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Abstract. The model-driven engineering community has developed ex-
pressive model transformation techniques based on metamodels, which
ease the specification of translations between different model types. Thus,
it is attractive to also apply these techniques for autonomic and self-
adaptive systems at run-time to enable a comprehensive monitoring of
their architectures while reducing development efforts. This requires spe-
cial solutions for model transformation techniques as they are applied
at run-time instead of their traditional usage at development time. In
this paper we present an approach to ease the development of architec-
tural monitoring based on incremental model synchronization with triple
graph grammars. We show that the provided incremental synchroniza-
tion between a running system and models for different self-management
capabilities provides a significantly better compromise between perfor-
mance and development costs than manually developed solutions.

1 Introduction

The complexity of today’s software systems impedes the administration of these
systems by humans. The vision of self-adaptive software [1] and Autonomic Com-
puting [2] addresses this problem by considering systems that manage themselves
given high-level goals from humans. The typical self-management capabilities
self-configuration, self-healing, self-optimization or self-protection [2] can greatly
benefit when in addition to some configuration parameters also the architecture
of a managed software system can be observed [3].

Each of these capabilities requires its own abstract view on a managed soft-
ware system that reflects the run-time state of the system regarding its archi-
tecture and parameters in the context of the concern being addressed by the
corresponding capability, e.g. performance in the case of self-optimization. Mon-
itoring an architecture of a running system in addition to its parameters requires
an efficient run-time solution to be applicable online and it results in a consid-
erable increase in complexity. The complexity further increases, as a view has
to be usually decoupled from a running system for system analysis. Otherwise,
changes that occurred during an analysis might invalidate the analysis results,
as the analysis was not performed on a consistent view. Due to the complexity,
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the efforts for developing monitoring approaches should be reduced. Moreover,
different views on a running system have to be provided efficiently at run-time.

In this context, Model-Driven Engineering (MDE) techniques can in principle
help. MDE provides expressive model transformation techniques based on meta-
models which ease the specification of translations between different model types.
As argued in [], these techniques could be used for run-time models and thus
also ease the development of architectural monitoring. Applying such techniques
at run-time is promising for monitoring activities, as run-time models can pro-
vide appropriate abstractions of a running system from different problem space
perspectives [5]. Thus, a run-time model can target a certain self-management
capability and the corresponding concerns.

In this paper we propose a model-driven approach that enables a comprehen-
sive monitoring of a running system by using metamodels and model transfor-
mation techniques as sketched in [6], where there was no room for a detailed
discussion of the approach. Different views on a system regarding different self-
management capabilities are provided through run-time models that are derived
and maintained by our model transformation engine automatically. These models
can be independent from the platform of a monitored system, which supports the
reusability of analysis algorithms working on these models. The engine employs
our optimized model transformation technique [7I8] that permits incremental
processing and therefore can operate efficiently and online. Furthermore, the
approach eases the development efforts for monitoring. For evaluation, the im-
plementation of our approach considers performance monitoring, checking archi-
tectural constraints and failure monitoring that are relevant for self-optimization,
self-configuration, and self-healing capabilities, respectively.

The paper is structured as follows: The proposed approach is presented in
Section [2] and its application in Section [3| The benefits of the approach are
evaluated with respect to development costs and performance in Section[d After
discussing related work in Section [ the paper concludes with a discussion on
research challenges and future work.

2 Approach

To monitor the architecture and parameters of a running software system, our
approach employs Model-Driven Engineering (MDE) techniques, which handle
the monitoring and analysis of a system at the higher level of models rather
than at the level of Application Programming Interfaces (APIs). Using MDE
techniques, different models describing certain concerns or certain views on a
running system required for different self-management capabilities are derived
and maintained at run-time. Thus, models of a managed system and of its archi-
tecture essentially build the interface for monitoring the system. In the following,
we present the generic architecture and the implementation of our approach.

2.1 Generic Architecture

The generic architecture of our monitoring approach is derived from [6] and de-
picted in Figure[I[] A Managed System provides Sensors that are used to observe
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Fig. 1. Generic Architecture (cf. [6])

the system, but that are usually at the abstraction level of APIs. These sensors
can be used by any kind of Managing Systems for monitoring activities. Man-
aging systems can be administration tools used by humans or even autonomic
managers in case of a control loop architecture as proposed, among others, in [2].

Since it is difficult to obtain an architectural view on a managed system by
using sensors at such a low level of abstraction, our approach provides a run-time
model of the system in the form of a Source Model. This model enables a model-
based access to sensors and it is maintained and updated at run-time if changes
occur in the managed system. Though having a model-based view on a managed
system, a source model represents all functionalities of the sensors and, therefore,
it is usually related to the solution space of a managed system. Consequently, a
source model might be quite complex and specific to the platform of a managed
system, which makes it laborious to use it as a basis for monitoring and analysis
activities by managing systems.

As the source model is defined by a Metamodel, it can be accessed by model
transformation techniques. Using such techniques, we propose to derive several
Target Models from the source model at run-time. Each target model raises the
level of abstraction with respect to the source model and it provides a specific
view on a managed system required for a certain self-management capability
and the corresponding concern. Thus, in contrast to a source model that usually
relates to the solution space of a managed system, target models tend to provide
views related to problem spaces of different self-management capabilities and to
abstract from the underlying platform of a managed system. This supports the
reusability of managing systems that focus on problem spaces shared by different
managed systems. For example, a target model might represent the security con-
ditions or the resource utilization and performance state of a managed system to
address self-protection or self-optimization, respectively. Moreover, a managing
system being concerned with self-optimization will use only those target models
that are relevant for optimizing a managed system, but does not have to consider
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concerns or views that are covered by other capabilities such as self-protection.
This also reduces the complexity for managing systems in coping with run-time
models, though different target models may provide overlapping views. Conse-
quently, several managing systems work concurrently on possibly different target
models, as depicted in Figure

The different target models are maintained by our Model Transformation En-
gine, which is based on Triple Graph Grammars (TGGs) [1I8]. TGG Rules spec-
ify declaratively at the level of metamodels how two models, a source and a target
model of the corresponding metamodels, can be transformed and synchronized
with each other. Thus, source and target models have to conform to user-defined
metamodels (cf. Figure. A TGG combines three conventional graph grammars:
one grammar describes a source model, the second one describes a target model
and a third grammar describes a correspondence model. A correspondence model
explicitly stores the correspondence relationships between corresponding source
and target model elements. Concrete examples of TGG rules are presented in
Section [3] together with the application of our approach.

To detect model modifications efficiently, the transformation engine relies on
a notification mechanism that reports when a source model element has been
changed. To synchronize the changes of a source model to a target model, the
engine first checks if the model elements are still consistent by navigating effi-
ciently between both models using the correspondence model. If this is not the
case, the engine reestablishes consistency by synchronizing attribute values and
adjusting links. If this fails, the inconsistent target model elements are deleted
and replaced by new ones that are consistent to the source model. Thus, our
model transformation technique synchronizes a source and a target model in-
crementally and therefore efficiently with respect to execution time as it avoids
any recurring transformations from scratch. This enables the application of our
technique at run-time. Therefore, for each target metamodel, TGG rules have to
be defined that specify the synchronization between the source model and the
corresponding target model. Based on declarative TGG rules, operational rules
in the form of source code are generated automatically, which actually perform
the synchronization.

Thus, our transformation engine reflects changes of the source model in the
target models, which supports the monitoring of a managed system. Therefore,
relevant information is collected from sensors to enable an analysis of the struc-
ture and the behavior of a managed system. As sensors might work in a pull-
or push-oriented manner, updates for a source model are triggered periodically
or by events emitted by sensors, respectively. In both cases it is advantageous if
the propagation of changes to target models could be restricted to a minimum.
Therefore, our model transformation engine only reacts to change notifications
dispatched by a source model and it does not process unchanged model ele-
ments. The notifications contain all relevant information to identify and locate
the changes in the source model and to adjust the target models appropriately.

Though the model transformation engine is notified immediately about mod-
ifications in the source model, there is no need for the engine to react right away
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by synchronizing the source model with the target models. The engine has the
capability to buffer notifications until synchronization is triggered externally.
Hence, the engine is able to synchronize two models that differ in more than one
change and it facilitates a decoupling of target models from the source model,
which enables the analysis of a consistent view based on target models.

Finally, our model-driven approach can be easily extended with additional
target models. As target models can be platform-independent, the kinds of target
models that are used in our approach are rather defined by managing systems
than by our transformation engine or the underlying infrastructure. For example,
to integrate an existing managing system or an analysis algorithm that uses a
certain target model, only the corresponding target metamodel and TGG rules,
which specify the synchronization of the source model with the corresponding
target model, have to be provided. Thus, our approach fosters the reusability
of managing systems or of analysis algorithms instead of having to re-engineer
them to fit into our approach.

2.2 Implementation

The implementation is based on the autonomic computing infrastructure mKer-
nel [9], which enables the management of software systems being realized with
Enterprise Java Beans 3.0 (EJB) [10] technology for the GlassFish 1)2E| ap-
plication server. For run-time management, mKernel provides sensors and ef-
fectors as an API. However, this API is not compliant to the Eclipse Modeling
Framework (EMF)El, which is the basis for our model transformation techniques.
Therefore, we developed an EMF compliant metamodel for the EJB domain that
captures the capabilities of the API. This metamodel defines the source model in
our example. A simplified version of it is depicted in Figure |2 and it is described
in detail in the following section. Though our techniques are based on EMF, the
whole infrastructure can run decoupled from the Eclipse workbench.

To synchronize a running managed system with our source model, an event-
driven EMF Adapter has been realized. It modifies the source model incrementally
by processing events being emitted by sensors if parameters or the structure of a
system have changed. Additionally, the adapter covers on demand the monitor-
ing of frequently occurring behavioral aspects, like concrete interactions within a
managed system, by using pull-oriented sensors that avoid the profusion of events.

3 Application

This section describes the application of our model-driven monitoring approach.
The metamodel for the EJB domain that specifies the source model is depicted
in a simplified version in Figure

The metamodel is conceptually divided into three levels. The top level con-
siders the types of constituting elements of EJB-based systems, which are the

! https://glassfish.dev.java.net/ (Nov 4, 2009)
2 http://www.eclipse.org/modeling/emf/ (Nov 4, 2009)
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Fig. 2. Simplified Source Metamodel

results of system development. The middle level covers concrete configurations
of EJB-based systems being deployed in a server. Finally, the lower level ad-
dresses concrete instances of enterprise beans and interactions by means of calls
among them. The metamodel depicted in Figure [2] is simplified as it does not
show, among others, attributes, enumerations, and several associations to navi-
gate between the levels. For brevity, we refer to [9I0] to get details on the EJB
component model and on the three levels.

Based on this metamodel, a source model provides a comprehensive view
on EJB-based systems, which however might be too complex for performing
analyses regarding architectural constraints, performance and failure states of
managed systems. Therefore, for each of these concerns, we developed a meta-
model specifying a corresponding target model and the TGG rules defining the
synchronization of the source model with the target model. Thus, our model
transformation engine synchronizes the source model with three target models
at higher level of abstractions aiming at run-time monitoring and analysis of
architectural constraints, performance and failure states.

3.1 Architectural Constraints

Analyzing architectural constraints requires the monitoring of the architecture
of a running system. Therefore, we developed a metamodel that is depicted in
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Figure [3] and whose instances reflect simplified run-time architectures of EJB-
based systems. It abstracts from the source metamodel by providing a black box
view on EJB modules through hiding enterprise beans being contained in mod-
ules, since modules and not single enterprise beans are the unit of deployment.
Moreover, it abstracts from concrete bean instances and calls among them.

To analyze architectural constraints, the Object Constraint Language (OCL)
and checkers like EMF OCIE] are used to define and check constraints that are
attached to metamodel elements, as illustrated in Figure[3] The constraint states
that at most one instance SimEjbModule of a particular SimEjbModule Type with
a certain value for attribute name exists. In other words, at most one module of
the module type named Foo can be deployed.
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Fig. 3. Simplified Architectural Metamodel Fig. 4. Performance Metamodel

3.2 Performance Monitoring

Like the architectural target metamodel, the metamodel for target models being
used to monitor the performance state of EJB-based systems also abstracts from
the source metamodel. Moreover, it is independent from the EJB platform as it
provides a view based on generic components and connectors. Figure [4| shows
the corresponding metamodel.

The metamodel represents session beans as Components and connections
among beans as Connectors among components. For both entities, information
about the instance situation is derived from the source model and stored in their
attributes. For each component, the number of currently running instances, the
maximum number of instances that have run concurrently, or the number of
instances that have been created entirely are represented by the attributes run-
ninglInstances, runninglInstancesMax and instanceCount, respectively. For each
connector, the number of invocations, the maximum and minimum execution
time of all invocations and the sum of execution time of all invocations along the

3 http://www.eclipse.org/modeling/mdt/?project=ocl (Nov 4, 2009)
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connector are reflected by the attributes invocationCount, maxTime, minTime
and totalTime, respectively. The average execution time of an invocation along a
connector can be obtained by dividing totalTime with invocationCount. Finally,
a component provides operations to retrieve aggregated performance information
about all connectors provided by the component (inConnectors), and a Server
provides aggregated information about its hosted components. Overall, a model-
based view is provided on the performance states of enterprise beans, which is
comparable to parts of the Performance Data Framework defined by the Java 2
Platform, Enterprise Edition Management Specification [11].

Based on the structure and attributes of the performance target model, an
analysis might detect which components are bottlenecks and which are only
blocked by others. Such information might be used to decide about relocating
components, whose instances cause heavy loads, to other servers or improving
the resource configuration.

The four TGG rules that are required to synchronize the source model with
the performance target model are depicted in a simplified version in Figure[5] For
all of them, nodes on the left refer to the source model, nodes on the right to the

++ ++
++ ++
containerEjb : Container [« : CorrContainet - server : Server
containerEjb : Container & _ CorrContainer P server : Server
nodule - EibModule r ++
1] y ++ ++
- - ++ C
sessionBean : SessionBean [« : CorrComponen component : Component
uid : string uid : string = sessionBean .uid
T instanceCount : int = sessionBean.instances->size ()
sessionBean : SessionBean [« : CorrComponent P component : Component
++ ++
A i y ++ - Y ++
ejbinterface : Ejbinterface [« : CorrConnector| connector : Connector

sessionBean : SessionBean «————— _: CorrComponent—————— | component : Component

+ ++ * o 4 ++

reference : EjpReference [« : CorrReference] ++

| connector : Connector

v A ++ X

ejblnterface : Ejbinterface [« : CorrConnector

component? : Component

Fig. 5. Simplified TGG rules for performance target model
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target model, and nodes in the middle constitute the correspondence model. The
elements that are drawn black describe the application context of the rule, i.e.,
these elements must already exist in the models before the rule can be applied.
The elements that are not drawn black and marked with ++ are created by
applying the rule.

The first rule in Figure [§] is the axiom that creates the first target model
element Server for a Container in the source model. The correspondence between
both is maintained by a CorrContainer that is created and that is part of the
correspondence model.

Based on the second rule, for each SessionBean of an EjbModule associated to
a Container that is created in the source model, a Component is created in the
target model and associated to the corresponding Server. Likewise to a CorrCon-
tainer, the CorrComponent maintains the mapping between the SessionBean
and the Component. As an example, this rule shows how element attributes are
synchronized. The value for the attribute uid of a Component is derived directly
from the attribute uid of a SessionBean, while instanceCount is the number of
SessionBeanlInstance elements the SessionBean is connected to via the instances
link (cf. Figure . Moreover, for more complex cases, helper methods operating
on the source model can be used to derive values for attributes of target model
elements.

The third rule is similar to the second one. It maps an EjbInterface provided
by a SessionBean to a Connector for the corresponding Component. The Corr-
Connector maintains the relation between the EjbInterface and the Connector.

The last rule creates a link between a Component and a Connector if an
EjbReference of the corresponding SessionBean is associated to the EjbInterface
that corresponds to the Connector. Comparable rules have been created for all
target models, which are not described here for brevity.

3.3 Failure Monitoring

The last target model is intended for monitoring failures within managed sys-
tems. The corresponding metamodel is shown in a simplified version in Figure [6]

| B Container | 1..*[ H Interface |1 B Method
1..*
1 1
01! 0!
| QConnector| | B Exceptioninstance |
0..1
0.. 0..%
5 Receptacle | | 5 StackTraceElem |

Fig. 6. Simplified Failure Metamodel

It defines a platform-independent architectural view on a managed system
that is enriched with information about occurred failures. Components represent-
ing session beans are running in a Container. They can be configured through
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Properties that correspond to simple environment entries, which are configu-
ration parameters for enterprise beans. A component provides Interfaces and
potential requirements of functionality from other components are represented
by Receptacles. Receptacles can be connected to interfaces via Connectors. An
interface specifies at least one Method whose usage at run-time might result in
occurrences of exceptions (EzceptionInstance). Finally, each exception instance
usually contains a stack trace (StackTraceElem).

Thus, the failure model provides a basic view on the architecture and con-
figuration of an EJB-based system that can be related to exceptions that have
occurred. If a certain method of an interface throws many exceptions, it can be
analyzed whether the configuration of the component providing the correspond-
ing interface is faulty because some property values of the component are not set
appropriately, the implementation of the component is faulty, or other compo-
nents using the corresponding interface are not using the interface appropriately.

4 Evaluation

In this section we evaluate our approach in comparison with two other feasible
solutions that might provide multiple target models for monitoring.

1. Model-Driven Approach: The approach presented in this paper.

2. Non-Incremental Adapter (NIA): For each target model, this approach
retrieves the current run-time state of a managed system, i.e. a system snap-
shot, by extracting required structural and behavioral information directly
from sensors in a pull-oriented manner. Then, the different target models
are created from scratch.

3. Incremental Adapter (IA): In contrast to the Non-Incremental Adapter,
for each target model, this approach uses event-based sensors, which inform
a managing system about changes in a managed system in a push-oriented
manner. These events are processed and reflected incrementally in different
target models.

In the following, our approach is evaluated, discussed and compared to these
alternative approaches by means of development costs and performance.

4.1 Development Costs

Having implemented our approach and the NIA, we are able to give concrete
values indicating development costs, which are depicted in Table |1} Using our

Table 1. TGG Rules and Lines of Code (LOC)

Model-Driven Approach/NIA

Target Model Rules|Nodes/Rules| LOC |LOC
Simpl. Architectural Model| 9 7,44 15259 | 357
Performance Model 4 6,25 5979 | 253
Failure Model 7 7,14 12133 | 292

\ Sum [ 20 ] [ 33371 [902]




134 T. Vogel et al.

Table 2. Performance measurement [ms]

NIA Model-Driven Approach
S B |n=0n=1|n=2|n=3|n=4|n=5| B
5 | 8037 | 20967 163|361 523|749 | 891 (10733
10 | 9663 | 43054 152|272 (457 | 585 | 790 {23270
15 |10811| 72984 1571308 (472|643 | 848 [36488
20 |12257|105671 170|325 | 481 | 623 | 820 |55491
25 [15311|142778 178 339|523 | 708 | 850 | 72531

Size

o|lo|o|o|olll

approach, we had to specify 20 TGG rules to define the transformation and
synchronization between the source and all three target models described in
Section [3| On average, each rule has about six to seven nodes, which constitutes
quite small diagrams for each rule. However, based on all rules, an additional
33371 lines of code including code documentation have been generated automat-
ically. Manually written code in the size of 2685 lines was only required for the
EMF Adapter (cf. Section , that however does not depend on any target
metamodel and therefore is generic and reusable.

Consequently, specifying an acceptable number of TGG rules declaratively
seems to be less expensive and less error-prone than writing an imperative pro-
gram that realizes an incremental model synchronization mechanism (cf. about
30k lines of code the IA might potentially require). In contrast, the NIA required
only 902 lines of code, which seems to be of the same complexity as the 20 TGG
rules regarding the effort for development.

Moreover, our approach using model transformation techniques is easier to
extend or to adapt for the case that new target models have to be integrated or
metamodels of already used target models have changed, respectively. It requires
only the provision of the new or changed metamodels and the creation or update
of appropriate TGG rules, which is done in a declarative manner. Afterwards,
code corresponding to the rules is generated automatically.

In contrast and under the assumption that the other two approaches do not ap-
ply MDE techniques, especially code generation, these approaches require code-
based re-engineering, i.e., usually altering imperative code. This can be expected
to be more time consuming and error-prone than our approach, when having the
different characteristics of the approaches regarding development costs in mind
and when comparing declarative and imperative approaches.

4.2 Performance

Finally, the approaches are discussed with respect to run-time performance. The
results of some execution time measurements<d are shown in Table 2l The first
column Size corresponds to the number of beans that are deployed in a server to
obtain different sizes for source and target models. Approximately in the same
ratio as the number of deployed beans increases, the number of events emitted
by mKernel sensors due to structural changes, the number of bean instances,

4 Configuration: Intel Core 2 Duo 3GHz, 3GB RAM, Linux Kernel 2.6.27.11.
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and the calls among bean instances increase. mKernel sensors allow to monitor
structural (S) and behavioral (B) aspects. Behavioral aspects, i.e., concrete calls,
can only be monitored in a pull-oriented manner, while structural aspects can
additionally be obtained through a push-oriented event mechanism. Changes can
range from the modification of a single attribute value to several model elements
if an EJB module together with the included beans, interfaces, references and
simple environment entries is added or removed from the system.

The NIA uses only pull-oriented sensors to retrieve all required information to
create the three target models separately, from scratch and periodically. For this
approach, the second and third columns show the consumed time in milliseconds
(ms) to retrieve a system snapshot from sensors and to create the three target
models. For example, having deployed ten beans, it took 9663 ms to obtain and
reflect the structural aspects in the target models, while the behavioral aspects
required 43054 ms. Overall, the sum of both (52717 ms) has been consumed.

For our Model-Driven Approach, structural aspects are obtained through
events and behavioral aspects through pull-oriented sensors. For the structural
monitoring, the fourth to ninth columns show the composite average times of
two subsequent activities:

1. FEvent Processing: n events, that are emitted by sensors to notify about n
structural changes of the managed system, are processed by reflecting these
changes in the source model. Regarding structural aspects, this activity keeps
the source model up-to-date and it is performed by the EMF Adapter (cf.
Section [2.2]).

2. Model Synchronization: This activity synchronizes changes of the source
model, which are the result of processing n events, to the three target models
incrementally by invoking once the model transformation engine.

For example, for n = 2 and having deployed ten beans, 272 ms are consumed on
average for processing two events, which includes updates of the source model
depending on these two events, and for synchronizing at once the corresponding
changes in the source model to the three target models on average.

Additionally, we decomposed the average times to find out the ratio of event
processing times and model synchronization times. On average over all model
sizes, 7.2%, 5.9%, 4.4%, 4.8% and 3.7% of the average times are used for model
synchronization for the cases of n from one to five, respectively. Consequently,
most of the time is spent on event processing, while our model transformation
engine performs very efficiently.

The last column of Table [2|shows the average times for retrieving one system
snapshot of behavioral aspects, i.e., observed interactions among bean instances,
through pull-oriented sensors, for reflecting this snapshot in the source model,
and finally for synchronizing the updated source model to the three target mod-
els by invoking once the transformation engine. The third and last columns of
Table[2]indicate that for both approaches the behavioral monitoring is expensive.
This is a general problem, when complete system behavior should be observed.

However, comparing both approaches regarding behavioral monitoring, our
approach outperforms the NITA. Using our approach, the sensors are only accessed
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once to obtain the required interaction information, which are then reflected in
the source model. In contrast, the NIA accesses sensors twice to get interaction
information, namely to create the failure target model and the performance tar-
get model. Both target models require interaction information, to obtain thrown
exceptions or execution times of calls among bean instances, respectively.

Regarding structural monitoring, our approach clearly outperforms the NIA
as it works incrementally, while the NIA does not.

Moreover, a manual A would not be able to outperform our approach, be-
cause, as described above, event processing activities are much more expensive
than model synchronization activities and a manual IA would have three event
listeners, one for each target model, in contrast to the one listener our approach
requires for the source model.

To conclude, our approach outperforms the considered alternative approaches
when development costs and performance are taken into account.

5 Related Work

The need to interpret monitored data in terms of the system’s architecture to
enable a high-level understanding of the system was recognized by [12], who use
a system representation based on an architecture description language, but no
advanced model-driven techniques like model synchronization.

Model-driven approaches considering run-time models, in contrast to ours, do
not work incrementally to maintain those models or they provide only one view
on a managed system. In [I3] a model is created from scratch out of a system
snapshot and it is only used to check constraints expressed in OCL. The run-time
model in [I4] is updated incrementally. However, it is based on XML descriptors
and it provides a view focused on the configuration and deployment of a system,
but no other information, e.g., regarding performance. The same holds for [15]
whose run-time model is updated incrementally, but reflects also only a structural
view. However, they use model weaving techniques to transform models specified
by the same metamodel to obtain new structures for a managed system [16].

All these approaches do not apply advanced MDE techniques like model trans-
formation [I3/14] or they do not consider the transformation of models specified
by different metamodels [I5/T6]. In this context, initial preliminary ideas exist,
like [I7], who apply a QVT-based [18] approach to transform models at run-time.
They use Medz'm'QV as a partial implementation of QVT, which performs
only offline synchronizations, i.e., models have to be read from files, and there-
fore leads to a performance loss. Moreover, it seems that their source model is
not maintained at run-time, but always created on demand from scratch, which
would involve non-incremental model transformations.

Regarding the performance of different model transformation techniques, we
have shown that our TGG-based transformation engine is competitive to ATL-
[19] or QVT-based ones when transforming class and block diagrams. Moreover,
for the case of synchronization, our engine outperforms the other engines [20].

® http://www.ikv.de/ (Nov 4, 2009)
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Though the approach presented here uses different models, metamodels and
therefore different transformation rules, similar results can be expected for the
case study used in this paper.

6 Conclusion, Discussion and Future Work

This paper presented our approach for the model-driven monitoring of software
systems. It enables the efficient monitoring by using models based on metamodels
and model synchronization techniques at run-time. The incremental synchroniza-
tion between a run-time system and problem space oriented models for different
concerns can be triggered when needed and multiple managing systems can op-
erate concurrently. As target models can be platform-independent, our approach
leverages the reusability of managing systems across different managed systems.
The presented solution using TGGs outperforms feasible alternatives considering
development costs and performance.

Since TGGs have the capability of bidirectional model synchronization, ba-
sically and as sketched in [6], this technique can also be used for adapting a
managed system. Instead of performing architectural adaptations directly by
changing the source model, we propose that changes are applied to target mod-
els and synchronized to the source model. However, several research challenges
emerge in this context, which are discussed in the following.

Adapting the architecture of a managed system is complex, as a set of atomic
changes might have to be performed. The order of changes performed on a target
model might differ from the order of performing corresponding changes to the
source model and therefore to the managed system. Not suitable orders might
affect the consistency of a system. Moreover, in some cases the abstraction step
between a source and a target model is too large. As a consequence, the relation
between source and target models is only partial and need not to be injective.
Therefore synchronizing target model changes to the source model requires addi-
tional information such as default values that depend on the concrete application.
The same problem is discussed for round-trip engineering in [21] that emphasizes
the difficulties of bidirectional model synchronization.

Even worse, when using multiple target models representing different concerns
of a managed system, adaptations are more challenging, since changes can be
applied concurrently to different target models. Conflicting changes can lead to
an inconsistent source model and managed system. Consequently, coordination
among managing systems is required, which can be done by restricting adap-
tations to one target model and controlling access to this model. However, we
believe that adaptations can be specific for a certain concern and therefore for
a certain target model. Thus, restricting adaptation to exactly one target model
would not be appropriate, and a more generic solution addressing relationships,
like dependencies, interactions, or trade-offs between different target models, re-
spectively their concerns, would be required. Such relationships could be used,
among others, to coordinate changes and to validate changes of one target model
by analyzing the impact of this change to other target models.
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As future work, we are currently investigating the usage of model synchro-
nization techniques for architectural adaptations using one target model and
then, to enable adaptations using multiple target models. Moreover, extending
our approach to a distributed setting is considered.
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