
Challenges in Composing and Decomposing Assurances
for Self-Adaptive Systems

Bradley Schmerl1, Jesper Andersson2, Thomas Vogel3, Myra B. Cohen4,
Cecilia M. F. Rubira5, Yuriy Brun6, Alessandra Gorla7, Franco Zambonelli8, and Luciano Baresi9

1 Carnegie Mellon University, Pittsburgh, PA, USA
schmerl@cs.cmu.edu

2 Linnaeus University, Växjö, Sweden
jesper.andersson@lnu.se

3 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
thomas.vogel@hpi.de

4 University of Nebraska, Lincoln, NE, USA
myra@cse.unl.edu

5 University of Campinas, Campinas, SP, Brazil
cmrubira@ic.unicamp.br

6 University of Massachusetts, Amherst, MA, USA
brun@cs.umass.edu

7 IMDEA Software Institute, Madrid, Spain
alessandra.gorla@imdea.org

8 University of Modena and Reggio Emilia, Modena, Italy
franco.zambonelli@unimore.it

9 Politecnico di Milano, Milano, Italy
luciano.baresi@polimi.it

Abstract. Self-adaptive software systems adapt to changes in the environment,
in the system itself, in their requirements, or in their business objectives. Typ-
ically, these systems attempt to maintain system goals at run time and often
provide assurance that they will meet their goals under dynamic and uncertain
circumstances. While significant research has focused on ways to engineer self-
adaptive capabilities into both new and legacy software systems, less work has
been conducted on how to assure that self-adaptation maintains system goals.
For traditional, especially safety-critical software systems, assurance techniques
decompose assurances into sub-goals and evidence that can be provided by parts
of the system. Existing approaches also exist for composing assurances, in terms
of composing multiple goals and composing assurances in systems of systems.
While some of these techniques may be applied to self-adaptive systems, we ar-
gue that several significant challenges remain in applying them to self-adaptive
systems in this chapter. We discuss how existing assurance techniques can be ap-
plied to composing and decomposing assurances for self-adaptive systems, high-
light the challenges in applying them, summarize existing research to address
some of these challenges, and identify gaps and opportunities to be addressed by
future research.

1

This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science Vol. 9640.
The final authenticated version is available online at: https://doi.org/10.1007/978-3-319-74183-3_3

1 Introduction

Modern software systems typically have to operate in complex and diverse environ-
ments and conditions. For example, business and cloud-based systems must cater for a
wide range of load and customer profiles, and systems that manage physical elements
must deal with uncertainties in the physical world. Self-adaptive systems form a cate-
gory of software that changes, reconfigures, or fixes itself as it is running. Much research
has been conducted into different methods for constructing self-adaptive systems, for
example by integrating control loops to manage systems or by using self-organizing or
bio-inspired principles [42]. Self-adaptive systems often attempt to maintain or achieve
system goals in the face of uncertainty, and are usually constructed to provide some
confidence that a system at run time will continue to operate appropriately, even in
changing and uncertain circumstances.

While various methods for constructing self-adaptive systems have proven success-
ful in a number of domains, assuring the self-adaptive aspects of these systems remains
a challenge. Assuring self-adaptive systems requires run-time validation and verifica-
tion (V&V) activities [45]. This is mainly because the combination of self-adaptive
configurations and the environments that they encounter leads to a state explosion that
makes static V&V challenging. One way to address this challenge is to apply techniques
for decomposing and composing assurances. For safety-critical systems there is a large
body of work on constructing safety cases, or more generally assurance cases, that con-
struct assurance arguments about these kinds of systems. Reasoning about assurances
in safety-critical systems may shed some light on how to provide these assurances for
self-adaptive systems. Typically, assurances involve decomposing top level goals into
argumentation structures that involve sub-goals, strategies for achieving the goals, and
defining evidence that can be collected to show that the goals are achieved. Top level
goals can also be composed together to provide assurances about a system with multiple
goals, to reuse some assurances for goals in similar systems, or to provide assurances
in systems of systems.

In this chapter we discuss the challenges related to decomposing and composing as-
surances in self-adaptive systems. In Section 2 we give some background on assurances,
focusing on assurance cases as a framework for guiding decomposition and composi-
tion of assurances. We also introduce an example that will be used to illustrate the
challenges. In Section 3, we survey existing self-adaptation assurance research that has
either discussed how to compose assurances, or could be used to help build an assur-
ance argument. Section 4 identifies a set of challenges associated with composing and
decomposing assurances. In Section 5 we discuss some emerging research in assur-
ance cases that should be followed to help with composition and decomposition and
outline the challenges that arise when applying assurance cases to the context of self-
adaptation. In Section 6 we provide some concluding remarks.

2 Preliminaries

In this section, we briefly introduce self-adaptive systems as we conceive them in the
scope of this chapter. Then, we discuss techniques for software assurance in safety-
critical systems, and describe an illustrative example that we use throughout the chapter.

2

2.1 Self-Adaptive Systems

Current and emerging software systems are increasingly complex and distributed, and
are called to operate in open-ended and unpredictable operational environments. On one
hand, such uncertainty challenges the capabilities of a system to maintain its business
goals if the configuration is to remain static. On the other hand, changing environments
or the system itself may also modify the goals and requirements for which the system
was originally structured and configured.

To tackle the above situation, human intervention has historically been required.
However, human intervention is generally impossible due to the inherent decentralized
nature of modern systems, or simply infeasible due to economic or temporal reasons.
Accordingly software systems have to become self-adaptive in their behaviour, that is,
capable of dynamically adapting their configuration and/or structure in an autonomous
way without human supervision, in order to respond to changing situations without
malfunctioning or degrading quality of service unacceptably [16, 42].

In modern software systems, self-adaptation can take place both via mechanisms
integrated in individual components as well as in groups/collectives of components
(e.g., [8–12]), and that have the goal of modifying something in the behaviour of a
component or a collective (e.g., [6, 7]).

The study of both individual and collective adaptation mechanisms has a long his-
tory. Individual adaptation is a very important thread of research since the early years
of intelligent agents [35] and reflective computing [48], and several architectures and
mechanisms to enable adaptation have been proposed so far, including the recent IBM
autonomic computing approach [38]. All proposals for self-adaptation at the level of
individual components rely on the integration, within each component, of a closed
control loop. In the control loop, a specific control component (e.g., the “autonomic
manager” in the autonomic computing approach, or the “meta-component” in reflective
approaches) monitors and analyses the current operational and environmental condition
of the component, and plans and executes appropriate adaptation actions as needed. The
predominant pattern for self-adaptation that has emerged for structuring an autonomic
manager is MAPE-K [38], where each of the activities that need to occur as part of adap-
tation are Monitoring – or sensing – the system and the environment, Analysing the sys-
tem to determine whether the current state of the system requires adaptation, Planning,
which determines what adaptations to perform, and Executing to effect changes in the
system. All of this is coordinated through Knowledge.

For collective adaptation, the simplest approach is to integrate a single controller in
charge of managing a whole collective with a single control loop, but this approach has
challenges when scaling to realistic systems. For this reason, a variety of patterns for
coordinating multiple controllers and control loops has been investigated [41, 50].

For both individual and collective adaptation uniform models and tools support-
ing the design and development of self-adaptive systems are still missing. Furthermore,
there are few methods for assuring that self-adaptive systems adapt correctly, with re-
spect to performing as designed to achieve their intended goals, doing so in a safe and
consistent manner, and ensuring that adaptations result in legal systems respecting their
design and business constraints.

3

2.2 Assurance Cases

Self-adaptation can be decomposed into a number of activities the use of which can
span from design to run time. It is therefore not possible to provide a single assurance
mechanism to provide guarantees about self-adaptation. In fact, as we shall see, there
exists a collection of assurance techniques that can be used during these various activ-
ities. These techniques need to be applied and structured in a principled way in order
to provide assurances. We need, therefore, to carefully consider how assurances should
be decomposed into these assurance activities to ensure that the activities do in fact
help assure overall goals, and to ensure that we are only doing assurance activities that
help meet our goals. Furthermore, because self-adaptive systems are increasingly being
composed, we need methods and approaches for composing the systems’ associated
assurances to assure global properties about the collective adaptive system.

To do both of these things, we can look at how assurances are handled in safety-
critical systems. In this section, we discuss some solutions for software assurance and
propose that assurance cases could be a good starting point for decomposing and com-
posing assurances for self-adaptive systems. In the area of safety critical systems, there
has been considerable research in software assurances. An assurance can be defined as
a justified measure of confidence that a system will function as intended in its environ-
ment of use.

Assuring that a system satisfies some quality and functional goals requires the con-
struction and evaluation of a reasoning approach based on claims, arguments, evidence,
and expertise. For example, a safety case presents a structured demonstration that a
system is acceptably safe in a given context. In other words, it is a comprehensive pre-
sentation of evidence linked by argument to a claim. For example, if we are trying to
assure a claim Claim1, then an assurance case might decompose this claim into two
subclaims, Claim2 and Claim3 that are easier to show, with some argument that says
that if Claim2 and Claim3 are true, then Claim1 is true. We could then provide some
evidence that shows that each of Claim2 and Claim3 are true. Structuring evidence in
such a way means that an expert can make a judgement that the argument makes sense
and thus, if that evidence is provided, have confidence that the system is acceptably
safe. Assurance cases are a generalization of safety cases to construct arguments that
are about more than just safety.

While this rationale can be presented textually in documentation, it has proven use-
ful to use graphical notations that help define and present the argumentation structure
for assurance cases. The structure of an assurance case can be graphically represented
using, for instance, the Goal Structuring Notation (GSN) [37] or Claims-Argument-
Evidence (CAE) [5]. GSN is a well-accepted graphical notation to show how claims (or
goals) can be broken down into sub-claims, and eventually supported by evidence, mak-
ing clear the argumentation strategies adopted, the rationale for the approach (assump-
tions, justifications), and the context in which claims are stated. In general, arguments
are structured hierarchically: claim, argument, sub-claims, sub-arguments, evidence. It
is essential that assurance cases are presented in a clear structure, and GSN can cap-
ture the elements most critical for arguing a case (claims, evidence, argument strategy,
assumptions, relation of claims to sub-claims and evidence) to build a convincing case.

4

Client

Client

Client

Dispatcher

Web Server

Web Server

Database

Fig. 1. Architecture of the Znn web system.

2.3 Illustrative Example

Throughout this paper we will use a simple example to illustrate how assurances could
be decomposed and composed for self-adaptive systems, and some of the challenges
in doing so. The example that we will use is Znn, a typical web system serving news
articles and related images, that is implemented as a three-tiered web service using a
standard LAMP stack (Linux, Apache, MySQL, PHP). Figure 1 shows the Znn archi-
tecture with one dispatcher, which shares the load evenly between two web servers,
and one database, which stores images for served articles. While Znn itself is not self-
adaptive, it provides APIs that allow a control loop to be added onto it to manage quality
of service goals. Examples of a quality goal include keeping the response time below
two seconds, which is related to how many servers can be used by the dispatcher and
the detail of the content that each server produces (e.g., as reported in [18]). Another
related goal might be to keep the operational costs below a certain threshold.

To support control loops on top of it, Znn provides a number of APIs for probing
the state of the system and effecting changes. For example, it is possible to affect the
configuration of Znn by changing the number of web servers or modifying the detail
of the content served. Both of these simple changes can affect response time, which is
information that can be retrieved from Znn using probes.

Thus, self-adaptation can be added to Znn by integrating a control loop that takes
inputs from Znn probes and effects changes on Znn, via the API. For example, Rain-
bow [28] takes the probe inputs, abstracts them to values in the architectural model of
the system, and then conducts an analysis of this architecture to determine if something
is wrong (e.g., the response time is too high). If corrective action should be taken, Rain-
bow balances various business quality concerns in order to decide the best effects to
make in the system [17]. For example, it will trade-off increasing the number of servers
(thereby increasing costs), decreasing content detail, with the effect these will have on
response time, and choose an option that has the highest overall utility.

Znn is an interesting example for decomposing assurances because we would like
to assure that the response time is below the threshold. For example, we want to be able
to answer questions such as how does one construct this argument, and what forms of
evidence can be provided by a self-adaptive system? We can consider two aspects of
composition of assurances in Znn. First, if there is a self-adaptive system that is trying
to assure response time goals, and we want to combine this with an assurance that costs
do not go above a certain amount, we want to be able to reason about how the assurances

5

can be defined, whether there are any conflicts and how they are resolved, and the kinds
of evidence and strategies that can be used to reason about the assurance. Second, we
are interested in similar questions if two self-adaptive systems are being composed (e.g.,
Znn, for which performance and cost are important, and another system that uses the
same infrastructure but has an additional goal of security).

Assurance Cases for Znn Self-Adaptation. As discussed in Section 2.2, assurance
cases could be used to organize assurances for self-adaptive systems and to identify
evidence that can be provided for those assurances. Among others, such evidence can
be based on observations, testing, simulation, and the process used to construct the
system. The argument around an assurance case represents a high-level explanation of
how evidence combines to show that the goals (or claims) will be met. The evidence
and arguments are usually structured as a tree, with high-level goals being decomposed
into increasingly fine-grained sub-goals that are eventually supported by evidence.

As mentioned in Section 2.2, one common way to document assurance cases is
to use the Goal Structuring Notation (GSN) [30] to structure the assurance case as a
tree. GSN has nodes for claims (or goals) that need to be shown and form part of the
argument. These can be decomposed into sub-claims or strategies. Strategies describe
how the claim is to be shown for the assurance case, and then evidence or solutions are
activities or evidence that is used to support the claim. Associated with each claim or
strategy is a context, which states the assumptions under which the claim is made or
in which the strategy is valid. If it is necessary to state the assumptions that a strategy
relies on to be valid, or to justify a strategy, these can be documented via Assumptions
or Justifications in the assurance case. Finally, goals or strategies that have not been
decomposed can be denoted by placing a diamond underneath them in the graphical
notation. The graphical legend for these items in GSN are denoted in Figure 2.

Consider a high-level goal for Znn that it will be able to reply to all requests within
2 seconds. An example of an assurance case for this goal is shown in Figure 3. An
engineer may choose a strategy of designing two versions of Znn, one for normal oper-
ation (G2) and one for high-load operation (G3), and a method for adapting the system
by switching between these versions when the assumptions change (i.e., the user load
changes). The sub-goals G2 and G3 would then show that the response time goals are
met in each of these versions under the different load contexts. To obtain evidence
for each of these sub-goals, architectural performance analysis (e.g., based on queu-
ing theory) for that version and validation processes throughout development such as
component-level testing might be used. In this context, assumptions concerning indi-
vidual components that are made in the architectural analysis can be supported by ev-
idence from component-level tests. Evidence would then be the results of the analysis
and tests, which give one the confidence that each sub-goal is met in its context. In this
way, an assurance is decomposed into sub-goals and evidence while the strategies form
the arguments for the assurance case.

The assurances cases for G2 and G3 would proceed as normal for the static design
and assurance of the various Znn modes/versions. We will not discuss these further here.
Instead, we are concerned with composing and decomposing assurances that relate to
the self-adaptive part of the system. Such an example happens in Znn when the user

6

Claims, broken into sub-claims

Context in which claims are stated

Strategies for argumentation

Evidence supporting claims

A/J

Assumptions/Justifications in the

rationale for the argument

Undeveloped entity, indicating that

a line of argumented is not developed

Fig. 2. Goal Structuring Notation legend.

load forces a change in modes (e.g., the load changes from 3000 requests per second
to 7000 requests per second). In this case, we want to provide the assurance that the
mode switch happens within 1 second (G4). We will elaborate the assurance case of
G4 to illustrate both, how we might use assurance cases to guide decomposition and
composition, and to highlight some of the challenges associated with each of these.

3 Assurance Decomposition and Composition in Self-Adaptive
Systems

The focus of much of the research in self-adaptive systems to date has been to engineer
systems that can maintain stated goals, even in the presence of uncertain and changing
environments. There is existing research in assurances for self-adaptive systems that
either addresses how to compose assurances, or can be used as part of an argument
in assurance cases. The purpose of this section is to summarize some of this research,
and to illustrate how it might apply to the problem of decomposition and composition
specifically.

As argued above, it is not possible to provide a single, monolithic assurance for the
goals of a self-adaptive system. Assurance cases can provide a way to organize existing
work on assurances into self-adaptive system. We can organize this existing work in the
following areas:

Evidence types and sub-goals for use in assurance case decomposition. Each of the
classic activities of self-adaptation - monitoring, analysis, planning, and execution -
have existing techniques that help to provide evidence for goals that can be used in
assurance cases. These approaches could be used in assurance case decomposition.

Assurance composition based on the MAPE-K loop. Once assurances have been de-
composed, we need ways to recompose the assurances. Many of these will need to

7

G1:Response time < 2 sec

S1: Design 2 versions, one for high load

Under loads ranging from 0/s

G2:Response time < 2 sec G3:Response time < 2 sec
Under loads ranging from 0/s Under loads ranging from 5000/s

Arch. Comp.

and one for normal load, and assure for each.

to 10000/s

to 5000/s to 10000/s

Perf.
Analysis

Perf.
Tests.

+

Arch.
Perf.
Analysis

Comp.
Perf.
Tests.

G4:Switch between modes

Self-adapt between these two modes

within 1 second change in
user load mode.

Fig. 3. An example Goal Structuring Notation diagram for Znn.

be managed at run time. There is work on integrating various verification tasks into
self-adaptation as a way to provide assurances as an intimate part of self adaptation.

3.1 Evidence Types for Use in Assurance Case Decomposition

When considering decomposition, it is necessary to identify what kinds of evidence and
sub-goals could be used in assurance cases. In this section, we summarize some of the
on-going research into this, organizing it into a discussion of work that could be used
for evidence from each of the MAPE-K activities.

Monitoring. Casanova [13, 14] provides some foundational work that can be used to
provide evidence that there is sufficient knowledge to diagnose a problem in a sys-
tem. In [13], the information theoretic concept of entropy is used to determine how
much information is needed by a statistical and model driven diagnostic approach.
The amount of information needed can be updated autonomously. In [14], formal
criteria are given for establishing the maximum theoretical accuracy bounds for di-
agnostics given a set of observations, and the minimum bounds for accuracy (in
the case of single fault systems). This theory can be used to provide evidence that
enough monitoring is in place for specific diagnosis, even when some of the com-
ponents in the system cannot be observed but might be the cause of problems.
Requirements may also be used to provide evidence of sufficient monitoring. In [1]
they use contextual goal models to identify monitoring requirements. Different con-
texts provide different facts that can be monitored, and can lead to problems in the
monitoring requirements (such as redundancy and inconsistency). SAT-solvers are
used to produce equivalent and less costly monitoring requirements that can be
shown to be optimal for monitoring the requirements.

8

The above approaches show that it is possible to provide evidence that a self-
adaptive system is monitoring enough information about the target system. How-
ever, assurances related to the granularity, timing, and effect of the monitoring on
the target system have yet to be investigated.

Analysis. The analysis activity is related to interpreting information gained from mon-
itoring in the context of whether an adaptation should be done. Analysis can range
from checking the correctness of the model to applying mathematical analysis of
the model. For example, [39] uses performance and workflow models to analyse
traffic coming into a distributed transactional system. These models are used at de-
sign time to determine initial resource provisioning given assumptions about the
environment, and at run time to determine correct provisioning to new workflows
and configurations. A similar approach is used [2] to deal with Denial of Service
attacks, where performance models are used to determine whether to divert traffic
to a checkpoint, which then issues a challenge to determine if the traffic originates
from a bot. In this case the soundness of the mathematical models and their up-
dating and use at run time provide evidence that performance goals will be met.
Performance models were also used in [19] to provide evidence that appropriate
constraints, monitors, and mitigations are designed into a self-adaptive system to
manage performance.

In general, assurances providing sound analytical models or simulations (e.g., [26])
can be used to provide evidence that analysis is sufficient to decide if some adap-
tation needs to be performed. One thing to note here is that parts of the analysis
can be done at design time, and parts at run time. Furthermore, if the part of the
analysis that is done at run time needs to be done in a timely manner, and in this
case evidence needs to be given that the analysis will, for example, detect problems
in enough time to do something about them.

Planning. As mentioned above, self-adaptive systems must produce adaptations that
return systems from an undesired state to a normal state. Ideally, we would like to be
able to provide evidence that adaptations always achieve this transition, but because
of various sources of uncertainty, this is not possible. However, there has been some
work that is making strides in providing some evidence. In the case where adapta-
tions are being chosen from a set that is predefined, probabilistic model checking
can be used to determine the adaptation that has the higher likelihood of success.
In [43], the authors show how this approach may be used to provide evidence about
the effect of adaptations on system quality objectives, and how this may be used to
provide evidence that all states in some region of the state space of the system will
be improved by selected adaptations. This evidence helps to show that strategies
have sufficient coverage of some part of the state space. Adaptive CTL (AdaCTL)
is defined in [22] to also provide some analytical evidence that there is sufficient
coverage of adaptations to achieve desired goals in changing, but enumerated, en-
vironments. The summary of formal methods used in self-adaptive systems also
concentrates on assurances for planning [49]. They note that many of the formal
methods used for assuring planning happen during the design of the self-adaptive
system, and not at run time. Filieri [24, 25], on the other hand, describe a number
of strategies for using probabilistic model checking at run time for self-adaptive

9

systems where goals are expressed as temporal logical formulas, including state
elimination and algebraic approaches for making it more tractable at run time.

Execution. When an adaptation is triggered, we want to be able to assure several
things. For example, we want to assure that the system correctly executes the ef-
fects and that the system and model are (eventually) consistent, we want to be able
to assure that, if two adaptations can execute simultaneously, that they do not in-
terfere with each other in unpredictable ways, and we require assurances that the
execution will not in fact have a deleterious affect on the qualities that we are con-
cerned about. Some work has been done in trying to answer these questions. In
Veritas [27] some of these assurances can be evidenced by run-time testing. As the
system is adapting, so too should the test cases. Veritas uses a genetic algorithm ap-
proach to evolve test cases, and utility functions to choose and prioritize test cases
that need to be run to assure that the system is still executing safely and correctly.

3.2 Assurance Composition Based on the MAPE-K Loop

One of the challenges for providing assurances for self-adaptive systems is how to inte-
grate assurances into the process of self-adaptation at run time. In the context of com-
position, this can be seen as developing techniques to allow evidence to be collected
and collated at run time. For example, Tamura et al. [45] discuss the need for validation
and verification (V&V) in self-adaptive systems, and argue that run time V&V tasks
should be integrated into the activities of self-adaptation. They integrate the V&V tasks
into the MAPE-K loop.

While this approach does not provide any specific techniques for providing assur-
ances, it does define a framework for integrating and positioning self-adaptive elements
that could provide some evidence for assurance cases, and could be used to structure
this evidence in assurance cases. In particular, service level agreements can be thought
of as high level goals in an assurance case, and so the Runtime Validator and Verifier,
in checking that after execution of an adaptation the goals will be met. It is conceiv-
able that other pieces of evidence (such as evidence that a model accurately reflects the
system being managed) could be incorporated into this structure.

Another aspect of V&V discussed in [45] is viability zones, which are the set of
possible systems states in which goals can be achieved that evolve with environment
and context changes. This is elaborated upon in [49], which identifies adaptation zones
as a way to understand the state space of self-adaptive systems, and as a framework
for understanding the use of model checking in providing evidence of self-adaptive
behaviour. They identify four zones: (1) Normal behaviour, which is the state where the
system is running in its designed functionality; (2) Undesired behaviour, which is where
a system is not meeting its goals or properties and requires adaptation; (3) Adaptation
behaviour, which is when the system is adapting itself to fix the undesired behaviour,
and (4) Invalid behaviour which are behaviours that the system should never exhibit
(e.g., system deadlock). They then identify model checking work that assures properties
in each and between these zones. This work can be use to identify the evidence types
that have been used for assuring different parts of self-adaptation, and organizing such
evidence around these parts that can aid in composition.

10

Model-checking evidence for the most part concentrates on assuring the design of
the self-adaptive system. In [40], the authors outline an approach to testing implemented
self-adaptive systems. They use a Failure Mode and Effects Analysis on the activities
in the MAPE-K loop that allows them to categorize different possible problems that
need to be assured (in this case, tested). The seven categories that they identify range
from providing assurances that sensor information is correctly interpreted to assuring
that adaptation effects are correctly effected in the system. All of these categories need
to be assured for model based testing to be considered comprehensive. This work pro-
vides another way to organize the assurance activities that could be used to compose an
assurance case for a particular goal.

4 Decomposing and Composing Assurances to Self-Adaptation

As we have argued in this chapter, we need an approach that organizes assurance tech-
niques and the results they produce into a rational argument where justifications of the
goals for the self-adaptive system can be checked and assessed throughout the sys-
tem’s life cycle. In this section we discuss some of the challenges with decomposition
and composition of assurances. The challenges for decomposition and composition dis-
cussed below constitute the set of requirements any approach must manage.

4.1 Decomposition of Assurances

Assurance cases decompose assurance problems by breaking high level goals into sub-
goals for which it easier to provide evidence. This evidence can be combined through
argumentation and judgement to provide confidence that the goals will be met. Not
surprisingly, we can use assurance cases as a guide for thinking about decomposition of
assurances for self-adaptive systems. In the previous section, we saw how existing work
in assurances for different activities of MAPE-K can be used as evidence. In this section,
we describe some of the challenges associated with decomposing the assurances.

Decomposition of Goals. A fundamental tenet of assurances cases is being able to
decompose goals. In goal-oriented requirements engineering [46], goals describe the
objectives that the software system should achieve. Such goals are used in the require-
ments engineering process for “eliciting, elaborating, structuring, specifying, analysing,
negotiating, documenting, and modifying requirements” [46, p. 249]. An abstract goal
(i.e., the root of a goal tree) is systematically and iteratively refined to subgoals until
each subgoal (i.e., the leaves of the goal tree) can be satisfied by a set of tasks a single
agent can perform. Such an agent can be a human or a software component. Approaches
extending the principles of goal-oriented requirements engineering have been proposed
to address self-adaptive software systems [15, 44].

For functional decomposition of goals, the system is decomposed into multiple
components. For each component we have to establish evidence that it correctly realizes
its tasks to achieve the subgoal assigned to it. For instance in Znn (c.f. Section 2.3), we
may provide evidence for the correct behaviour and processing time of the dispatcher

11

regardless of the size and configuration of the server pool, that is, whether the dis-
patching of requests works and how much time it takes. This evidence focuses on an
individual component of the system and the related subgoal but contributes to the assur-
ance of the overall response time goal of the system. Hence, functional decomposition
can be exploited to decompose assurances and establish evidence for components or
subsystems.

To decide whether and how to decompose extra-functional goals, on the other hand,
is more challenging. Unlike functional goals, which can more easily be decomposed
into somewhat independent pieces, extra-functional goals are cross cutting with many
interdependencies, for example resource usage, which is split over many functions.
Extra-functional goals may be decomposed if they are orthogonal/independent from
each other, or if the interdependencies can be managed. The latter requires knowledge
about how the goals affect each other and how the goals can be balanced. Utility func-
tions are one means to do that [17, 34]. An example from the Znn case is the response
time goal that may be assured without considering the associated costs and using simu-
lation or predictive analysis. However, this may result in over-provisioning, which is not
desired. Hence, we have to consider both concerns, response time and costs, together.
The question then arises whether each of them can be completely assured independently
and whether the resulting assurances can be composed afterwards (cf. Section 4.2). The
composition might require further assurances to obtain the required confidence that a
composition works. If two or more goals are tightly coupled with each other, it might
not be reasonable to decompose and assure each of them individually. In such cases, we
may need to keep them together in the decomposition structure. In such situations assur-
ances are not provided for leaf goals in the goal tree but rather for a subtree. The same
holds for the self-management of Znn. Considering the requirements of performing an
adaptation safely and within a certain time (c.f. Goal 4 in Figure 3), we may establish
evidence for both aspects individually. However, it is conceivable that executing a guar-
anteed safe adaptation takes more effort and time than an ad hoc adaptation. Hence,
both requirements must be jointly handled when constructing and assuring them.

Decomposition Strategies Specific to Self-Adaptation. In the previous section, we
discussed how we might use goal decomposition to decompose assurances, and in Sec-
tion 3.2 we discussed how existing self-adaptive techniques might be considered as
evidence in a decomposition. Another way to consider self-adaptation in the role of
assurances is as a technique itself for achieving some goal in the system, and in such
cases we need to provide assurances for the self-adaptation mechanism itself.

The performance goal of Znn is achieved by a controller automatically adapting the
Znn architecture shown in Figure 1 by scaling up and down the number of web servers
in response to the varying load. As depicted in Figure 3, we simplify the problem and
consider only two versions of Znn, one with a smaller pool of web servers for normal
load and one with a larger pool for high load. If we install a self-adaptation mechanism
on top of Znn, that is, a controller that automatically reconfigures the architecture of Znn
by switching between the version, we must provide assurances for the controller and
the controller’s interface to Znn and the environment. The addition of a self-adaptation
strategy requires that we provide evidence for the strategy-specific goals (c.f. Goal 4

12

Managing Systemmonitor

Self-adaptive software system

Managed System

Environment
Non-controllable software hardware,

network, physical context

monitor

monitor adapt

effect

1
5

3

2

4

On-line Off-line

Development
Processes

Fig. 4. Architectural Reference Model for Self-Adaptive Software Systems.

in Figure 3) in the argumentation structure. This calls for a further decomposition of
assurances concerning the self-adaptation mechanism. To guide this decomposition, we
have identified strategies that are specific to self-adaptive software systems.

We propose that the decomposition of goals, either functional or extra-functional
ones, and the identification of evidence types and techniques are guided by the refer-
ence model for self-adaptive systems depicted in Figure 4. It provides an architectural
perspective on self-adaptive systems and is helpful to identify architectural concerns for
self-adaptation that require assurances and that should be included in the argumentation
structure.

A managing system monitors the managed system and the environment to make a
decision about adapting the managed system if the goals are not satisfied or if their sat-
isfaction steadily decreases. For instance, in the Znn example, a controller monitors Znn
to observe the current architecture and the response time, and it monitors the network
to observe the number of connected clients as an indicator for the current load imposed
on Znn. If the monitored response time violates the performance goal, the controller
decides about scaling up the web servers and the number of web servers to be added,
which is eventually translated to Znn by executing this adaptation. Based on Figure 3,
the controller would switch to the Znn version designed for the high load. Finally, this
architectural reconfiguration of Znn that switches to the high-load version should bring
back the system into a state that fulfils the performance goal.

Consequently, besides providing assurances for the managed system such as Znn,
we have to establish assurances for the managing system. We exemplify this with its
functional goals, where we must provide convincing evidence that the managing system

– makes a correct decision of when and how to adapt the managed system (cf. 1 in
Figure 4),

– correctly monitors the managed system 2 and the environment 4 and that the
assurances and assumptions provided for managed system and environment are
correct such that the managing system can rely on them,

13

– correctly adapts the managed system 3 that in turn must change according to this
adaptation,

– correctly interacts with the development process 5 , for example, an administrator
directly adapts the running Znn instance in a situation that the managed system can-
not handle, or an engineer tunes the adaptation strategies of the managing system
to improve the performance of the self-adaptation.

A similar exercise for the managing system’s extra-functional goals can be guided
by the same reference architecture. Using this approach, the managing and managed
systems do not have to be considered as black boxes and their decompositions can be
taken into account. We may repeat the decomposition and refine the managing sys-
tem to monitor, analyse, plan, execute, and knowledge components as proposed by
MAPE-K [38] and consequently, assurances can be provided for the individual com-
ponents rather than for whole controller.

These aspects (1 to 5) must be covered by assurance cases. For the performance
goal of Znn, evidence is required that Znn properly implements the monitor 2 and
adapt 3 interface such that the controller can rely on certain timeliness and accu-
racy of monitored data and on the eventual execution of a reconfiguration. Moreover,
evidence is required that the assumption concerning the environment 4 hold, for in-
stance, that the controller can reliably derive the user load on Znn from the network.
Finally, evidence is needed that the controller itself works properly 1 . For instance, a
controller typically should fulfil the properties of stability, accuracy, settling time, and
overshoot [32] in addition to maintaining the managed system in a state that fulfils the
goals such as the performance goal in the case of Znn.

Challenges. So far, we have outlined how we might use assurance cases and the
MAPE-K pattern as a framework for decomposing assurances. We now summarize the
challenges.

Time- and Lifecycle-related decomposition: The connection between on-line and
off-line assurances (cf. Figure 4) raises a number of challenges. On-line techniques
are embedded in the self-adaptive system while off-line techniques work in the devel-
opment or maintenance environment of the system. Though both kinds of techniques
are used while the system is running, the distinction becomes relevant if costly assur-
ance techniques such as model checking cannot be used on-line and thus have to be
performed off-line. One challenge here is to understand which evidence and goals are
more suitable for run time collection and verification, and which are more suitable ear-
lier. For example, providing evidence through model checking tools is difficult to do at
run time because of state explosion and computational complexity, but doing this earlier
may not account for uncertainty. In this case, we need to explore ways to parameterise
the model checking so that parts of it can be done at run time and parts at design time.
But a general challenge is how to use evidence collected before deployment to inform
and make efficient any run-time analysis. We also need to develop guidelines of how to
decompose the evidence along the time dimension.

Matching evidence with goals: Decisions have to be made about which evidence
types and techniques should be used for the assurance of which goals, and how we

14

know that we have enough evidence to assure a goal. This requires knowledge about
the different evidence types, such as the level of confidence that they provide (e.g.,
simulation results refer to individual traces of the system while model checking results
refer to the whole state space of the system) or the costs of using them (e.g., model
checking can be infeasible due to the problem of state-space explosion).

Assurance additivity and independence: During decomposition of assurances, as-
surance cases are mostly assumed to be global to the system, and so at the top level
are assumed to be independent and complete — conflicts are resolved with the goal
tree and rationale. For self-adaptive systems, this global assumption will not hold if
we are composing goals and systems at run time. In this case, we need to be able to
reason about assurance additivity, independence, and conflict resolution. The identifi-
cation of assurances that remain independent and can be added together is important
for composition — in this case, composition is relatively straightforward. An important
aspect of this challenge is to develop a set of sufficient criteria for assurance indepen-
dence. Part of this challenge may be alleviated with strong provenance and annotations
of global assumptions made during decomposition. At the systems of systems level, the
subsumption of goals and conflicts in goals must also be identified. For example, if we
have an assurance case in Znn for a goal of the response time being less than 2 seconds,
and we are composing with an assurance for a goal of less than 5 seconds, is the former
assurance case sufficient?

4.2 Composition of Assurances

An orthogonal approach to decomposition is composition. While the aim of decompo-
sition is to make the task of gathering individual assurances simpler via modulariza-
tion, composing assurances aims to construct an argument by assembling arguments to-
gether. To achieve composition, global system information is required. Decomposition
may remove the larger context of the system, however it is necessary for each assurance
to maintain its provenance and running context, as well as have a clear position within
the argumentation structure. As mentioned in Section 4.1, individual decomposed as-
surance cases have a close analogy with unit tests, while composing assurances is more
closely aligned with integration and system testing. Unit tests are run without the global
view of the system, and may either over- or under-approximate system behaviour, while
integration and system tests consider the environment under which they are run. Bate
and Kelly [3] argue that to compose assurances for modular systems the modules should
align with the hardware and software components. They also point out the need to con-
sider trade-offs in goals which we discuss below. However, if decomposition should be
performed via goals and evidence, then we argue that composition should follow these
dimensions as well. Our discussion below assumes that we take this view of composi-
tion.

Types of Composition. In composition of assurances (either goal-based or evidence-
based), individual facts are aggregated to confirm that a goal holds. Composition can be
of three types (1) composing assurances from a single system with a single set of goals,
(2) composing two or more individual systems each with their own goals (and assurance

15

cases), or (3) composing systems of systems, with multiple systems, multiple goals and
multiple assurance units for each. In the first type, if our argumentation structure from
the original decomposition exists, then composition can simply gather the individual
assurances using the provided argumentation structure and compose these with confi-
dence. We focus instead on challenges that arise due to the second and third type of
composition.

When composing assurances from two different systems that work together (type 2),
each may have its own unique goals. Consider the case where we introduce a second
system, Zbay, to work in concert with Znn that requires a higher security profile than
the original to permit financial transactions. Zbay runs over an https connection and
has a less stringent QoS goal from the original insecure Znn — the response time must
be less than five seconds. It also has additional goals not found in Znn, related to its
security requirements. If we want to assure that these two systems can work in coordi-
nation, we will need to compose their assurance cases. The assurance cases for G2 and
G3 from Znn and similar ones for Zbay now have different sub-goals, and their com-
position depends on which system they are assured under. If, for instance, we assure
G2 under Znn and G3 under Zbay, there is no guarantee that these will still satisfy G1
for Znn when combined. However, this composition should suffice for Zbay and in fact,
the composition of G1 and G2 from Znn could be argued to be sufficient for the whole
system composition, if the argumentation structure can show that the http connection is
always at least as slow or slower than https. If we now consider the context further, the
dispatcher, which was previously assumed to be independent under the Znn argumen-
tation structure, may no longer be independent in this larger system. It is possible that
dispatching across http protocols changes some global assumptions and a new argu-
mentation structure may be needed. Additionally, for the security goals, they are found
only in the Zbay system, but since Zbay now can send information through Znn, the
Znn goals may need to be revised to assure that sensitive information cannot flow from
Znn to Zbay. We may also find dependencies between systems and goals that must be
added to the argumentation structure. If, for instance, we are under https, it is possible
that another aspect of the system is disallowed (such as ftp). Arguments from Znn that
include this protocol must now be revisited in this larger context.

Composing two individual systems has its challenges, but as we allow for an ar-
bitrarily large number of systems, the challenges increase. In general we see this as a
systems of systems view of composition (type 3). Under this scenario, we may have
multiple variants of Znn and Zbay, such as Zmazon, Zxpedia, etc. Each of these sys-
tems has a set of common goals, and may even share components such as the dispatcher.
Yet they each also have their own unique requirements, working environments and con-
straints. To ensure that these systems can work together, we must combine assurances
across the entire system. This leads to a potential combinatorial explosion in the num-
ber of compositions that can occur between systems. Not only do we now have to face
the problem of combining two assurances, we may find complex interactions between
three or more assurances, and it will become infeasible to validate all compositions.
There may be dependencies as well, either within the systems themselves, or ones that
are global. Unlike the type 2 constraints these may now span the entire system. To as-
sure systems of this type, we may need to resort to a sampling scheme (such as that used

16

in combinatorial testing [20]), and accept that our argumentation only provides a certain
level of assurance across the system, rather than a comprehensive one. For instance, we
may argue that we know all combinations of pairs of assurances can be composed, but
we may not be able to guarantee that combinations of a higher arity of assurance is still
valid. Another issue that arises in systems of systems is that of competing assurances.
For instance, in Zbay and Zmazon the need for security may be more important than
the goal of a low response time, however in Zxpedia and Znn, response time may be
paramount. Some sort of weighted utility is possible, or we may to allow for multiple
solutions for a goal and view this as a Pareto front to understand the trade-offs in time
and security goals.

One possible way to model and simplify the view of a self-adaptive software sys-
tem is as a set of features that are added and removed as the system adapts [23, 29].
Elkhodary et al. first presented the notion of using features for directing adaptation for
QoS aspects of a system [23]. Garvin et al. also suggested using this view of adapta-
tion, but from a more traditional functional view of features [29]. Software product line
engineering [23] provides many tools that may help our reasoning and analysis, both
from a goal based and from an evidence-based view. We can then use these models to
describe composition and sampling and to guide our argumentation structure.

Challenges. In the above, we outlined some challenges particular to different types of
composition. We now summarize the challenges for composing assurances in general.

Time-based Composition: The time (or the state at which an assurance is obtained)
can change the outcome of the evidence, or may change the type of evidence to be gath-
ered. If Znn and Zbay are implemented as services, then the types of evidence available
for composition can vary at run time, depending on which services are currently active.
For instance, the dispatch service may have different variants and within those variants
use different mechanisms. If we assure the system under one variant of the dispatcher
but later compose our system using a different variant of the dispatcher, the original as-
surances may not hold. This problem can occur in all three types of composition (1-3).
This dynamic view of composition leads to a new level of complexity and may require
a new argumentation structure; one that was not considered during decomposition.

Assurance dependencies: In related work on software testing for component-based
or configurable systems, determining which features are dependent on others has proven
to be challenging [21]. Documentation is often lacking and therefore this must be per-
formed by domain experts, and/or via program analysis. For assurance case composition
this is even more challenging. Which strategies depend on particular evidence types and
how does that relate to the overall assurance case? If a composition results in reusing
evidence in multiple assurances cases, how do we keep track when those goals change?
How do we find the dependencies and goals that need to be added to argumentation
structures?

Evidence reuse: In non-adaptive systems, evidence may be reused to support mul-
tiple assurance cases. The same kind of reuse is less obvious when self-adaptation is
involved. For example, if evidence for load balancing under a certain set of activated
self-adaptations is collected, it may apply under a different set of adaptations, or it may

17

not. The larger space of potential system states makes reusing assurances more chal-
lenging.

5 Applying Assurance Cases to Self-Adaptation

In the previous sections, we outlined how we might structure decomposition and com-
position of assurances for self-adaptive systems, and highlighted some of the challenges
with each of these. In this section we describe some emerging work in assurance cases
composition and decomposition that could be applied to help make assurance cases
more useful for self-adaptive systems.

5.1 Assurance Case Decomposition and Composition Research

Safety Case Patterns. While reasoning about satisfaction of individual goals using as-
surance cases is useful, a means of reusing and combining assurance cases is required.
Some studies in developing goal-based approaches aim to support the reuse and modu-
larization of safety cases so that safety arguments for sub-systems/components can be
re-used in other contexts. The notion of safety case patterns [33] can be applied in order
to explicitly model common elements found between various safety cases created for
particular applications. Patterns in arguments can emerge, for example, typical combi-
nations of arguments and accepted interpretations of specific types of evidence. These
can be documented by means of a safety pattern language. This solution promotes a
structured reuse of the safety case rationale instead of its informal material reuse.

More recently, the work by Hawkins et al. [31] has defined a safety argument pattern
catalogue in order to guide developers in structuring maintainable safety arguments.
The idea is to provide evidence for low-level claims, considering different levels of
abstraction suitable for different stakeholders of the system. The assumption is that
as the software system moves through the development lifecycle, there are numerous
assurance considerations against which evidence must be provided.

Such patterns could help guide the kind of evidence that needs to be collected, or
how to structure assurance arguments for particular gaols of the system.

Modularization and Contracts. The work by Ye and Kelly [51] proposes the use of
contracts to modularize safety cases in order to capture application-specific safety re-
quirements, and corresponding assurance requirements derived for a potential COTS
(common-off-the-shelf) component. This contract can be used to form the basis of a
safety case module for the component. The notion of compositional safety case con-
struction proposed by Kelly [36] is used for modelling the safety case of the application
separated from the assurance requirements of the component. More generally, system
safety cases are often decomposed into sub-system safety cases to cope with their com-
plexity. As a consequence, GSN was extended with the notion of UML packages and
“Away Goals” in order to support the notion of modular safety case construction. More-
over, as pointed out in [36], the need for a modular safety approach is becoming more
apparent when considering new types of modern systems that are emerging, such as sys-
tems of systems [3]. For self-adaptive systems, the notion of contracts could be useful
in reasoning about the composition of assurance cases.

18

Decomposition and Composition. The support for claim decomposition and structur-
ing is very informal and argumentation is seldom explicit [4]. In practice, the emphasis
is on communication and knowledge management of the safety cases, with little guid-
ance on what claim or claim decomposition should be performed. Some studies are
developing more rigorous approaches to claim decomposition in order to demonstrate
that the decomposition is complete, that is, that the sub-claims demonstrate the higher
claim [4]. Furthermore, the authors highlight the importance of (i) more efficient means
for modelling safety cases since they are costly to develop, and (ii) improving safety
case structuring to provide safety case modularization, to use diverse arguments and
evidence, and to exploit the relationship between the argument structure and the archi-
tecture of a system.

The work by Voss et al. [47] also explores the idea of modular certification when
reusing components from one system to the next, that is, when reusing a system ele-
ment, engineers can (in)formally reuse the associated safety arguments of the element.
This solution supports a component-based development process and a model-based tool
to specify the system’s architecture at different layers of abstraction and it integrates the
construction of the system and the argumentation about its functional safety. Of course,
increased rigour in claim decomposition could be exploited for assuring self-adaptive
systems.

5.2 Challenges Applying Assurance Cases to Self-Adaptation

This chapter has taken the position that work in assurance cases can be used to guide the
decomposition and composition of assurances for self-adaptive systems. While we be-
lieve that this is a good approach, there are distinct challenges with applying assurance
cases to self-adaptive systems.

Uncertainty: Self-adaptive systems are often self-adaptive because they are de-
ployed in environments with uncertainty. This uncertainty affects the types of evidence
that can be collected to support assurances, the ways in which the evidence can be col-
lected, and even the specification of the assurance case itself. For example, goals in
assurances cases need to specify the environmental assumptions under which they are
valid but for self-adaptive systems we need some way to make uncertainty about these
assumptions first-class.

Adaptation assurances: When conditions change and the system adapts, an assur-
ance may describe how quickly or how well it adapts. For example, with Znn, an in-
creased demand may trigger the addition of a web server. An assurance may state that
when the per-server load exceeds a threshold, the system adapts within two minutes by
adding web servers and the per-server load falls below the threshold within five min-
utes. This assurance may hold at all times, or may be expected to hold only when the
demand increases but then remains constant.

Automatable assurance cases: As mentioned in Section 2.2, assurance cases rely on
human judgement to discern whether the argument and rationale actually makes the case
given the evidence. One of the aims of self-adaptation is to eliminate or at least reduce
the involvement of humans in the management of a software system. To accomplish
this, self-adaptation requires ways to computationally reason about assurance cases,

19

and a logic to judge whether an assurance case is still valid, what changes must be
made to it in terms of additional evidence, etc.

Adaptive assurances: As just alluded to, self-adaptation may require the assurance
cases themselves to adapt. For example, replacing a new component into the system
may require replacing evidence associated with that component in the assurance case.
Changing goals of the system based on evolving business contexts will likely involve
changes to the assurance cases for those goals. Automatable assurance cases are an ini-
tial step to addressing this challenge, but approaches, rules, and techniques for adapting
the assurance cases themselves are also needed.

Assurance processes for self-adaptive software systems: One overarching challenge
is the design of adequate assurances processes for self-adaptive systems. Such a process
connects the system’s goals, the architecture, and implementation realizing the goals to
the assurance cases’ argumentation structures, its strategies, evidence types, and assur-
ance techniques. This challenge requires that parts of the design and assurance process
that was previously performed off-line during development time must move to run time
and carried out on-line in the system itself. The assurance goals of a system are depen-
dent on a correct, efficient and robust assurance process, which employs on-line and
off-line activities to maintain continuous assurance support throughout the system life
cycle. Currently, such processes are not sufficiently investigated and understood.

Reassurance: If we are able to move the evaluation of assurance cases to run time,
then challenge arises in how to reassure the system when things change. Reassurance
may need to happen when environment states, or the state of the system itself, change.
Which part of the assurances case needs to be re-evaluated? For composition, where
the composition itself is dynamic, we need ways to identify the smallest set of claims
(goals) that have to be reassured when two systems are composed? Which evidence
needs to be re-established, and which can be reused?

6 Conclusions

We have considered the challenges associated with decomposing and composing as-
surances for self-adaptive systems. While there is a large body of work in software
assurance that is beginning to address this for general software systems, self-adaptive
systems raise further inherent challenges.

We have discussed assurance cases as an approach to reasoning about composing
and decomposing assurances for self-adaptive systems. Assurance cases provide a dis-
cipline for decomposing assurances in a principled way. Furthermore, there is some
work related to assurance cases also addresses assurance composition, meaning that as-
surance cases may also be suitable for reasoning about composition of assurances for
self-adaptive systems, and also for composing assurances in self-adaptive systems of
systems. We believe that applying assurance case approaches to the problem of assur-
ing self-adaptive systems shows great promise.

At the same time, there are many aspects of self-adaptive systems that present chal-
lenges to assurance case research. We provided some of these challenges in Section 5.2.
Most of these challenges arise from the need for self-adaptive systems to respond to

20

changes in the environment or the requirements of the system, and so we need ways to
assess elements of assurance cases automatically, and evolve them, at run time.

References

1. R. Ali, A. Griggio, A. Franzén, F. Dalpiaz, and P. Giorgini. Optimizing monitoring require-
ments in self-adaptive systems. In Enterprise, Business-Process and Information Systems
Modeling, pages 362–377. Springer, 2012.

2. C. Barna, M. Shtern, M. Smit, V. Tzerpos, and M. Litoiu. Mitigating dos attacks using perfor-
mance model-driven adaptive algorithms. ACM Transactions on Autonomous and Adaptive
Systems, 9(1):3:1–3:26, Mar. 2014.

3. I. Bate and T. Kelly. Architectural considerations in the certification of modular systems.
In Proceedings of the 21st International Conference on Computer Safety, Reliability and
Security, SAFECOMP ’02, pages 321–333, London, UK, UK, 2002. Springer-Verlag.

4. R. Bloomfield and P. Bishop. Safety and assurance cases: Past, present and possible future–
an adelard perspective. In Making Systems Safer, pages 51–67. Springer London, 2010.

5. R. Bloomfield, B. Peter, C. Jones, and P. Froome. ASCAD — Adelard Safety Case Develop-
ment Manual. Adelard, 3 Coborn Road, London E3 2DA, UK, 1998.

6. Y. Brun, J. Y. Bang, G. Edwards, and N. Medvidovic. Self-adapting reliability in distributed
software systems. IEEE Transactions on Software Engineering (TSE), in press, 2015.

7. Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic. Smart redundancy for distributed
computation. In Proceedings of the 31st International Conference on Distributed Com-
puting Systems (ICDCS), pages 665–676, Minneapolis, MN, USA, June 2011. DOI:
10.1109/ICDCS.2011.25.

8. Y. Brun and N. Medvidovic. Fault and adversary tolerance as an emergent property of dis-
tributed systems’ software architectures. In Proceedings of the 2nd International Workshop
on Engineering Fault Tolerant Systems (EFTS), pages 38–43, Dubrovnik, Croatia, September
2007. DOI: 10.1145/1316550.1316557.

9. Y. Brun and N. Medvidovic. An architectural style for solving computationally inten-
sive problems on large networks. In Proceedings of Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), Minneapolis, MN, USA, May 2007. DOI:
10.1109/SEAMS.2007.4.

10. Y. Brun and N. Medvidovic. Keeping data private while computing in the cloud. In Proceed-
ings of the 5th International Conference on Cloud Computing (CLOUD), pages 285–294,
Honolulu, HI, USA, June 2012. DOI: 10.1109/CLOUD.2012.126.

11. Y. Brun and N. Medvidovic. Entrusting private computation and data to untrusted networks.
IEEE Transactions on Dependable and Secure Computing (TDSC), 10(4):225–238, July/Au-
gust 2013. DOI: 10.1109/TDSC.2013.13.

12. Y. Brun and D. Reishus. Path finding in the tile assembly model. Theoretical Computer
Science, 410(15):1461–1472, April 2009. DOI: 10.1016/j.tcs.2008.12.008.

13. P. Casanova, D. Garlan, B. Schmerl, and R. Abreu. Diagnosing architectural run-time fail-
ures. In Proceedings of the 8th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, 20-21 May 2013.

14. P. Casanova, D. Garlan, B. Schmerl, and R. Abreu. Diagnosing unobserved components in
self-adaptive systems. In 9th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, Hyderabad, India, 2-3 June 2014.

15. B. H. Cheng, P. Sawyer, N. Bencomo, and J. Whittle. A Goal-Based Modeling Approach to
Develop Requirements of an Adaptive System with Environmental Uncertainty. In A. Schürr
and B. Selic, editors, Proceedings of the 12th International Conference on Model Driven

21

http://dx.doi.org/10.1109/ICDCS.2011.25
http://dx.doi.org/10.1109/ICDCS.2011.25
http://dx.doi.org/10.1145/1316550.1316557
http://people.cs.umass.edu/brun/pubs/pubs/Brun07seams.pdf
http://people.cs.umass.edu/brun/pubs/pubs/Brun07seams.pdf
http://dx.doi.org/10.1109/SEAMS.2007.4
http://dx.doi.org/10.1109/SEAMS.2007.4
http://dx.doi.org/10.1109/CLOUD.2012.126
http://dx.doi.org/10.1109/TDSC.2013.13
http://dx.doi.org/10.1016/j.tcs.2008.12.008

Engineering Languages and Systems (MODELS), Denver, CO, USA, volume 5795 of Lecture
Notes in Computer Science, pages 468–483. Springer, 2009.

16. B. H. C. Cheng and al. Software engineering for self-adaptive systems: A research roadmap.
In Software Engineering for Self-Adaptive Systems, pages 1–26, 2009.

17. S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-based self-adaptation in the pres-
ence of multiple objectives. In Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), Shanghai, China, 21-22 May 2006.

18. S.-W. Cheng, D. Garlan, and B. Schmerl. Evaluating the effectiveness of the rainbow self-
adaptive system. In Workshop on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS09), Vancouver, BC, Canada, May 2009.

19. S.-W. Cheng, D. Garlan, B. Schmerl, J. a. P. Sousa, B. Spitznagel, and P. Steenkiste. Using
architectural style as a basis for self-repair. In J. Bosch, M. Gentleman, C. Hofmeister,
and J. Kuusela, editors, Proceedings of the 3rd Working IEEE/IFIP Conference on Software
Architecture, pages 45–59. Kluwer Academic Publishers, 25-31 August 2002.

20. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system: an ap-
proach to testing based on combinatorial design. IEEE Transactions on Software Engineer-
ing, 23(7):437–444, 1997.

21. M. B. Cohen, M. B. Dwyer, and J. Shi. Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE Transactions
on Software Engingeering, 34(5):633–650, 2008.

22. M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens. Model checking adap-
tive software with featured transition systems. In J. Cámara, R. de Lemos, C. Ghezzi, and
A. Lopes, editors, Assurances for Self-Adaptive Systems, volume 7740 of Lecture Notes in
Computer Science, pages 1–29. Springer Berlin Heidelberg, 2013.

23. A. Elkhodary, N. Esfahani, and S. Malek. FUSION: A framework for engineering self-
tuning self-adaptive software systems. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pages 7–16,
2010.

24. A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic model checking. In
33rd International Conference on Software Engineering (ICSE), pages 341–350, May 2011.

25. A. Filieri and G. Tamburrelli. Probabilistic verification at runtime for self-adaptive systems.
In J. Cámara, R. de Lemos, C. Ghezzi, and A. Lopes, editors, Assurances for Self-Adaptive
Systems, volume 7740 of Lecture Notes in Computer Science, pages 30–59. Springer Berlin
Heidelberg, 2013.

26. J. Franco, F. Correia, R. Barbosa, M. Zenha-Rela, B. Schmerl, and D. Garlan. Improving
self-adaptation through software architecture-based stochastic modeling. Journal of Systems
and Software, 2016.

27. E. M. Fredericks, B. DeVries, and B. H. C. Cheng. Towards run-time adaptation of test
cases for self-adaptive systems in the face of uncertainty. In Proceedings of the 9th In-
ternational Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2014, pages 17–26, New York, NY, USA, 2014. ACM.

28. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow: Architecture-
based self adaptation with reusable infrastructure. IEEE Computer, 37(10), October 2004.

29. B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Failure avoidance in configurable systems
through feature locality. In J. Cámara, R. Lemos, C. Ghezzi, and A. Lopes, editors, Assur-
ances for Self-Adaptive Systems, volume 7740 of Lecture Notes in Computer Science, pages
266–296. Springer-Verlag, 2013.

30. Goal Structuring Notation (GSN) community standard version 1, November 2011. Available
at http://goalstructingnotation.info.

31. R. Hawkins, K. Clegg, R. Alexander, and T. Kelly. Using a software safety argument pattern
catalogue: Two case studies. In SAFECOMP, volume 6894, pages 185–198, 2011.

22

32. J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury. Feedback Control of Computing
Systems. John Wiley & Sons, 2004.

33. K. M. High, T. P. Kelly, and J. A. Mcdermid. Safety case construction and reuse using
patterns. In 16th International Conference on Computer Safety and Reliability (SAFECOMP
1997, pages 55–69. Springer-Verlag, 1997.

34. N. Huber, A. Hoorn, A. Koziolek, F. Brosig, and S. Kounev. Modeling run-time adaptation
at the system architecture level in dynamic service-oriented environments. Service Oriented
Computing and Applications, 8(1):73–89, Mar. 2014.

35. N. R. Jennings. An agent-based approach for building complex software systems. Commu-
nications of the ACM, 44(4):35–41, April 2001.

36. P. Kelly. Managing complex safety cases. In 11th Safety Critical System Symposium (SSS’03,
pages 99–115. Springer-Verlag, 2003.

37. T. Kelly and R. Weaver. The goal structuring notation a safety argument notation. In Proc.
of Dependable Systems and Networks 2004 Workshop on Assurance Cases, 2004.

38. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer, 36(1):41–50,
Jan. 2003.

39. M. Litoiu. A performance analysis method for autonomic computing systems. ACM Trans.
Auton. Adapt. Syst., 2(1), Mar. 2007.

40. G. Püschel, S. Götz, C. Wilke, and U. Aßmann. Towards systematic model-based testing of
self-adaptive software. In ADAPTIVE 2013, The Fifth International Conference on Adaptive
and Self-Adaptive Systems and Applications, pages 65–70, 2013.

41. M. Puviani, G. Cabri, and F. Zambonelli. A taxonomy of architectural patterns for self-
adaptive systems. In International C* Conference on Computer Science & Software Engi-
neering, C3S2E13, pages 77–85, Porto, Portugal, July 2013.

42. M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems, 4(2), 2009.

43. B. Schmerl, J. Cámara, J. Gennari, D. Garlan, P. Casanova, G. A. Moreno, T. J. Glazier, and
J. M. Barnes. Architecture-based self-protection: Composing and reasoning about denial-
of-service mitigations. In HotSoS 2014: 2014 Symposium and Bootcamp on the Science of
Security, Raleigh, NC, USA, 8-9 April 2014.

44. V. E. Silva Souza, A. Lapouchnian, W. N. Robinson, and J. Mylopoulos. Awareness require-
ments for adaptive systems. In Proceeding of the 6th international symposium on Software
engineering for adaptive and self-managing systems (SEAMS ’11), pages 60–69, New York,
NY, USA, 2011. ACM.

45. G. Tamura, N. M. Villegas, H. A. Müller, J. a. P. Sousa, B. Becker, G. Karsai, S. Mankovskii,
M. Pezz, W. Schfer, L. Tahvildari, and K. Wong. Towards practical runtime verification
and validation of self-adaptive software systems. In R. de Lemos, H. Giese, H. A. Müller,
and M. Shaw, editors, Software Engineering for Self-Adaptive Systems II, volume 7475 of
Lecture Notes in Computer Science, pages 108–132. Springer Berlin Heidelberg, 2013.

46. A. Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In Proceedings
of the Fifth IEEE International Symposium on Requirements Engineering, RE ’01, pages
249–262, Washington, DC, USA, 2001. IEEE Computer Society.

47. S. Voss, B. Schätz, M. Khalil, and C. Carlan. Towards modular certification using integrated
model-based safety cases. In Proc. of VeriSure: Verification and Assurance, 2013.

48. T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent language. In
ACM Conference on Object-Oriented Programming Systems, Languages, and Applications,
pages 306–315, 1988.

49. D. Weyns, M. U. Iftikhar, D. G. de la Iglesia, and T. Ahmad. A survey of formal methods in
self-adaptive systems. In Proceedings of the Fifth International C* Conference on Computer
Science and Software Engineering, C3S2E ’12, pages 67–79, New York, NY, USA, 2012.
ACM.

23

50. D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke, J. An-
dersson, H. Giese, and K. Goeschka. On patterns for decentralized control in self-adaptive
systems. In R. de Lemos, H. Giese, H. A. Müller, and M. Shaw, editors, Software Engineer-
ing for Self-Adaptive Systems II, volume 7475, pages 76–107. Springer-Verlag, 2012.

51. F. Ye and T. Kelly. Contract-based justification for cots component within safety critical
applications. In T. Cant, editor, Ninth Australian Workshop on Safety-Related Programmable
Systems (SCS 2004), volume 47 of CRPIT, pages 13–22, Brisbane, Australia, 2004. ACS.

24

	Challenges in Composing and Decomposing Assurances for Self-Adaptive Systems

