
Comprehensive support for management of Enterprise Applications

Jens Bruhn, Christian Niklaus, Thomas Vogel, and Guido Wirtz
Distributed and Mobile Systems Group

Otto-Friedrich-University Bamberg
Feldkirchenstrasse 21, 96052 Bamberg, GERMANY

jens.bruhn@uni-bamberg.de

Abstract

During the last decades, performance of available hard-
ware resources constantly increased [15], which enabled
the assignment of more and more complex tasks to soft-
ware systems. As one consequence, the inherent complex-
ity of these software systems also increases, influencing
all phases of their lifecycle. The concept of Component
Orientation (CO) [17] allows the development of software
systems in a modular way through functional decompo-
sition. Administration and maintenance of software sys-
tems are addressed by the vision of Autonomic Comput-
ing (AC) [11], based on the idea to assign low level ad-
ministrative tasks to the system itself. With mKernel an
AC-infrastructure for component oriented enterprise appli-
cations is provided, based on the Enterprise Java Beans
(EJB) standard, version 3.0 [5]. In contrast to existing ap-
proaches, the main advantage of mKernel lies within its
standard compliance, not prescribing any additional guide-
lines for the development of applications to enable their
autonomous management. It is realized as plugin for an
existing container, not requiring any adjustment of the un-
derlying implementation. Moreover, it provides a very fine
grained interface for inspection and manipulation of the
managed system, taking the specifics of the supported stan-
dard into account. Within this paper we present the oppor-
tunities provided by mKernel to control a managed system.

1 Introduction

During the last decades, the rapidly increasing perfor-
mance of available hardware resources enabled the assign-
ment of more and more complex tasks to software systems
[15]. New concepts for addressing the resulting inherent
complexity of these systems are needed badly. Otherwise,
complexity will become the major burden, hindering the
further development instead of missing hardware perfor-

mance [11]. Enterprise Applications (EA) are a family of
highly complex software systems for supporting the busi-
ness of companies. Their complexity results from the dif-
ferent aspects coped with in combination with the manifold
interrelations among them, like e.g. accounting and ware-
housing. Moreover, EAs are confronted with more or less
regular demands for re-configuration, e.g. to support new
business areas of the operating company. Changes in the
environment of a system might ask for reorganization, e.g.
to react to changing workload. Additionally, if services are
provided to external clients, EAs must be protected against
malicious interactions or attacks. Over time, types of threats
will probably change which demands for adjusting defense
strategies. Availability of EAs, however, is a critical success
factor for the operating company. If an EA becomes un-
available – even for a short timespan – the company might
miss business opportunities. The potential loss of reputation
and trust can be estimated of being even worse. Against this
background, even the temporary shutdown of parts of the
system for a planned re-configuration would be very costly
and seems to be unacceptable. Consequently, the support
for seamless re-configuration is of very high value.

With the concept of Component Orientation (CO) [17]
a paradigm for the development of modular software sys-
tems is provided, which addresses complexity during devel-
opment and deployment. The Enterprise Java Beans stan-
dard (EJB), version 3.0, [5] specifies a component standard
for the realization of EAs on top of the Java programming
language. It defines, amongst others, a sound component
model and includes different facilities simplifying the de-
velopment of EAs.

For system management during runtime, support is still
poor regarding the provision of high level functions, ab-
stracting from fine grained configuration tasks. Here, the
vision of Autonomic Computing (AC) [9, 11, 13] can help.
It is based on the idea to assign low level tasks to the man-
aged system itself to disburden human administrators. As-
pects addressed might reach from short term reactions to
concrete situations, like e.g. the rollback of a transaction

755© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new 
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 
DOI: https://doi.org/10.1109/AICCSA.2008.4493612



to confine the effects of an error, to planning and execution
of re-configurations to better fulfill the high level goals of
the system. In this context the system acts autonomous re-
garding taking actions for adjustment. In combination, CO
and AC can establish a promising foundation for addressing
complexity during the whole lifecycle of software systems.
CO leads to the development and initial configuration of
modular software systems. Thus, it lays a sound foundation
for realizing the vision of AC based on clearly distinguish-
able building blocks. In this context, the provision of solu-
tions, compliant with existing component standards, is re-
quired, to support their integration. They should be realized
generically, avoiding the need to provide specific solutions
for different AC-domains.

With mKernel a generic infrastructure for supporting AC
is realized. It is based on the broadly accepted compo-
nent standard EJB 3.0. Because of being platform spe-
cific, a comprehensive interface could be realized, taking
the specifics of the underlying standard into account. There-
fore, a very fine grained management of EAs is possible,
being a promising foundation for higher level functions of
autonomous management. mKernel is realized as plugin for
an existing EJB container, not requiring any adjustment of
its implementation. Moreover, developers of EAs do not
have to follow any guidelines beyond those of the EJB stan-
dard. In combination, this allows a seamless integration of
CO with the vision of AC. This paper discusses the support
of mKernel for the different phases of the deployment life-
cycle of EJB based systems.

The remainder of this paper is structured as follows:
Section 2 discusses related work. Section 3 gives back-
ground on CO, AC and mKernel. Afterwards, section 4
presents the view on an EA as provided by mKernel. Subse-
quently, in section 5 the phases of the deployment lifecycle
are considered regarding opportunities for inspection and
re-configuration through mKernel. Finally, section 6 gives
a conclusion and an outlook on ongoing and future work.

2 Related work

mKernel was developed as generic infrastructure, en-
abling the management of component based systems fol-
lowing the EJB standard, version 3.0. It explicitly excludes
the development phase of applications and does not require
the adherence to specific guidelines beyond the EJB stan-
dard from developers. Moreover, it does not demand for
the specification and integration of AC aspects into the ap-
plication during development, like e.g. in [18]. In con-
trast, it supports a clear separation of the original applica-
tion logic from management aspects and allows their seam-
less integration and removal during runtime. Compared to
existing approaches for AC-infrastructures [8, 10], mKer-
nel does not address the management of different types of

resources. Therefore, it is possible to provide a very fine-
grained and rich set of sensors and effectors for a specific
domain, namely EJB. In contrast to existing solutions for
the Java Enterprise Edition like [2, 3], mKernel does not
only focus on the deployment level of application systems.
It also addresses aspects of types of components, as well
as the instance level regarding interactions during runtime.
mKernel was designed as plugin inside an existing EJB con-
tainer, solely based on the EJB standard. It does neither in-
clude an implementation of an EJB container, like [12], nor
require any adjustments of the implementation of an exist-
ing container.

3 Background

As foundation for the further discussion, this section pro-
vides a short overview over the basic building blocks of a
component based system. In this context, relations to the
EJB standard are pointed out. Afterwards, the central con-
cept of AC, namely the so called Control Loop, is presented.
Finally, it is discussed how mKernel is positioned for sup-
porting AC in a component based environment.

3.1 Component Orientation and EJB

In the context of CO, software systems are constructed
out of modules, called Components, which provide their en-
capsulated functionality through well defined Interfaces to
their environment. For fulfilling their tasks, they can make
use of interfaces provided by other components. Here, the
declared requirement of an implementation of an interface
is called Receptacle. Regarding the provided and required
functionality, a component based system can consequently
be established through connection of interfaces and recepta-
cles of the constituting components. The EJB standard fol-
lows this concept by providing a component model based on
so called Enterprise Beans – or Beans for short. There are
two different types considered, namely Session Beans and
Message Driven Beans. For the former type, interfaces can
be specified for accessing the encapsulated functionality.
The latter type is intended to be used for asynchronous inter-
action through message passing. In the following, the terms
session bean and message driven bean are used if the con-
crete type is considered while the term bean is used if the
corresponding statement holds for both types. Receptacles
may be declared for beans through EJB References which
can be connected to interfaces of session beans. Beans may
be configured through so called Simple Environment Entries
which can be interpreted as a kind of properties. These are
set during deployment without the need to access the source
code of the affected bean. During deployment, each bean is
bound to a certain mapped name which can be used to look

756



up its instances. As unit of deployment, so called EJB Mod-
ules are considered in the standard. They consist, amongst
others, of a collection of beans and a Deployment Descrip-
tor (DD), used for configuration purposes. For EJB, the de-
ployment stage of the bean lifecycle is the latest time when
configuration is possible. Moreover, supervision of runtime
behavior of bean instances is not addressed. Beyond the
basic component model, the EJB standard covers the defi-
nition of different facilities, e.g. for naming or persistence
management. These aspects and a discussion of how the
behavior of beans can be controlled, are left out for brevity.

3.2 Autonomic Computing

The view on a managed system in the context of AC is
presented in figure 1.

Monitoring

Analysis Planning

Execution

Know-

ledge

Sensor Effector

Application

Management Layer

Managed Layer

Environment

Figure 1. View on a managed system

It basically consists of three main areas. The first area is
called Managed Layer. It represents the managed applica-
tion itself, including those parts of the system providing the
original Application. The Management Layer is responsi-
ble for administrating the Managed Layer. In the context
of CO, this mainly covers aspects of analyzing the structure
and behavior of the interconnected components, as well as
the initiation of appropriate actions for system adjustment,
e.g. manipulating the connection structure. Finally, the En-
vironment includes entities directly or indirectly influencing
the software system but not being part of it. The aspects
of autonomous management of application systems are dis-
cussed in literature in the context of the self -property of au-
tonomic systems [14, 16], consisting of self-configuration,
self-optimization, self-protection and self-healing. They ba-
sically refer to the main properties of autonomic systems as
stated in [11] which is fundamental for the vision of AC.

For performing the autonomous management of a soft-
ware system, the vision of AC is based on the concept of
the Control Loop [6]. This loop consists of four main stages
as shown in figure 1 inside the Management Layer. The first

stage (Monitoring) addresses information collection, laying
the foundation for the subsequent stages. Because of the
various aspects of autonomous management, there might be
different kinds of information relevant regarding the man-
aged system itself as well as its environment. The figure
does not imply any type of information provision. There
are aspects conceivable where a push oriented approach is
appropriate, e.g. to inform the Managed Layer about the oc-
currence of an event, while others demand for pull oriented
information collection, e.g. for structural inspection. The
collected information is processed by the Analysis stage.
It is responsible for identification of situations demanding
for reaction of the Management Layer. These might span
from identifying a single exception, directly provided by the
Monitoring stage, to complex evaluation and aggregation
tasks, e.g. deducing workload shifts or identifying attack
patterns. If the need for re-configuration is identified, the
Planning stage is addressed. It is responsible for the gen-
eration of reaction plans, leading to better fulfillment of the
overall goals of the managed system. A broad variety of re-
actions is conceivable, spanning from fine grained and iso-
lated reactions, e.g. preventing a malicious call from reach-
ing the managed application, to complex re-configurations,
including a re-organization of the interconnection structure.
Finally, the generated plans must be realized, which is the
task of the Execution stage. Internally, the different stages
might make use of different types of internal Knowledge,
e.g. for validation of alternatives during Planning against
the overall goals. The control loop concept does not imply
an unidirectional flow through its stages. It might e.g. be
necessary to request additional information from the Mon-
itoring stage during Planning or to perform an Analysis of
the effects of re-configuration during Execution.

3.3 mKernel overview

With the mKernel system [4], a generic infrastructure
for the Managed Layer of EJB based systems is provided.
For being manageable by the Management Layer, the sys-
tem provides appropriate facilities for information discov-
ery and manipulation. Those are included in figure 1 as
Sensors and Effectors. Consequently, the provided facil-
ities determine the opportunities for autonomous manage-
ment. While Sensors set up the space for system obser-
vation, Effectors define options for re-configuration. The
internals of mKernel are discussed in [4] regarding their re-
alization. mKernel basically consists of a preprocessing tool
for EJB modules, a set of enterprise beans realizing differ-
ent facilities for introspection and re-configuration, and an
Application Programming Interface (API) providing com-
prehensive Sensors and Effectors while abstracting from the
realizing facilities. An overview of the constituting parts of
mKernel is provided in figure 2.

757



EJB Container

Repository InterceptionEvents Connection

Managed Application System

Tracking

EJB module

EJBEJBEJBEJB DD

EJB module

EJBEJBEJBEJB DD

EJB module

EJBEJBEJBEJB DD

EJB module

EJBEJBEJBEJB DD
managizer

API (Sensors and Effectors)

Figure 2. Parts of the mKernel system

The preprocessing tool, called managizer, accepts a stan-
dard compliant EJB module and enriches it for autonomous
management. Preprocessing is executed without any need
for additional information provision or intervention. Devel-
opers do not even have to consider the management of their
beans during implementation or follow special guidelines
for allowing manageability, because the managizer solely
relies on requirements of the EJB standard for analysis and
extension of EJB modules. As result, a standard compliant
EJB module is generated, ready for integration into an m-
Kernel managed system. A set of beans establishes the basic
infrastructure for autonomous management. They were re-
alized based on the Glassfish Application Server [1] which
provides, amongst others, a standard compliant EJB con-
tainer. The beans can be used without any extension of the
application server implementation being necessary. This in-
frastructure can be divided into five major facilities:
Repository: The repository facility represents the interface
for integration and removal of EJB modules. It accepts pre-
processed modules and constructs inspectable representa-
tions of them. Modules can be configured and deployed into
the managed container. If not needed anymore, the reposi-
tory also allows their undeployment and complete removal.
Events: For observation of a system, the event facility
provides push oriented sensors. Aspects addressed reach
from the integration and removal of EJB archives performed
through the repository facility, over events for state tran-
sition of EJB modules during their deployment lifecycle
down to lifecycle observation of bean instances.
Tracking: Based on the events facility, the tracking facility
analyzes behavioral aspects of a managed system. It cap-
tures events and generates a comprehensive image regard-
ing the lifecycle of bean instances and interactions among
them, including the opportunity to analyze call chains.
Connection: This facility provides effectors for re-
configuration of connections among deployed beans. It al-
lows for connecting declared receptacles of beans to inter-
faces of session beans, also covering Dependency Injection.
Moreover, it is possible to re-route names of the container
managed namespace to new targets.

Interception: The EJB standard includes an interception
facility. Its configuration for beans is limited to the deploy-
ment time. In contrast, this facility of mKernel provides
the opportunity to re-route method calls arriving at bean in-
stances through interceptors realized as session beans. The
set of these session beans can be manipulated at any given
time during the deployment lifecycle of the affected beans.

4 System Model

According to the EJB standard, instances of session
beans can directly be referenced by clients. In case a certain
EJB module should be replaced by another one, the original
module must be undeployedfirst. Afterwards, the new mod-
ule can be deployed into the container, binding the included
session beans to the corresponding mapped names of the
replaced session beans. This leads to situations where the
affected mapped names are temporary unbound. To allow
a seamless re-configuration, mKernel divides the EJB mod-
ules, deployed in a container, into two layers. The Access
Layer consists of modules, providing beans directly acces-
sible by external clients. They act as proxies, provide no
application logic but only forward method invocations to
beans of the second layer, the Managed Layer. Those are
the providers of the original application logic. In case a
module of the Managed Layer should be replaced, the new
module can be deployed into the target container, binding
the included beans to arbitrary mapped names and perform-
ing all configuration. Afterwards, the affected proxies of
the Access Layer can be instructed to forward requests to
instances of the replacing session beans. Finally, the re-
placed module can be removed from the system. The same
holds for re-configurations affecting the Managed Layer in-
ternally, because mKernel has full control over connection
establishment among managed beans. Through the separa-
tion of layers, mKernel provides the opportunity to seam-
lessly re-configure the managed system. Additionally, mK-
ernel provides two types of re-routing. The default policy
of re-routing is to also replace established connections. It
might be feasible, if the re-configuration should immedi-
ately take effect. If lazy re-routing is performed, existing
connections are used further on. Only for newly established
connections, the new targets are chosen. This type of re-
routing does not loose state and provides the opportunity to
end up existing sessions.

Elements of a system are considered at three different
levels, namely Type Level, Deployment Level and Instance
Level. The API of mKernel provides model based access to
the Managed Layer of a system by means of direct inspec-
tion and manipulation of representations of its elements.
The figures, being part of the following discussion, pro-
vide simplified overviews over the different levels. They
only cover the relevant elements due to clearness reasons.

758



Figure 3. Type Level view

Moreover, they only include state aspects relevant for the
discussion. For the elements at each level, the correspond-
ing elements of the neighboring levels are reachable through
associations which are not depicted in the figures.

4.1 Type Level

The Type Level addresses information regarding types
of constituting elements of a managed system. The cov-
ered elements correspond to artifacts being the result of
development. Figure 3 presents an overview over the
Type Level model as provided by the API. After finish-
ing development of a component, the corresponding Java
Archive (JAR) is – after being preprocessed by the mana-
gizer – integrated into an mKernel based system through
the API. It is represented as EjbModuleType contain-
ing at least one EjbType which correspond to a class-
file of a single bean. Due to the fact that one and the
same class file can be integrated into more than one archive,
the corresponding cardinality is 1..*. For indicating op-
portunities to configure an EjbType during deployment
through parameters, the SimpleEnvironmentEntry-
Types are used, covering all necessary information. In
line with the EJB standard, an EjbType can either be
a SessionBeanType or a MessageDrivenBean-
Type. For both types, needed references to implementa-
tions of certain JavaInterfaceTypes can be declared
indirectly through EjbReferenceTypes. At Type Level,
those are used to indicate configuration demand in case
a bean of the corresponding type is planned to be used
within a system. SessionBeanTypes provide their func-
tionality through EjbInterfaceTypes based on Java-
InterfaceTypes, too. Note that JavaInterface-
Types are only considered by mKernel if they are con-
nected to at least one EjbReferenceType or Ejb-
InterfaceType. For identification of EjbModule-
Types, EjbTypes and JavaInterfaceTypes, hash
values of the underlying files are used. Through this pro-
ceeding, errors based on naming conflicts are avoided, e.g.
if the same name for a bean class is used for more than one
implementation.

4.2 Deployment Level

While options for configuration are addressed at Type
Level, the Deployment Level concentrates on the concrete
configuration of the managed system. The corresponding
elements of the API are shown in figure 4. An EjbModule
represents a deployed instance of an EjbModuleType
from Type Level. The included EnterpriseBeans, and
the corresponding specializations respectively, are acces-
sible through a mappedName inside the namespace of
the underlying container. Concrete values of parameters
of beans are accessible through SimpleEnvironment-
Entrys. The association between EjbInterface and
EjbReference represents a concrete binding between
the requestor of a certain JavaInterfaceType and a
provider. At Type Level it can be evaluated, if an Ejb-
Interface is matching the demand of a certain Ejb-
Reference. Not every provided interface must actually
be used. The other way round, there need not exist a con-
nection to an interface for each reference, although this
might be an indicator for a faulty configuration. Note that at
Deployment Level each bean is bound to exactly one Ejb-
Module of which it is an integral part. Nevertheless, it is
possible, that a certain EjbModuleType is deployedmore
than once or that an EjbType is deployed as part of differ-
ent EjbModules. During its lifecycle an EjbModule can
pass through different deployment states:
EXISTS: The module is not integrated into the container,
but only exists as representation inside mKernel.
STOPPED: The module is deployed in the underlying con-
tainer, but the constituting beans are not yet accessible.
STARTED: The included beans are accessible for clients.
While the last two states are deduced from the JSR88 [7]
which builds the technical foundation for deployment level
configuration performed by mKernel, the first state is spe-
cial to mKernel for provision of additional configuration op-
tions as described in section 5.

Each EjbReference has a corresponding state for
indicating its usability:
DISCONNECTED: A disconnected reference is not associ-
ated with an EjbInterface.

759



Figure 4. Deployment Level view

CONNECTED: This state is given, if the reference is associ-
ated with an EjbInterface, but the corresponding ses-
sion bean can not be used properly. This might e.g. be the
case, if it is itself missing connections for references.
ACTIVATABLE: An activatable reference is associated
with an EjbInterface, and the EjbModule, the ref-
erence belongs to, is in state STOPPED or STARTED.
Additionally, all EjbReferences of the session bean
belonging to the associated interface are either in state
ACTIVATABLE or ACCESSIBLE recursively, if any. Fi-
nally, at least one module being part of the transitive clo-
sure, given through the reference-interface-connections, is
in state STOPPED. Consequently, the usability of the corre-
sponding reference can be established solely through start-
ing a collection of modules.
ACCESSIBLE: For this state the same conditions hold as
for ACTIVATABLE, but all affected modules are in state
STARTED. The reference can be used directly.

Each enterprise bean provides an aggregated
referenceState which is derived from the states
of all of its required references. According to the order
of reference states from above, each state is analyzed
if at least one reference is in it. If this is the case, the
corresponding state is given. Consequently, the aggregated
state indicates the most evident need for action for making
the corresponding bean usable.

Analogue to EjbReferences, each EjbInterface
has a corresponding referencing state:
NOT REFERENCED: No EjbReference is connected to
the interface. Regarding the interface, changing the state
of the corresponding module would not have any effects on
other modules.
PASSIVELY REFERENCED: Only references are con-
nected to the interface of which the corresponding mod-
ules are in state STOPPED. Changing the state of the mod-
ule, the interface belongs to, would only have indirect ef-
fects, e.g. at least one EjbReference would become

DISCONNECTED in case of removal. Because of the af-
fected modules not being in state STARTED, this would not
have any effect on accessible beans.
REFERENCED: At least one reference is connected to the
interface of which the corresponding module is in state
STARTED. Therefore, a state transition of the module, the
considered interface belongs to, would have direct impact
on beans accessible by clients. The same holds for changes
regarding the references of the corresponding session bean.

Session beans grant access to a derived interface-
State. It represents an aggregated state over all pro-
vided interfaces. Its calculation is analogue to the way the
referenceState of beans is derived. It allows for anal-
ysis regarding the most evident impact of changes affect-
ing the session bean either through state transition of the
corresponding module or through changes of references the
session bean requires.

4.3 Instance Level

At Instance Level the instances of beans are considered
regarding interactions among each other. Figure 5 covers
the relevant elements. An EnterpriseBeanInstance
represents a concrete instance of an EnterpriseBean
from the Deployment Level. Interactions bean instances
take part in, are represented by Calls which correspond
to method invocations. State transitions during the lifecy-
cle of a bean instance are accompanied by Lifecycle-
Calls performed by the container. Therefore, the lifecy-
cle state of an instance can be deduced from the ob-
served LifecycleCalls. For detailed information re-
garding the different states and the corresponding transi-
tions, we refer to [5]. The arrival of a message at a
MessageDrivenBeanInstance is represented by an
instance of MessageCall, while BusinessCalls rep-
resent the invocation of a certain method on a Session-
BeanInstance. During the execution of an arbitrary

760



Figure 5. Instance Level view

Call, BusinessCalls on SessionBeanInstances
might be invoked. This is represented through the corre-
sponding association. In this context, the invocation of a
sub call was performed during the execution of a super
call. This leads to the opportunity to analyze call chains in-
side the Managed Layer, spanning multiple bean instances.
Moreover, all calls on a given instance are ordered accord-
ing to their arrival. This allows for inspection of the his-
tory of calls executed by a certain instance. In combination,
complex interaction scenarios can be analyzed through nav-
igation along call chains as well as through the call histories
of the participating instances. Note that bean instances are
non-reentrant by definition. Additionally, thread manage-
ment for beans is prohibited by the EJB standard. There-
fore, the aforementioned analysis is facilitated.

5 Lifecycle Administration

At Type Level, EjbModuleTypes can be created
through uploading the corresponding archive through the
API. A module type can only be removed from the system,
if there exists no EjbModule derived from the type. This
is because otherwise, there would be a missing link to the
type of a considered module and the included elements. At
Deployment Level, an EjbModule can be created from an
EjbModuleType. Based on the state of its lifecycle, dif-
ferent operations can be performed.
As discussed in section 4, a module in state EXISTS is not
deployed in the target container. For the included beans it
is possible to set mapped names and values for simple en-
vironment entries. An existing module can either be de-
ployed into the container, transferring it to state STOPPED,
or it can be removed from the system. Summarizing, this
state allows for configuration of aspects which can not be
changed after deployment.
For beans being part of a STOPPED or STARTED module,
it is possible to set targets for required references. This is
equivalent to integrating the module into the system archi-
tecture. References can only be connected to beans of mod-
ules which are either in state STOPPED or STARTED, too.

Additionally, mKernel can be instructed to trace method in-
vocations on instances of a particular bean or of all beans of
a certain module. As result, Instance Level inspection be-
comes possible. Moreover, lifecycle events are distributed
asynchronously over a JMS topic, making them observable
in a push-oriented fashion. A stopped module can be trans-
ferred to state EXISTS or STARTED while a started module
can only be transferred to state STOPPED.

In addition to lifecycle based events at Instance Level, it
is also possible to catch events for state transitions of ele-
ments of the other levels. At Type Level the upload or re-
moval of EjbModuleTypes are published through a well
known JMS topic, e.g. to allow monitoring and analysis in-
stances respectively, to identify new opportunities for con-
figuration, or to trigger the revision of information kept out-
side of mKernel. Moreover, each state transition of an Ejb-
Module at Deployment Level is also published via JMS.
This provides managing instances with the opportunity to
observe configuration changes or to supervise the execution
of re-configuration.

It is possible to register mKernel based interceptors for
instances of a particular bean or for all beans of a cer-
tain module if the corresponding module is either in state
STOPPED or STARTED. These can engage in the control
flow of method invocations. Therefore, they are equipped
with a rich set of opportunities, e.g. to manipulate param-
eters and return values, to initiate a rollback of a transac-
tion, or to avoid the call from being executed. To intercept
method calls, a special interface must be implemented as
session bean by the interceptor provider. Afterwards, the
session bean must be deployed in the same container as the
beans of which invocations should be intercepted. It is pos-
sible to intercept methods before they are reaching the tar-
get instance or after its execution, or both. Additionally,
it is possible to specify if method parameters and return
values should be transferred as part of the interception or
not. This leaves interceptor providers the freedom to pro-
vide specific interceptors for a concrete set of beans or to
implement generic ones. Otherwise, if parameters and re-
turn values are always submitted, the corresponding classes,

761



e.g. for transferred data, for all intercepted methods must be
in the class path of the interceptor.

Inside the source code of beans or attached interceptors
based on the EJB standard, context information can be ob-
tained regarding the current state of method calls, e.g. a
unique identifier for the call. Thus, an entry point to the
mKernel model for a concrete context is provided. This en-
ables the development of applications making use of context
information during the execution of method calls.

6 Conclusion and Future Work

With mKernel, a generic infrastructure for supporting the
autonomous management of EJB based enterprise applica-
tion systems is given. On the one hand, integration of man-
ageability into components is automated by a tool, freeing
developers from the need to address management aspects
during implementation. On the other hand, context infor-
mation from inside the source code of enterprise beans or
interceptors can be obtained. This allows for explicitly con-
sidering management from inside managed entities, if de-
sired. For inspection and manipulation of an application
system, mKernel provides an unified API which represents a
system in a model based fashion while abstracting from the
realizing facilities. A rich set of opportunities for inspec-
tion and manipulation is provided, taking platform specific
aspects of the EJB standard into account.

The view mKernel provides to managing instances fo-
cuses on entities of the Managed Layer, covering structural
and behavioral aspects. While this is sufficient for obtain-
ing information common to the intended application areas,
the provision of a facility to enrich the provided model with
meta data, specific to different contexts, would be desirable.
One advantage would be, to free users from the need to keep
their specific data synchronized with mKernel. To facilitate
the application of mKernel for autonomous management,
additional tools are planned which e.g. allow the automated
execution of the managizer as part of the development pro-
cess. Currently, mKernel is evaluated in a project addressing
self-healing and self-protection of managed systems. Fur-
ther projects are planned to identify potential shortcomings
and desirable extensions.

References

[1] The Glassfish Application Server.
http://glassfish.dev.java.net.

[2] T. Abdellatif and A. Danes. A simple approach to au-
tonomic J2EE servers. In IEEE International Conference
on Self-Organization and Autonomic Systems in Computing
and Communications (SOAS’2006), Erfurt, Germany, 2006.

[3] S. Bouchenak et al. Architecture-Based Autonomous Repair
Management: An Application to J2EE Clusters. In SRDS

’05: Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems (SRDS’05), pages 13–24, Washington,
DC, USA, IEEE Computer Society, 2005.

[4] J. Bruhn and G. Wirtz. mKernel: A manageable kernel
for EJB-based enterprise applications. In Proceedings of
the First International Conference on Autonomic Comput-
ing and Communication Systems (Autonomics 2007), 2007.

[5] L. DeMichiel and M. Keith. JSR 220: Enterprise Jav-
aBeans, Version 3: EJB Core Contracts and Requirements.
http://jcp.org/aboutJava/communityprocess/final/jsr220,
2006.

[6] Y. Diao et al. Self-Managing Systems: A Control Theory
Foundation. In ECBS ’05: Proceedings of the 12th IEEE
International Conference and Workshops on the Engineer-
ing of Computer-Based Systems (ECBS’05), pages 441–448,
Washington, DC, USA, IEEE Computer Society, 2005.

[7] J. Dochez. JSR 88: Java Enterprise Edition 5 Deployment
API Specification, Version 1.2. http://jcp.org/aboutJava/
communityprocess/mrel/jsr088/index.html, 2006.

[8] X. Dong et al. Autonomia: An Autonomic Computing Envi-
ronment. In Proceedings of IEEE International Conference
on Performance, Computing, and Communications (IPCC),
pages 61–68, 2003.

[9] A. G. Ganek and T. A. Corbi. The dawning of the autonomic
computing era. In IBM Systems Journal, volume 42, pages
5–18. IBM, 2003.

[10] D. Garlan et al. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. Computer, vol-
ume 37(10), pages 46–54, 2004.

[11] P. Horn. Autonomic Computing: IBM’s Perspective on the
State of Information Technology.
http://www.research.ibm.com/autonomic/manifesto/
autonomic computing.pdf, IBM Corporation, 2001.

[12] G. Huang, H. Mei, and Q. Xiang Wang. Towards software
architecture at runtime. SIGSOFT Software Engineering
Notes, volume 28(2), page 8, 2003.

[13] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. Computer Magazine, volume 36(1), pages 41–
50, 2003.

[14] P. Lin, A. MacArthur, and J. Leaney. Defining Auto-
nomic Computing: A Software Engineering Perspective. In
ASWEC ’05: Proceedings of the 2005 Australian Software
Engineering Conference (ASWEC’05), pages 88–97, Wash-
ington, DC, USA, IEEE Computer Society, 2005.

[15] G. E. Moore. Cramming more components onto integrated
circuits. Electronics, volume 38(8):114–117, 1965.

[16] R. Sterritt and D. Bustard. Towards an Autonomic Comput-
ing Environment. In DEXA ’03: Proceedings of the 14th
International Workshop on Database and Expert Systems
Applications, page 699, Washington, DC, USA, IEEE Com-
puter Society, 2003.

[17] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, 1999.

[18] J. White, D. C. Schmidt, and A. Gokhale. Simplifying
the Development of Autonomic Enterprise Java Bean Ap-
plications via Model Driven Development. In Proceedings
of the ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS /
UML 2005), 2005.

762


