. Log and track behavior
Transform data model 2. Bvaluate
3. Conduct A/B or

Select relevant
features

multi-armed bandit testing

DATASCIENCE

Improve existing hypothesis/Generate a new one
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SKATER DEMO
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B INTERPRETATION ROADMAP

e More improvements to Deployed Model - H20, VW, Spark-MLLib

e Possible Future Work
o Individual Conditional Expectation
o Local Interpretation: e.g. Anchors for Local Interpretation
o Global Interpretation: e.g. Probabilistic Rule based Models
o Better support for Image Interpretability
= extension of LIME
m Class Activation Maps
o Better ways to detect Interaction effect among model variables

e Help wanted: https://goo.gl/W17g4i
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https://github.com/datascienceinc/Skater/blob/master/CONTRIBUTING.rst#roadmap
https://arxiv.org/abs/1309.6392
https://arxiv.org/abs/1309.6392
https://arxiv.org/abs/1611.05817
https://arxiv.org/abs/1511.01644
https://www.youtube.com/watch?v=fZvOy0VXWAI
https://www.youtube.com/watch?v=fZvOy0VXWAI
https://goo.gl/W17q4i

B A QUICK GLIMPSE INTO THE FUTURE

e Bayesian Rule Lists: An interpretable model, with series of decision statement

Learned interpretable model
Trained RulelListClassifier for detecting diabetes

IF Glucose concentration test : 159.5 to inf THEN probability of diabetes: 16.7% (9.3%-25.6%)
ELSE IF Body mass index : -inf to 27.3499995 THEN probability of diabetes: 93.2% (88.7%-96.
7%)

ELSE IF Glucose concentration test : -inf to 99.5 THEN probability of diabetes: 85.7% (78.2%-
91.9%)

ELSE IF Age (years) : 30.5 to inf THEN probability of diabetes: 40.1% (32.4%-48.1%)

ELSE IF Glucose concentration test : 99.5 to 130.5 THEN probability of diabetes: 80.6% (72.6%
-87.4%)

ELSE probability of diabetes: 53.2% (39.0%-67.1%)
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Q&A

dstm@datascience.com

pramit@datascience.com
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N UPCOMING TALKS AND EVENTS

N
E’!PyData

Seattle 2017

o "Learn to be a painter using Neural Style Painting”
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B UPCOMING TALKS AND EVENTS

¢ i!PyData

Seattle 2017

o Jean-rene.gauthier and Ben Van Dyke: “Implementing and Training Predictive Customer Lifetime
Value Models in Python”

o Aaron Kramer: “Interactive natural language processing with SpaCy and Jupyter”

Google, Netflix, eHarmony, Live Nation and others

o DATASCIENCE.COM Andrea Trevino: will be a panelist discussing data
-PE7I science best practices with industry leaders from
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https://www.datascience.com/company/events/elevate/los-angeles-2017

