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Abstract. Systems of Systems (SoS) have started to emerge as a con-
sequence of the general trend toward the integration of beforehand iso-
lated systems. To unleash the full potential, the contained systems must
be able to operate as elements in open, dynamic, and deviating SoS
architectures and to adapt to open and dynamic contexts while being
developed, operated, evolved, and governed independently. We name the
resulting advanced SoS to be smart as they must be self-adaptive at the
level of the individual systems and self-organizing at the SoS level to
cope with the emergent behavior at that level. In this paper we analyze
the open challenges for the envisioned smart SoS. In addition, we dis-
cuss our ideas for tackling this vision with our SMARTSOS approach
that employs open and adaptive collaborations and models at runtime.
In particular, we focus on preliminary ideas for the construction and
assurance of smart SoS.

1 Introduction

Systems of Systems (SoS) [1, 2] nowadays become a highly relevant challenge
as the general trend can be observed that beforehand isolated systems are inte-
grated into larger federations of systems. To unleash the full potential of such
federations, SoS must be smart such that the contained systems are able to
operate as elements in open, dynamic, and deviating SoS architectures and to
adapt to open and dynamic contexts while being developed, operated, evolved,
and governed independently.1 Therefore, the resulting smart SoS must be self-
adaptive at the level of the individual systems and self-organizing at the SoS
level to cope with the emergent behavior at that level.

For a smart SoS holds that each of its systems has to be independent in the
sense that it is developed, operated, evolved, and governed independently from

∗ This work was partially developed in the course of the project “Quantitative
analysis of service-oriented real-time systems with structure dynamics” (Quan-
tum) at the Hasso Plattner Institute at the University of Potsdam, pub-
lished on its behalf, and funded by the Deutsche Forschungsgemeinschaft. See
http://www.hpi.de/en/giese/projects/quantum.html
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systems [4] emphasizing the integration of the physical and cyber world.
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the other systems in the SoS. Furthermore, these systems interact with each
other in an open and dynamic world (cf. [5]), which causes individual systems to
dynamically join or leave the SoS over time, the SoS architecture to deviate, and
emergent behavior at the SoS level. Moreover, each independent system must
adapt its behavior autonomously according to its own needs and peer systems
in the SoS (self-adaptation [6, 7]) while considering the interplay between its
own behavior, the other systems’ behavior, and the required SoS-level behavior
(self-organization [8]). The envisioned interaction between the systems involves
independently developed systems and requires means for exchanging knowledge
between these systems at runtime. This knowledge covers aspects of a running
system itself and the context or the requirements of a running system. While
the outlined rich interaction is key, the development of the systems has to scale
and thus only can take into account the publically available knowledge about
possible collaborations with the other systems. Finally, the systems as part of a
smart SoS will evolve in order to adjust to new needs or changing regulations
(cf. software evolution [9]). Since it seems today improbable or even impossible
that all the required evolution steps can be covered automatically by a system
itself (e.g., by self-adaptation or self-organization), it must still be possible that
required evolution steps for each individually governed system are performed
during the operation of the SoS. These challenges for engineering smart SoS are
currently hardly covered by the available approaches.

The current state of the art suggests constructing SoS using an architecture
perspective and services (cf. [10]) employing, for example, the Service oriented
architecture Modeling Language (SoaML) [11] and the Unified Modeling Language
(UML) [12] to specify the cooperation of systems by means of service contracts
and collaborations. In these collaborations, roles with dedicated interfaces de-
scribe the behavior of the systems while the SoS-level behavior emerges from the
interactions of these roles.

The use of collaborations for the modeling of services [13,14], the use of class
diagrams for the structure and graph transformations for the behavior model-
ing [15,16], and a formal model of ensembles [17] have been proposed. However,
none of these approaches supports the construction of dynamic collaborations as
required for smart SoS where systems dynamically join or leave the federation.
And even though well-established formal approaches such as π-calculus [18] or
bigrahs [19] tackle such structural dynamics, to the best of our knowledge no
work exists that especially covers the problem of providing assurances for dy-
namic collaborations of arbitrary size. Either the approaches require an initial
system configuration and only support finite state systems (or systems for which
an abstract finite state model of moderate size exist) [15,20–24] or they lack the
expressive power to describe typical problems concerning the structural dynam-
ics [25,26].

In our own Mechatronic UML approach (mUML) [27] for the model-
driven development of self-optimizing embedded real-time systems, we already
support collaborations of self-optimizing autonomous systems in a rigorous man-
ner by means of role protocols. For mUML and its collaboration concepts an



overall assurance scheme has been presented in [28]: it combines a modular veri-
fication approach [29] for the component hierarchies of the autonomous systems,
the compositional verification [30] of ad hoc real-time collaborations between
the autonomous systems, and a fully automatic checker for inductive invariants
of graph transformation system rules [31] describing the possible changes of the
dynamic architecture at the SoS level. Additional work on assurances for mUML
employs a multi-agent system view on an SoS to study how commitments be-
tween the collaborating systems can be modeled and analyzed [32]. Therefore,
with mUML an approach exists that provides assurances for systems that com-
bine self-adaptive autonomous systems similar to an SoS. However, in contrast
to the challenges of smart SoS, which are discussed in the next section, mUML
provides no solution for collaborations with structural dynamics of the roles, is
restricted to homogeneous systems (i.e., systems that evolve jointly and similarly
and that have complete knowledge about each other), and does not support the
runtime exchange of complex knowledge. Moreover, the self-adaptation is limited
to pre-planned reconfigurations in hierarchical architectures.

Our Executable Runtime Megamodels approach (EUREMA) [33] for
the model-driven engineering of self-adaptive systems supports – in contrast to
mUML – the flexible specification of self-adaptation by allowing us to employ
abstract runtime models (cf. [34]) of the context and the system itself such that
the self-adaptation behavior can be specified by rules operating on such abstrac-
tions. However, EUREMA is so far limited to centralized and non-distributed
systems and does not address collaborations or the self-organizing SoS level.

In this paper, we will first analyze open challenges for engineering smart
SoS. We will then discuss our Software with Models at Runtime for Systems
of Systems (SMARTSOS) vision that employs collaborations and generic mod-
els at runtime for trustworthy self-organization and evolution of the systems
at the SoS level and self-adaptation within the systems while taking the inde-
pendent development, operation, management, and evolution of these systems
into account. We will particularly outline the formal foundations underlying
SMARTSOS based on graph transformation systems [35,36] which cover in prin-
ciple the identified challenges for the construction and assurance of smart SoS.

The rest of the paper is structured as follows: In Section 2, we discuss open
challenges for smart SoS. Afterwards, our SMARTSOS vision is outlined in Sec-
tion 3. Then, the concepts for constructing smart SoS with collaborations, com-
ponents, and runtime models are outlined in Section 4. Afterwards, the results
that enable the assurance for the smart SoS are presented in Section 5. The pa-
per closes with a discussion of these results in Section 6 and provides in Section 7
some concluding remarks and an outlook on future work.

2 Challenges

SoS as a composition of systems that are operationally and managerially inde-
pendent from each other [1] is characterized by uncoordinated evolution steps
and geographic distribution of these systems (cf. [37]). Additionally, dynamic



Table 1. Summary of the Identified Challenges.

Construction/Assurance of Self-Adaptation (C1/A1)
Construction/Assurance of SoS-Level Interactions for Self-Organization (C2/A2)
Construction/Assurance of SoS-Level Structural Dynamics (C3/A3)
Construction/Assurance of SoS-Level Runtime Knowledge Exchange (C4/A4)
Construction/Assurance of Evolution of Smart SoS (C5/A5)
Scalable Construction/Assurance of Smart SoS (C6/A6)
Construction/Assurance of Smart SoS with Restricted Knowledge (C7/A7)

configuration capabilities, resilience, the ability to dynamically adapt and ab-
sorb deviations in the SoS structure, and the ability to deal with emergent be-
havior in context of self-organization that goes beyond developing contractual
descriptions are crucial [2] for smart SoS. These issues are challenging since each
system as part of a smart SoS is independent in the sense that it is developed,
operated, evolved, and governed independently from the other systems in the
same SoS. Furthermore, the systems interact with each other in an open and
dynamic world (cf. [5]), which causes individual systems to dynamically join or
leave the smart SoS over time, the SoS architecture to deviate, and emergent
behavior at the SoS level. Consequently, the SoS-level architecture and behavior
are not controlled by a single, centralized authority.

As example in this paper we consider a large-scale transport system where
different organizations operate fleets of autonomously driving shuttles that share
a track system. This constitutes an SoS since the shuttles are operated, managed,
and evolved by different authorities, they dynamically interact with each other
(e.g., to build convoys), and they adapt to their own and the other shuttle’s
states and behavior (e.g., to decrease the speed when the shuttle’s own battery
level is low or when the speed of the shuttle running ahead decreases).2

Engineering such smart SoS imposes several challenges that we outline in
Table 1. All of them aim for means for the construction and assurance of smart
SoS and its individual systems, which must take the operational and managerial
independence of the individual systems and the emergent behavior at the SoS
level into account.

The first challenge considers the Construction/Assurance of Self-Adaptation
(C1/A1) of the individual systems as each system within a smart SoS must
adapt its behavior according to its own needs and the behavior of other systems
as well as the emergent SoS-level behavior (cf. [38, 39]). For instance, a shuttle
adapts its speed to its battery level, to the speed of the shuttle running ahead,
or to an agreement established by all shuttles in a convoy. Such changes of the
behavior must be systematically constructed and assured to enable trustworthy
operation and in particular self-adaptation [6, 7].

Due to the operational and managerial independence of the systems, the Con-
struction/Assurance of SoS-Level Interactions for Self-Organization (C2/A2)
challenge captures that the interactions among these systems must be self-
organizing (cf. [8]) to achieve the SoS-level goals. For example, shuttles from
different organization must interact to avoid collisions or they may even coop-
erate to build convoys in order to save energy. Such interplays of autonomous

2 See http://www.railcab.de for an example with the outlined characteristics.
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shuttles must be systematically constructed and assured to provide confidence
for satisfying SoS-level goals (e.g., reliable and safe rail traffic).

Furthermore, since the operational context changes or the systems dynam-
ically join or leave the SoS such that the SoS-level architecture dynamically
changes, the challenge of the Construction/Assurance of SoS-Level Structural
Dynamics (C3/A3) must be supported. For instance, autonomous shuttles may
join or leave a convoy and the other shuttles already part of the convoy must
account for it. Such dynamics must be constructed and assured to guarantee
certain SoS-level behavior resulting from the interactions.

Additionally to the structural dynamics, the Construction/Assurance of SoS-
Level Runtime Knowledge Exchange (C4/A4) is required since no system in the
SoS typically has all the knowledge needed to achieve the SoS-level goals at
runtime. This calls for exchanging knowledge between interacting systems. This
knowledge refers to the current state, context, and requirements of individual
systems. For instance, shuttles establishing a convoy may exchange their driving
modes to agree on a common mode for the whole convoy. Such a knowledge
exchange must be constructed and assured when engineering interactions to
gain confidence that the SoS-level goals can be achieved.

In parallel to the self-adaptive and self-organizing behavior of systems in the
SoS, the systems evolve in an uncoordinated way as they are managed indepen-
dently from each other by different organizations. Evolution is caused by the
permanent need to change the software in response to changing requirements
of the stakeholders, no longer valid assumptions, or changing regulations the
software has to adhere to (cf. software evolution [9]). With evolution, we refer
to introducing new or removing existing types of systems or interactions (and
therefore, also behavior) from the SoS. For example, new shuttle versions that
support new cooperation mechanisms are integrated into the SoS and they must
not interfere with the already existing versions. To handle such radical changes
in a trustworthy manner and to support the long-term existence of the SoS, the
Construction/Assurance of Evolution of Smart SoS (C5/A5) is a main challenge.

In general, engineering smart SoS is challenging due to the ultra-large scale
and complexity of such systems and due to the different authorities manag-
ing such systems. Therefore, the Scalable Construction/Assurance of Smart SoS
(C6/A6) and the Construction/Assurance of Smart SoS with Restricted Knowl-
edge (C7/A7) are also important aspects for the engineering. The first aspect is
motivated by the fact that it is not feasible to construct the whole SoS upfront
before its deployment, or to analyze all possible SoS configurations or archi-
tectures that grow exponentially with the number of participating systems. For
instance, any number of shuttles of arbitrary types may run on the track system
or may cooperate in a convoy. Thus, the construction and assurances for SoS
must scale with the size of the SoS. The second aspect refers to the construction
and assurances for smart SoS, which must work despite the restricted knowledge
that participants of the SoS have. An organization responsible for an individual
system in the SoS or the system itself might have no global view of the SoS and
no concrete information about the other participants and possible interactions



among participants. Nevertheless, assurances for each system and the SoS must
be provided to enable trustworthy operations. For example, when constructing
and assuring new shuttle versions supporting a certain interaction, details about
other organizations’ shuttle versions that are potential cooperators for the in-
teraction might not be available. However, the construction and assurance must
cope with the limited knowledge available.

These open challenges, each with a construction and assurance dimension as
summarized in Table 1, reveal the difficulty of engineering and ruling smart SoS
due to the complexity, dynamics, emergence, and decentralized management and
governance.

3 SMARTSOS

In our vision SMARTSOS, we suggest combining the benefits of mUML and
EUREMA to tackle the challenges for smart SoS. However, we do not suggest
simply integrating the ideas of both approaches. Instead we developed a radically
different and more abstract perspective on the SoS-level interactions to overcome
the limitations of the state-of-the-art and former approaches and to master the
complexity of smart SoS. This novel perspective is based on the combination of
runtime models and collaborations.

3.1 Runtime Models

To realize the challenge of the Construction/Assurance of SoS-Level Runtime
Knowledge Exchange (C4/A4), SMARTSOS employs models at runtime [34]
that suggest following model-driven engineering principles to engineer abstract
runtime representations of running systems or their contexts and requirements.
Such models are said to be causally connected to the running system, which
means that changes in the system are reflected in the model and vice versa. Thus,
“change agents (e.g., software maintainers, software-based agents) use [abstract]
runtime models to modify executing software in a controlled manner” [40, p. 39]
rather than directly adapting the running software at the code level.

With EUREMA we have extended this perspective by providing runtime
models at different levels of abstraction [41] and by specifying the adaptation
itself, that is, software-based agents, using runtime models [33]. The latter aspect
leverages the flexibility of runtime models for managing the change agents at
runtime in addition to the running systems. In SMARTSOS, we go another step
further and suggest using generic in contrast to highly specific and optimized
runtime models, which eases interoperability and evolution of systems in an
SoS, as it excludes individual optimization and specific solution for the runtime
models.

For an individual system in a smart SoS, such generic runtime models may
capture the system’s state, context, requirements, and adaptation logic. These
models may be used locally for self-adaptation and assurances that each system
fulfills its requirements. As discussed in the following, they may also be used for
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Fig. 1. Local and shared runtime models of a complex SoS architecture.

collaborations among systems leading to the self-organization of the SoS, which
requires the exchange of runtime knowledge.

The basic idea to integrate runtime models and collaborations for the con-
struction of smart SoS is depicted in Fig. 1. At first, each running system living
in the cyber world may have a view on its physical context and its own state
in the cyber and physical world by means of runtime models of the context and
the self. In general, we consider runtime descriptions reflecting the running sys-
tem and its context as Reflection Models. Particularly, System Models (Self in
Fig. 1) reflect about architectural and behavioral key aspects of the system and
they are causally connected to the system. Context Models (Context in Fig. 1)
describe the environmental situation of a system (cf. [42, 43]). In our example,
models of the Context and Self are depicted in the individual Shuttle systems
in Fig. 1. This supports designing the self-adaptation of the shuttles as MAPE-
K feedback loops (Monitor/Analyze/Plan/Execute-Knowledge) [44] while the
knowledge part is implemented by the runtime models. Such feedback loops are
realized by analyze and plan activities that operate on the basis of the runtime
models while linking the runtime models to the system and context is realized
by the monitor and execute activities. The Self and Context runtime models can
refer to the local state of a shuttle (e.g., the Mode and Battery status) as well
as the available information about the context (e.g., whether there is another
shuttle driving on the tracks ahead of the shuttle). This context does not only
consist of the physical context such as the shuttle’s position, the topology of the
track system, and the positions of other shuttles nearby, but additionally the
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context in the cyber world. This cyber-world context covers, for instance, the
established collaboration instances and context shared with other roles of these
collaboration instances.

As depicted in Fig. 1, these runtime models of the context and self constitute
an overall local runtime model, that is, the Reflection Model, for each :Shuttle
system. As described in Fig. 2 in more detail, each system does not only operate
on information about its own local context and itself, but can also get access
to the information stored in runtime models of other systems concerning their
context or themselves.3 In our example, the left most Shuttle system has also
access to information in form of runtime models in quite different ways. The
directly visible elements are the information available local to the shuttle by
means of runtime models (white with solid frame). Additional information like
the position of the shuttle in front of it, which is encoded by the on edge between
that shuttle and its current track, is accessible for shuttles that knows the Coord
collaboration type (gray with dashed frame). Finally, information about the
mode of the shuttle system in front of it is accessible for a shuttle, if it is connected
to this via a Coord collaboration instance (gray with solid frame).

Likewise to EUREMA, the behavior of the systems in reaction to particular
situations can now be directly described based on such overall local runtime
models. This is illustrated at the top of the left-hand side of Fig. 2 showing
the feedback loop (i.e., the monitor, analyze, plan, and execute activities) of a
shuttle realizing the self-adaptation and therefore, addressing the Construction
of Self-Adaptation (C1) challenge. In the following, we will elaborate the use of
such generic runtime models in the context of collaborations. In general, such

3 In the case of heterogeneous local runtime models, efficient incremental model syn-
chronization techniques such as triple graph grammars [45] can be employed. Such
techniques realize required translation steps between runtime models that are spec-
ified in different modeling languages but that capture similar content. We already
applied them to create and maintain multiple runtime models of a system in [41].



models as employed by SMARTSOS provide an idealization of the systems and
contexts, which is discussed in Section 4.3.

3.2 Collaborations

To approach the challenges of the Construction/Assurance of SoS-Level Inter-
actions for Self-Organization (C2/A2) and the Construction/Assurance of SoS-
Level Structural Dynamics (C3/A3) while taking aspects of the Scalable Con-
struction/Assurance of Smart SoS (C6/A6) and the Construction/Assurance of
Smart SoS with Restricted Knowledge (C7/A7) into account, SoaML and UML
provide basic concepts of modeling collaborations. They support specifying ab-
stract collaboration types and corresponding roles. The interaction of roles is
defined by sequence or activity diagrams and UML interface descriptions (in
form of class diagrams). Role behavior may be also covered by protocol state
machines. The mUML approach goes beyond the ideas of SoaML and UML by
describing the possible interaction always via real-time variant of state machines
for each role and the communication medium. Due to the well-defined seman-
tics for all employed formalism such as the real-time variant of state machines,
mUML enables the basic verification of the interactions through model checking.

SMARTSOS supports a more flexible concept for collaborations compared
to mUML and SoaML/UML. In SMARTSOS a richer language to specify the
collaborations is provided, which also covers the exchange of complex information
as well as specifying structural dynamics covering, for example, how systems
can join the collaboration, leave the collaboration, or how the structure of the
collaboration may change at runtime. In order to ensure interoperability and
achieve trustworthy behavior at the SoS level, we furthermore need also more
sophisticated analysis capabilities, for example, to investigate the impact from
one system part to another through collaborations.

The basic idea of separating the required interactions into separated collab-
orations is depicted in Fig. 1. The autonomous systems of the SoS can connect
with each other as specified by the collaboration types and can establish collab-
oration instances to cooperate as needed. For example, the two left most Shuttle
instances in Fig. 1 are linked by a Coord collaboration instance to build a tem-
porary convoy and the right most Shuttle instance is linked to a Station instance
by an Allocate collaboration instance.

It has to be noted that different collaboration types and their involved views
on the physical or cyber world may not be disjoint. In such a case, the construc-
tion and assurance for the collaboration types that share some of their elements
of the physical or cyber world have to take such overlapping into account. The
required concepts for abstract shared collaborations types that includes runtime
models with overlapping entities are discussed in Section 4.3.

The elements of the Coord collaboration type are defined in the class diagram
depicted on the left hand side of Fig. 3. The Coord collaboration element as well
as the Shuttle role with its Mode and Battery status are introduced using the
stereotypes �collab� for collaborations and �role� for roles. The class dia-
gram also defines the track topology, that is, multiple Track elements connected
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with each other by the next relationship, as well as the positioning of the Shuttles
on the tracks by the on relationship.

The class diagram of a collaboration type implicitly specifies in form of all
valid object configurations for the class diagram the possible states the collabora-
tion may be in. Later on, we define rules that refer to such object configurations
to capture the system behavior. We formally define these object configurations
as attributed graphs in Section 4.
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Fig. 4. Behavior rules for the Shuttle role of the Coord collaboration as SPs.

To capture the laws that should hold for the different collaboration types,
we specify behavior rules with Story Patterns (SPs) [45] that define the permit-
ted and mandatory behavior of each role, read rules with SPs having no side
effects that define the visibility of shared runtime models, and the properties the
collaboration has to ensure. These properties are described by SPs without side
effects in the case of simple state properties and with Timed Story Sequence
Diagrams (TSSDs) [46] in the case of sequence properties. A major duty for the
SoS-level assurance is to ensure that the properties are the guaranteed outcome
of the roles’ behavior.

Fig. 4 depicts the behavior rules, that is, the SPs defining the permitted and
mandatory behavior of each role of the Coord collaboration (we refer to [47] for



the complete set of behavior rules). The SP called move in coordination on the
lower right-hand side of Fig. 4, for example, describes that after the building of a
platoon encoded by the existence of the Coord instance, the rear shuttle instance
can move with a reduced distance behind the front shuttle instance and therefore,
both shuttle instances may even be positioned on the same Track instance. The
instance name self used in a rule determines the role of the collaboration, for
which this rule is intended, in this example, for the shuttle role (cf. self:Shuttle
element). Furthermore, the create coordination SP defines that shuttles must
create a collaboration if they are on neighboring tracks and do not yet collaborate
(i.e., there is no Coord instance yet).

A simple SP denotes two graphs at once. The first one is the left-hand-
side graph L that you try to find in the current instance situation encoded
in the graph G and that consists of all unmarked elements and those marked
with �destroy�. The second one is right-hand-side graph R that consists of all
unmarked elements and those marked with �create�. If L can be matched in
G, the SP rule can be applied. A rule application on G results in the replacement
of the match of L in G by R. In the case of complex SPs that have a negative
application condition (NAC) that defines a graph L′ resulting from extending L
by all the crossed-out elements. Then, besides finding the left-hand-side graph
L in G there must exist no match for the NAC L′ in G that extends that match
for L. Otherwise, the rule cannot be applied.

On the upper right-hand side of Fig. 4, the move SP specifies using such a
NAC that shuttles can move forward along the track over time if there is no other
shuttle on the next track. Additionally, the SP defines a temporal condition that
a shuttle must stay on a track at least ten time units before it can move to
the next track. This temporal condition ensures that the move SP can only be
applied with respect to realistic physical movement conditions of the shuttles.
If the shuttle moves, the on reference is created on the t2 Track and the clock
attribute timeAtTrack of the shuttle is reseted to zero. As a consequence, the
shuttle has to stay on the next track again at least for ten time units before the
move SP can be applied again.

Fig. 5 shows an example of an application of a graph transformation rule. If
we consider the instance situation (start graph) on the left-hand side and apply
the move SP rule from Figure 4, first a match for the move SP has to be found.
Thereby, we can find a match, where the shuttle instance self from Figure 4 is

instance situation before
move rule application

t1:Track t2:Track
next

s1:Shuttle

on

instance situation after
move rule application

t1:Track t2:Track
next

s1:Shuttle

on

Fig. 5. Application of the move SP from Figure 4 on an exemplary instance situation.



matched to the s1 shuttle instance on the left side in Figure 5. Because there
is no other shuttle on the next track t2, the move SP can be applied for the
found match with the consequence that the on link from shuttle s1 to track t1
is deleted and a new on link from shuttle s1 to track t2 is created. Thus, we
obtain the instance situation (result graph) as depicted on the right-hand side
on Figure 5.

The properties the collaboration type Coord should guarantee are depicted in
Fig. 3. We have the forbidden situations collision and missing collaboration that
must not happen. Hence, these properties are marked with ¬∃. For example, the
collision SP in the middle of Fig. 3 shows the situation where two shuttles that
are not collaborating with each other are on the same track, that is, these two
shuttles may collide. Furthermore, the missing collaboration SP on the right-hand
side of Fig. 3 reflects the faulty situation where two shuttles are on neighboring
tracks but they do not collaborate with each other. Both situations have to be
excluded to ensure a proper operation of the collaboration. For both instance
situations in Figure 5 must hold that all specified properties are fulfilled (that
the forbidden collision and missing collaboration SP cannot be matched).

detect-obstacles

self:Shuttle

t1:Track

provider:Shuttle

t2:Track

on
next [0..3]

common

t:Track t1:Track
next[0..*]

t-1:Track
next[0..*]

on

share-mode

self:Shuttle provider:Shuttle

c1:Coord

rear front

m2:Mode
mode

self:Shuttle

on

Fig. 6. Read rules for the Shuttle role of the Coord collaboration type as SPs.

The read rules for the collaboration type Coord are depicted in Fig. 6 using
SPs and so called path expressions that allow us to describe the fraction of the
runtime models that can be accessed in a more compact form than standard SPs
without such path expressions. In general, read rules on the one hand describe
what the roles can access (read) but also imply on the other hand that the other
roles somehow have to provide the related information. In any case, the self
instance name in a read rule that must always be present determines for which
role this rule specifies access to other runtime models. The optional provider
instance name if present in a rule indicates whether a related role is in charge
of providing that information.

The first read rule, called common, describes that it is assumed that a shuttle
(marked with the self instance name) has access to the complete track topology
because the path expression next[0..∗] denotes any finite path between two Tracks
with arbitrary many omitted and thus not visible nodes in between. Looking at
the class diagram in Fig. 3, it reveals that the omitted nodes must always be
of type Track and thus, the path expression represents all sequences of Tracks
connected by next edges. As this read rule does not require any instance of the
Coord collaboration, it denotes that each shuttle knows the track topology on
its own (a possible implementation would be that each shuttle has a map of the
track topology).



The read rule detect-obstacle for the Shuttle role (cf. self instance name)
employs the path expression next[0..3] to denote a path between two Tracks with
0 to 3 not visible Tracks in between. The provider instance name for the other
Shuttle role indicates that this role must provide this fragments of its runtime
model. As this read rule does not require any instance of the Coord collaboration,
it defines that the shuttles are able to see other shuttles nearby even though
no collaboration has been established yet (a possible implementation can be
based on GPS and a related protocol to broadcast position data to the shuttle’s
vicinity [48]). The read rule share-mode for the Shuttle role (cf. self instance
name) is different as it always requires an instance of the Coord collaboration.
Otherwise, it does not allow a shuttle to retrieve (read) the mode of the other
Shuttle role. The provider instance name for that Shuttle role indicates that this
role must provide this data.

4 Construction

To cover in particular the challenges of the Construction of SoS-Level Interac-
tions for Self-Organization (C2), Construction of SoS-Level Structural Dynamics
(C3), Construction of SoS-Level Runtime Knowledge Exchange (C4), Construc-
tion of Evolution of Smart SoS (C5), and Scalable Construction of Smart SoS
(C6), SMARTSOS supports collaborations with a dynamic number of roles, run-
time models, the independent evolution of the autonomous systems and their
collaborations, and the specification of individual autonomous systems without
having complete knowledge about the overall SoS. These aspects require at first
a solid foundation for the concepts used for the construction and assurance of
smart SoS. Based on this foundation we then can formally introduce types and
instances of collaborations, systems, and SoS as well as the notions of runtime
models and overlapping collaborations. Finally, we cover the evolution of smart
SoS, that is, the set of types and instances of the SoS evolve (e.g., new types
and instances are introduced).

4.1 Foundation

The formal foundation of SMARTSOS can be based on our former results in the
context of mUML and experience in formal models for self-adaptive systems [49]
and model transformations [50] based on graph transformation systems. In this
context, graphs serve as a formal model to represent object configurations cap-
turing the SoS-level architecture and runtime models (see the formal model
depicted in Fig. 1) while the graph transformation rules such as SPs denote the
behavior of the collaboration roles and graph conditions the required proper-
ties. To address various software aspects, we have developed extended attributed
graph transformations systems covering real-time [51], probabilistic [52], and hy-
brid [47,53,54] behavior. These extensions can be used in the formal foundation
of SMARTSOS.



In this paper, we will only introduce the basic ideas of the underlying for-
mal model and refer to [54] for more details. The formal model we use can be
described as follows:

Typed attributed graphs G with attributes describe the states of our model
elements (system of systems, systems, and collaborations). They relate to the
possible object configurations that a class diagram CD defines (cf. Figure 3 for
the Coord collaboration). We use G∅(CD) to denote all those possible typed
attributed graphs that fit to a class diagram CD and do not contain any role
objects. We will further refer to the empty graph as G∅. An example of an object
configuration is depicted in Figure 2, where two shuttles are linked by a Coord
collaboration. The corresponding elements can also be found in the formal model
depicted on top of Fig. 1.

Sets of graph transformation rules R define the behavior. They related to the
SPs we employed earlier (cf. Figure 4 for the Coord collaboration). Rules r ∈ R
can match a certain fragment of a graph representing the state and in addition
describe how the graph changes when the rule is applied. Given a start graph
and a number of rule applications we get a path π.

Furthermore, a suitable logic for state and sequence properties is assumed
and we can describe whether a sequence property φ holds for a path π (π |= φ)
or for all paths generated by a start graph G and a set of rules R applied on
G (G,R |= φ). Simple state conditions are specified by SPs without side effects
(cf. Fig. 3), while TSSDs [46] can be employed to describe sequence properties.

Additionally, we use a refinement notion for graph transformation rule sets
R′ v R that guarantees preservation of safety properties while allowing us to
extend the rules unless guaranteed behavior will be blocked.

We further exploit the fact that the different elements in our formal model
are by construction separated either by their types or so-called pseudo types4

For two rules separated by their types or pseudo types holds that the behavior
cannot interfere in unexpected ways.

4.2 Collaborations, Systems, and System of Systems

Collaborations Similar to SoaML and mUML, collaborations are the main
elements to address the interactions among individual systems in SMARTSOS.
However, we need an extended formalization as presented in more detail in [54]
to cover also the structural dynamics such as joining a collaboration, leaving
a collaboration, or changing the structure of a collaboration.5 At first and in
addition to the simplified view depicted in Fig. 1, we have to add extra nodes in
the graphs for the role instances of a collaboration:

Definition 1 (see [54]). A role type roi equals a node type roi.

4 Their types separate two rules if they have no node and edge type in common. Their
pseudo types separate them, if for all nodes of shared type holds that always a single
link to a special node with not shared type at the instance level are demanded.

5 The terminology used in [54] has been adjusted and extended in this paper to better
fit the concepts of SoS.



In our application example, the Shuttle element of the Coord collaboration is
such a role type.

In addition to the basic notion of collaborations used in SoaML/UML and
the extended one provided by mUML, we have to cover more information for a
collaboration type as depicted in Fig. 1, 2, 3, and 4.

Definition 2 (see [54]). A collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni
i ), CDi,

Ri, Φi) consists of a collaboration type node coli, a number of role types roji , an
UML class diagram CDi, a function Ri : {coli, ro

1
i , . . . , ro

ni
i } 7→ 2R assigning

rules to role types, and a guaranteed property Φi.

A collaboration instance of collaboration type Coli is represented by a node
of type coli. In our example we have the Coord and Allocate collaboration types
(see related dashed oval shapes in Fig. 1) as well as single :Coord and :Allocate
collaboration instances (see related solid oval shapes in Fig. 1).

For two different role types roki and roli the set of assigned rules has to
be disjoint Ri(ro

k
i ) ∩ Ri(ro

l
i) = ∅. The creation of collaboration instances of

collaboration type Coli is only possible through the collaboration type’s roles
roki and their assigned behavior Ri(ro

k
i ). E.g., see the create shuttle SP in Fig. 4.

The relation among the collaboration Coli’s role types ro1i , . . . , ro
ni
i and any

additional data types that are used within the collaboration are specified by the
class diagram CDi. The class diagrams of different collaborations have to be
separated by different name spaces.

In our example, we have a role type Shuttle and its behavior rules are given
by the set { create shuttle, move, create coordination, move in coordination } of
SPs as depicted in Fig. 4. The corresponding class diagram CDi defining the
roles and all the other elements in the rules is depicted on the left-hand side of
Fig. 3. The guaranteed property Φi is in our example the and-combination of
two forbidden properties collision and missing collaboration depicted in the middle
and right-hand side of Fig. 3. The read rules that are depicted in Fig. 6 are not
explicitly covered in the formal model but the behavioral rules of the systems
that realize the roles have to take them into account. This issue will be discussed
in more detail in Section 4.3.

Within a collaboration many styles of interactions, particularly, synchronous
or asynchronous ones can be used. For asynchronous message passing, the fol-
lowing scheme can be employed: an instance of the Shuttle role creates a new
message (i.e., a node in the graph) and links it to another instance of the Shuttle
role that should be the receiver of the message. The latter shuttle instance can
afterwards process the message that has been linked to this instance. For syn-
chronous interactions, an instance of a role may directly modify links and data of
another instance. For example, an instance of the Shuttle role may if permitted
directly change the mode of another instance of the Shuttle role (cf. Fig. 1).

Systems Similar to UML and SoaML, we employ components to represent sys-
tems that interact through collaborations by realizing the related roles. Our



specification of a system further comprises safety properties that have to be
fulfilled by the system’s implementation.

Definition 3 (see [54]). A system type Sysi = (sysi, (ro
1
i , . . . , ro

mi
i ), CDi, Ri,

Ii, Ψi) consists of a system type node sysi, a number of role types roji , a class
diagram CDi, a function Ri : {sysi, ro

1
i , . . . , ro

mi
i } 7→ 2R assigning rules to role

types, a set of initial rules Ii ⊆ Ri(sysi), and a safety property Ψi.

A system as an instance of system type Sysi is represented by a node of
type sysi, which also fulfills the pseudo-typing requirements and thus separates
elements from each other that belong to different systems. In our example we
have the Shuttle and Station system types (see related dashed boxes in Fig. 1) as
well as several :Shuttle and one :Station system of the corresponding types (see
related solid boxes in Fig. 1).

All rules of Sysi preserve a pseudo-typing linking of all nodes to sysi. The
function Ri is defined as for collaboration types (see Definition 2). The only
way a system/instance of type Sysi can be created is through the execution
of any of the creation rules in Ii. The system type’s class diagram CDi con-
tains all class diagrams of the collaboration types that are used by the system
type.6 Additionally, the system itself represented by a class sysi (node type) and
all data types required by the system are contained in CDi. We further write
Ri(ro

k
i ) ⊆ Ri(sysi) to refer to the set of all rules that belong to the system Sysi’s

implementation of role roki .

System of Systems To cover SoS, we employ system of system types and
instances. System of systems combine collaboration and system types to a con-
ceptual unit (depicted by the outer dashed box in Fig. 1).

Definition 4 (see [54]). A system of system type SoS = ((Col1, . . . ,Coln), (Sys1,
. . . , Sysm)) consists of a number of collaborations types Coli and a number of
system types Sysj.

Definition 5 (see [54]). A system of system instance is a pair sys = (SoS, Gsys)
with system of system type SoS = ((Col1, . . . ,Coln), (Sys1, . . . ,Sysm)) and an
initial configuration Gsys that is type conform to SoS.

As this paper does not include the details of a system type and system of
system type for our example, we refer to [47, 54] to obtain these details and an
example that cover abstract system specifications and a system of system type.

4.3 Runtime Models

As depicted in Fig. 1, in our formal model an idealized view of the context is
directly visible and accessible by the shuttle systems. This idealization reflects

6 A system type uses a collaboration type if it implements a role that has been defined
for this collaboration type.



that the systems handle the related information about the physical and cyber
world by means of runtime models and their exchange. The idea of the read
rules depicted in Fig. 6 generalizes the concept of [32] to capture the capabilities
of sensors and actuators for the physical world. Consequently, the formal model
describes what can be read directly by local sensors or indirectly by the exchange
of runtime models reflecting the context or the other systems’ internal states.

The read rules are not formalized but the behavior rules of the systems have
to adhere to them, that is, the rules must not access information that should
not be visible to them through local runtime models or the exchange/sharing of
runtime models. In the example of Fig. 1, this visible information of the local
and shared runtime models relates to the local context as well as the mode and
battery status of the shuttle itself, the topology as given by the common read
rule, the position of the shuttles nearby as given by the detect-obstacle read rule,
and the mode of the other shuttles that are connected by a Coord collaboration
instance as given by the share-mode read rule (cf. Fig. 6).

It has to be noted that the outlined formal model is an idealization. It assumes
that the systems operate on consistent and not delayed observations and ignore
the risk of partial failures. However, it many cases the outlined idealization is
quite reasonable. At first, any solution that would not work for the idealization
will also likely not work under more realistic assumptions. Secondly, a more
detailed design would in particular acknowledge that the effects due to partial
failures and delayed and inconsistent observations are limited to the extent which
can be tolerated for the considered problem addressed by the collaboration type
(e.g., see the protocol developed in [48] that covers the loss of connection while
preserving a basis for a safe behavior).

Another issue that has to be taken into account is that even though different
collaborations can be employed to talk about different required interactions, as
soon as they refer to the same phenomena of the physical or cyber world, the
observations in the different collaborations must be consistent. Therefore, we
require that in these cases an initial collaboration has to cover the interrelated
phenomena of the domain that should be considered in a consistent manner and
share these phenomena with the other collaborations.

If other and more specific collaboration types take a subset of the phenomena
of the physical or cyber world covered by such an initial collaboration type into
account, they have to extend the initial collaboration type. Then, these more
specific collaboration types cannot be specified completely separated from each
other and the shared one.

Definition 6. An overlapping collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni
i ),

CDi, Ri, Φi) extending a shared collaboration type Colj = (colj , (ro
1
j , . . . , ro

nj

j ),

CDj , Rj , Φj) consists of a collaboration type node coli, a number of roles roji with
ni ≥ nj and for all 1 ≤ l ≤ nj roli = rolj, an UML class diagram CDi extending

CDj, a function Ri : {coli, ro
1
i , . . . , ro

ni
i } 7→ 2R extending Rj assigning rules to

roles, and a guaranteed property Φi.



In our example depicted in Fig. 1, the Allocate collaboration type refines the
Coord collaboration type and therefore is aware that the shuttles may move.

4.4 Evolution

One aspect of our motivation for this work is that individual systems in a smart
SoS are subject to independent changes (evolution), which has to be handled
by construction and assurance. In the following, we will explicitly consider the
modeling of evolution, which is not addressed by SoaML or mUML.

Definition 7 (see [54]). An extended evolution sequence is a sequence of sys-
tem of systems (SoS1, G

1
S), . . . , (SoSn, G

n
S) such that (1) SoSi+1 only extends

SoSi by additional collaboration and system types, (2) Gi+1
S is also type con-

form to SoSi, and (2) Gi+1
S can be reached from Gi

S in the system of system
(SoSi, G

i
S).

An evolution sequence is a sequence of system of system types SoS1, . . . ,SoSn

such that at least one related extended evolution sequence (SoS1, G
1
S), . . . , (SoSn,

Gn
S) exists.

As presented in [54], type conformance for the introduced evolution concepts
can be defined that ensure a proper typing of collaborations, systems, and system
of systems.

5 Assurance

Existing instance-based formal approaches do not scale and are often not appli-
cable to the specific settings of SoS such as openness, dynamic structures, and
independent evolution. Thus, the challenges of establishing Assurance of SoS-
Level Interactions for Self-Organization (A2), Assurance of SoS-Level Structural
Dynamics (A3), and Assurance of Evolution of Smart SoS (A5) and in particular
the Scalable Assurance of Smart SoS (A6) and the Assurance of Smart SoS with
Restricted Knowledge (A7) for the assurance for smart SoS are not covered.

Therefore and similar to the mUML approach, we propose establishing the
required guarantees for the assurance by referring only to the collaboration and
system types rather than to the instance level. For the verification at the type
level we show that the correctness proven for the collaboration and system types
and only type conformance for the system of systems type will by construction
imply that the related correctness also holds at the instance level for any possible
configurations of the related system of systems. The scalability of our approach
comes from the fact that the size of the type level is independent of the size of the
instance level. However, we have to show as a general property of our approach
that the results we yield for the type level are also valid for the instance level.

To tackle assurance for the envisioned SMARTSOS approach, we will first
address the correctness at the type level looking into collaboration and system
types. Then, we will look at the instances of collaboration and system types
and show that the correctness established for the types can be transfered to the



instances. Afterwards, we outline how the special case of collaborations with
overlapping runtime models can be handled. Finally, we cover evolution where
the set of types and instances of a SoS may evolve.

5.1 Collaboration and System Types

We start our considerations with defining what we mean by correct types for
collaborations and systems (see dashed inner elements in Fig. 1).

Definition 8 (see [54]). A collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni
i ), CDi,

Ri, Φi) is correct if for all initial configurations GI ∈ G∅(CDi) holds that for
Ri(Coli) = Ri(ro

1
i )∪ · · · ∪Ri(ro

n
i )∪Ri(coli)) the overall behavior of the collabo-

ration the reachable collaboration configurations are correct: GI , Ri(Coli) |= Φi.

Please note that looking only at the behavior of all roles and to consider
only the initial object configurations GI without any roles is sufficient to cover
all possible behavior, as we have a closed model where only the behavior of the
roles is allowed to create or delete roles or any other considered elements.

For our example and the behavior rules of the Coord collaboration type as
depicted in Fig. 4, it can be formally verified that the collaboration type is
correct employing an automated checker (cf. [47, 51]). These checks only work
for state properties and operate at the level of the types. Therefore, they do not
have to consider the instance situation that would require checking infinite many
and arbitrary large object configurations over arbitrary long sequences of steps.
Another option that would allow us to cover sequence properties might be to
use incomplete techniques such as simulation/testing or bounded or statistical
model checking to establish a certain confidence for the correctness of a specific
collaboration type.

A correct system type requires that the resulting behavior ensures the guar-
antees and that the system’s implementation refines the combined role behavior.

Definition 9 (see [54]). A system type Sysi = (sysi, (ro
1
i , . . . , ro

mi
i ), CDi, Ii, Ψi)

is correct if for all initial configurations GI ∈ G∅(CDi) holds that (1) the reach-
able configurations are correct GI , Ri(sysi) ∪ COMP (Sysi) ∪ Ii |= Ψi and that
(2) the system behavior Ri(sysi) refines the orthogonally combined role behav-
ior and creation behavior Ri(sysi) v Ri(ro

1
i ) ∪ · · · ∪ Ri(ro

mi
i ) ∪ Ii. To

add the collaboration behavior to the system behavior for each role without the
role itself, we employ here COMP (Sysi) =

⋃
1≤l≤mi

COMP (Sysi, ro
l
i) with

COMP (Sysi, ro
l
i) = Rj(Colj) which is covered by Ri(sysi) to derive a related

closed behavior.

Due to lack of space, we do not discuss an example for a correct system type
and refer to [47, 54] for such an example and its formal verification. Again, an-
other option might be to employ incomplete techniques such as simulation/testing
or bounded or statistical model checking to establish a certain confidence for the
correctness of a specific system type.



5.2 Collaborations and System Instances

After defining our notion of correctness for the types, we have to define the
related notion of correctness at the instance level (cf. the solid elements in Fig. 1).

Definition 10 (see [54]). A concrete system of system sos = (SoS, GS) with
system of system type SoS = ((Col1, . . . ,Coln), (Sys1, . . . ,Sysm)) is correct if it
holds:

GS , R(sys1)∪· · ·∪R(sysm)∪R(col1)∪· · ·∪R(coln) |= Φ1∧· · ·∧Φn∧Ψ1∧· · ·∧Ψm.

Then, we can show in the following Theorem 1 that the type conformance of
the system of system type and the correctness of collaboration types and system
types ensures correctness at the instance level for the system of system.

Theorem 1 ( [54]). A system of systems sos = (SoS, G∅) with system of system
type SoS = ((Col1, . . . , Coln), (Sys1, . . . ,Sysm)) is correct if (1) the system of
system type SoS is type conform, (2) all collaboration types Col1, . . . ,Coln are
correct, and (3) all system types Sys1, . . . ,Sysm are correct.

Theorem 1 provides sufficient but not necessary conditions to ensure the cor-
rectness. It permits us to straightforward establish the required correctness of
the types by checking refinement and the guarantees for the properties using the
rule sets as employed in condition (2) and (3).7

Due to lack of space, we do not present an example for a correct system of
system type here and refer to [47, 54] for such an example. In general, at the
system of systems level, we only have to collect the evidence for correctness that
is provided for the collaboration and system types being part of this system of
systems.

5.3 Runtime Models

The sharing of runtime models by a single collaboration type as depicted in Fig. 1
for the Coord collaboration can be covered with the introduced basic concepts
for collaborations. Thus, the results of Theorem 1 also apply in such cases and
permit us to provide the required assurance. However, this does not hold for
overlapping collaborations.

For collaboration types that refine a shared collaboration type we can exploit
the following Definition 12 and Lemma 1 that outline under which circumstances
the correctness of the composition of all overlapping collaboration types can be
derived only on the basis of the correctness of all the overlapping collaboration
types, the correctness of the refined shared collaboration type, and the compat-
ibility of their roles.

7 As outlined in [54] in detail, based on the refinement of the rule sets for the in-
volved roles the result of Theorem 1 can also be extended to abstract system and
collaboration types.



Definition 11. An overlapping collaboration type Coli = (coli, (ro
1
i , . . . , ro

ni
i ),

CDi, Ri, Φi) extending the shared collaboration type Colj = (colj , (ro
1
j , . . . , ro

nj

j ),
CDj , Rj , Φj) is correct if for all initial configurations GI ∈ G∅(CDi) holds that
the reachable collaboration configurations are correct GI , Ri(Coli) |= Φj ∧ Φi for
Ri(Coli) = Ri(ro

1
i ) ∪ · · · ∪Ri(ro

n
i ) ∪Ri(coli)) the overall behavior of the collab-

oration and that all added roles refine roles of the refined shared collaboration
type: ∀l ∈ [nj + 1, ni]∃k ∈ [1, nj ]Ri(ro

l
i) v Ri(ro

k
j ).

We can combine a set of overlapping collaboration types of the same shared
refined collaboration type to obtain the related resulting collaboration type.

Definition 12. For a set of overlapping collaboration types Coli1 , . . . ,Colim ex-
tending a shared collaboration type Col0 = (col0, (ro

1
0, . . . , ro

n0
0 ), CD0, R0, Φ0) the

resulting collaboration type is defined as Coli = (coli, (ro
1
i , . . . , ro

ni
i ), CDi, Ri, Φi)

with a collaboration type node coli, a set of roles that unites the roles sets of
Col0,Coli1 , . . . ,Colim , an UML class diagram CDi = CD0 ∪

⋃
1≤k≤m CDik , a

function Ri : {coli, ro
1
i , . . . , ro

ni
i } 7→ 2R extending R0 and all Rik for 1 ≤ k ≤ m

assigning rules to roles, and a guaranteed property Φi = Φ0 ∧ (∧1≤k≤mΦik).

In a next step we can show with the following Lemma that the resulting
collaboration type is correct, if all overlapping collaboration types of the related
shared collaboration types are correct.

Lemma 1. If all overlapping collaboration types Coli1 , . . . ,Colim and the shared
refined collaboration type Col0 = (col0, (ro

1
0, . . . , ro

nj

0 ), CD0, R0, Φ0) are correct,
then the resulting collaboration type Coli = (coli, (ro

1
i , . . . , ro

ni
i ), CDi, Ri, Φi) is

also correct.

Proof. For any correct overlapping collaboration type Colik = (colik , (ro
1
ik
, . . . ,

ro
nik
ik

), CDik , Rik , Φik) of the shared refined collaboration type Col0 = (col0, (ro
1
0,

. . . , ro
nj

0 ), CD0, R0, Φ0) holds that GI , Rik(Colik) |= Φ0∧Φik . As the extension of
each overlapping collaboration type are disjoint and the shared behavior is refining
the roles of the shared collaboration, we can conclude that also GI , Ri(Coli) |= Φik

will hold. As Φi = Φ0 ∧ (∧1≤k≤mΦik) we only have to combine this finding for
all 1 ≤ k ≤ m and get GI , Ri(Coli) |= ∧1≤k≤mΦik and thus GI , Ri(Coli) |= Φi

such that Coli is correct. �

Due to Lemma 1 we can now employ Theorem 1 to cover overlapping collabo-
rations.

5.4 Evolution

So far the presented results for assurance do not cover the evolution of SoS.
Therefore, we will extend the former results to cover typical evolution scenarios
such as adding new collaboration or system types. If we look at our former
results in more detail, we can notice that the assumption has been made that all
types are known at verification time. This assumption is not true for a steadily



evolving system where new type definitions are added over time. Furthermore,
the different organizations involved in an SoS will only have a partial view and
thus do not know all currently existing types in the SoS. For a given extended
evolution sequence (cf. Definition 7) we can define correctness as follows:

Definition 13 (see [54]). An extended evolution sequence (SoS1, G
1
S), . . . , (SoSn,

Gn
S) with SoSn = ((Col1, . . . ,Colp), (Sys1, . . . ,Sysq)) is correct if for any com-

bined path π1 ◦ · · · ◦ πn such that πi is a path in SoSi leading from Gi
S to Gi+1

S

for i < n and that πn is a path in SoSn starting from Gn
S holds: π1 ◦ · · · ◦ πn |=

Φ1 ∧ · · · ∧ Φp ∧ Ψ1 ∧ · · · ∧ Ψq. An evolution sequence SoS1, . . . ,SoSn is correct
if all possible related extended evolution sequence (SoS1, G

1
S), . . . , (SoSn, G

n
S) are

correct.

A first observation is that SoSn contains all types defined in any SoSi. How-
ever, for a combined path π1 ◦ · · · ◦πn such that πi is a path in SoSi leading from
Gi

S to Gi+1
S for i < n does not hold in general that an equal path π in SoSn exists

that goes through all Gi
S , as the rules added by later added types may influence

the possible outcomes if added at the start.8 Another observation is that the
properties guaranteed for newly introduced collaboration or system types have
to be true as long as the types have not yet been introduced as otherwise the
evolution cannot be correct. We can exploit these observations and construct
related collaboration types E(Coli) and system types E(Sysj) encoding that the
types come into existence later. Based on this we can then define E(SoS1,SoSn)
as that system of system type where the types of SoSn not present in SoS1 can
come into existence later. E(SoS1,SoSn) therefore includes all possible combined
paths of any possible extended evolution sequences for a given evolution sequence
SoS1, . . . ,SoSn.

We can then use the fact that the related dynamically evolving system of
system type includes all possible extended evolution sequences to check also the
correctness for all possible evolution sequences.

Theorem 2 (see [54]). An evolution sequence of systems SoS1, . . . ,SoSn is
correct if the related dynamic evolving system of system type E(SoS1,SoSn) is
correct.

Lemma 2 (see [54]). For a correct collaboration type Col holds also that its
dynamic extension E(Col) is correct. For a correct system type Sys holds also
that its dynamic extension E(Sys) is correct.

Due to Lemma 2, it is sufficient to simply check the collaboration and system
types and this already guarantees that any extended evolution sequence will also
show correct behavior.

Moreover, due to Theorem 2 and Lemma 2, an organization that wants to
extend the system of system type accordingly does not require any knowledge
about all the other types besides those which are refined or where an overlap

8 For example, in a refined model there may be urgent rules that have to be executed
if enabled and thus may preempt other rules when added during the evolution.



exists. Furthermore, if two independent extensions are done which do not refer
to each other, the concrete order of these extensions does not matter as the
checks remain the same. Therefore, each organization can simply check its own
extension by means of added collaboration and system types without considering
when the other extensions are enacted.

Due to lack of space, we do not present an example for a correct system of
system type with evolution here and refer to [47,54] for such an example.

6 Discussion

In SMARTSOS, we combine ideas from mUML and EUREMA to tackle the
challenges for smart SoS that are discussed in Section 2. A radically different and
more abstract perspective on the SoS-level interactions based on runtime models
and collaborations is employed to overcome the limitations of the state-of-the-art
and our former approaches and to master the complexity of smart SoS. In the
following, we will discuss which challenges are addressed by the proposed ideas,
particularly, by the concepts of collaborations and runtime models, the novelty
of these ideas, and the additional benefits of these ideas.

6.1 Runtime Models

As discussed for the envisioned SMARTSOS approach in Section 3 and its formal
model in Sections 4 and 5, SMARTSOS employs generic runtime models.

On the one hand, this supports the engineering of the self-adaptation for
individual systems in the smart SoS as required by the challenge of Construc-
tion/Assurance of Self-Adaptation (C1/A1) (cf. Section 2). Similar to EUREMA,
the self-adaptation for each system is implemented in SMARTSOS by a feed-
back loop with monitor, analyze, plan, and execute activities that operate on the
generic runtime models. For instance, the self-adaptive behavior of each shuttle
in the large-scale transport system is specified by such feedback loops operating
on partially shared runtime models that reflect the shuttle itself and the shuttle’s
context (cf. top of the left-hand side of Fig. 2).

On the other hand, SMARTSOS uses the generic runtime models to ex-
change information between individual collaborating systems, which addresses
the challenge of Construction/Assurance of SoS-Level Runtime Knowledge Ex-
change (C4/A4). This aspect distinguishes SMARTSOS from the state of the art
in engineering SoS that employ specific and optimized runtime models without
exchanging them among individual systems.

Therefore, SMARTSOS goes beyond the mUML approach and the state of
the art by supporting generic runtime models of the contexts and the systems
in the SoS. SMARTSOS also goes beyond EUREMA and the state of the art
by supporting the runtime exchange of these models between the individual
collaborating systems in an SoS. In the context of collaborations, such runtime
models can also reflect agreements between the collaborating systems which is a
prerequisite for jointly achieving the SoS-level goals. Thereby, such collaborations



may be established in a self-organizing manner while each system still evolves
and self-adapts independently from the other systems in the SoS.

While the generic nature of the runtime models used in SMARTSOS clearly
leads to a higher complexity of the models compared to the state of the art,
it also leverages a number of benefits: (B1) As a “success in regulation implies
that a sufficiently similar model must have been built,” [55], it is consequently
unavoidable that the software captures all the relevant variety of the controlled
system itself, the requirements, and the context to be able to control their vari-
ability effectively. (B2) Herbert A. Simon observed for the example of an ant
that “[t]he apparent complexity of its behavior over time is largely a reflection
of the complexity of the environment in which it finds itself” [56, p. 52]. Thus,
it can be expected that including the physical and cyber environment by run-
time models will in fact help to reduce the complexity of the remaining software
solution that operates on the basis of these runtime models. Finally, (B3) while
specialized solutions that only capture a minimal amount of information about
the environments lead to simpler software in the short run, it can be expected
that the envisioned generic runtime models without such optimizations result in
a direct-mapping [57] between the original (e.g., the system or context) and the
model. Such a mapping is usually more stable in the long run and considerably
eases interoperability. The latter aspect is a critical issue to achieve open and
dynamic collaborations in smart SoS.

6.2 Collaborations

Based on the generic runtime models, SMARTSOS employs open and dynamic
collaborations (cf. Section 3) to achieve self-organizing interactions between in-
dividual systems of the smart SoS. The collaboration concept of SMARTSOS is
also covered in the formal model for the construction and assurance of smart
SoS (cf. Sections 4 and 5). In contrast to state of the art approaches, this
perspective on the SoS-level interactions addresses the challenges of Construc-
tion/Assurance of SoS-Level Interactions for Self-Organization (C2/A2) and
Construction/Assurance of SoS-Level Structural Dynamics (C3/A3) (cf. Sec-
tion 2). Moreover, it is key to address the challenges of Construction/Assurance
of Evolution of Smart SoS (C5/A5), Scalable Construction/Assurance of Smart
SoS (C6/A6), and Construction/Assurance of Smart SoS with Restricted Knowl-
edge (C7/A7).

In this context, SMARTSOS extends EUREMA that does not consider col-
laborations at all since EUREMA focuses on centralized and non-distributed
systems. In contrast to mUML, SMARTSOS employs open and more dynamic
collaborations that are governed by laws supporting self-organization at the SoS
level and that support the structural dynamics of smart SoS where, for example,
systems may dynamically join or leave the SoS. The collaboration concept of
SMARTSOS supports abstracting details of individual systems in the SoS by
means of roles, runtime models, and behavioral contracts while distinguishing
the type and instance levels (cf. Section 3). This collaboration concept lever-
ages the independent development, operation, management, and evolution of



these systems (cf. Sections 4 and 5). Thus, the evolution of smart SoS and its
contained systems with respect to construction (cf. Section 4.4) and assurance
(cf. Section 5.4) aspects is supported. By abstraction and explicitly distinguish-
ing the type and instance levels of smart SoS, the construction and assurance
are scalable as they mainly work at the type level – hence abstracting from the
sheer scale and number of all possible instance situations of a smart SoS. In the
same line of reasoning, the construction and assurance of smart SoS works de-
spite not considering the complete instance situation and thus all details of the
SoS. Therefore, SMARTSOS can handle the restricted knowledge of SoS caused
by multiple authorities governing the SoS.

In general, the collaboration concept of SMARTSOS is motivated by the ben-
eficial observations that (B4) in our society we have established legal domains,
which we consider independent of each other. We can expect that the individuals
behave according to the laws of each of these legal domains independent of the
other domains. This approach allows us to cooperate even though the systems
and legal domains evolve and adapt in principle independently from each other
(cf. law-governed interaction [58]). In the traffic domain, for example, rules for
driving vehicles and related regulations and laws impose what individual drivers
are allowed to do while within these bounds the individuals are free to act. In
our example, the Coord collaboration in Fig. 1 establishes such a solution with
respect to the driving behavior of the shuttles. As another example, individ-
uals in the traffic domain may establish contracts with each other to allocate
parking slots. In our example, a Shuttle may establish such a contract to have
the privilege to stop at a specific platform of a Station by means of an Allocate
collaboration instance as depicted in Fig. 1.

7 Conclusion and Future Work

In this paper we analyzed the open challenges for the envisioned smart SoS
looking in particular into construction and assurance of such SoS. In this con-
text, we presented our ideas how to tackle this vision with our SMARTSOS ap-
proach, specifically, by employing open and adaptive collaborations and generic
models at runtime. We discussed that by supporting generic runtime models
at the SoS level, the challenge of Construction/Assurance of SoS-Level Run-
time Knowledge Exchange (C4/A4) can be covered by SMARTSOS. Further-
more, based on such runtime models, the SMARTSOS collaboration concept
directly covers the challenges of Construction/Assurance of SoS-Level Interac-
tions for Self-Organization (C2/A2) and Construction/Assurance of SoS-Level
Structural Dynamics (C3/A3). Moreover, it provides the required foundation
to tackle the challenges of Construction/Assurance of Evolution of Smart SoS
(C5/A5), Scalable Construction/Assurance of Smart SoS (C6/A6), and Con-
struction/Assurance of Smart SoS with Restricted Knowledge (C7/A7). While
SMARTSOS addresses the challenges related to the SoS level, the challenge of
Construction/Assurance of Self-Adaptation (C1/A1) of individual systems in
the SoS is mainly addressed by our former work on mUML and EUREMA.



Our plans for future work are to further elaborate SMARTSOS by extending
the model-driven EUREMA approach [33] with open and adaptive collabora-
tions and means for the distributed management of runtime models. Addition-
ally, we plan to further strengthen the links between runtime and development-
time models [59] and model-driven techniques in runtime scenarios [45].
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sitional verification of real-time uml designs. In: Proceedings of the 9th European
Software Engineering Conference Held Jointly with 11th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ESEC/FSE-11, New
York, NY, USA, ACM (2003) 38–47

31. Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Veri-
fication for Systems with Dynamic Structural Adaptation. In: Proceedings of the
28th International Conference on Software Engineering. ICSE ’06, ACM (2006)
72–81

32. Giese, H., Klein, F.: Systematic verification of multi-agent systems based on rig-
orous executable specifications. Int. J. Agent-Oriented Softw. Eng. 1(1) (2007)
28–62

33. Vogel, T., Giese, H.: Model-Driven Engineering of Self-Adaptive Software with
EUREMA. ACM Trans. Auton. Adapt. Syst. 8(4) (2014) 18:1–18:33

34. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10) (2009)
22–27

35. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations. World Scientific Pub Co (1997) Volume 1.

36. Rozenberg, G., Ehrig, H., Engels, G., Kreowski, H., eds.: Handbook of graph
grammars and computing by graph transformation: vol. 2: applications, languages,
and tools. World Scientific (1999)

37. : The Open Group Architectural Framework (TOGAF), version 9.1. Open Group
Standard (2011)

38. Vassev, E., Hinchey, M.: The Challenge of Developing Autonomic Systems. Com-
puter 43(12) (2010) 93–96

39. Marconi, A., Bucchiarone, A., Bratanis, K., Brogi, A., Camara, J., Dranidis, D.,
Giese, H., Kazhamiakink, R., de Lemos, R., Marquezan, C., Metzger, A.: Re-
search challenges on multi-layer and mixed-initiative monitoring and adaptation
for service-based systems. In: Software Services and Systems Research - Results
and Challenges (S-Cube), 2012 Workshop on European, IEEE (2012) 40–46

40. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 2007 Future of Software Engineering. FOSE ’07, Washington, DC,
USA, IEEE Computer Society (2007) 37–54

41. Vogel, T., Giese, H.: Adaptation and Abstract Runtime Models. In: Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-Managing
Systems. SEAMS ’10, ACM (2010) 39–48

42. Vogel, T., Seibel, A., Giese, H.: The Role of Models and Megamodels at Runtime.
In Dingel, J., Solberg, A., eds.: Models in Software Engineering. Volume 6627 of
Lecture Notes in Computer Science (LNCS). Springer (2011) 224–238



43. Wätzoldt, S., Giese, H.: Classifying Distributed Self-* Systems Based on Runtime
Models and Their Coupling. In: Proceedings of the 9th International Workshop on
Models@run.time. Volume 1270 of CEUR Workshop Proceedings., CEUR-WS.org
(2014) 11–20

44. Kephart, J.O., Chess, D.: The Vision of Autonomic Computing. Computer 36(1)
(2003) 41–50

45. Giese, H., Lambers, L., Becker, B., Hildebrandt, S., Neumann, S., Vogel, T.,
Wätzoldt, S.: Graph Transformations for MDE, Adaptation, and Models at Run-
time. In Bernardo, M., Cortellessa, V., Pierantonio, A., eds.: Formal Methods for
Model-Driven Engineering. Volume 7320 of Lecture Notes in Computer Science
(LNCS). Springer (2012) 137–191

46. Klein, F., Giese, H.: Joint Structural and Temporal Property Specification using
Timed Story Sequence Diagrams. In Dwyer, M.B., Lopes, A., eds.: Fundamental
Approaches to Software Engineering. Volume 4422 of Lecture Notes in Computer
Science (LNCS)., Springer (2007) 185–199

47. Becker, B.: Architectural modelling and verification of open service-oriented sys-
tems of systems. PhD thesis, Hasso-Plattner-Institut für Softwaresystemtechnik,
Universität Potsdam (2014)

48. Giese, H., Burmester, S., Klein, F., Schilling, D., Tichy, M.: Multi-Agent System
Design for Safety-Critical Self-Optimizing Mechatronic Systems with UML. In
Henderson-Sellers, B., Debenham, J., eds.: OOPSLA 2003 - Second International
Workshop on Agent-Oriented Methodologies, Anaheim, CA, USA, Center for Ob-
ject Technology Applications and Research (COTAR), University of Technology,
Sydney, Australia (2003) 21–32

49. Becker, B., Giese, H.: Modeling of Correct Self-Adaptive Systems: A Graph Trans-
formation System Based Approach. In: Proceedings of the 5th International Con-
ference on Soft Computing As Transdisciplinary Science and Technology. CSTST
’08, ACM (2008) 508–516

50. Giese, H., Hildebrandt, S., Lambers, L.: Bridging the gap between formal semantics
and implementation of triple graph grammars. Software and Systems Modeling
13(1) (2014) 273–299

51. Becker, B., Giese, H.: On Safe Service-Oriented Real-Time Coordination for Au-
tonomous Vehicles. In: Proc. of the 11th IEEE International Symposium on Object
Oriented Real-Time Distributed Computing (ISORC), IEEE Computer Society
Press (2008) 203–210

52. Krause, C., Giese, H.: Probabilistic Graph Transformation Systems. In Ehrig,
H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Proceedings of Intl. Conf. on
Graph Transformation (ICGT’ 12). Volume 7562 of Lecture Notes in Computer
Science (LNCS)., Springer (2012) 311–325

53. Becker, B., Giese, H.: Cyber-Physical Systems with Dynamic Structure: Towards
Modeling and Verification of Inductive Invariants. Technical Report 64, Hasso
Plattner Institute at the University of Potsdam, Germany (2012)

54. Giese, H., Becker, B.: Modeling and Verifying Dynamic Evolving Service-Oriented
Architectures. Technical Report 75, Hasso Plattner Institute at the University of
Potsdam, Germany (2013)

55. Conant, R.C., Ashby, W.R.: Every good regulator of a system must be a model of
that system. Intl. J. Systems Science 1(2) (1970) 89–97

56. Simon, H.A.: The Sciences of the Artificial. 3 edn. The MIT Press (1996)
57. Meyer, B.: 30. In: Concurrency, distribution, client-server and the Internet. 2 edn.

Prentice Hall (1997) 951–1036



58. Minsky, N.H., Ungureanu, V.: Law-governed interaction: a coordination and con-
trol mechanism for heterogeneous distributed systems. ACM Transactions on Soft-
ware Engineering and Methodology (TOSEM) 9(3) (2000) 273–305

59. Vogel, T., Giese, H.: On Unifying Development Models and Runtime Models. In:
Proceedings of the 9th International Workshop on Models@run.time. Volume 1270
of CEUR Workshop Proceedings., CEUR-WS.org (2014) 5–10


	Towards Smart Systems of Systems

