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1 Time-Independent Coupled Cluster Theory

If the Hamiltonian is independent of time, the corresponding Schrödinger equation is

Ĥ|Ψ〉 = E|Ψ〉 (1)

and the electronic wave function may be conveniently parametrized using the exponential form

|ΨCC〉 = eT̂ |0〉, (2)

where |0〉 is the reference determinant (usually Hartree-Fock), and T̂ is a cluster operator that
generates linear combinations of substituted determinants from |0〉:

T̂ |0〉 =
∑
µ

T̂µ|0〉 =
∑
µ

tµτµ|0〉 =
∑
µ

tµ|µ〉. (3)

where µ denotes sets of singly, doubly, etc. substituted determinants, τµ is a second-quantized
excitation operator, and the corresponding wave function amplitude/coefficient is tµ. Insertion
of Eq. (2) into Eq. (1) gives

ĤeT̂ |0〉 = ECCe
T̂ |0〉, (4)

where ECC is still exact in a complete orbital basis and with untruncated T̂ . In the conventional
coupled cluster method, the energy and wave function ampltidues are obtained by a projective
approach rather than a variational one by multiplying both side by the inverse of the exponential,

e−T̂ ĤeT̂ |0〉 = ECC|0〉, (5)

and projecting onto the reference determinant,

ECC = 〈0|e−T̂ ĤeT̂ |0〉, (6)

or substituted determinants, viz.
0 = 〈µ|e−T̂ ĤeT̂ |0〉, (7)

where both equations require that the Slater determinants form an orthonormal set. The coupled
cluster equations are typically expressed in terms of the non-Hermitian similarity transformed
Hamiltonian,

H̄ ≡ e−T̂ ĤeT̂ , (8)
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which may be interpreted as an effective Hamiltonian whose eigenspectrum is identical to the
original Hamiltonian if T̂ remains complete. This operator becomes convenient for several reasons,
not least because it may be expressed as a finite commutator expansion,

H̄ = H +
[
Ĥ, T̂

]
+

1

2

[[
Ĥ, T̂

]
, T̂
]

+ . . . , (9)

which truncates at the quartic terms in T̂ due to the two-electron nature of the electronic
Hamiltonian. In terms of H̄, we obtain the governing equations for the energy

ECC = 〈0|H̄|0〉 (10)

and the cluster amplitudes
0 = 〈µ|H̄|0〉. (11)

An alternative view of the non-variational coupled cluster equations arises through the varia-
tional optimization of Lagrangian function,

LCC = 〈0|H̄|0〉+
∑
µ

λµ〈µ|H̄|0〉, (12)

where the λµ serve as the linear multipliers. If we recognize that

〈µ| = 〈0|τ †µ, (13)

then we may define a cluster de-excitation operator analogous to T̂ as

〈0|Λ̂ =
∑
µ

〈0|Λ̂µ =
∑
µ

〈0|λµτ †µ =
∑
µ

〈µ|λµ. (14)

This allows us to simplify the expression for the Lagrangian to obtain

LCC = 〈0|H̄|0〉+ 〈0|Λ̂H̄|0〉 = 〈0| (1 + Λ) H̄|0〉. (15)

Variational optimization of LCC with respect to the Λ amplitudes gives

0 =
∂LCC

∂λµ
= 〈µ|H̄|0〉, (16)

which identical to the defining equation for the T̂ amplitudes in Eq. (11). Similar optimization
of LCC with respect to the T̂ amplitudes gives

0 =
∂LCC

∂tµ
= 〈0|

(
1 + Λ̂

) [
H̄, τµ

]
|0〉, (17)

which is the defining equation for the Λ̂ amplitudes. The structure of the Lagrangian and the fact
that the similarity transformed Hamiltonian is non-Hermitian leads naturally to the identification
of left-hand coupled cluster wave function,

〈ΨCC| = 〈0|
(

1 + Λ̂
)
e−T̂ , (18)

which is clearly distinct from its right-hand counterpart in Eq. (2).
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2 Time-Dependent Coupled Cluster Theory

A time-dependent Hamiltonian requires us to use the corresponding time-dependent Schrödinger
equation,

Ĥ|Ψ〉 = i
d

dt
|Ψ〉 (atomic units) (19)

As noted above, the coupled-cluster parametrization of the electronic wave function has distinct
right-hand states,

|ΨCC〉 = eT̂ (t)|0〉eiε(t), (20)

and left-hand states
〈ΨCC| = 〈0|

(
1 + Λ̂(t)

)
e−T̂ (t)e−iε(t), (21)

and, as before, the cluster operators generate linear combinations of substituted determinants
from the left,

T̂ (t)|0〉 =
∑
µ

T̂µ(t)|0〉 =
∑
µ

tµ(t)τµ|0〉 =
∑
µ

tµ(t)|µ〉, (22)

or from the right,

〈0|Λ̂(t) = 〈0|
∑
µ

Λ̂µ(t) = 〈0|
∑
µ

λµ(t)τ †µ =
∑
µ

λµ(t)〈µ|, (23)

where the amplitudes, tµ(t) and λµ(t) carry the time dependence. In addition, the wave function
phase, ε(t), depends on time, though for now we take the reference determinant to be time-
independent (no orbital response). This parametrization leads to distinct right- and left-hand
Schrödinger equations, respectively,

ĤeT̂ (t)|0〉eiε(t) = i
d

dt
eT̂ (t)|0〉eiε(t), (24)

and

〈0|
(

1 + Λ̂(t)
)
e−T̂ (t)e−iε(t)Ĥ = −i d

dt
〈0|
(

1 + Λ̂(t)
)
e−T̂ (t)e−iε(t). (25)

Explicit time differentiation of the amplitudes and phase factor leads to

ĤeT̂ |0〉eiε = i
dT̂

dt
eT̂ |0〉eiε − eT̂ |0〉dε

dt
eiε, (26)

for the right-hand Schrödinger equation and

〈0|
(

1 + Λ̂
)
eT̄ e−iεĤ =

− i〈0|dΛ̂

dt
e−T̂ e−iε + i〈0|

(
1 + Λ̂

) dT̂
dt
e−T̂ e−iε − 〈0|

(
1 + Λ̂

)
e−T̂

dε

dt
e−iε (27)

3



for the left-hand, and the notational time dependence has been supressed for simplicity. We may
express these equations in terms of the similarity-transformed Hamiltonian,

H̄ ≡ e−T̂ ĤeT̂ (28)

to obtain

H̄|0〉eiε = i
dT̂

dt
|0〉eiε − |0〉dε

dt
eiε (29)

and

〈0|
(

1 + Λ̂
)
e−iεH̄ = −i〈0|dΛ̂

dt
e−iε + i〈0|

(
1 + Λ̂

) dT̂
dt
e−iε − 〈0|

(
1 + Λ̂

) dε
dt
e−iε. (30)

Furthermore, since the exponential phase factor contains no coordinate dependence, multiplication
by its complex conjugate yields,

H̄|0〉 = i
dT̂

dt
|0〉 − |0〉dε

dt
(31)

and

〈0|
(

1 + Λ̂
)
H̄ = −i〈0|dΛ̂

dt
+ i〈0|

(
1 + Λ̂

) dT̂
dt
− 〈0|

(
1 + Λ̂

) dε
dt
. (32)

Note that the time-derivatives of the cluster operators retain their excitation/de-excitation
character because the differentiation only affects the corresponding amplitudes, i.e.,

dT̂

dt
=
∑
µ

dtµ
dt
τµ and

dΛ̂

dt
=
∑
µ

dλµ
dt

τ †µ. (33)

Furthermore, as long as the orbital space is comprised of disjoint sets of occupied and virtual
orbitals, the cluster operators communte within excitation/de-excitation classes, e.g.,

[
T̂µ, T̂ν

]
= 0,

[
dT̂µ
dt

, T̂ν

]
= 0,

[
Λ̂µ, Λ̂ν

]
= 0, and

[
dΛ̂µ

dt
, Λ̂ν

]
= 0, (34)

but [
Λ̂µ, T̂ν

]
6= 0. (35)

Projecting the right-hand Schrödinger equation, Eq. (31), onto the reference determinant
gives an equation for the time dependence of the phase factor because

〈0|H̄|0〉 = i〈0|dT̂
dt
|0〉 − 〈0|0〉dε

dt
= −dε

dt
, (36)
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where we have taken advantage of the fact that the derivative of T̂ is still an excitation oper-
ator and the set of Slater determinants are orthonormal. Similarly, projection of Eq. (31) onto
substituted determinants yields the time dependence of the T̂ amplitudes:

〈µ|H̄|0〉 = i
dtµ
dt
. (37)

We may obtain corresponding results from the left-hand Schrödinger equation, though to do
so requires some additional manipulation. Projecting Eq. (32) onto the reference determinant
gives

〈0|
(

1 + Λ̂
)
H̄|0〉 = −i〈0|dΛ̂

dt
|0〉+ i〈0|

(
1 + Λ̂

) dT̂
dt
|0〉 − 〈0|

(
1 + Λ̂

) dε
dt
|0〉. (38)

The left-hand side may be manipulated by taking advantage of the fact that the set of Slater
determinants is complete and thus provides an identity

1 = |0〉〈0|+
∑
µ

|µ〉〈µ|. (39)

Inserting this between Λ̂ and Ĥ gives

〈0|
(

1 + Λ̂
)
H̄|0〉 = 〈0|H̄|0〉+ 〈0|Λ̂H̄|0〉

= 〈0|H̄|0〉+ 〈0|Λ̂|0〉〈0|H̄|0〉+
∑
µ

〈0|Λ̂|µ〉〈µ|H̄|0〉

= 〈0|H̄|0〉+ i
∑
µ

〈0|Λ̂|µ〉dtµ
dt
. (40)

where the final step arises due to Eq. (37).

The first term on the right-hand side of Eq. (38) is zero because the derivative of Λ̂ is still
a de-excitation operator, and the Slater determinants form an orthonormal set, while the final
term collapses to only the derviative of the phase factor for similar reasons. This leaves only the
second term of the right-hand side, which may be simplified as follows:

i〈0|
(

1 + Λ̂
) dT̂
dt
|0〉 = i〈0|Λ̂dT̂

dt
|0〉

= i
∑
µ

〈0|Λ̂|µ〉〈µ|dT̂
dt
|0〉

= i
∑
µ

〈0|Λ̂|µ〉dtµ
dt
, (41)

which exactly cancels the corresponding term from the left-hand side. Thus, we find that

〈0|H̄|0〉 = −dε
dt
, (42)
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which is identical to the result obtained from the right-hand Schrödinger equation.

Projecting the left-hand Schrödinger equation onto the substituted determinants requires
similar manipulation,

〈0|
(

1 + Λ̂
)
H̄|µ〉 = −i〈0|dΛ̂

dt
|µ〉+ i〈0|

(
1 + Λ̂

) dT̂
dt
|µ〉 − 〈0|

(
1 + Λ̂

) dε
dt
|µ〉

= −idλµ
dt

+ i〈0|Λ̂dT̂
dt
|µ〉 − 〈0|Λ̂|µ〉dε

dt

= −idλµ
dt

+ i
∑
ν

〈0|Λ̂dtν
dt
τν |µ〉+ 〈0|Λ̂|µ〉〈0|H̄|0〉, (43)

where we have used the definition of the T̂ operator as well as Eq. (36) in the last step. A
simpler, commutator-based expression may be obtained by adding a key term to both sides, viz.

〈0|
(

1 + Λ̂
)
H̄|µ〉 − 〈0| (1 + Λ) τµH̄|0〉 = −idλµ

dt
+ i
∑
ν

〈0|Λ̂dtν
dt
τν |µ〉+ 〈0|Λ̂|µ〉〈0|H̄|0〉

− 〈0| (1 + Λ) τµH̄|0〉. (44)

Then, recognizing that
|µ〉 = τµ|0〉,

[τν , τµ] = 0,

and
〈0|τµH̄|0〉 = 0,

the equation may be further simplified as

〈0|
(

1 + Λ̂
) [
H̄, τµ

]
|0〉 = −idλµ

dt
+
∑
ν

〈0|Λ̂τν |µ〉〈ν|H̄|0〉+ 〈0|Λ̂|µ〉〈0|H̄|0〉 − 〈0|ΛτµH̄|0〉

= −idλµ
dt

+
∑
ν

〈0|Λ̂τµ|ν〉〈ν|H̄|0〉+ 〈0|Λ̂τµ|0〉〈0|H̄|0〉 − 〈0|ΛτµH̄|0〉

= −idλµ
dt

+ 〈0|Λ̂τµH̄|0〉 − 〈0|ΛτµH̄|0〉, (45)

where we have used the resolution of the identity [Eq. (39)] in the last step. Now we can see
that the last two terms on the right-hand side cancel exactly, leaving a simpler final expression,

〈0|
(

1 + Λ̂
) [
H̄, τµ

]
|0〉 = −idλµ

dt
, (46)

which is the time-dependence of the λµ amplitudes.
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3 Coupled Cluster Response Theory

If the Hamiltonian is partitioned into a time-independent zeroth-order part and a time-dependent
perturbation,

Ĥ = Ĥ(0) + Ĥ(1)(t), (47)

where the perturbation is a Fourier transform of a frequency-dependent operator,

Ĥ(1)(t) =

∫ ∞
−∞

dωĤ(1)(ω)e−iωt, (48)

then the cluster operators may be expanded in orders of the perturbation, namely,

T̂ = T̂ (0) + T̂ (1) + T̂ (2) + . . . (49)

and
Λ̂ = Λ̂(0) + Λ̂(1) + Λ̂(2) + . . . (50)

Note that the zeroth-order T̂ (0) and Λ̂(0) amplitudes correspond to the time-independent quantities
described in section 1, whose defining expressions are Eqs. (11) and (17), respectively. Similarity
transformation of the Hamiltonian gives

e−T̂ ĤeT̂ = e−T̂
(0)−T̂ (1)−T̂ (2)−...ĤeT̂

(0)+T̂ (1)+T̂ (2)+... (51)

Collecting the zeroth-order amplitudes together, we may define H̄ in a manner consistent with
Section 1,

H̄ ≡ e−T̂
(0)

ĤeT̂
(0)

, (52)

and then define the fully transformed Hamiltonian as

¯̄H = e−T̂
(1)−T̂ (2)...H̄eT̂

(1)+T̂ (2).... (53)

Note that H̄ contains only zeroth- and first-order terms with zeroth-order time-independent
amplitudes, T̂ (0),

H̄ = H̄(0) + H̄(1), (54)

whereas ¯̄H contains all orders:

¯̄H = ¯̄H(0) + ¯̄H(1) + ¯̄H(2) . . . , (55)

where, for example,
¯̄H(0) = H̄(0) = e−T̂

(0)

Ĥ(0)e−T̂
(0)

, (56)

¯̄H(1) = H̄(1) +
[
H̄(0), T̂ (1)

]
, (57)

and
¯̄H(2) =

[
H̄(1), T̂ (1)

]
+

1

2

[[
H̄(0), T̂ (1)

]
, T̂ (1)

]
+
[
H̄(0), T̂ (2)

]
. (58)
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Amplitudes in each order may be obtained by similar expansion of the governing equations,
Eqs. (37) and (46), in conjunction with the commutator expansion of ¯̄H. For the T̂ amplitudes,
for example, the first few orders are derived from Eq. (37) to give

i
dt

(0)
µ

dt
= 〈µ| ¯̄H(0)|0〉 = 〈µ|H̄(0)|0〉 = 0, (59)

i
dt

(1)
µ

dt
= 〈µ| ¯̄H(1)|0〉 = 〈µ|H̄(1)|0〉+ 〈µ|

[
H̄(0), T̂ (1)

]
|0〉, (60)

and

i
dt

(2)
µ

dt
= 〈µ| ¯̄H(2)|0〉 = 〈µ|

[
H̄(1), T̂ (1)

]
|0〉+

1

2
〈µ|
[[
H̄(0), T̂ (1)

]
, T̂ (1)

]
|0〉+ 〈µ|

[
H̄(0), T̂ (2)

]
|0〉.
(61)

Similarly, for the Λ̂ amplitudes,

−idλ
(0)
µ

dt
= 〈0|

(
1 + Λ̂(0)

) [
H̄(0), τµ

]
|0〉 = 0, (62)

−idλ
(1)
µ

dt
= 〈0|

(
1 + Λ̂(0)

) [
¯̄H(1), τµ

]
|0〉+ 〈0|Λ̂(1)

[
H̄(0), τµ

]
|0〉, (63)

and

−idλ
(2)
µ

dt
= 〈0|

(
1 + Λ̂(0)

) [
¯̄H(2), τµ

]
|0〉+ 〈0|Λ̂(1)

[
¯̄H(1), τµ

]
|0〉+ 〈0|Λ̂(2)

[
H̄(0), τµ

]
|0〉. (64)

We may define the time-dependent perturbed amplitudes in terms of Fourier transforms of
their frequency-dependent counterparts in analogy to the frequency-dependent perturbation of
Eq. (48) as, for example,

t(1)
µ (t) =

∫ ∞
−∞

dω t(1)
µ (ω) e−iωt (65)

and

t(2)
µ (t) =

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 t
(2)
µ (ω1, ω2) e−iω1te−iω2t. (66)

These expressions are trivially differentiated to give,

dt
(1)
µ

dt
=

∫ ∞
−∞

dω (−iω) t(1)
µ (ω) e−iωt (67)

and
dt

(2)
µ

dt
=

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 (−iω1 − iω2) t(2)
µ (ω1, ω2) e−iω1te−iω2t. (68)
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Comparing these expressions to the corresponding derivatives above and inserting the Fourier
transforms of all time-dependent quantities gives

i
dt

(1)
µ

dt
=

∫ ∞
−∞

dω ω t(1)
µ (ω) e−iωt = 〈µ| ¯̄H(1)|0〉 = 〈µ|H̄(1)|0〉+ 〈µ|

[
H̄(0), T̂ (1)

]
|0〉

= 〈µ|
∫ ∞
−∞

dω ¯̄H(1)(ω)e−iωt|0〉

= 〈µ|
∫ ∞
−∞

dω H̄(1)(ω)e−iωt|0〉+ 〈µ|
[
H̄(0),

∫ ∞
−∞

dω T̂ (1)(ω)e−iωt
]
|0〉. (69)

We may equate the integration kernels of each term to obtain

ωt(1)
µ (ω) = 〈µ|H̄(1)(ω)|0〉+ 〈µ|

[
H̄(0), T̂ (1)(ω)

]
|0〉, (70)

where T̂ (1)(ω) is a cluster operator built from the frequency-dependent first-order amplitudes and
H̄(1)(ω) is the similarity transformation of the frequency-dependent perturbation Ĥ(1)(ω) using
only the zeroth-order T̂ (0). This is the equation that must be solved to obtain the first-order,
frequency-dependent cluster amplitudes.

Using a similar approach for the second-order derivatives, we see

i
dt

(2)
µ

dt
=

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 (ω1 + ω2) t(2)
µ (ω1, ω2) e−iω1te−iω2t

= 〈µ|
[
H̄(1), T̂ (1)

]
|0〉+

1

2
〈µ|
[[
H̄(0), T̂ (1)

]
, T̂ (1)

]
|0〉+ 〈µ|

[
H̄(0), T̂ (2)

]
|0〉

= 〈µ|
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2
1

2
P̂ (ω1, ω2)

[
H̄(1)(ω1), T̂ (1)(ω2)

]
e−i(ω1+ω2)t|0〉+

1

2
〈µ|
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

[[
H̄(0), T̂ (1)(ω1)

]
, T̂ (1)(ω2)

]
e−i(ω1+ω2)t|0〉+

〈µ|
∫ ∞
−∞

dω1

∫ ∞
−∞

dω2

[
H̄(0), T̂ (2)(ω1, ω2)

]
e−i(ω1+ω2)t|0〉, (71)

where the permutation operator P̂ (ω1, ω2) gives a sum of two terms: one as written plus a second
with the frequencies reversed. By equating the integrands on both sides, we obtain

(ω1 + ω2)t(2)
µ (ω1, ω2) =

1

2
P̂ (ω1, ω2)〈µ|

([
H̄(1)(ω1), T̂ (1)(ω2)

]
+

1

2

[[
H̄(0), T̂ (1)(ω1)

]
, T̂ (1)(ω2)

]
+
[
H̄(0), T̂ (2)(ω1, ω2)

])
|0〉. (72)

We may apply the same technique to the Λ̂ amplitudes to give

−ωλ(1)
µ (ω) = 〈0|Λ̂(1)(ω)

[
H̄(0), τµ

]
|0〉+ 〈0|

(
1 + Λ̂(0)

) [
¯̄H(1)(ω), τµ

]
|0〉, (73)
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and

−(ω1 + ω2)λ(2)
µ =

1

2
P̂ (ω1, ω2)〈0|

(
Λ̂(2)(ω1, ω2)

[
H̄(0), τµ

]
+(

1 + Λ̂(0)
) [

¯̄H(2)(ω1, ω2), τµ

]
+ Λ̂(1)(ω1)

[
¯̄H(1)(ω2), τµ

])
|0〉. (74)

At long last, we are ready to define the coupled cluter response functions, starting from the
Fourier expansion of the expectation value of a time-independent operator, Â,

〈Â〉 = 〈Â〉(0) +

∫ ∞
−∞

dω〈〈Â; Ĥ(1)(ω)〉〉 e−iωt+

1

2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 〈〈Â; Ĥ(1)(ω1), Ĥ(1)(ω2)〉〉 e−iω1te−iω2t + . . . (75)

Replacing the general expectation value with its coupled cluster counterpart yields

〈ΨCC|Â|ΨCC〉 = 〈0|
(

1 + Λ̂(t)
)
e−T (t)ÂeT (t)|0〉 = 〈0|

(
1 + Λ̂(t)

)
¯̄A|0〉,

where we have temporarily re-introduced the time-dependence notation for clarity. Inserting the
order-by-order expansion in Ĥ(1)(t) for the double similarity transformation of Â gives

¯̄A(0) = Ā(0),

¯̄A(1) =
[
Ā(0), T̂ (1)

]
,

¯̄A(2) =
1

2

[[
Ā(0), T̂ (1)

]
, T̂ (1)

]
+
[
Ā0, T̂ (2)

]
,

etc. where the Ā(1) terms are zero because of the time-independence of Â. Expanding the coupled
cluster expectation value in orders of Ĥ(1),

〈ΨCC|Â|ΨCC〉 = 〈0|
(

1 + Λ̂(0)
)
Ā(0)|0〉+ 〈0|

[(
1 + Λ̂(0)

)
¯̄A(1) + Λ̂(1)Ā(0)

]
|0〉+

〈0|
[(

1 + Λ̂(0)
)

¯̄A(2) + Λ̂(1) ¯̄A(1) + Λ̂(2)Ā(0)
]
|0〉+ . . . (76)

Inserting Fourier transforms of each time-dependent quantity above and equating the corre-
sponding terms of each order in the general expectation value leads to expressions for the first
few response functions, including the zeroth-order expectation value

〈Â〉(0) = 〈0|
(

1 + Λ̂(0)
)
Ā(0)|0〉, (77)

the linear response function

〈〈Â; Ĥ(1)(ω)〉〉 = 〈0|
[(

1 + Λ̂(0)
) [
Ā(0), T̂ (1)(ω)

]
+ Λ̂(1)(ω)Ā(0)

]
|0〉, (78)

and the quadratic response function,

〈〈Â; Ĥ(1)(ω1), Ĥ(1)(ω2)〉〉 =
1

2
P̂ (ω1, ω2)〈0|

[(
1 + Λ̂(0)

)
¯̄A(2)(ω1, ω2)|0〉+

Λ̂(1)(ω1) ¯̄A(1)(ω2) + Λ̂(2)(ω1, ω2)Ā(0)
]
|0〉 (79)
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