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Abstract. Software evolution and the resulting need to continuously
adapt the software is one of the main challenges for software engineering.
The model-driven development movement therefore aims at improving
the longevity of software by keeping the development artifacts more con-
sistent and better changeable by employing models and to a certain de-
gree automated model operations. Another trend are systems that tackle
the challenge at runtime by being able to adapt their structure and be-
havior to be more flexible and operate in more dynamic environments
(e.g., context-aware software, autonomic computing, self-adaptive soft-
ware). Finally, models at runtime, where the benefits of model-driven
development are employed at runtime to support adaptation capabili-
ties, today lead towards a unification of both ideas.
In this paper, we present graph transformations and show that they can
be employed to engineer solutions for all three outlined cases. Further-
more, we will even be able to demonstrate that graph transformation
based technology has the potential to also unify all three cases in a sin-
gle scenario where models at runtime and runtime adaptation is linked
with classical MDE. Therefore, we at first provide an introduction in
graph transformations, then present the related techniques of Story Pat-
tern and Triple Graph Grammars, and demonstrate how with the help
of both techniques model transformations, adaptation behavior and run-
time model framework work. In addition, we show that due to the formal
underpinning analysis becomes possible and report about a number of
successful examples.

1 Introduction

Software code does in principle not decay as hardware does and thus, it could be
employed forever when the underlying hardware is timely replaced on a regular
basis. However, Lehman [1,2] observed and documented in his laws of software
evolution that unless continuously being adapted, the typical software becomes
less and less useful over time. Parnas [3] referred to this phenomena as software
aging and identified two sources of the problem. (1) lack of movement when a
software is not changed according to changing needs and (2) ignorant surgery
which is caused by improper changes that are made to the software. Therefore,
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a steady deterioration of the value and quality of the software can be observed
unless special action is taken and nowadays software is continuously adapted,
which is referred to as software evolution [4].

Today, the majority of the costs for software are resulting from adaptation
steps1 that happen after the software has been first shipped. In the related
maintenance [5] effort, versions of the shipped software are adapted in a con-
struction environment in parallel to deploying the software in potentially many
runtime environments. In addition to standard maintenance activities, often-
times reengineering including reverse engineering [6] to recover necessary higher
level information and redesign to improve the inner structure of the software
(a popular approach for that is refactoring [7]) are employed to counteract the
aging. A today often highly automated distribution activity then transports the
adaptation developed and tested in the construction environment to the different
runtime environments.

In addition to the code, software systems today also include configuration
data and require a dedicated deployment capturing the mapping of the software
components on the available hardware and software platforms in the runtime en-
vironment. Here, an even stronger demand for continuous adaptation has been
observed. As the required adaptation steps have to be handled by the adminis-
trators of each individual runtime environment, it does not seem economically
feasible in the long run to realize all the required adaptation steps manually
and the autonomic computing initiative therefore advocates their automation
(cf. [8]).

Furthermore, for an increasingly important class of software holds that the
required adaptation steps have to happen for each runtime environment and ac-
cording to the individual context that is only known at runtime. Therefore, the
required adaptation steps have to be done in the runtime environment and can
only be at most pre-planned in the construction environment (cf. context-aware
computing [9]). In addition, today’s software has to operate in more dynamic
organizations and contexts and is often expected to be more versatile, flexible,
and resilient. Also it is often envisioned that the software is dependable, robust,
continuously available, energy-efficient, recoverable, customizable, self-healing,
configurable, or self-optimizing by adapting itself in response to changing re-
quirements and contexts. In all these cases, adaptation steps have to be sup-
ported for the runtime environment and have to be initiated by the software
itself.

Besides this trend towards context-aware and more versatile software, also
the integration of beforehand isolated software islands into extremely complex
systems-of-systems, so-called ultra-large scale systems [10], leads to a situation
where due to their size and complexity such systems are no longer managed
by a single central authority. Moreover, for such systems, the structure resp.
architecture is subject to changes at runtime and they have to be highly context-

1 We use adaptation here in the broad sense such that it also includes corrective
changes such as fixing faults and adding new or modifying existing features and not
only making changes in existing software to accommodate it to a changing platform.
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aware and to adjust themselves accordingly. Furthermore, the adaptation steps
that are necessary for such systems can hardly be developed in the construction
environment manually upfront but they have to be derived automatically at
runtime.

To address this need for support of adaptation steps in the runtime environ-
ment, several approaches where the software itself takes care of the adaptation
steps [11,12,13,14,15] have been proposed, which all can be united under the
term self-adaptive software [16,17,18]. In general, self-adaptive software can be
built by following the internal approach or the external approach [18]. The inter-
nal approach realizes self-adaptation capabilities by intertwining the adaptation
logic and the application logic at the level of programming languages. There-
fore, often programming languages features, like reflection [19], are employed.
In contrast, the external approach separates the adaptation logic from the ap-
plication logic by having a dedicated adaptation engine that controls the core
function within the application. Most approaches for software engineering of
self-adaptive systems today support the external approach (cf. survey [18]) and
operate with a separation at the architectural level with well-defined interfaces
between the adaptation engine and the core function. We refer to adaptation due
to development or maintenance activities as classical adaptation in the following
in order to clearly distinguish it form self-adaptation or in general adaptation.

As also emphasized in autonomic computing [8], not only the self-adaptation
steps within the software but the complete feedback loops determining such self-
adaptation steps in the form of monitor, analyze, plan and execute steps that
happen within the runtime environment have to be taken into account when
engineering self-adaptive software [20]. Studying the feedback is easier in case of
the external approach. However, oftentimes today the feedback loops are not very
visible in the architectures, but rather hidden (cf. [20]). Moreover, self-adaptive
software often supports more than a single feedback loop. As an example, the
reference architecture suggested in [21] distinguishes a component layer where
the core functionality resides, a change management layer on top of that which
manages the changes of the component layer, and a goal management layer that
is responsible for the long term self-adaptation. Each of the two upper layers
employs a feedback loop that steers the directly underlying layer.

Any solution that explicitly captures and analyzes the software and its con-
text at a certain level of abstraction has to use runtime representations of them
and thus uses runtime models. Otherwise, it can only consist of a simple case by
case treatment in form of adaptation rules that immediately react to observed
sensor inputs. While several approaches, like [22,23], employ runtime represen-
tations based on architecture description languages, a next step is to leverage
the benefits of MDE for such runtime representations by means of models at
runtime (M@RT) that are built on MDE principles as argued in [24].

Thus, we can conclude that in order to address the evolution challenge, a so-
lution is required that supports adaptation steps initiated both in the construc-
tion environment (classical adaptation) as well as in the runtime environment
(e.g., context-aware software, autonomic computing, self-adaptive software). As
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pointed out in [25] the clear boundary between both cases already starts to
disappear. Furthermore, as we pointed out already earlier in [26], a solution
is required where adaptation steps in the construction environment and in the
runtime environment happen in an integrated manner.

To address the adaptation challenge thus an approach is required that is able
to cover model-driven engineering (MDE) that supports adaptation steps in the
construction environment but also has to lay the foundation for later adaptation
steps in the runtime environment, modeling structural dynamics that is the
foundation for advanced adaptation steps in the runtime environment that goes
beyond parameter adaptation, and models at runtime that support advanced
adaptation steps in the runtime environment by providing a means to represent
and handle complex information about the context as well as the system itself
as a basis for adaptation decisions.

In this paper, we present graph transformations. We show that they can be
employed to engineer the required class of systems with adaptation in the con-
struction environment and runtime environment. We will be able to demonstrate
that graph transformation based technology has the potential to also cover all
three areas with a single formalism such that models at runtime and runtime
adaptation can be linked straight forward with classical MDE. Furthermore, we
show that due to the formal foundation of graph transformation sound analysis
techniques such as conflict detection, invariant checking, and model checking can
be applied.

In contrast to [27] introducing graph transformation from a more general
software engineering perspective and in contrast to [28] that emphasizes the
general benefits of graph transformations compared to other formalisms, we focus
in this paper on the particular needs when approaching evolution by supporting
MDE, modeling structural dynamics, and models at runtime.

Besides graph transformations, we will in particular present the related tech-
niques of Story Patterns and Triple Graph Grammars, and how with the help
of both model transformations, adaptation behavior and runtime model frame-
work work. In addition, we show that due to the formal underpinning analysis
becomes possible and report about a number of successful examples.

To exemplify the benefits of graph transformations for MDE and modeling
adaptation, we will use the following two running examples.

Example 1 (RailCab). RailCab is a research project at the University of Paderborn,
Germany addressing autonomously driving shuttles on regular railway tracks. The shut-
tles operate like cabs on request and not according to timetables. An important feature
is the creation of convoys where the shuttles are not mechanically coupled but drive only
with a short distance to each other. This reduces drag and thus permits to saves energy
(cf. [29]). Networking and software should further ensure the safe operation and high
system efficiency. A small test track has been setup to show the existing prototypes.2

Example 2 (SDL). The Specification and Description Language (SDL) [30] is a spec-
ification language targeted the specification and description of reactive and distributed
systems. We restrict our attention here to a simplified version for the block diagrams

2 http://nbp-www.upb.de
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of SDL covering mostly structure and communication. A system consists of a number
of blocks. Blocks communicate with each other using channels. A block further consists
of processes that are the carrier of behavior. The later in this context considered model
transformation is a simplified version of a transformation used in the industrial case
study on flexible production control systems [31] from SDL block diagrams to UML class
diagrams.

The paper explores how graph transformation fulfills the needs of engineer-
ing MDE solutions, engineering solutions with adaptation and even engineering
solutions that combine both in form of solutions that adapt with the help of
models at runtime as follows: At first we introduce graph transformation in
Section 2. This introduction intuitively defines how the different forms of graph
transformation such as graph transformation systems and graph grammars work
together with a definition of their semantics based on set theory. Then, we in-
troduce the concrete graph transformation based languages of Story Patterns,
Triple Graph Grammars and a Runtime Model Framework in Section 3. Besides
defining their syntax and semantics of the languages based on the beforehand in-
troduced graph transformations, this also includes detailed examples. However,
the introduced graph transformations are not only a means for specification and
execution. As outlined in Section 4, we can take benefit of available analysis
techniques. Finally, we discuss the state-of-the-art for MDE solutions, engineer-
ing solutions with adaptation and even engineering solutions that combine both
in form of solutions that adapt with the help of models and the benefits graph
transformation based techniques offer in Section 5. Afterwards, the paper closes
with some final conclusions.

2 Graph Transformations

There are plenty examples where annotated graphs are a natural representation
of the states of a system. Let us for instance consider the RailCab system of
Example 1.

Example 3 (RailCab - Topology). A core element of the RailCab system is its track
topology which resides in a 2-dimensional space but is most appropriately represented
as a graph that abstracts from the geometric details. Also the shuttles are distributed
over a 2-dimensional space, but what again matters is how their position is relative to
the track topology. When shuttle build convoys they build new structures which again
are best represented at an abstract level using graphs. Fig. 1 summarizes this analogy
between a complex RailCab system and graphs and graph transformation systems. As
depicted in Fig. 2 we can also further equip the graphs with attributes to store additional
information about the available energy in the batteries of the shuttles.

We will see in the following that this analogy does not only hold for the state,
but that also the behavior can accordingly be captured using graph transforma-
tions that describe which changes to the state represented as a graph will or can
happen.
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Fig. 1. A simple graph capturing a RailCab topol-
ogy and the distribution of the shuttles on a map
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Fig. 2. An attributed graph for
the RailCab topology and shuttles

Graphs, Type Graphs, and Graph Morphisms As outlined graphs can
be used to represent a particular state of a system in a formal way. Also the
abstract syntax of (visual) models can be captured by graphs. Thereby, graphs
occur at two levels: the type level and the instance level. A fixed type graph
TG serves as a representation of the combination of node types and edge types
that may occur in graphs at the instance level. In particular, instance graphs
of a type graph are equipped with a structure-preserving mapping (i.e. a graph
morphism) to the type graph. First, we introduce graphs and graph morphisms
with different useful properties in a formal way. Then, we introduce the notion
of typed graphs formally.

Definition 1 (graph and graph morphism). A graph G = (GV , GE , s, t)
consists of a set GV of vertices, a set GE of edges and two total mappings
s, t : GE → GV , assigning to each edge e ∈ GE a source s(e) ∈ GV and tar-
get t(e) ∈ GV . A graph morphism f : G1 → G2 between two graphs Gi =
(Gi,V , Gi,E , si, ti), (i = 1, 2) is a pair f = (fV : GV,1 → GV,2, fE : GE,1 → GE,2)
of total mappings, such that fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE.

Graph morphisms may satisfy different useful properties. A graph morphism
that does not map two nodes or two edges to the same node or edge, respectively,
satisfies the so-called injectivity property. A graph morphism defining a preimage
for each node and edge of the target graph satisfies the surjectivity property. Two
graph morphisms having the same target graph defining for each node and edge
of the target graph a preimage in at least one of both source graphs are called
jointly surjective. In this case, we also say that the target graph is an overlapping
of both source graphs. A graph morphism being both injective and surjective is
also called a graph isomorphism. It uniquely maps all nodes and edges of source
and target graphs to each other. Consequently, trivially speaking, isomorphic
graphs are copies of each other, whereas an injective graph morphism finds a
copy of the source graph somewhere in the target graph.
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Definition 2 (injective, (jointly) surjective morphisms, graph isomor-
phism). A graph morphism m : G1 → G2 is injective (resp. surjective) if mV

and mE are injective (resp. surjective) mappings. Two graph morphisms m1 :
L1 → G and m2 : L2 → G are jointly surjective if m1,V (L1,V ) ∪m2,V (L2,V ) =
GV and m1,E(L1,E)∪m2,E(L2,E) = GE. A pair of jointly surjective morphisms
(m1,m2) is also called an overlapping of L1 and L2. A graph morphism m which
is injective and surjective is called a graph isomorphism. Two graphs G1 and G2

are isomorphic if there exists a graph isomorphism m : G1 → G2.

Definition 3 (typed graph). A type graph is a distinguished graph TG =
(VTG, ETG, sTG, tTG). VTG and ETG are called the vertex and the edge type
alphabets, respectively. A tuple (G, type) of a graph G together with a graph
morphism type : G→ TG is a graph typed over TG or instance graph of TG.

Example 4 (RailCab - Typed Graph). Fig. 3 depicts a graph G typed over the type
graph TG via the typing morphism type : G→ TG. G consists of a set of nodes GV =
{s1, t1, t2, t3} and a set of edges GE = {o1, n1, n2}. The source and target mappings
sG and tG map these edges to the respective source and target nodes as depicted. For
example, sG(n1) = t1 and tG(n1) = t2. The typing morphism type : G → TG is
visualized using dashed arrows. Analogously, TG consists of a set of nodes TGV =
{Shuttle,Track} and a set of edges TGE = {on, next} where sTG and tTG map these
edges to the respective source and target nodes as depicted. In particular, type is a
graph morphism since it is structure-preserving. This means, for example, for edge o1
that sTG(typeE(o1)) = Shuttle = typeV (sG(o1)). Note that this typing morphism type
is surjective, since each node and edge in TG has a preimage in G. However type is
not injective, since, for example, the nodes t1, t2 and t3 are mapped to the same node
Track. Fig. 4 depicts a short-hand notation for a typed graph that we will use in the
rest of the paper. The typing morphism between graph and type graph is not explicitly
depicted anymore. Instead, each node and edge name is followed by ”:” and then the
type name of the node type or edge type, the typing morphism assigns the node or edge
to.

s1 Shuttle

t3t2t1
Track

on

next

o1

n1 n2

G TG

Fig. 3. Typed Graph

s1:Shuttle

t3:Trackt2:Trackt1:Track

o1:on

n1:next n2:next

G

Fig. 4. Typed Graph (shorthand notation)

Typed graph morphisms formalize the concept of structure-preserving map-
pings compatible with typing. Therefore, they are a formal means to ensure type
correctness later on when performing graph transformations.

Definition 4 (typed graph morphism). Consider typed graphs GT
1 = (G1, type1)

and GT
2 = (G2, type2), a typed graph morphism f : GT

1 → GT
2 is a graph mor-
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Example 5 (RailCab - Typed Graph Morphism). Fig. 5 depicts an injective typed
graph morphism f from (G1, type1) to (G2, type2). The pointed edges visualize f . Note
that the graph morphism f is indeed type-compatible because each node or edge of a
specific type is mapped to a node or edge of the same type, respectively. Fig. 6 depicts
an extract of the same morphism f and an extract of the typing morphisms type1 and
type2 illustrating more formally that according to Def. 4 type2 ◦ f = type1.

Assumption: For the rest of this paper we work with typed graphs and mor-
phisms, although not always explicitly mentioned. This means also that we de-
note a typed graph (G, type) also simply as G. Moreover, if the edge mapping of
graph morphisms is clear from the respective source and target node mappings,
then we do not always visualize them completely in the corresponding figures.

Graph Patterns and Graph Properties Graph patterns describe sample
graphs for which matches may exist for given instance graphs. We present a
simple pattern concept, which is used and supported in most of our graph trans-
formation tools. It consists of a graph P and a set of graphs Ni containing P
(with identical typing). We say that a match for this pattern in graph G exists
if a copy of P can be found in G, but at the same time no copy for any of the
graphs Ni can be found in G.

Definition 5 (graph pattern). A graph pattern Π = (P, {Ni, i ∈ I}) consists
of a graph P and a finite set of graphs Ni containing P as a subgraph. As short-
hand notation for the graph pattern (P, ∅) we simply write P .

Definition 6 (match). Given a graph pattern Π = (P, {Ni, i ∈ I}) and a graph
G, then each injective morphism m : P → G such that there does not exist an
injective morphism q : Ni → G with q being identical to m on P , is called a
match of the graph pattern Π in G.

To visualize Ni we use crossed out dashed boxes and edges. We draw a dashed
box around all nodes of Ni \ P . Also all edges which source and target nodes
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Fig. 7. Pattern Π matches G1
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Fig. 8. Pattern Π does not match G2

are in Ni \ P are contained in the box. All edges connecting P and N \ P are
not contained in the box and in addition crossed out. In the special case that Ni

equals a single edge, it is also only crossed out.

Example 6 (RailCab - Graph Pattern). Fig. 7 depicts the pattern Π = (P, {N}).
The graph P consists of the nodes s1, t1, t2 and edges o1, n1. The graph N consists of
P together with the crossed out node s2 and edge o2. There exists a match m for Π
in G1, since an injective graph morphism (visualized by pointed lines) exists between
P and G1 and no injective graph morphism exists between N and G1, since a second
node of type Shuttle is not available.

Fig. 8 depicts the same pattern Π = (P, {N}), but a different graph G2 such that
no match exists for Π in G2. There exists one injective graph morphism from P to G2,
but this graph morphism can be completed to an injective graph morphism from N to
G2, which is not allowed according to Def. 6.

We use graph patterns as basic constructs to define graph properties (also
called graph constraints or graph conditions [32,33]). As explained in [32] graph
properties may reach the expressiveness of first-order logic, which is not the case
here, since we have a more restricted property language.

Definition 7 (graph property, forbidden and required pattern). A graph
pattern Π = (P, {Ni, i ∈ I}) is a graph property, any combination of two graph
properties p and q of the form p ∧ q, p ∨ q , and ¬q is also a graph property.
We define satisfaction of graph properties p by a graph G (written G |= p),
recursively, as follows:

– If p = Π with Π = (P, {Ni, i ∈ I}) a graph pattern, then p is satisfied if
there exists a match for the graph pattern Π in G,

– if p = p1 ∧ p2, then p is satisfied if G |= p1 and G |= p2,
– if p = p1 ∨ p2, then p is satisfied if G |= p1 or G |= p2,
– if p = ¬p1, then p is satisfied if G 6|= p1.

Given a graph property p = Π = (P, {Ni, i ∈ I}) we say that Π occurs as a
required graph pattern. For a graph property p = ¬Π = ¬(P, {Ni, i ∈ I}) we
further say that Π occurs as a forbidden graph pattern.

Example 7 (RailCab - Graph Properties). Given the property p = Π = (P, {N})
with Π the pattern depicted in Fig. 7, then this pattern occurs as a required graph
pattern. G1 |= p since there exists a match for the required graph pattern Π in G. In
Fig. 8, a graph G2 is depicted which does not satisfy p since a match for the required
graph pattern Π does not exist.
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Given the property p′ = ¬Π, then Π occurs as a forbidden pattern and G1 6|= p′

since G1 |= p and G2 |= p′ since G2 6|= p. Consequently, G1 and G2 both satisfy p ∨ p′,
but not p ∧ p′.

Graph Transformation Rules We can model the modification of graphs by in-
troducing the graph transformation approach. It is a rule-based approach, mean-
ing that the way in which a graph can potentially be modified is described by a
set of graph transformation rules. By applying these rules to a particular graph,
this graph can be transformed. We present a compact, set-theoretical descrip-
tion of graph transformation here and refer to [34,35] for a more comprehensive
description with category-theoretical background.

We start with defining the notion of graph transformation rules. A rule r :
〈ΠLHS , ΠRHS〉 consists of a left-hand side (LHS) pattern ΠLHS describing the
pre-condition, and a right-hand side (RHS) pattern ΠRHS describing the post-
condition of the rule. In simple rules, the patterns ΠLHS and ΠRHS are just
graphs, L and R, denoting required patterns before and after rule application,
respectively. As a consequence, before applying the rule to a graph G, at least
L should be present in G, which is replaced by R via the rule’s application.
In particular, the graph part L \ (L ∩ R) is to be deleted, and the graph part
R\(L∩R) is to be created when applying the rule. Finally, L∩R describes which
part is to be preserved, when applying the rule. Note that the graph intersection
L ∩ R should form a well-defined typed graph again. To this extent the source
and target mappings in L and R must be identical on edges belonging to L ∩R
such that source and target mappings for L∩R can be inherited from L and R.
Moreover, the type mappings for L and R must be identical on nodes and edges
in L∩R such that the type mapping in L∩R can be inherited from L and R. The
LHS pattern of a rule ΠLHS can be also a pattern of the form (L, {Ni, i ∈ I})
instead of the simple pattern L. Thus the pattern (L, {Ni, i ∈ I}) instead of L is
required before rule application. In this context, we say that Ni are the negative
application conditions (NACs) of the rule r, since the rule can only be applied
if a copy of L, but no copies of Ni can be found before rule application.

Definition 8 (rule). A graph transformation rule r : 〈ΠLHS , ΠRHS〉 consists
of a rule name r and two patterns ΠLHS = (L, {Ni, i ∈ I}) and ΠRHS = R with
L and R graphs such that the intersection L∩R of L and R is well-defined. The
patterns ΠLHS and ΠRHS are called the left-hand side (LHS), and the right-
hand side (RHS) of r, respectively. We say that del(r) = L\ (L∩R) is the graph
part to be deleted and cre(r) = R \ (L∩R) is the graph part to be created by the
rule r.

There are two main different ways to define rule application of a rule r to a
graph G as soon as a match for the LHS pattern of r in G has been found. One of
both rule application approaches can be chosen to perform graph transformation
depending on if implicit side-effects are desired or not.

The first main approach accepts implicit side-effects such as the deletion of
dangling edges. It deletes dangling edges during rule application although this
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is not explicitly specified within the rule. This approach has been called the
single-pushout (SPO) approach for historical reasons. In particular, a rule ap-
plication (also called direct graph transformation or graph transformation step)
can be formalized in a categorical way by a so-called pushout – a categorical
concept generalizing the idea of graph gluing constructions – in the category of
graphs with partial graph morphisms [34]. Here we reintroduce this rule appli-
cation approach in a constructive, set-theoretical way and propose to call it the
dangling-edge-collecting approach.

The second main approach does not put up with implicit side-effects. It
simply does not apply a rule – even if a match has been found – if it is not
possible to apply the rule without the implicit side-effects that dangling edges
are removed. This is ensured by the fact that a match in this approach needs to
satisfy in addition the so-called dangling edge condition – expressing that nodes
marked for deletion by the rule are matched in such a way that all incident
edges are marked for deletion by the rule as well. Like this no dangling edges
arise during rule application. This more conservative approach to rule application
has been called the double-pushout (DPO) approach for historical reasons. In
particular, a rule application can be described formally in a categorical way by
a construction consisting of two pushouts in the category of graphs with total
graph morphisms [35].3 Here we reintroduce this rule application approach in a
constructive, set-theoretical way and propose to call it the conservative approach
since no implicit side-effect during rule application is allowed. 4

Definition 9 (dangling edges, dangling edge condition). Given a rule
r : 〈ΠLHS , ΠRHS〉 and match g : L→ G for the pattern ΠLHS = (L, {Ni, i ∈ I})
in G, then dan(g, r) = {e|e ∈ GE , s(e)∨t(e) ∈ g(del(r)), e /∈ g(del(r))} is the set
of dangling edges in G for match g and rule r. The match g fulfills the dangling
edge condition for rule r if dan(g, r) is empty.

Definition 10 (rule applicability). A rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS =
(L, {Ni, i ∈ I}) and ΠRHS = R is applicable to a graph G in the conservative
approach if there exists a match g : L → G for (L, {Ni, i ∈ I}) in G fulfilling
the dangling edge condition.

A rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Ni, i ∈ I}) and ΠRHS = R is
applicable to a graph G in the dangling-edge-collecting approach if there exists
a match g : L→ G for (L, {Ni, i ∈ I}) in G.

After having found a match g for the LHS rule pattern of rule r in graph G
making the rule applicable, we can define a rule application via rule r to G by

3 The left pushout of a rule application describes the deletion of graph parts, and
the right pushout describes the addition of graph parts, marked accordingly by the
corresponding rule.

4 Note that a match of a LHS rule pattern does not have to be, in general, an injective
graph morphism. In some application fields, it makes sense to allow non-injective
graph morphisms as matches. In this case however, rule application becomes more
difficult because a conflict arises when a match maps two graph elements in L, one
marked for deletion and the other one marked for creation by the rule, to the same
element in G.
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a two-step construction such that in the application result the RHS rule pat-
tern is fulfilled: First, the elements in del(r) are deleted from G together with
the implicit deletion of possible dangling edges dan(g, r) obtaining an interme-
diate result D. Secondly, a copy of the RHS pattern graph R is unified with
D such that exactly the elements in cre(r) are indeed created. Thereby nodes
and edges in L ∩ R to be preserved are glued with the already corresponding
elements in D matched via g. Therefore this construction is often also called
gluing construction.

Definition 11 (rule application). A rule application G
r,g⇒ H from G to H

via an applicable rule r : 〈ΠLHS , ΠRHS〉 with ΠLHS = (L, {Ni, i ∈ I}) and
ΠRHS = R and match g : L→ G is constructed as follows:

1. D = G\ (g(del(r))∪dan(g, r)) (delete nodes and edges to be deleted together
with possible dangling edges)

2. H = D ∪ i(R) with i : R → i(R) a graph isomorphism identical to g on
elements of L ∩ R and disjoint with D on elements in cre(r) (create nodes
and edges to be created).

Each graph H ′ isomorphic to H is a valid result of this rule application too.

Note that a rule which is only applicable in the conservative approach will be
applied without implicit side-effects, since in this case the set of dangling edges
is empty because each match fulfills the dangling edge condition. Moreover, note
that because of the fact that dangling edges are deleted, D is a well-defined
graph again since source and target mappings can be inherited from G. The
application result H is a graph again as well, since source and target mappings
in D or i(R) are identical on edges belonging to D ∩ i(R). This is because the
graph morphisms g and i are identical on L ∩R.

We omit r and/or g in G
r,g⇒ H if not relevant. As a last remark, note that

the typing of H can be inherited from the typing of elements stemming from G
(i.e. being left in D) and the typing of created elements in rule r because of type
compatibility of g,i and rule r. This means that by construction rule application
ensures type correctness.

Example 8 (RailCab - Graph Transformation Rule and Rule Application). Fig. 9
depicts the application of rule r1 to a graph G1. It is a simple rule, since the LHS
pattern consists of a single graph L. Rule r1 is applicable in the conservative as well
as the dangling-edge-collecting approach, since a match g : L → G1 can be found,
depicted with pointed lines. The rule can be applied in the conservative as well as in
the dangling-edge-collecting approach, since the depicted match fulfills the dangling edge
condition. In particular, this holds already because no node is deleted. The result of the
rule application is therefore the same in both approaches. First, g(del(r1)) consisting
of o3 as image of o1 in G1 is deleted from G1 leading to a graph D. A copy of the RHS
graph is then unified in a suitable way with D. This means that the elements s1, t1, t2, n1

in L ∩ R are mapped by an isomorphism i identical to g inducing the gluing of i(R)
with D in the elements s2, t3, t4, n2. Moreover, a copy o4 = i(o2) of o2, belonging to
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cre(r1) is indeed created, since it is added disjointly to D5 and glued with source node
i(s1) = g(s1) = s2 and target node i(t2) = g(t2) = t4.

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:next

s1:Shuttle

t2:Trackt1:Track

o2:on

n1:next

LHS RHS

G1 H1

s2:Shuttle

t4:Trackt3:Track

o3:on

n2:next

t5:Track

n3:next

s3:Shuttle

o2:on

s2:Shuttle

t4:Trackt3:Track

o4:on

n2:next

t5:Track

n3:next

s3:Shuttle

o2:on
r1

⇒

r1:

Fig. 9. SimpleMove rule and its application

t2:Trackt1:Track
n1:next

t2:Track

LHS RHS

G2 H2

s2:Shuttle

t4:Trackt3:Track

o2:on

n2:next

t5:Track

n3:next

s3:Shuttle

o3:on

s2:Shuttle

t4:Track

t5:Track

n3:next

s3:Shuttle

o3:onr2

⇒

r2:

Fig. 10. DeleteTrack rule and its applica-
tion with unwanted dangling edge deletion

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:next
t2:Track

LHS RHS

G3 H3

t4:Trackt3:Track
n2:next

t5:Track

n3:next

s3:Shuttle

o3:on

t4:Track

t5:Track s3:Shuttle

o3:on

r3

⇒

r3:

Fig. 11. Corrected DeleteTrack rule and its
proper application

Fig. 10 depicts the application of the DeleteTrack rule to a graph G. The rule can
only be applied in the dangling-edge-collecting approach, since the depicted match g :
L→ G2 does not fulfill the dangling edge condition. This is because dan(g, r2) = {o2},
since o2 is an edge which is not matched by g, but its target node t3 is matched by g
and identified as a node to be deleted. When applying this rule in the dangling-edge-
collecting approach, this means that o2 is implicitly deleted together with t3 and n2.
This has as a consequence that the node s2 of type Shuttle would not be on a track
anymore and thus decoupled of the modeled track system. Forbidding the deletion of a
Track if some Shuttle is still on a track would make more sense. To this extent, it is
possible to add a negative application condition to the LHS rule pattern expressing that
it can be applied only if no Shuttle is on the Track. In this case, only edges of type next
are implicitly deleted during rule application as can be seen in Fig. 11.

Besides a single application we are also interested in the effect of multiple
rule applications. Therefore, we define graph transformation as the reflexive and
transitive closure of separate rule applications.

5 Since another edge called o2 is present in D, this renaming via i(o2) = o4 is indeed
necessary in this example.
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Definition 12 (graph transformation). A graph transformation, denoted as

G0
∗⇒ Gn, is a sequence G0 ⇒ G1 ⇒ · · · ⇒ Gn of n ≥ 0 rule applications. A

rule application of length 0 is defined as a graph isomorphism G0
∼= G′0 because

the result of rule application is only unique up to isomorphism.

Attributed Graph Transformation Since often besides the structure also
attributes contained by the elements are relevant for modeling, we need a way
to include attributes in graphs for the formal description of models. We do not
introduce attributed graph transformation in a formal way here, but give a short
overview on available formal approaches and describe the basic concepts needed
to define attributed graphs and attributed graph transformation.

There are different approaches to define attributed graphs and graph trans-
formation. In [36] attributed graphs are seen as algebras. In particular, the graph
part of an attributed graph is encoded as an algebra, extending the given data
algebra. In [35] an attributed graph is basically a pair (G,D) consisting of a
graph G and a data algebra D, whose values are nodes in G. [37] is based on
the use of labeled graphs to represent attributed graphs, and of rule schemata
to define graph transformations involving computations on the labels. That ap-
proach has some similarities with the so-called symbolic graph transformation
approach [38], including the simplicity provided by the separation of the algebra
and the graph part of attributed graphs.

The basic concepts needed to define attributes on the type level and on the
instance level are described as follows. For each node type (sometimes also edge
types) in the type graph TG a number of attributes of a certain data type is
defined leading to an attributed type graph ATG. Each node (or edge) in a graph
on the instance level may have the same number of attributes. These have at-
tribute assignments mapping each attribute to a concrete value of a data type
compatible with the attribute definition of the corresponding node type (or edge
type) in the attributed type graph ATG. Each graph in a graph pattern may
be equipped with an attribute condition Φ over attribute labels in this graph
constraining the range of possible values for these attributes when matching the
pattern to some instance graph. Moreover, attribute assignment mappings in
L of a LHS rule pattern may define assignments to variables that are reused
within a computation instruction in an attribute assignment mapping for some
attribute a of the RHS rule pattern. Matching the LHS pattern leads to a con-
crete value assignment of such a variable (respecting the attribute conditions)
and this value is reused to compute the attribute value of a according to the com-
putation instruction.6 The attribute condition and assignment mappings need
to be compatible with the data types defined in the attributed type graph for
each attribute.

6 In [38], assignments and attribute conditions in rule patterns are summarized into
one attribute formula over the attribute labels in both rule patterns that needs to
evaluate to true during rule application.
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Graph Transformation with Inheritance Another concept often used in
modeling is inheritance that leads to generalization upwards in the inheritance
relation and specialization downwards leading to attributed graphs and attributed
graph transformations with inheritance [39,35,40]. Again, we do not introduce
this formally here, but give a short informal idea of the basic concepts needed to
define attributed graphs and attributed graph transformation with inheritance.

The concept of generalization, specialization and inheritance can be described
in a type graph TG by introducing an inheritance relation between nodes in the
type graph, visualized by special edges from each type node to its super type
node, which we label with is a, and marking specific type nodes as abstract.
Patterns typed over such a type graph with inheritance ATGI consist of graphs
that may use these abstract nodes. Moreover, source and target mappings are
compatible with the inheritance relation. The created elements in the RHS pat-
tern of a rule should not be abstract because when a rule is applied it should
be clear which type of node is to be created on the instance level. Now there
are two possibilities to define attributed graph transformation with inheritance
according to such a type graph with inheritance ATGI and rules and patterns
typed as described briefly above over ATGI. (1) The type graph with inheritance
ATGI is flattened in a suitable way to an equivalent type graph TG without
inheritance relation and abstract nodes. Moreover, the rules and patterns typed
over ATGI as described briefly above are flattened to an equivalent set of rules
and patterns typed over TG. Using these flattened rules and patterns regular
typed attributed graph transformation can be applied. (2) The match notion for
patterns is extended to patterns typed over ATGI such that the derived notions
of rule application and property satisfaction are equivalent to flattened regular
rule application or property satisfaction.

For analysis we usually apply variant (1) and work with flattened properties
and rules, since most analysis techniques do not explicitly deal with inheritance
yet. For rule application and graph property checking at runtime we usually
apply the more efficient variant (2).

Graph Transformation with Priorities Non-determinism due to several
applicable rules can be explicitly reduced by priorities over these rules. Given
a rule set R with priorities specified by a function prio : R → N assigning
priorities to the rules in R, the notion of rule applicability of Def. 10 defined
for a separate rule becomes more severe and has to be defined relative to the
complete rule set. We say that the rule is applicable with priority if for two rules
r, r′ ∈ R that are both applicable to the same graph if considered separately
holds that if they have different priorities only the rule with the highest priority
is applicable. Thus applicability with priority requires besides a match and the
dangling edge condition in case of the conservative approach also that no rule
with a higher priority is applicable as a separate rule. Given a set of rules R with

priority function prio, we write G
r,g⇒R,prio G

′ if for rule r ∈ R a match g for G

exists, r is applicable with priority, and G
r,g⇒ G′. For the reflexive and transitive

closure we write
∗⇒R,prio.
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Assumption: For the rest of this paper we work with attributed typed graphs
with inheritance and rules with priorities where necessary, although not explicitly

mentioning it each time. Consequently, we sometimes write G
r,g⇒R G′ instead of

G
r,g⇒R,prio G

′ and
∗⇒R instead of

∗⇒R,prio.

Example 9 (RailCab - Attributes, Inheritance & Priorities). As depicted in Fig. 12
we may equip the type graph of our running example with an attribute energy of data type
Int for the node type Shuttle. Moreover we can make the node type Shuttle abstract and
insert two subtypes RailCab and CargoShuttle into the inheritance relation, respectively.
An assignment in an attributed instance graph as depicted in Fig. 2 defines a concrete
integer value for the attribute energy in nodes of node type RailCab or CargoShuttle.
The type graph with inheritance in Fig. 12 can be flattened into a regular type graph as
depicted on the right in Fig. 12.

Track

on

next

CargoShuttle

RailCab

is_a
is_a

Track

on1

next

CargoShuttle
Int : energy

RailCab
Int : energy

Shuttle
Int : energy

<< abstract >>

on2

ATGI

Fig. 12. Attributed Type Graph with Inheritance and Flattening

Fig. 13 depicts a graph pattern with inheritance PI that can be flattened into four
patterns without inheritance on the right. Note that the patterns P1 and P2 are isomor-
phic, so it is sufficient to keep one of these patterns after flattening.

s1:Shuttle

t1:Track

o1:on

s2:Shuttle

o2:on

s1:

CargoShuttle

t1:Track

o1:on1

s2:

CargoShuttle

o2:on1

s1:

CargoShuttle

t1:Track

o1:on1

s2:

RailCab

o2:on2

s1:

RailCab

t1:Track

o1:on2

s2:

CargoShuttle

o2:on1

s1:

RailCab

t1:Track

o1:on2

s2:

RailCab
o2:on2

PI P1 P2 P4P3

=

Fig. 13. A graph pattern and the related flattened graph patterns

Now our running example rule, moving a Shuttle from one Track to another (see
Fig. 9), can be flattened to two different rules by flattening the corresponding LHS and
RHS rule patterns. In Fig. 14, the first rule is depicted and we have added an operation
on the previously introduced attribute energy. The attribute value of the attribute energy
is constrained such that in the instance graph to which the pattern can be matched to,
a value bigger than or equal to 2 should appear. After rule application this attribute
value is diminished by 2. In Fig. 15, a similar rule is depicted modeling the movement
of a Railcab which is less expensive in the sense that the attribute value of energy is
diminished only by 1, when moving the Railcab from one Track to another Track.

In the example so far we do not need priorities. However, let us assume that the
rule of Fig. 15 refers to the general case of a Shuttle rather than a RailCab and thus
defines that all shuttles by default require one energy point to move along one Track.
Then, the rules of Fig. 14 and Fig. 15 could both be applied for CargoShuttles with
energy attribute value higher than 1. To ensure that in case of a CargoShuttle always
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t2:Track

t1:Track

o1:on1

n1:next

LHS RHS

s1:

CargoShuttle
s2:

CargoShuttle

o2:on1

o3:on2

t2:Track

t1:Track

n1:next

s3:

RailCab

s1:CargoShuttle
energy = energy – 2 

o4:on1s1.energy >= 2

Fig. 14. MoveCargoShuttle rule with at-
tribute condition and side effect

t2:Track

t1:Track

o1:on2

n1:next

LHS RHS

s2:

CargoShuttle

o2:on1

o3:on2

t2:Track

t1:Track

n1:next

s3:

RailCab

s1:RailCab
energy = energy–1

o4:on2

s1:

RailCab
s1.energy >= 1

Fig. 15. MoveRailCab rule with attribute
condition and side effect

only the more specific rule of Fig. 14 and not the generic one of Fig. 15 is applied, we
can then assign the former rule of Fig. 14 a higher priority.

Graph Transformation Systems A dynamic system can be specified by a so-
called graph transformation system. It consists of a set of graph transformation
rules describing the dynamics in the system. Each system state is described by
a graph and state transitions correspond to rule applications. Initial states of a
dynamic system can be described by an initial graph or a set of initial graphs.

Definition 13 (graph transformation system). A graph transformation
system (GTS) S = (R, TG) consists of a set of rules R typed over a type graph
TG. A graph transformation system may be equipped with an initial graph G0 or
a set of initial graphs I being graphs typed over TG.

Note that the definition is analogous whatever type of type graph with inher-
itance and attributes or without is employed. Also, the rule set R may support
priorities, which we do not always explicitly mention as described in the previous
assumption.

The set of reachable graphs of a graph transformation system models the
set of reachable states of a dynamic system from its initial states. A graph is
reachable if a graph transformation via the system rules exists from some initial
graph, describing some initial system state, to this graph. Since often in praxis it
does not make sense to distinguish isomorphic graphs, we also define a minimal
set of reachable graphs, where exactly one representative of the isomorphism
class of each reachable graph is contained.

Definition 14 (set of reachable graphs). For a GTS S = (R, TG) and a
set of initial graphs I the set of reachable graphs REACH(S, I) is defined as

{G|G0
∗⇒R G,G0 ∈ I} consisting of all graphs G such that there exists a graph

transformation via rules in R from some initial graph G0 to G of arbitrary
length. We say that G ⊆ REACH(S, I) is a complete set of reachable graphs up
to isomorphism for a GTS S and I if it contains at least one representative graph
of each isomorphism class of graphs in REACH(S, I) and that it is a minimal set
of reachable graphs up to isomorphism if it contains exactly one representative
graph of each isomorphism class of graphs in REACH(S, I).

Often, it is not only desired to analyze which system states can be reached,
but also how they can be reached. The transition system generated by a graph
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transformation system and its initial graphs therefore describes the state space
of a dynamic system. If a distinction between isomorphic graphs (or states) is not
desired, then it is possible to consider a minimal transition system, describing
rule applications between the corresponding minimal set of reachable graphs.

Definition 15 (labeled transition system). Given a GTS S = (R, TG), a
set of initial graphs I, and a set of graphs G ⊆ REACH(S, I) that is complete
up to isomorphism for S and I, the implied labeled transition system LTS =
(G, I,R×M,⇒R) with G the set of states, I the set of initial states, R×M the
label alphabet withM the set of injective morphisms, and⇒R⊆ G×(R×M)×G
the transition relation defined as {(G, (r, g), H)|G,H ∈ G∧∃H ′ ∈ REACH(S, I) :

G
r,g⇒R H ′ ∧H ′ ∼= H}. LTS is minimal if its set of states G is a minimal set of

reachable graphs up to isomorphism for the GTS S with initial graphs I.

Example 10 (RailCab - GTS). The rules depicted in Fig. 14 and Fig. 15 typed over
the flattened type graph ATG as depicted in Fig. 12 constitute a GTS modeling the
structural dynamics and energy consumption of the shuttle system. Given also the at-
tributed graph in Fig. 2 as initial graph, we can consider the corresponding set of
reachable graphs and the corresponding transition system. They will have a finite min-
imal set of reachable graphs and minimal transition system, respectively. Since Shuttle
movement goes along with diminishing the energy attribute values of s1 and s2, this
leads to a terminating system. Moreover, each reachable graph satisfies the property
p = ¬Pi with Pi one of the graph patterns depicted in Fig. 13. This property can be
checked statically with the invariant checker as explained in Section 4.2 or dynamically
by analyzing the state transition system via model checking as explained in Section 4.3.

Graph Grammars A modeling language L, where the abstract syntax of mod-
els is described by graphs, can be specified in a constructive way by an attributed
graph grammar. A graph grammar consists of a set of creating7 attributed graph
transformation rules and an attributed start graph. The graph transformation
rules describe how valid instances of the modeling language at the level of the
abstract syntax can be generated.

Definition 16 (graph grammar, graph language). A graph grammar (GG)
GR = (P, S, TG) consists of a set of non-deleting rules P and a start graph S

typed over TG. The graph language L(GR) is defined as {G|S ∗⇒ G} consisting
of all graphs G such that there exists a graph transformation from S to G of
arbitrary length.

Example 11 (SDL - Graph Grammar). As an example for a simple graph grammar
we consider the generation of all valid SDL block diagrams. At first, we have to define a
related type graph. In this case, we make use of generalization and assume a GTS for-
malism that is able to cope with it. In Fig. 16, the related type graph with generalization

7 Note that in graph transformation standard literature the rules of a graph grammar
are in general not required to be creating or are not restricted to generate a language,
but we restrict them here accordingly to be consistent with more widely used notion
of grammars.
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can be seen. Note that flattening the type graph would require adding the name attribute
to all nodes that are a specialization of type Element as well as the addition of related
edge types for all specializations of Connectable. The start graph and rules (productions)
of the grammar are described in Fig. 17. The start graph creates a BlockDiagram with a
new and unique name (described by newName()). The first rule creates a SystemBlock
as an element of a BlockDiagram node to which also a new and unique name is as-
signed. A Block as an element of a Block node to which also a new and unique name
is assigned is created by rule 2. The third rule creates a Process as an element of a
Block node to which also a new and unique name is assigned. In contrast to a process,
the blocks created by rule 2 may have contained connectable elements. Finally, rule 4
describes that between any two Connectable elements that are contained by the same
Connectable a Connection with a new and unique name might be created. An example
of how the particular instance graph may be derived by subsequent application of the
rules (productions) of the graph grammar starting with the start graph is presented in
Fig. 18.

3 Languages & Execution

There are several tools that support languages that have been established on top
of graph transformations.8 Examples are Fujaba9, AGG10 [42], Henshin11 [43],
PROGRESS [44], AToM312, and MDElab13.

We will in the paper and this section in particular look on the languages sup-
ported by MDElab. We will focus on the direct integration of meta-models resp.
class diagrams as type graphs presented in Section 3.1, Story Pattern outlined in
Section 3.2, Triple Graph Grammars introduced in Section 3.3, and a Runtime
Model Framework introduced in Section 3.4. Additionally concepts supported by
MDElab omitted for space reasons are Story Diagrams [45] that extend Story
Patterns with control flow constructs and Mega Models for model management
and traceability in scenarios with multiple models [46].

3.1 Type and Instance Graphs

In the last section we could already observe that type graphs and instance graphs
seem quite similar to class diagrams and object diagrams. Another similarity to
meta-models and models also became apparent. We will in the following study
both relation in more detail using two concrete examples.

Modeling: Structure with Class Diagrams and Object Diagrams Con-
cerning the similarity between type graphs and instance graphs on the one hand

8 For an updated view on more available tools we refer to the Transformation Tool
Contest[41] initiative.

9 http://www.fujaba.de
10 http://tfs.cs.tu-berlin.de/agg
11 http://www.eclipse.org/modeling/emft/henshin/
12 http://atom3.cs.mcgill.ca/
13 http://www.mdelab.org
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BlockDiagram
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Fig. 16. Type graph for SDL instance graphs
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Fig. 17. Start graph and rules for a simple SDL block diagram graph grammar
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 name = "SDL1"
 : BlockDiagram

 name = "SystemBlock1"
 : SystemBlock

 name = "SDL1"
 : BlockDiagramrule 1

 name = "SystemBlock1"
 : SystemBlock

 name = "SDL1"
 : BlockDiagram

rule 2
 name = "Block1"
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 : BlockDiagram
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 : SystemBlock
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 : Block
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 : BlockDiagram

 name = "Block1"
 : Block

 name = "Block2"
 : Block

rule 2

elements

elements
elements

elements

elements

elements elementselementselementselements

Fig. 18. Derivation of the instance graph example

and class diagrams and object diagrams on the other hand holds that node
types and their defined attributes relate directly to class definitions and their
attributes. Furthermore, simple associations relate to edge types. Undirected
associations have to be mapped to directed edges. Thus, the core concepts of
class diagrams can be directly mapped. Some other concepts such as association
attributes, cardinality constraints, or OCL constraints have to be mapped to
additional node types that do not represent classes and sufficiently expressive
graph property specification techniques. Analogously, an object diagram is re-
lated to an instance graph. It is to be noted that here less differences exist. The
common case of binary links can be represented directly in an instance graph
and only non binary links require a indirect encoding. An example for such a
mapping only for the class diagram is explained in the following Example 12.

Example 12 (RailCab - Class Diagram). A class diagram used for modeling the col-
lision avoidance for the RailCab Example 1 is shown in Fig. 19(a). The class diagram
defines the classes Shuttle, Track and DistanceCoordinationPattern which are connected
through associations. A Track may have one successor Track, the annotation ”0 . . . 1”
expresses the multiplicity of the successor association. A Shuttle is always located at ex-
actly one Track (association one) and can mark further Tracks through the associations
next and go. A Track is marked through the go association if the Shuttle is about to go
to this Track, the next association models the Shuttle’s intent for the following move
operation. To avoid collisions, Shuttles can instantiate a DistanceCoordinationPattern
collaboration between them. The DistanceCoordinationPattern collaboration employs two
roles front and rear which are both modeled through associations.

The similarity to the corresponding type graph can be seen in Figure 19(b), which
only differs from Figure 19(a) in the absence of the cardinality constraints, which have
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DistanceCoordinationPattern

Shuttle TrackTrack
0...1

next

0...1

go

 

1

on

0...1

successor
front rear

(a) Class diagram

DistanceCoordinationPattern

Shuttle TrackTrack
 

next

 

go

 

on

 

successor
front rear

(b) Type graph

Fig. 19. Class diagram and type graph for
the collision avoidance model

BlockDiagram

 name : string
SDLElement

elements

Connection Connectable

Process

Block

SystemBlock

source

target

0 ..1
0 ..*

0 ..1 0 ..1

0 ..1 0 ..1

▸

▸

▸

elements

0 ..10 ..*

▸

Fig. 20. A simplified meta-model for SDL
block diagrams

to be specified by appropriate graph properties (cf. Definition 7), and undirected asso-
ciations that are mapped to directed edge types.

Due to the explained mapping of class diagrams on type graphs and object
diagrams on graphs, we have a sound foundation and semantics based on typed
graphs with attributes and inheritance. This will be exploited later when the
complete model of the RailCab example that besides the class diagram also
includes a number of Story Patterns and simple graph properties are analyzed
in Section 4.2 and 4.3 .

MDE: Meta-Model and Model The relation observed for the class diagrams
and object diagrams also holds for type graphs and instance graphs on the one
hand and meta-models and models on the other hand. Node types and their
defined attributes relate directly to class definitions in the meta-model and their
attributes. We also explain the mapping by the following Example 13. For the
syntax we use in the following as usual the notation of UML class diagrams to
depict EMF meta-models.

Example 13 (SDL - Meta-Model). The simplified meta-model used in the following
for our consideration of the Example 2 is depicted in Fig. 20. It introduces the main
concepts Connection and Connectable that are linked via the associations source and
target. Furthermore, the concept Connectable can be refined to be a Process or Block,
where a Block can be further be refined to be a SystemBlock. The grammar of Example 11
defines in addition that SystemBlocks may only contain Blocks, Blocks may only contain
Blocks or Processes and that Processes cannot contain anything. These restrictions are
not encoded in this meta-model and additional OCL constraints would have to be added
to declaratively exclude all unwanted forms of containment.

Thus, we have seen that the core concepts of meta-models can also be mapped
to typed graphs with attributes and inheritance such that we have also a sound
foundation and semantics for them. This will be a foundation for the analysis of
model transformations later in Section 4.1 and 4.2.
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3.2 Story Pattern

We introduce in this section Story Patterns (SPs) [47] that are a compact vi-
sual notation for graph transformation rules and graph patterns. SPs have been
introduced in the context of Story Diagrams. They take advantage of the simi-
larity between UML object diagrams and graph patterns. As in object diagrams,
objects have a name and a classifier, separated by a colon. SPs represent a graph
transformation rule such that both sides of the rule are combined. Regular ele-
ments belong to both sides, elements with a ++ have to be created and belong
only to the RHS, elements with a −− belong only to the LHS and have to be
removed.

Example 14 (RailCab - SP(1/3)). The SP in Fig. 21 related to the class diagram in
Fig. 19(a) deletes the associations of type go and on between Shuttle s1 and Tracks t2
and t1, respectively. Further, the SP creates an association of type on between s1 and
t2. The SP can only be applied to an instance situation if no Shuttle is located at Track
t2.

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:successor

s1:Shuttle

t2:Trackt1:Track

o3:onn1:

successor

s2:Shuttle

o2:ong1:go

energy = energy-1

LHS
RHS

s1:Shuttle

t2:Trackt1:Track

o1:on

n1:successor

s2:Shuttle

o2:on
g1:go

energy = energy–1

--
--

o3:on
++

s1.energy >= 1

s1.energy >= 1

Fig. 21. moveSingle: SP for moving a shuttle to an empty track.

The semantics of SP is given via a mapping on GTS rules (cf. Def. 8) assum-
ing a proper mapping from class diagrams (meta-models) to type graphs with
attributes and inheritance as described in Section 3.1. For the translations of
SPs into GTS rules we have split up SPs into a graph pattern for the LHS and
RHS as follows: All elements that have no annotation or a −− become nodes
and edges in the graph pattern for the LHS. Note that in particular the NACs
are not allowed to carry annotations and thus always become part of the LHS.
Given the case that the SP contains NACs, they are directly mapped to NACs
in the graph pattern (L, {Ni|1 ≤ i ≤ I}) (cf. Def. 5) with I being the number of
NACs. Elements that have no −− attached and are not part of a NAC become
nodes and edges of the RHS. The types of the nodes and edges are set accord-
ing to the mapping to the type graph. All elements only occurring in the RHS
but not in the LHS are obviously those annotated with a ++ and all elements
besides the NACs only occurring in the LHS but not in the RHS are obviously
those annotated with a −−. A SP is called side-effect free if no elements are
annotated with ++ or −− and can be used to describe basic graph properties.
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If the SPs do not delete nodes but at most edges, the conservative and dangling-
edge-collecting approach are identical. However, if also nodes are deleted, one of
the two options has to be chosen.

Example 15 (RailCab - SP(2/3)). To exemplify the mapping from a SP to a GTS
rule, we consider here again the simple rule for the Example 12 of the RailCab system
that describes the Shuttle’s move operation. The SP for this rule is given in Fig. 21
(lower part) and the corresponding GTS rule is given in Fig. 21 (lower part). The
correspondence between nodes and edges in the SP and the GTS rule is indicated through
the names. Note that this an improved version of the GTS rule in Fig. 9 (upper part)
that excludes collisions by checking that no other Shuttle is located on the Track the
Shuttle moves to.

We restrict our discussion here to the main features of SP and refer to [48] for
a more complete coverage of features. The Story Diagrams language integrates
SPs as basic building blocks and in addition offers the typical control flow con-
cepts of an UML activity diagram to steer when which SP should be applied. An
additional activity node foreach in these Story Diagrams permit to also apply a
SP to all matches in the considered object graph. More on Story Diagrams can
be found also in [48].

Modeling: Structural Dynamics SPs can be employed in combination with
class diagrams to describe the structural dynamics and other behavior of dy-
namic systems. To achieve this, one has to provide a suitable class diagram
describing all possible states of the system under development, a set of SPs
that specify the system’s behavior, and a set of side-effect free SPs that specify
required system properties.

Example 16 (RailCab - SP(3/3)). The behavior of a model of the RailCab system
of Example 1 to study the collision avoidance is defined by a set of SPs. The class dia-
gram of the model is depicted in Fig. 19(a) of Example 12. Based on this class diagram
the SPs shown in Fig. 21, 22(b), 22(c), and 22(d) describe how a shuttle may move.
Fig. 21, 22(c), and 22(d) specify the movement of Shuttles under different conditions
– i.e. succeeding Track is empty, Shuttle has the DistanceCoordinationPattern protocol
established – and Fig. 22(b) specifies the instantiation of the DistanceCoordinationPat-
tern protocol. The operational rules are equipped with priorities ensuring that rules
specifying the Shuttles’ movement without an established DistanceCoordinationPattern
protocol are preempted by rules requiring the DistanceCoordinationPattern protocol. The
instantiation of the DistanceCoordinationPattern protocol has the highest priority and
it’s removal the lowest.

Besides operational rules, the model also consists of forbidden patterns that identify
system states, which are considered unsafe or may lead to an unsafe situation. For the
RailCab system these forbidden patterns are depicted in Figure 22(a) and Figure 22(e),
which are SP without side-effects and describe situations where the DistanceCoordina-
tionPattern protocol is not established for two Shuttles located at succeeding Tracks and
a collision – i.e. two Shuttles at the same Track – respectively.

Overall, the complete RailCab system is specified through six rules and 19 forbidden
patterns (see [49]). Most of the forbidden patterns are required to encode cardinality
constraints. We use the conservative approach for the rule execution for this example,
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as edges represent meaningful real world concepts that should not be implicitly deleted.
Anyway, the rules only delete DistanceCoordinationPattern nodes together with its two
links to the connected shuttles. Thus, in this case there will be no valid graph where the
behavior would differ if the dangling-edge-collecting approach would have been chosen.

frontrear

dca: DistanceCoordinationPattern

sb:Shuttlesa:Shuttle

tb:Trackta:Track

go

successor

on on

(a) Invariant: No uncoordinated
movement of Shuttles in close
proximity, which would consti-
tute a hazard

frontrear

dc2: DistanceCoordinationPattern

s2:Shuttles1:Shuttle

t2:Trackt1:Track

nexton on

dc3: DistanceCoordinationPattern

dc1: DistanceCoordinationPattern

++

rear
++

front

++

(b) Instantiation rule: creating a Distance-
CoordinationPattern

frontrear

dc1: DistanceCoordinationPattern

s2:Shuttles1:Shuttle

t2:Trackt1:Track

next

on
on

++

successor T3:Tracksuccessor

next
-- ++

go
go

(c) Behavioral rule: Coordinated
movement

rear

dc1: DistanceCoordinationPattern

s1:Shuttle

t2:Trackt1:Track

next

on

++

successor T3:Tracksuccessor

next
-- ++

go

t4:Track
successor

(d) Behavioral rule: unrestricted
movement for a solitary Shuttle

sb:Shuttlesa:Shuttle ta:Trackon on

(e) Invariant: No colli-
sion accident

Fig. 22. SPs specifying the structural dynamics of the RailCab model

MDE: Refactoring As outlined in the following example, SPs can be also used
in the context of MDE. A first example is the specification and execution of a
refactoring [50,7]. Based on the meta-model of a source model (in this case the
SDL block diagram meta-model), the required refactorings are described by SPs.
An in-place transformation of a source model then results in a refactored model.

Example 17 (SDL - Refactoring). We consider here again SDL block diagrams as
in Example 11.14 Assume that we want to develop a refactoring that change improper

14 It is to be noted that the case considered here is not covered by the GG example
and later TGG examples where for space reasons the rule for connections across the
hierarchy are omitted.
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connections across Block boundaries. In case two Blocks are embedded into different
Blocks but are directly connected, this single Connection has to be replaced by three
Connections with the same name. One Connection between the outer blocks and two
additional Connections linking the inner bocks to their outer block (see Fig. 23). As in
case of refactoring deleting all edges to removed elements is rather cumbersome, here
the dangling-edge-collecting approach is used.

Block 1

Block 1.1 Block 1.2

Block 2

Block 2.1 Block 2.2

Block 1

Block 1.1 Block 1.2

Block 2

Block 2.1 Block 1.2

Fig. 23. Required refactoring at the concrete syntax level

 name = "S2"
 : Block

 name = "B11"
 : Block

 name = "B1"
 : Block

 name = "B12"
 : Block

 name = N1
 : Connectionsource

elements

elements

 name = "B21"
 : Block

 name = "B2"
 : Block

 name = "B22"
 : Block

target

elements

elements

Fig. 24. The abstract syntax of the example model before the refactoring

To capture the SDL block diagrams, we at first need a meta-model as depicted in
Fig. 20. Based on this meta-model the example of Fig. 23 can be depicted at the level of
the abstract syntax in Fig. 24. With a single SP we can then describe how to manipulate
the models by means of in-place model transformations. The required changes for the
refactoring are depicted in SP of Fig. 25. The direct Connection is removed and instead
three new Connections with the same name as the removed Connection are created that
ensure that the Connections are always respect the block hierarchy. In Fig. 26 we can
see the expected result of refactoring the model of Fig. 24 according to Fig. 25.

It is to be noted that the SPs can also be used to define complete model
transformations in an operational style. However, either we simply identify cor-
responding elements in the other model using names or complex additional struc-
tures have to be maintained explicitly or explicit control structures as supported
by Story Diagrams would be required. In the next section, we will instead discuss
how the same kind of problem can be addressed with a graph grammar based ap-
proach in a more elegant and effective manner by specifying the relation between
source and target model declaratively and derive related operational solutions
for the model transformation.
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rule

sourceConnectable : Connectable

 name= N
connection : Connection

parentSourceConnectable : Connectable

targetConnectable : Connectable

target

source

elements

elements
el

em
en

ts

--
--

--

--

parentTargetConnectable : Connectable

elements

 name = N
connection : Connection

target

source

elements

++
++

++

 name = N
connection : Connection

target

source

++++

++

 name = N
connection : Connection

target

source

++
++

++

elements

elements

parentParentSourceConnectable : Connectable

elements

Fig. 25. SP for the refactoring that corrects connections across hierarchy

 name = "S2"
 : Block

 name = "B11"
 : Block

 name = "B1"
 : Block

 name = "B12"
 : Block

 name = N1
 : Connectionsource

target

elements

elements

 name = "B21"
 : Block

 name = "B2"
 : Block

 name = "B22"
 : Block

 name = N1
 : Connection

source

target

elements

elements

 name = N1
 : Connection

source

target

Fig. 26. Result of refactoring the model of Fig. 24 with the SP of Fig. 25

Code Generation and Interpreter Story diagrams can be executed by gen-
erating code, which is the approach used in Fujaba and former versions of our
tool, and by interpreting them directly [45].

The former code generation required that all conditions are specified as Java
conditions such that they can be simply embedded in the generated code. The
generated code has a very good performance, but was not very flexible. First,
it did not support OCL. Second, the search for a match happened according to
fixed order for the nodes of an SP set at compile-time. Third, changes of the SPs
and Story Diagrams at runtime were not possible due to the generated code.

To overcome these limitations, an interpreter was developed that supports
OCL conditions, adjusts the matching order to the instance graph to decrease the
worst-case execution times, and permits to modify the SPs and Story Diagrams
at runtime (higher-order transformations). In addition, the SP matcher can start
the matching with any initial bindings such that also incremental matching of
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SPs based on change events could be realized with the interpreter. The tool set
is completed by a debugger at modeling level (see [51]).

Note also that SPs and Story Diagrams have already be employed for indus-
trial strength case study such as the MATE project [52] for the enhanced model
validation and model transformation of Simulink/Stateflow models. The current
and older versions of the SP and Story Diagram Interpreter have been realized
based on Eclipse and the Eclipse Modeling Framework. It can be downloaded
from our Eclipse update site http://www.mdelab.org/update-site.

3.3 Triple Graph Grammars

In this section, we present Triple Graph Grammars (TGGs) [53] that allows
specifying model transformations in a rule-based and relational way. In partic-
ular, graph grammars as introduced in Section 2 are the formal basis for this
model transformation specification language.

In order to properly specify the triple graph transformations, we require
a meta-model for the source model, for an additionally supported correspon-
dence model, which stores traceability information that allows finding elements
of one model that correspond to an element of the other model, and for the
target model. TGG rules are accordingly divided into three domains: The source
model domain (left), target model domain (right), and the correspondence model
domain (middle).

A TGG consists of an axiom (the grammar’s start graph) and several TGG
rules that describes how consistent triples of source, correspondence and target
models can be generated. TGGs permit to derive three kinds of model trans-
formation directions: Forward, backward, and correspondence transformations.
A forward (backward) transformation takes a source (target) model as input
and creates the correspondence and target (source) model. A correspondence
transformation15 requires a source and target model and creates only the corre-
spondence model. In addition, also forward or backward model synchronization
is possible where only changes are propagated. As in case of TGGs and re-
lated operational SPs only bookkeeping edges are deleted, the chosen approach
whether conservative or dangling-edge-collecting does not matter.

Example 18 (SDL - TGG Specification). For a transformation from SDL block di-
agrams to UML class diagrams we require a meta-model for SDL block diagrams (as
already depicted in Fig. 20), and a meta-model for UML class diagrams as presented
in Fig. 27. There is also a correspondence meta-model as depicted in Fig. 28.

The axiom in Fig. 29 relates the root elements of the source and target models with
the axiom correspondence node. The attribute assignments, defined through OCL ex-
pressions in our tool environment, state that the names of the block and class diagrams
must be equal. Rule 1 creates a Block and a corresponding UMLClass. The BlockDiagram
and ClassDiagram must already exist. Rule 2 creates a Block in the block diagram do-
main and connects it to an already existing parent Block. In the class diagram domain,
a class is created and connected to the parent Block’s UMLClass with an Association.

15 The correspondence transformation is also known as mapping or model integration.
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UMLClassDiagram
-string: name
UMLElement

UMLAssoc UMLClass0..1
-leftRole

0..1

0..1
-rightRole

0..1

0..*-elements0..1

0..*

0..1 -elements

Fig. 27. Simplified meta-model for UML
class diagrams

TGGNode

CorrAxiom CorrConnectable

CorrProcessCorrBlock

CorrSystem

CorrConnection

0..*

BookKeeper

UMLElementSDLElement

0..*

source

target

tbd

0..*0..1

0..1
0..*

0..1

0..*

Fig. 28. Correspondence meta-model with
extra concept for bookkeeping

Rule 3 is analogous to Rule 2, but covers the creation Process in the block diagram
domain. Rule 4 creates a Connection and a corresponding UMLAssoc between already
corresponding Connectables in the block diagram domain and UMLClasses in the class
diagram domain.

Triple Generation The TGG itself can be used to build the three models in
parallel by applying TGG rules successively to extend the axiom. In the resulting
graphs, the source and target components (i.e. the source and target models) are
consistent to each other according to the TGG. We employ this triple generation,
for example, to generate test cases for model transformation implementations
that need to adhere to the TGG. Since the TGG is a specific graph grammar
(see Section 2), it defines a language of consistent source and target models.

Example 19 (SDL - TGG - Triple Generation). For the SDL block diagram to UML
class diagram transformation of Example 18 the triples can be generated by starting with
the axiom and then applying the rules directly as if they were simply SPs.

Forward & Backward Transformation However, to perform model transfor-
mations in practice it would be too cumbersome to generate all triples of related
size to determine what the output of a transformation should be. Instead, under
some well-formedness conditions for the TGG rules an efficient operationaliza-
tion can be generated, which create target model elements for given source model
elements, so that both are consistent to each other. These well-formedness con-
ditions are described in more detail in [54,55] and range from simple syntactical
checks to more expensive checks (as discussed, for example, in Section 4.1) that
can still be performed at design time.

For each of the aforementioned transformation directions, separate opera-
tional rules are derived from the TGG rules. In particular, the elements with ++
in the source domain become regular elements by removing the ++. The parts
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 name = classdiagram.name
blockdiagram : BlockDiagram corrAxiom : CorrAxiom

 name = blockdiagram.name
classdiagram : UMLClassDiagram
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Fig. 29. TGG rules to transform SDL block diagrams into UML class diagrams
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with ++ of the correspondence domain and target domain remain as they are.
The operational rules also have to make sure that a given source model element
is only transformed once. This requires a bookkeeping mechanism, which keeps
track of those elements that were already transformed, and those that still have
to be transformed. Accordingly, an initially set link to a special bookkeeping ob-
ject is removed when a source element has been translated and its non-existence
is tested for all context objects as they should have been translated already.

Example 20 (SDL - TGG - Forward Transformation). For Example 18 the SPs
derived from the TGG rules to transform SDL block diagrams into UML class diagrams
are depicted in Fig. 30. While the elements of the source model become additional
pre-conditions, the new elements of the TGG rule in the correspondence model and
target model are generated. In addition, it is checked if a link to a bookkeeping object
is available. It ensures that the translated source elements have not yet been processed
(required edge) and that all context elements of the source model have been processed
(forbidden edges). The links to the translated elements are deleted by the rules such
that subsequent rule applications will not consider the covered elements of the source
model.

The steps of a forward transformation with TGGs are depicted in Fig. 31. Dashed
lines separate the elements covered by each step for the source model and the generated
elements for the correspondence and target model.

Consistency Transformation TGGs can also be used to derive the correspon-
dence model for a give source and target model. In that case, in each TGG rule
all elements of the source and target domain become part of the pre-condition of
the related SP and only the parts of the correspondence domain to be generated
become part of the post-condition. In addition, bookkeeping must ensure that
only those elements of the source and target model are considered as match for
the SP.

Forward & Backward Synchronization In case of model synchronization,
the target and correspondence model are also input for the processing. Next

links leading from all referenced correspondence nodes to the newly created cor-
respondence nodes (also created by the model transformation, but omitted there
for space reasons) capture the dependencies between different rule applications
related to the correspondence nodes. The goal of the forward synchronization is
then to propagate only the changes that occur in the source model to the corre-
spondence model and target model but regenerate only the necessary minimum.

Example 21 (SDL - TGG - Model Synchronization). We consider here how to
synchronize a SDL block diagram with a UML class diagram, which is related to the
transformation considered in Example 18 and 20.

The considered change in a SDL block diagram is depicted in Fig. 32. A block Block3
and a contained block Block4 are moved from the embedding block Block1 into another
block Block2. Using model synchronization only the changes are propagated.
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blockdiagram : BlockDiagram corrAxiom : CorrAxiom
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Fig. 30. Derived SPs to transform SDL block diagrams into UML class diagrams
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Fig. 31. Derivation of a forward transformation with TGGs

Fig. 32. Considered change in a SDL block diagram

Model Transformation and Synchronization Engine Our implementation
of the model transformation takes advantage of the knowledge which correspon-
dence nodes can be a trigger for a TGG rule. It manages a queue of the created
correspondence nodes and then only triggers the necessary rules for those nodes.
In addition, the bookkeeping is used as an additional side-condition to limit
the search space as newly matched elements are always still connected with the
bookkeeping object. Both tricks permit to avoid any global search for matches
and considerably speedup the transformation.

In case of model synchronization, the correspondence model and target model
are also input for the processing. In addition, we remember the dependencies
between rule applications in the correspondence model in form of additional
next links as defined in Fig. 28 between the newly created correspondence nodes
and those in the LHS when transforming as well as synchronizing the models.
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Fig. 33. Parts of the correspondence model Gc affected by the different algorithms

Therefore, the correspondence model with the next links has further the form
of a directed acyclic graph (visualized in Fig. 33 as a tree) and we can exploit
this acyclic structure in a number of improvements for the efficient incremental
processing of changes for the synchronization (similar to ideas for incremental
parsing as outlined in [56]).

In [57,58], we have achieved that in most cases a single change can be pro-
cessed in the average case with only logarithmic effort concerning the size of the
models involved. In [59], we further improved the solution in such a way that
even in the case of multiple changes, we can ensure only a slow increase of the
efforts and that the effort always remains below or equal to the batch algorithm.
Further improvements ensure that for a restricted class of TGG rule sets, also
in the worse-case [60] an incremental processing can be observed.

In the latest version [60], we additionally use the information available in
the declarative TGG rules to also derive additional checks to repair structural
changes by adjusting links and avoiding retransformation of elements. This
also ensures that the effects of changes are only propagated when necessary
(cf. Fig. 33(c)). Therefore, the new algorithm drastically improves our former
results [57,58,59] and we can show that it is even optimal if the overall algorithm
and not the rule matching dominates the complexity.

Example 22 (SDL - TGG - Efficient Model Synchronization). In case of a com-
plete transformation the whole source model would have been traversed following the
scheme in Fig. 33(a). If we in contrast follow the scheme of Fig. 33(b), only the com-
plete source model below the change would be retransformed. Therefore, the synchro-
nization would work as if Block3 and a contained block Block4 embedded into the block
Block1 are first deleted and a new Block3 and a contained block Block4 are created
located under the block Block2. The improved version of Fig. 33(c)) will instead con-
sider the right scenario and take into account that block Block3 and the contained block
Block4 are moved from the embedding block Block1 to block Block2.

Finally, in Fig. 34 the resulting effects of the model synchronization following the
scheme of Fig. 33(c) are presented. In the source model, only a link is deleted and
block Block3 is added a new element of block Block2. Due to the improved handling
the resulting synchronization effects requires that in the correspondence model and the
target model the related links are corrected as the algorithm is able to reuse the old
correspondence model and target model related to block Block3 and block Block4.

It should be noted that in the considered case the absolute improvement is only
moderate while the relative improvement is already considerable. However, if the part
of the correspondence model located under the correspondence directly affected by the a
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Fig. 34. Effects of the model synchronization following the scheme of Fig. 33(c)

change is large, the effort without repair can become as large as transforming the model
anew while only a few local changes are required for our synchronization algorithm.

TGGs have already be employed for an industrial strength case study in
the context of an automotive tool chain. The task was to transform elements
of SysML system models, which refer to the software, into an AUTOSAR soft-
ware architecture model. Additionally, both models had to be kept synchro-
nized after transformation [61]. The current and older versions of the presented
TGG Engines have been realized based on Eclipse and the Eclipse Modeling
Framework. The current version can be downloaded from our Eclipse update
site http://www.mdelab.org/update-site.

3.4 Runtime Model Framework

In the following, we discuss a framework leveraging runtime models for self-
adaptive systems [62,63,64,65]. Having explicit models that represent the running
system, MDE techniques based on graph transformations (cf. Section 2) can be
applied. The generic architecture of the framework, which extends the control
loop concept proposed in [8], is depicted in Fig. 35.

A Managed System provides Sensors and Effectors that are used to observe
and change the running system, respectively. These sensors and effectors provide
the so-called Source Model, which is a runtime representation of the system.
This model is causally connected to the system, which generally means that any
change in the running system is reflected in the source model, and any change
in the source model is reflected in the system. Therefore, this model can be
directly used by Autonomic Managers to perform the feedback loop activities
that comprise the monitoring and analysis of the running system, and if changes
are required, the planning and execution of adaptation to the system.
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Fig. 35. Generic Architecture for the Runtime Model Framework (cf. [64])

However, a source model represents all functionalities and concerns of the
sensors and effectors. Therefore, it is usually complex and related to the solution
space and platform of a managed system. Thus, a source model provides a view
on a system at a low level of abstraction, which could make it laborious to use
it as a basis for the feedback loop activities performed by managers.

Therefore, several Target Models are derived from a source model at runtime.
Each target model abstracts from the source model and it provides a specific view
on a managed system required for a certain self-management capability. As an
example, a target model might represent the performance state or failures of
a system to address self-optimization or self-healing, respectively. A manager
concerned with self-optimization will use only the target models relevant for op-
timizing a system, but not necessarily consider target models addressing other
capabilities like self-healing. This and appropriate abstractions of models, re-
duce the complexity for individual managers in coping with runtime models and
performing their activities.

Thus, target models tend to provide views related to problem spaces of dif-
ferent self-management capabilities and to abstract from the underlying sys-
tem platform. This supports the reusability of managers that focus on problem
spaces shared by different managed systems. Furthermore, as target models can
be platform-independent, the kinds of target models used in our approach are
primarily defined with the needs of the autonomic managers in mind rather than
focusing on the underlying infrastructure.

Therefore, managers preferably use target models than a complex source
model to perform the feedback loop activities. This requires that a target model
is causally connected to the source model. Thus, changes in the source model
are reflected in target models for monitoring, and vice versa for adaptation. To
maintain different target models at runtime and to realize causal connections
between the models, we use our Model Synchronization Engine based on TGGs
that incrementally synchronizes models with each other (cf. Section 3.3). To use
the engine, source and target models have to be defined by meta-models that
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are the basis to define TGG Rules (cf. Fig. 35). These rules define how a pair of
source and target models are synchronized with each other.

However, all concepts in one model need not to be represented in the other
model. Especially, concepts in a source model may not be reflected in the target
model since target models are at a higher level of abstraction than source models.
Hence, synchronizing source model changes reflecting changes in the managed
system to a target model for monitoring is not problematic. During synchroniza-
tion, concepts that are represented in a source model but not in a target model
are simply discarded, which causes the intended abstraction. Therefore, changes
can be propagated from source to target models without any difficulty. However
for adaptation, the opposite direction of propagating target model changes to
the source model is problematic since these changes have to be refined in order
to be reflected properly in the source model. The abstraction gap between source
and target models prevents a bidirectional synchronization using the TGG-based
transformation engine. Therefore, this abstraction gap is filled by Factories (cf.
Fig. 35) that are invoked on target models but they operate on the source model
where all required information is provided. Hence, the intended changes are per-
formed by factories on the source model and afterwards they are synchronized
to target models by the synchronization engine, which makes them visible for
managers. Though factories are currently implemented in Java, they could also
be specified and realized by graph transformation rules, like SPs (cf. Section 3.2),
that perform an in-place transformation of the source model. Further issues con-
cerning adaptations based on target models are discussed in [64].

Overall, this approach leverages abstract runtime models and MDE tech-
niques for adaptive systems. In contrast to a complex source model, an abstract
target model provides a more appropriate abstraction for autonomic managers
and a more specific view for a self-management capability. Both aspects ease
the work of managers. Moreover, target models can abstract from a concrete
managed system and platform, which supports the reusability and extensibility
of managers being able to operate on these models across different systems.

While the synchronization between source and target models with TGGs
as discussed above supports the monitoring and the execution of adaptations,
the analysis and planning activities of the feedback loop can be tackled as well
by graph transformations. In [65], we discuss the applicability of SPs (cf. Sec-
tion 3.2) working on runtime (target) models. For analysis, SPs perform checks
on a runtime (target) model, while for planning adaptations, a runtime (target)
model is transformed in-place by SPs. In addition to SPs, OCL expressions can
be used by autonomic managers to perform the feedback loop activities. This is
outlined on top of Fig. 35 by an implementation example of an autonomic man-
ager. The analysis and planning activites of this manager are specified by SPs
and OCL expressions based on the target meta-models. These SPs and OCL ex-
pressions are executed by corresponding interpreters and they operate on target
models to analyze the managed system and to plan adaptations.

As sketched in Fig. 35, several runtime models, like SPs, OCL, or target
models, and several model operations, i.e., tools like the synchronization engine
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Fig. 36. Simplified source meta-model [64] Fig. 37. Simplified target meta-model [64]

and different interpreters, are used to implement and execute a feeback loop
with its activities. To explicitly specify the interplay between all these models
and operations, so-called megamodels can be employed [66]. A megamodel is
a model that has models as its elements and that captures the relationships
between these models in the form of model operations. Thus, a feedback loop
and especially its flow of activities implemented by interacting models and model
operations can be specified by a megamodel. Moreover, having an interpreter for
megamodels, a megamodel can be kept alive at runtime in order to maintain
the different runtime models and operations, and to directly execute a feedback
loop. Therefore, besides making feedback loops explicit in the design of a self-
adaptive system, a megamodel approach together with an interpreter supports
the execution, adaptation, and composition of feedback loops [67].

Example 23 (Runtime Model Framework). As an example, we consider managed
systems implemented with Enterprise Java Beans 3.0 (EJB) technology. Fig. 36 shows
the simplified16 meta-model for the source model. Based on this meta-model, EJB-based
systems can be described at three different layers. The top layer covers components
types that correspond to artifacts from the development phase. These types define the
configuration space for a system. Concrete configurations of a system are instances
of these types that are deployed in a container (server) and they are considered by
the middle layer. Finally, the lower layer addresses bean instances and interactions by
means of calls among them.

Since models conforming to this meta-model are complex, very detailed, and platform-
specific, we introduce a meta-model for generic component-based software systems,
which is used for target models. A simplified version17 of this meta-model is depicted

16 The meta-model depicted in Fig. 36 is simplified as it does not show any attributes,
operations, and enumerations, and it hides some associations. Moreover, elements
for concerns like security, transaction, timers, or quiescence are hidden.

17 The meta-model is simplified as several attributes and three associations to navigate
from a Component, Interface, or Property to their corresponding types are hidden.
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in Fig. 37. It generally considers component-based systems and it covers failures that
have occurred when using a provided interface.

Using this generic meta-model, EJB-based systems can be described in a platform-
independent and abstract manner, while highlighting the specific concern of failures
occurring in the running system. Hence, a target model as an instance of this generic
meta-model has to be synchronized at runtime with the source model conforming to the
meta-model depicted in Fig. 36.

Overall, eleven TGG rules were required to specify the synchronization between
instances of these specific source and target meta-models. One of these rules is depicted
in Fig. 38. This rule transforms and synchronizes an EjbInterface element to an Interface
element, or vice versa. Model elements on the left refer to the source model, elements
in the middle to the correspondence model, and elements on the right to the target
model. Thus, for each EjbInterface provided by a SessionBean that is part of an EjbMo-
dule in the source model an Interface is created in the target model and associated as
a provided interface to the Component that corresponds to the EjbModule. Moreover, a
CorrEjbInterface element as part of the correspondence model is created that stores the
mapping between the EjbInterface and the Interface. Finally, the Interface is associated
to the InterfaceType that corresponds to the EjbInterfaceType to which the EjbInterface
is linked. Likewise, if an Interface is created in the target model, it is transformed or
synchronized to an EjbInterface in the source model. This rule also shows how attribute
values are synchronized. The uid of an Interface is directly derived from the uid of the
EjbInterface, and vice versa.

Moreover, this rule exemplifies that not all concepts in one model need to be rep-
resented in the other model. A SessionBean in a source model is not reflected in the
target model and therefore no correspondence model element exists that is connected to
a SessionBean.

As an example for manipulating a target model, Fig. 39 shows a SP specifying one
step within a complex architectural adaptation. This pattern works on target models
that conform to the meta-model shown in Fig. 37. Considering a web shop as an ex-
ample system, it changes the binding between components of the system by removing
the connector between the Shop and the Warehousing components, and creating a new
connector to bind the Shop component to the Warehousing2 component. This architec-
tural adaptation is motivated by a faulty Warehousing component that causes failures at
runtime. This requires that requests from the Shop component are routed to the alter-
native Warehousing2 component. Similar SPs are used for the other adaptation steps,
like checking if failures occur at runtime, to deploy and start the alternative component,
and to stop and undeploy the faulty component.
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The framework has been employed to academic case studies for self-adaptive
software systems. The framework’s implementation is continuously enhanced and
elaborated, and it is available on request. For further information on the research
prototype, please contact us at contact@mdelab.org.

4 Analysis

For the introduced SP and TGG languages as well as the Runtime Models Frame-
work a number of analysis techniques available for graph transformations can
be employed. The formal foundation of graph transformation permits to analyze
them in different ways. At first we can use static analysis techniques that only
analyze the structure of the GTS rule sets such as static conflict detection [68]
or invariant checking [49]. Secondly, there are analysis techniques that explore
the state space directly such as model-based testing [69,70,71] or model checking
[72,73]. Moreover, based on the formal foundation of graph transformation, it
is possible to apply theorem proving to graph transformation [74,75]. In [76],
for example, we already verified behavior preservation of a model transforma-
tion (see [76]) specified with TGGs using theorem proving. [77] presents another
static analysis technique for graph transformation systems based on a transla-
tion into so-called Petri graphs, which can be seen as unfoldings of the graph
transformation system. Finally, verification techniques for the correctness of so-
called graph programs, equipping graph transformation rules with basic control
structures, have been developed in [78], following Dijkstra’s approach to program
verification, and [79], where a Hoare calculus for graph programs is presented.

We will look in the following into static conflict detection for model trans-
formations with TGGs in Section 4.1, invariant checking for model refactorings
with SPs and systems with structural dynamics with SPs in Section 4.2, and
model checking for systems with structural dynamics with SPs in Section 4.3.

4.1 Static Conflict Detection

Conflict detection allows for detecting and visualizing conflicts that may occur
between rule applications. Conflicts arise, for example, if one rule deletes an el-
ement used by the other rule. This is because after applying the first rule and
deleting this used element from the other rule, this other rule cannot be applied
anymore. Conflicts between rule applications can be computed at design time
by analyzing the corresponding graph transformation rules. To this extent, the
so-called theory of critical pairs [35,80] can be applied. A critical pair describes
a conflict between two rule applications in a minimal context. AGG is a graph
transformation tool [42] able to compute the complete set of critical pairs for a
given set of graph transformation rules for the conservative approach.18 Since
this set can be computed from the rules (without executing them and generating

18 Note that we can verify with the invariant checker discussed in Section 4.2 whether
for a given rule set the dangling-edge-collecting approach and the conservative ap-
proach result in the same behavior.
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a corresponding state space), conflict detection is a so-called static analysis tech-
nique. In general, computing the complete set of critical pairs for a given pair of
rules is exponential in the number of rule elements in the LHSs of these rules.
This is because so-called overlaps (jointly surjective morphisms, see Def. 2) of
the rules’ preconditions need to be built in order to compute all possible minimal
contexts of rule applications.

Example 24 (SDL - TGG - Static Conflict Detection). In [54,55], we perform
conflict detection using AGG on the rule-based specification of model transformations in
order to find out at design time if each model transformation following this specification
can be performed efficiently, i.e. without backtracking at runtime.
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and r2BB competing for translating cl3

For the example transformation rules in Fig. 40, depicting backward transformation
rules with bookkeeping from class diagrams to block diagrams derived from a similar
TGG as presented earlier in this paper, a conflict arises. The LHS of rule 1 is completely
contained in the LHS of rule 2 (shaded background). Therefore, both rules can be applied
in the same context and compete for the translation of the same Class, namely cl2 in
rule 1 and cl3 in rule 2, respectively. Fig. 41 shows the backward transformation of a
class diagram model with both alternatives. In particular, cl3 can be translated by rules
1 and 2 but with different results, which are both shown in the figure.19 Rule 1 creates
a second SystemBlock in the block diagram model, rule 2 creates a Block. In particular,
we have a delete-use-conflict because if the bookkeeping edge to the instance class cl3
is deleted by rule 1, then it cannot be matched anymore by rule 2 and the other way
round. In addition, rule 1 leaves as3 untranslated. After applying rule 1 to translate
cl3, the bookkeeping edge to as3 still exists. Therefore, the transformation result is not
unique and our TGG model transformation implementation can not perform in a safe
way the corresponding model transformation efficiently without backtracking.

19 Thereby, cl2 of rule 1 as well as cl3 of rule 2 are mapped to the instance Class cl3.
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4.2 Invariant Checking

Given a set of SPs describing the behavior of a system and required properties
in form of side-effect free SPs being forbidden graph patterns, we present here
a static verification technique we developed for analyzing the structure of the
underlying GTS rules assuming the conservative approach to determine whether
the required properties are inductive invariants.18 Since it is a static analysis
technique, it even works when we have arbitrary many or even infinitely many
reachable graphs. We will only review here the basic idea [49] and refer the in-
terested reader to [81] for an extension for timed models. For the collaboration
building and its structural dynamism, a fully automatic checker for inductive
invariants of graph transformation systems [49] presented in Section 4.2 and an
extension supporting timed graph transformation systems [81] and an incremen-
tal checker [82] have been developed.

In our approach, a set of SPs describing the behavior relates to a GTS S =
(R, TG) (cf Def. 13), where R is equipped with a priority function prio, that
captures the possible changes of the graphs representing the state of a system.
An additional set of side-effect free SPs represent forbidden graph patterns F =
{F1, . . . , Fn} (cf. Def. 7) representing safety-violations of our system that have
to be excluded. The related property ΦF is thus a conjunction of the forbidden
patterns (¬F1) ∧ · · · ∧ (¬Fn). We call G a witness for the property ¬ΦF if G in
contrast matches any forbidden graph pattern F ∈ F .

The graph property ΦF is an operational invariant of the GTS S if for a
given initial graph G0 and for all G ∈ REACH(S, {G0}) (cf. Def. 14) holds G |=
ΦF (cf. [83]). However, checking operational invariants is undecidable as graph
transformations with types are Turing-complete. We therefore instead tackle the
problem whether the property ΦF is an inductive invariant. This is the case if for
all graphs G typed over TG and for all rules r ∈ R holds that G |= ΦF ∧ G

r⇒R
G′ implies G′ |= ΦF . If we have an inductive invariant and the initial graph G0

fulfills the graph property, then ΦF is also an operational invariant as inductive
invariants are stronger than their operational counterparts.

We can reformulate the definition of an inductive invariant as follows to have
a falsifiable form: a graph property ΦF is an inductive invariant of a GTS S =
(R, TG) if and only if there exists no pair (G, r) of a graph G and a rule r ∈ R
such that G |= ΦF , G

r⇒R G′ and G′ 6|= ΦF . Such a pair (G, r) which witnesses
the violation of graph property ΦF by rule r is then a counterexample for the
initial hypothesis.

The invariant checker proceeds as follows for verifying statically that the
absence of forbidden patterns20 is preserved by a set of graph transformation
rules with priorities: it is analyzed statically which kind of graph elements may
be produced by a rule and then, it is checked how these created graph elements
may be overlapped with the forbidden pattern F ∈ F . In case that overlappings

20 We explain the algorithm for patterns of the form (F, ∅), denoted also as F . For an
explanation of invariant checking for patterns of the form Π = (F, {Ni, i ∈ I}), we
refer to [49].
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are present, counterexamples can be constructed (by inverse rule application
to the overlapping), expressing that if the rule is applied to a graph holding
the remaining part of the forbidden pattern (source pattern), then after rule
application the complete forbidden pattern F will be present (target pattern).
Thereby, counterexamples may be rejected because of three reasons: (1) the
source pattern comprises the precondition for a rule with a higher priority to
be applicable (2) the source pattern comprises forbidden elements of one of the
NACs of the rule (3) the source pattern comprises a forbidden pattern. In the
first case, the rule with the higher priority ensures that the rule with lower
priority under verification would not be applicable anyway. In the second case,
similarly, the rule under verification would not be applicable because the source
pattern comprises one of its NACs. In the latter case, the rule under verification
would lead to a state comprising the forbidden pattern, if it is applied to a state
which comprises the forbidden pattern already. If no counterexamples exist, it is
ensured that a set of rules with priorities cannot be applied in such a way that
they allow for transitions from states holding no forbidden pattern to states
holding some forbidden pattern.

Example 25 (SP - Correct Model Refactorings). We have applied invariant check-
ing in the context of in-place model transformations, in particular, refactorings. In this
application context, invariant checking is very useful to investigate at design time if
a rule-based refactoring specification could lead to inconsistent refactored models at
runtime. We briefly review this approach here and we refer to [84] for a detailed de-
scription.

Fig. 42. A forbidden pattern (with pred-
icate elements) specifying that no two
methods with the same signature are mem-
bers of the same class

Fig. 43. Refactoring rule for the “Pull Up
Method” refactoring

Fig. 44. Counterexample for the ”Pull Up
Method” refactoring

For example, for the consistency of the refactoring Pull Up Method [50], it is impor-
tant that afterwards “no two Methods sharing the same signature are contained in one
Class”. This well-formedness constraint is depicted as a forbidden pattern in Fig. 42.
The types Pred-SameSignature and Pred-NotSameSignature mark that two Methods have
the same or a different signature, respectively. If we run our Invariant Checker with
the well-formedness constraint shown in Fig. 42 and the refactoring rule depicted in
Fig. 43 the verification result is likely to be a counterexample as the one shown in
Fig. 44. The reason that the refactoring rule is unsafe is that the rule completely ig-
nores the Pred-SameSignature nodes. If we change the rule to require the existence of
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a Pred-NotSameSignature and forbid the existence of a Pred-SameSignature node, the
rule is safe.

Example 26 (RailCab - Invariant Checking for Structural Dynamics). A further
example successfully applying our Invariant Checker is the Railcab system. Obviously,
this system is hard to check using other verification techniques, such as model checking,
as the system’s potential state space would be very large and it is hard to identify a valid
initial state.

To ensure that the Railcab system is safe, we have to verify that Shuttles never
collide. A collision can be expressed by a forbidden pattern, as shown in Fig. 22(e). An
invariant that is implied in this specification of the Railcab system is that a Shuttle will
never try to go to a Track occupied by another Shuttle without making sure the other
Shuttle is moving (see Fig. 22(a)). Along with several structural constraints restricting
cardinalities, these two forbidden patterns form the set F .

The complete set of rules is given through the Story-Pattern shown in Fig. 22(d),
22(b), 21 and 22(c). For a short description of the rules we refer to Example 16. For the
RailCab system to be safe it is required that rules for the creation of the DistanceCoordi-
nationPattern protocol (cf. Fig. 22(b)) preempts all move-rules. Therefore this rule has
the highest priority. Due to space limitations we have omitted the rule that destroys the
DistanceCoordinationPattern protocol, however the complete example including a more
detailed explanation of the rules can be found in [49]. Using the rules mentioned above
we have verified in[49] that the RailCab system is collision free.

The Invariant Checker has be employed for several variants of the reported
case studies for MDE including the rules of the industrial case study [61] and
models with structural dynamics. The current implementation of our Invariant
Checker tool is constantly improved and is available on request only. For further
information on the research prototype, please contact us at contact@mdelab.org.

4.3 Model Checking

In contrast to the previously described static analysis methods model checking
[85] is a dynamic verification technique that explores the state space of the sys-
tem under consideration. In case of a graph transformation system S (see Def. 13)
with a set of initial graphs I, a related labeled transition system as specified in
Def. 15 as state space for model checking. However, model checking can only be
efficiently applied if the state space is finite, which is not necessarily the case
for graph transformation systems where nodes and edges can be dynamically
created. In addition, such a finite state space can only be build when the initial
graph or set of initial graphs is known. If a meaningful criterion to limit the
explored state space exists, bounded model checking [86] can be used to inves-
tigate only the related finite subset of the overall state space. Other approaches
use symbolic representations of the state space to overcome this limitation [87].

A desired property is usually expressed as a condition for all reachable states
or in form of a sequence property by some form of temporal-logic. An example of
such a temporal-logic is the Computation-Tree-Logic (compare [85]). The state
space is analyzed and depending on the given property a counterexample is



Graph Transformations for MDE, Adaptation, and M@RT 45

derived as a witness in the case the property is violated. Accordingly, also for
graph transformation systems approaches for model checking exist [72].

In [49] we used the particular tool GROOVE [88,73]. To be able to apply
model checking GROOVE requires a GTS according to Def. 13 including an
initial graph and supports the dangling-edge-collecting approach21 (see Def. 10).
Moreover, GROOVE allows for generating a minimal labeled transition system
in the sense of Def. 15. Atomic properties can be expressed in GROOVE in form
of side-effect free rules that are checked for applicability on a given graph state.
This conforms to properties as given in Def. 7 consisting of a required pattern,
where the pattern consists of the LHS of the side-effect free rule. If the required
pattern can be matched (see Def. 6) in a specific graph state, the property
represented by the rule is fulfilled for that state. These atomic properties can
then be used inside a Computation-Tree-Logic (CTL) formula. GROOVE then
allows automatically exploring the reachable states via the transition relation
of the given GTS as well as automatically evaluating the given CTL formulae.
In case an example respectively counterexample in form of a witness can be
found, GROOVE provides an alternating sequence of states and rule applications
leading to or directly representing the witness.

The Henshin tool [43] also provides model checking capabilities for graph
transformation systems. Henshin is based on typed graphs and supports both the
dangling-edge-collecting approach and the conservative approach. State spaces
generated by Henshin can be checked for given properties. Model checking is
supported using external, third party verification tools, such as mCRL2 and
CADP.22 Similarly to the approach implemented in GROOVE, the specification
of atomic properties is based on matched graph patterns.

Example 27 (RailCab - SP - Model Checking for Structural Dynamics). In [49]
we used the GTS model checker GROOVE [88] and compared the results of GROOVE
with those of the approach described in Section 4.2. We have further investigated the
complexity of the different analysis methods. To be able to do so the rules describing the
application example of the Railcab system depicted in Fig. 22(d), 22(b) and 22(c) be-
neath others have been imported into GROOVE. We analyzed our model in GROOVE,
using the forbidden pattern collision depicted in Fig. 22(e). The outcome of the investi-
gation was that models of moderate size can be effectively analyzed and accordingly we
have been able to apply model checking in GROOVE on systems with smaller topolo-
gies. However, experiments on a Railcab system with more than 15 tracks turned out
to be to complex and leading to a large state space for which it was rarely possible to
apply model checking using GROOVE in a efficient way. For more details about the
used graph rules, the analyzed properties as well as the evaluation results concerning
the complexity of the different approaches compare [49].

21 Note that given a type graph additional NACs can be derived such that the adjusted
rule in the dangling-edge-collecting approach behaves like the original one in the
conservative approach. The additional NACs simply ensure that no dangling edges
can exist if the rule is applicable.

22 See http://www.mcrl2.org and http://www.inrialpes.fr/vasy/cadp/ for more
information about mCRL2 and CADP.
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5 Discussion

In order to discuss the benefits of graph transformations for MDE, the modeling
of structure dynamics, and models at runtime, we will at first look at the options
that exist for each of the areas and finally look into their combination.

In MDE, the models are not only a byproduct but become the core carrier of
the higher-level knowledge about the software. Model transformation to partially
generate subsequent models and code generation result in a situation where, if
properly done, the code and the models remain consistent. Thus, required classi-
cal adaptation steps can take advantage of the up-to-date higher-level knowledge
about the software. Therefore, MDE promises to better support the long-term
evolution of the software. Today, the principles of MDE are to employ meta-
models to define the modeling languages and to use related techniques for model
operations such as model transformations or consistency checks (e.g., QVT, ATL,
or OCL) that take advantage of an underlying meta-meta-model and consider-
ably ease to develop the required model operations. We presented in particular
graph transformation based techniques such as SPs for model manipulation and
checking models in Section 3.2 and on model transformation and incremental
model synchronization based on TGGs in Section 3.3.

Besides the evolution of the software, also the co-adaptation resp. language
evolution is a fact that matters for the long-term evolution (cf. [89,90]). Typically,
this leads to a need for transformations to adjust the models but also higher-
order transformations to adjust model operation (e.g., model transformations).
Due to the employed interpreter for SPs [45] presented in Section 3.2 that is
also used as a basis for executing the derived TGG rules, our techniques support
higher order transformations of the transformation models at runtime.

Today, most existing work on (semi-)automatic correctness verification of
model operations only permits to prove that a particular result of a model trans-
formation is correct with respect to the input [91,92]. In our own work partially
presented in Section 4 we were in contrast able to derive guarantees that hold for
all possible results of a model operation with respect to the input. We presented
an approach employing a theorem prover for model transformations with TGGs
in [76] that show behavioral equivalence and an automated verification technique
for refactorings with SPs [84] that permit to guarantee that required properties
are preserved by the refactorings. [93] approach the first problem by compar-
ing two proof techniques with respect to chances of successful mechanization.
[94] tackles the problem of verifying required properties for model transforma-
tions specified with TGGs by proposing a method to derive OCL invariants from
TGGs in order to enable their automated verification and analysis.

Structure dynamics is required to realize complex capabilities such as self-
healing, self-configuring etc. on top of related basic capabilities such as self-
awareness and context-awareness. A proper combination of the higher level ca-
pabilities then finally leads to the capability of self-managing or more general
self-adaptive software [12,21,18]. Suggestions for the construction of such sys-
tem include frameworks like the Rainbow approach [22] that addresses the con-
struction of self-adaptive software systems by providing reusable elements for
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the adaptation engine in order to reduce development efforts. The MUSIC ap-
proach [95], the context-aware and quality of service aware architectural vari-
ability of the core function is specified by models during development. Likewise,
in [96] modeling and code generation are employed to simplify the development
of self-adaptive software, while any further changes to the generated software
requires re-modeling and re-generation steps.

Our own work has resulted in the Mechatronic UML approach [97] for the
model-driven development of self-optimizing embedded real-time systems. It em-
ploys graph transformation systems and hybrid statecharts to reconfigure hier-
archical component-based systems. For the ad hoc formation of collaborations
between mechatronic systems (e.g., vehicles that form convoys) or other forms
of structural dynamism graph transformation systems are employed [49,81,98]
including also first ideas for exchanging models at runtime [99].

A first direction for assurance that is employed for self-adaptive systems is
runtime verification [100]. Available techniques for the assurance of self-adaptive
systems using model checking either restrict their focus to separate adaptation
steps [101,102,103] or assume a decoupling of the adaptation decision from the
local functional state [104] in order to achieve scalability. More fundamental work
is studying properties of graph transformation systems [105] for characteristics
which must hold for self-healing, a special case of self-adaptive behavior.

For our Mechatronic UML approach and and ad hoc real-time collaborations
between multiple complex subsystems a compositional verification approach has
been developed [106]. For the collaboration building and its structural dynamism,
a fully automatic checker for inductive invariants of graph transformation sys-
tems [49] presented in Section 4.2 and an extension supporting timed graph
transformation [81] has been developed. Finally, the combination of the verifi-
cation results for inductive invariants for graph transformation models and the
compositional verification of the collaboration of multiple roles represented by
real-time statecharts has been presented in [98]. These results have also led to
studies for self-adaptive software in general and first general results for modeling
and verifying them [107]. Furthermore, also an incremental invariant checker [82]
has been developed which allows to reduce the effort for performing checks when
the behavior has changed at runtime.

There is a lack of work on systematically developing causal connections be-
tween a runtime model and the running system to reflect changes of the system
in the model, and changes of the model in the system. Usually, manually devel-
oped solutions are employed, or some work tries to simplify the development by
increasing the level of automation for implementing a causal connection [108].
Most approaches focus on having appropriate abstractions (runtime models) of
a running system and on connecting a model and a system. Thereby, monitor-
ing the system and effecting adaptations to the system are supported. However,
the approaches do not completely work incrementally, like [109,110,111] that en-
tirely compares two models to identify the changes to be executed. However, the
available techniques are often very demanding and thus result in a too high over-
head while being not responsive enough (cf. need for an incremental handling
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at runtime in general as discussed in the sidebar of [24]). In our work [62,63,64],
the monitoring [63] and effecting [64] stages of the feedback loop can handle the
causal connection including an abstraction step automatically. Furthermore, our
own model synchronization techniques [58], that we employ at runtime, works
incrementally as outlined in Section 3.2 and thus enable responsive solutions.

Existing approaches address assurances through validation and verification
of adaptation mechanisms, like testing conceivable adaptation results at the
level of the runtime model before executing it to the running system. First ap-
proaches employing certain techniques have been proposed for constraint check-
ing [110,111], simulation [112], and model checking [113]. However, there is a
lack of work on assurances for the runtime models themselves as well as for em-
ploying incremental MDE techniques working on these models. We think that
the in Section 4 presented results provide a solid basis for a more subtantial
coverage of this problem.

As we pointed out in [26], a solution is required where adaptation steps in
the construction environment and in the runtime environment happen in an
integrated manner. Consequently, the integrated co-existence of self-adaptation
and classical adaptation including dependencies between them also have to be
addressed. In this direction, only few preliminary ideas exist [110] and a more
thorough approach towards integrating these ideas is required and we think
that due to the in this paper outlined support for the different cases graph
transformations are a good candidate as a foundation for such efforts.

6 Conclusion

As outlined in the paper graph transformations provide a solid basis for related
techniques such as SP, Story Diagrams and TGGs such that we cannot only ad-
dress MDE, structural dynamics as well as models at runtime using these tech-
niques but also analyze important properties for the resulting systems. Due to
the fact that all the developed techniques share the underlying concepts of graph
transformations, they do not only provide basic building blocks for MDE, sys-
tems with structural dynamics, and models at runtime, but furthermore provide
a basis to integrate these directions into a single coherent approach. Therefore,
graph transformations seem to be a good candidate to provide a solid foundation
for approaching the evolution challenge.
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69. Engels, G., Güldali, B., Lohmann, M.: Towards Model-Driven Unit Testing. In
Kühne, T., ed.: Models in Software Engineering. Volume 4364 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg (2007) 182–192
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72. Rensink, A., Schmidt, A., Varró, D.: Model checking graph transformations:
A comparison of two approaches. In Ehrig, H., Engels, G., Parise-Presicce, F.,
Rozenberg, G., eds.: International Conference on Graph Transformations (ICGT).
Volume 3256 of Lecture Notes in Computer Science., Berlin, Springer Verlag
(2004) 226–241

73. Kastenberg, H., Rensink, A.: Model checking dynamic states in groove. In Val-
mari, A., ed.: Model Checking Software (SPIN), Vienna, Austria. Volume 3925 of
Lecture Notes in Computer Science., Berlin, Springer-Verlag (2006) 299–305

74. Strecker, M.: Modeling and Verifying Graph Transformations in Proof Assis-
tants. In Mackie, I., Plump, D., eds.: International Workshop on Computing with
Terms and Graphs (TERMGRAPH), Braga/Portugal, 31/03/2007. Volume 203
of Electronic Notes in Theoretical Computer Science., http://www.elsevier.com,
Elsevier Science (2008) 135–148

75. Pennemann, K.H.: Resolution-like theorem proving for high-level conditions. In:
Graph Transformations (ICGT’08). Volume 5214 of Lecture Notes in Computer
Science., Springer-Verlag (2008) 289–304

76. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards Verified
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