The need for a standard for the mathematical pronunciation of the natural numbers. Suggested principles of design. Implementation for English, German, French, Dutch and Danish

Thomas Colignatus
http://thomascool.eu
September 2-9, 2015 \& May 142018 (amendment on ampersand)
DOI 10.5281/zenodo. 774866

Abstract

Current English for 14 is fourteen but mathematically it is ten \& four. Research on number sense, counting, arithmetic and the predictive value for later mathematical abilities tends to be methodologically invalid when it doesn't measure true number sense that can develop when the numbers are pronounced in mathematical proper fashion. Researchers can correct by including proper names in the research design, but this involves some choices, and when each research design adopts a different scheme, also differently across languages, then results become incomparable. A standard would be useful, both ISO for general principles and national implementations. Research may not have the time to wait for such (inter-) national consensus. This article suggests principles of design and implementations for said languages. This can support the awareness about the need for a process towards ISO and national consensus, and in the mean time provides a baseline for research.

Keywords number sense, counting, arithmetic, mathematical ability, invalidity, design, standards, language, pronunciation, metastudy, number processing, numerical development, inversion effects, language-moderated effects, Google Translate

MeSH Terms Child, Child Development, Educational Measurement, Humans, Intelligence, Longitudinal Studies, Mathematics/education, Mathematics/methods, Mental Processes, Students

American Mathematical Society: MSC2010
00A35 Methodology and didactics
97F02 Arithmetic, number theory ; Research exposition

Journal of Economic Literature: JEL
P16 Political economy
120 General education
Introduction 2
The need for a standard 2
Principles of design 4
Implementation 6
Conclusions 6
Appendix: Proposed implementations 7
English 7
German 9
French 11
Dutch 14
Danish 16
References 18

Introduction

First, there is the distinction between (1) a mathematical pronunciation of the natural numbers ($0,1,2,3, \ldots$) and (2) the pronunciation of the natural numbers in the natural languages (English, German, ..., French). While we will use the term "natural language" those languages clearly have been subjected to changes by committees or influential authors. Thus the present discussion on a standard on mathematical pronunciation is no breach upon nature.
Subsequently we observe that the distinction between (1) and (2) hinders research on number sense, counting and arithmetic, and their predictive value for later mathematical competence. Research methods may suffer from methodological invalidity when they mistake "number sense in natural language" for "true number sense with mathematical pronunciation". Researchers can try to correct by providing pupils with mathematical names, as Ejersbo \& Misfeldt (2015) do. There is a risk that researchers implement their own interpretation of what mathematical names are, so that comparison of results becomes more and more difficult or impossible. Hence, a standard for such mathematical pronunciation will be useful, for achieving both validity and comparability.

For such a standard, we first establish the need, then propose principles of design, and then implement those principles to generate proposals for English, German, French, Dutch and Danish. It must be hoped that there will be a process towards consensus on such standards, both in ISO manner and national implementation. This article hopes to generate interest for such a process. In the mean time, researchers who are already in need of a baseline might be helped by the present suggestions.

The present issue differs principally from spelling reform. The spelling of a number ("29"), remains the same. Only its pronunciation changes. The new pronunciation will be spelled in common fashion too. This issue is not about spelling but about bilingualism and mathematical ability. A discussion in the media is by Shellenbarger (2014) in the WSJ.

The need for a standard

Professor Fred Schuh of TU Delft in 1943 observed that the Dutch pronunciation of the numbers was awkward. While English has twenty-seven in the order of written 27, Dutch has zeven en twintig. He again discussed this in Schuh (1949) and formulated a proposal for change, focussing on the numbers above 20. The proposal reached the Dutch minister of education, see Stoffels (1952), but it was not adopted.
Researchers in Norway had observed the same problem, and the Norse parliament (Storting) adopted a change in 1950, which we see reflected in the pronunciation after 1951. ${ }^{1}$ I am not aware of an evaluation report. ${ }^{2}$ Pixner et al. (2011) observe that the Czech language allows both kinds of pronunciation, and they show that the mathematical order causes less errors than the inverted order.

Various authors look into number sense, counting and arithmetic, in which there is an interplay of language, embodiment (fingers), nonsymbolic forms (e.g. dots), symbols (Indian-Arabic numbers), and working memory. Dowker \& Roberts (2015) and Mark \& Dowker (2015) compare English, Welsh and Cantonese. Zuber et al. (2009), Moeller et al (2011), Klein et al. (2013) indicate that inversion in German slows down the learning progress w.r.t. mathematics proper. In Holland, Friso - Van den Bos (2014), XenidouDervou (2015) and Xenidou-Dervou et al. (2015) indicate the same for Dutch.

[^0]Hopefully this research generates interest amongst policy makers to adopt changes like in Norway 1950/51. However, such changes may still be limited w.r.t. a full mathematical pronunciation. Also English isn't perfect. It would be better to have ten \& one for 11 and two ten \& one for 21. Thus the challenge is larger, also for English and Norse.

Studies that compare the performances in languages suffer from the problem that they may study the obvious. Schuh (1949) didn't need modern statistics to arrive at the logical conclusion that number-names are better pronounced as they are written. The real problem lies in the policy making process, see Colignatus (2015ab).

The research on the development of number sense tends to suffer from methodological invalidity. In truth, number sense is defined with the use of mathematical pronunciation. The reason for this is that numbers themselves are defined as such. A natural language tends to be a dialect of the mathematical pronunciation. One should not take a dialect as the norm. Studies that do not allow children to develop number sense by using the mathematical names, will not observe true number sense, but "number sense in natural language". It may be admitted that one can develop statistical measures on such observations, but such a result is an awkward construct of both true number sense and confusion in language, in unclear mixture, without scientific relevance. ${ }^{3}$

The research on the development of number sense will also benefit from when researchers have deeper roots in mathematics education research (MER). The research quoted above derives mainly from the realm of (neuro-) psychology, and the problems on relevance, validity and comparability might have been observed at an earlier stage when there had been more awareness about what it actually is that pupils must learn. For a mathematician as Fred Schuh the pronunciation zeven en twintig is obviously illogical, while a neuro-psychologist may record it statistically as an "inversion", and actually think that this is how numbers are pronounced also mathematically, given that mathematicians also use such names. When (neuro-) psychologists would look deeper into MER, they must be warned that this field is not without problems of its own, however. See Colignatus (2015ab) for a longer discussion.

Relevant for research is the question whether pupils can deal with the difference between mathematical names and natural language dialect names. We see that many children can manage, see the examples of Czech, bilingual Chinese, bilingual English \& X (e.g. in Holland), and in Ejersbo \& Misfeldt (2015). The problem is not with children but in the policy making process, see Colignatus (2015a).

Thus, researchers interested in number sense, validity and relevance, will tend to follow the example by Ejersbo \& Misfeldt (2015) and include in the research design an instruction for pupils for using mathematical names. Perhaps researchers can find schools that are willing to participate in experiments with dual names, given that these aren't really much of experiments since we know that most children can deal with it. When parents are properly informed and first receive a training in the mathematical names, they might readily sign consent forms.

Colignatus (2015a) contains a chapter Marcus learns counting and arithmetic with ten. This text contains a stylized presentation for six-year olds. This is not intended for actual use in class but contains the framework for starting to think about that. There are translations for German, French, Danish and Dutch, that is: at this moment of writing the text still is in English but the numbers have been replaced by those in the Appendix below. This can also be used to instruct parents.

The real bottleneck then becomes comparability of research results. There are still questions of design. Different researchers might use different rules, and thus we would lose comparability. This establishes the need for a standard.

[^1]
Principles of design

It is easy to suggest a "mathematical pronunciation of numbers in German", but what would that be ? When we use current zehn for 10, then there arises a problem, since the present pronunciation of 19 could be the mathematical pronunciation of 90 . This will generate great confusion, and Germans would have to check continuously whether others are using current or mathematical names. However, German might replace zehn by zig or adopt English ten or scientific deca (though two syllables).

Number	Math in English	English	Math in German?	German	Math in German !
19	ten \& nine	nineteen	zehn \& neun	neunzehn	zig \& neun
90	nine ten	ninety	neun \quad zehn	neunzig	neun $\mathbf{z i g}$

The proposed principles of design are:
(1) Pronunciation fully follows the place value system $\ldots c \times$ hundred $+b \times$ ten $+a=$...cba. The current convention to start with the digit with the highest place value is fine. (See Colignatus (2015a) for lesser alternatives in pronunciation and order.) Much of arithmetic can be done by proper pronunciation (e.g. $2 \times 10+4=24$).
(2) In writing out the pronunciation, also in educational texts, the middle dot is preferred over the hyphen since the latter may be confused with the minus-sign. ${ }^{4} \mathrm{We}$ thus say five ten \& nine for 59, where the dot is not pronounced and the order helps to decode the position (e.g. we don't have to say that 9 has place value one).
(3) There is awareness of the distinction between the process of calculation and the result given by the number. The process would be two times ten plus four and the result would be two ten \& four. On occasion two of ten and four might have the double role of both process and result. Operators might be bracketed or coloured it indicate that they are not pronounced, as in two (times) ten (plus) four. It must be tested whether young children would be served by a phase in which those operators are still pronounced also for the number result. Also elder pupils might at occasion be reminded of it. Also other names than times must be researched (e.g. the verb to of). Plus and minus however would be universal (given that "and" might not be commutative, as in he missed the train and arrived late at work).
(4) There are no exceptions in pronunciation of the digits in different place value positions. For example, German currently uses sieben in 7 and 27 and sieb in 70. A choice must be made for one name only. As a rule the shortest name is selected. For English some authors use tens as in two tens \& one, but ten is the value of the place, and must be used consistently. Multiplication can be scalar multiples (2 km) or consists of making groups, and can be expressed by the word times, or find another word that expresses this better, such as grouping.
(5) A key point for the standard is that it is identified where languages can make choices. Thus, a proposal for German identifies such a choice between zig and ten. It is up to German what it selects, but the standard helps German identify the choice.
(6) If the name of 10 cannot be used as a base (e.g. German zehn and Dutch tien) then it is tried to find a close substitute already in use (e.g. zig in German and tig in Dutch), while often a clear option is to use English ten or scientific deca.
(7) The above only gives the cardinals. There are also the ordinals (first, second, third, ...) and the fractions (that abuse the ordinals, e.g. "a fifth"). The fractions are solved

[^2]by using $y x^{H}=y / x=" y$ per $x "(H=-1)$. The ordinals are solved by adopting a single extension, e.g. English "th" (one•th, two•th, three•th,) or Dutch "de" (een•de, twee $\cdot d e$, drie \cdot de, ...). There is no linguistic morphing (Dutch tig•de doesn't become tig•ste). ${ }^{5}$ Colloquial words like English first and French premier will gradually adopt a meaning of "to begin with" rather than an ordinal number.
(8) The rule is that mathematical names are used in calculation. The national natural language is explained as a dialect of mathematics. It is an explicit educational goal to identify the national language as such a dialect.
(9) It will be useful to denote mathematical pronunciation with a label, say English-M and Deutsch-M. This now holds for numbers but this may apply to more phenomena later on, notably for the vocabulary. This suits translations too, e.g. Google Translate.
(10) These principles are targeted at becoming a consensus ISO standard. Countries define their own mathematical pronunciation based upon such a standard, and include own national improvements. For example, 7 in Dutch is consistently zeven in 7, 27 and 70, but when Dutch changes, it might opt for a single syllable zeef anyway. English might prefer thir over three, with thirteen, thirty and third then becoming ten \& thir, thir-ten and thir-th. (This choice though is not likely, because of potential confusion between thir•ten and thirteen.)

A suggestion is to have an expert meeting on this. In the mean time it still seems wise to provide this paper that identifies the issue. While the proposals in this paper may already be used in research to enhance comparability, ISO \& national standards would be needed for further use such as in official education requirements (US Common Core) and eventually national adoption also in courts of justice.

Amendment May 142018

Colignatus (2018) provides software in Mathematica to show how it all would hear and look, taking advantage of the modern facilities for sounds and translation.

Revisiting the issue causes the following amendments.
(1) The symbol $Đ$ (capital eth) can be used as symbolic 10, and be pronounced as "deka". The number 10 is universal already, but when each language pronounces it differently, then the universal pronunciation of $\Theta=10=$ deka may help at times. For example, Ξ^{0}, Ξ^{1}, $\Xi^{2}, \boxplus^{3}, \ldots$ indicates the place values and does not invite to do an actual calculation.
(2) It is better to use the ampersand (\&) to separate the place value positions. This is used above but is a major revision of the earlier text of 2015 and deserves clarification.

The connectives "\&" and "." have an important role in the pronunciation and writing of the words of the numbers. They differ from the mathematical operators "plus" and "group" (multi-plus), since + and \times have commutation, association and distribution.

- The ampersand (\&) is the ghost of addition, but simply "and", and not as the operator "plus" with all its properties. The ampersand should be pronounced to separate the place value positions. It is already (often) pronounced in German, Dutch and Danish, and other languages better adopt this practice too. It may take some time to get used to this but afterwards you will wonder why you never did before.
- The center dot (not pronounced) is the ghost of multiplication of the weight and the place value. It is not pure multiplication, like 5 days 2 hamburgers is not quite the same as 2 days 5 hamburgers.

[^3]Kids in kindergarten and Grade 1 live in a world of sounds. Thus it is important to also provide them with the \&-separator of the place value positions, so that they have this anchor to distinguish which from what. For adults and native speakers of English it may seem superfluous. Indeed, I myself in (2015a, footnote 10, and also the former version of this proporal for a standard) found the use of " α " "distractive", and proposed to use the center dot for " $\&$ " too: thus as $25=$ two ten five, without the distinction and merely as an unpronounced connective,. However, after much consideration, the empirical observation is that the \&-separator really is there. Its existence must be acknowledged instead of hidden from sight.
Namely, in natural language, putting two terms alongside, like in 2 km , means a scalar multiplication. In multiplication as grouping, kids learn to use the times-symbol, but you do not use it for 2 km , like $2 \times 1 \mathrm{~km}$. Later students will learn that 2 a is multiplication in general, also dropping the times-symbol. If they would have been trained by the pronunciation of the very numbers (and this a would be a number, in this scenario like in $a=25=$ two ten \cdot five, thus without the " $\&$ ") then we create a conundrum: (1) within "a = 25 $=$ two ten five" the lack of an interfix means addition and (ii) outside of this, in $2 a$, the lack of an interfix means multiplication ? We should not create conundrums. Thus $25=$ two \cdot ten \& five.

Indeed, in kindergarten and Grade 1 kids will tend to focus on the \& as an important new symbol in their universe, but this is not "distractive" but only fortunate, because it will form a stepping stone for the later learning on addition, i.e. using plus. Eventually they would tend to focus on the figures in the numbers and not the connectives.

Implementation

The implementation of these principles of design to English, German, French, Dutch and Danish results in the proposals in the Appendix. They are also used in Marcus learns counting and arithmetic with ten in Colignatus (2015a) and its online translations.

For English, German, Dutch and Danish we skip the elaboration of the numbers 50-100 since these follow the system from 20-50.

For French, the numbers for 70-99 are fully written out however. This again shows the difficulty of international comparisons.

Conclusions

The mathematical pronunciation of numbers is straightforward. The only bottleneck is consensus, as language tends to be social phenomenon. (It remains amazing that two people who haven't met before appear able to speak the same language.)
The principles of design are based upon the place value system, full adherence, minimal distance from current natural language, and a preference for short words. The principles allow the identification of choices to be made.

A prospective implementation is useful, firstly as an example of what it all might mean, secondly to provide researchers, who cannot wait for (inter-) national consensus to continue with their research goals, with a baseline suggestion. Both aspects would support the process towards such ISO \& national results.

Appendix: Proposed implementations

English

" $\& "=$ "and". The ordinals use -th, e.g. one•th, two th, three $\cdot t h, \ldots$. There is tension between current three-ten ths ($3 / 10$) and mathematical three ten th ($30 \cdot$ th), but calculation is done with mathematical name three per-ten.
zero 0
one 1
two 2
three 3
four 4
five 5
six 6
seven 7
eight 8
nine 9
ten 10

Ten to five•ten

English-M		Current English
ten	10	ten
ten \& one	11	eleven
ten \& two	12	twelve
ten \& three	13	thirteen
ten \& four	14	fourteen
ten \& five	15	fifteen
ten \& six	16	sixteen
ten \& seven	17	seventeen
ten \& eight	18	eighteen
ten \& nine	19	nineteen
two ten	20	twenty
English-M		Current English
two ten	20	twenty
two ten \& one	21	twenty one
two ten \& two	22	twenty two
two ten \& three	23	twenty -three
two ten \& four	24	twenty four
two ten \& five	25	twenty five
two ten \& six	26	twenty six
two ten \& seven	27	twenty seven
two ten \& eight	28	twenty eight
two ten \& nine	29	twenty -nine
three -ten	30	thirty

English-M
three \cdot ten 30
three \cdot ten \& one 31
three \cdot ten \& two 32
three ten \& three 33
three \cdot ten \& four 34
three \cdot ten \& five 35
three \cdot ten \& six 36
three \cdot ten \& seven 37
three ten \& eight 38
three ten \& nine 39
four•ten 40
English-M
four ten 40
four ten \& one 41
four ten \& two 42
four \cdot ten \& three 43
four ten \& four 44
four ten \& five 45
four ten \& six 46
four ten \& seven 47
four ten \& eight 48
four \cdot ten \& nine 49
five•ten 50
ten 10
two ten 20
three•ten 30
four \cdot ten 40
five•ten 50six•ten50
seven \cdot ten 70
eight•ten 80
nine•ten 90
ten•ten, hundred 100
Numbers of ten
English-M Current English

Current English
thirty
thirty one
thirty \cdot two
thirty•three
thirty•four thirty•five thirty-six thirty seven thirty-eight thirty-nine forty

Current English
forty
forty-one
forty-two
forty-three
forty-four
forty-five
forty-six
forty-seven
forty-eight
forty-nine
fifty

Current English
ten
twenty
thirty
forty
fifty
sixty
seventy
eighty
ninety
hundred

Ten to million: keep using the current language

$10^{\wedge 1}$	ten
$10^{\wedge 2}$	ten $\cdot \operatorname{ten}$
$10^{\wedge 3}$	ten $\cdot \operatorname{ten} \cdot \operatorname{ten}$
$10^{\wedge 4}$	ten $\cdot \operatorname{ten} \cdot \operatorname{ten} \cdot \operatorname{ten}$
$10^{\wedge} 5$	ten $\cdot \operatorname{ten} \cdot \operatorname{ten} \cdot \operatorname{ten} \cdot \operatorname{ten}$
$10^{\wedge} 6$	ten $\cdot \operatorname{ten} \cdot \operatorname{ten} \cdot \operatorname{ten} \cdot \operatorname{ten} \cdot$ ten

100 hundred
1,000 thousand
10,000 ten thousand
100,000 hundred•thousand
$1,000,000$ million

Current English
ten

German

The choice of zig instead of zehn cannot be avoided because of the confusion between neunzehn (zig \& neun) and neunzig (neun•zig) if zehn were used. It remains an option to use English ten or scientific deca, but this seems unnecessary and unlikely.
" $\&$ " = "und". The choices of ein instead of eins and sieb instead of sieben are optional. Given that ein and sieb already are used, as in ein-und-siebzig, I have opted to use them universally.

The ordinals would use -te, e.g. ein $\cdot t e$, zwei•zig \& ein $\cdot t$.
null 0
ein, eins 1
zwei 2
drei 3
vier 4
fünf 5
sechs 6
sieb, sieben 7
acht 8
neun 9
zig, zehn 10

Zig zu fünf•zig

Deutsch-M		Deutsch heute (current German)
zig	10	zehn
zig \& ein	11	elf
zig \& zwei	12	zwölf
zig \& drei	13	dreizehn
zig \& vier	14	vierzehn
zig \& fünf	15	fünfzehn
zig \& sechs	16	sechzehn
zig \& sieb	17	siebzehn
zig \& acht	18	achtzehn
zig \& neun	19	neunzehn
zwei•zig	20	zwanzig
Deutsch-M		Deutsch heute
zwei•zig	20	zwanzig
zwei•zig \& ein	21	ein \cdot und•zwanzig
zwei zig \& zwei	22	zwei-und•zwanzig
zwei zig \& drei	23	drei•und•zwanzig
zwei zig \& vier	24	vier-und zwanzig
zwei $\cdot \mathrm{zig}$ \& fünf	25	fünf•und•zwanzig
zwei \cdot zig \& sechs	26	sechs -und zw (${ }^{\text {anzig }}$
zwei-zig \& sieb	27	sieben und zwanzig
zwei zig \& acht	28	acht•und zwanzig
zwei•zig \& neun	29	neun-und•zwanzig
drei-zig	30	dreißig

Deutsch-M

drei•zig 30
drei \cdot zig \& ein $\quad 31$
drei \cdot zig \& zwei 32
drei zig \& drei $\quad 33$
drei \cdot zig \& vier $\quad 34$
drei \cdot zig \& fünf 35
drei $\mathbf{z i g}$ \& sechs $\quad 36$
drei \cdot zig \& sieb $\quad 37$
drei \cdot zig \& acht 38
drei \cdot zig \& neun 39
vier•zig 40
$\begin{array}{ll}\text { Deutsch-M } \\ \text { vier•zig } & 40\end{array}$
vier \cdot zig \& ein 41
vier•zig \& zwei 42
vier•zig \& drei 43
vier•zig \& vier 44
vier \cdot zig \& fünf 45
vier \cdot zig \& sechs 46
vier•zig \& sieb 47
vier•zig \& acht 48
vier•zig \& neun 49
fünf•zig 50
The numbers of zig
Deutsch-M
zig 10
zwei•zig 20
drei•zig 30
vier•zig 40
fünf•zig 50
sechs zig 60
sieb•zig 70
acht•zig 80
neun•zig 90
zig•zig, hundert 100

Deutsch heute

dreißig
ein-und•dreißig
zwei-und•dreißig
drei-und•dreißig
vier-und-dreißig
fünf•und•dreißig
sechs•und•dreißig
sieben \cdot und•dreißig
acht-und•dreißig
neun \cdot und•dreißig
vierzig

Deutsch heute
vierzig
ein•und•vierzig
zwei-und•vierzig
drei-und•vierzig
vier-und-vierzig
fünf•und•vierzig
sechs und \cdot vierzig
sieben und \cdot vierzig
acht•und•vierzig
neun-und•vierzig
fünfzig

Deutsch heute
zig
zwanzig
dreißig
vierzig
fünfzig
sechzig
siebzig
achtzig
neunzig
hundert

Ten to million: keep using the current language above zig

10^1	zig
10^2	zig•zig
10^3	zig•zig•zig
10^4	zig•zig•zig•zig
$10^{\wedge} 5$	zig•zig•zig•zig•zig
$10^{\wedge} 6$	zig•zig•zig•zig•zig•zig

10
100
1,000
10,000
100,000 hundert•tausend
1,000,000 Million

French

In French there is no problem in taking dix as the base for the numbers of ten.
The numbers of 70-100 are fully written out because of the complex French originals.
" $\&$ "= "et". The ordinals would be -ième: un •ième,deux•ième, ...

zéro	0
un	1
deux	2
trois	3
quatre	4
cinq	5
six	6
sept	7
huit	8
neuf	9
dix	10

Dix to cinq•dix

Français-M		Français aujourd'hui
dix	10	dix
dix \& un	11	onze
dix \& deux	12	douze
dix \& trois	13	treize
dix \& quatre	14	quatorze
dix \& cinq	15	quinze
dix \& six	16	seize
dix \& sept	17	dix-sept
dix \& huit	18	dix•huit
dix \& neuf	19	dix-neuf
deux•dix	20	vingt
Français-M		Français aujourd'hui
deux•dix	20	vingt
deux \cdot dix \& un	21	vingt et un
deux dix \& deux	22	vingt•deux
deux dix \& trois	23	vingt trois
deux \cdot dix \& quatre	24	vingt quatre
deux•dix \& cinq	25	vingt \cdot cinq
deux \cdot dix \& six	26	vingt•six
deux dix \& sept	27	vingt•sept
deux \cdot dix \& huit	28	vingt huit
deux dix \& neuf	29	vingt•neuf
trois•dix	30	trente

Français-M
trois dix 30
trois•dix \& un 31
trois dix \& deux $\quad 32$
trois dix \& trois $\quad 33$
trois dix \& quatre $\quad 34$
trois dix \& cinq $\quad 35$
trois dix \& six $\quad 36$
trois dix \& sept $\quad 37$
trois dix \& huit 38
trois•dix \& neuf 39
quatre \cdot dix 40

Français-M
quatre \cdot dix 40
quatre \cdot dix \& un 41
quatre \cdot dix \& deux 42
quatre \cdot dix \& trois $\quad 43$
quatre \cdot dix \& quatre 44
quatre \cdot dix \& cinq $\quad 45$
quatre \cdot dix \& six $\quad 46$
quatre \cdot dix \& sept 47
quatre \cdot dix \& huit 48
quatre•dix \& neuf 49
cinq•dix 50

Français-M
sept•dix 70
sept•dix \& un $\quad 71$
sept•dix \& deux $\quad 72$
sept•dix \& trois $\quad 73$
sept•dix \& quatre $\quad 74$
sept•dix \& cinq $\quad 75$
sept•dix \& six $\quad 76$
sept•dix \& sept $\quad 77$
sept•dix \& huit $\quad 78$
sept•dix \& neuf $\quad 79$
huit•dix 80
huit•dix 80
huit•dix \& un 81
huit•dix \& deux 82
huit•dix \& trois 83
huit•dix \& quatre 84
huit•dix \& cinq 85
huit•dix \& six 86
huit•dix \& sept 87
huit•dix \& huit 88
huit•dix \& neuf 89
neuf•dix 90

Français aujourd'hui
trente
trente et un
trente-deux
trente-trois trente quatre
trente cinq
trente-six
trente-sept
trente-huit
trente-neuf quarante

Français aujourd'hui
quarante quarante et un quarante deux quarante trois quarante quatre quarante cinq quarante six quarante sept quarante-huit quarante-neuf cinquante

Français aujourd'hui
soixante•dix
soixante et onze
soixante•douze
soixante•treize
soixante-quatorze
soixante quinze
soixante-seize
soixante-dix•sept
soixante•dix•huit
soixante•dix•neuf
quatre \cdot vingts
quatre \cdot vingts quatre \cdot vingt \cdot un quatre \cdot vingt \cdot deux quatre \cdot vingt \cdot trois quatre vingt quatre quatre \cdot vingt \cdot cinq quatre vingt•six quatre \cdot vingt \cdot sept quatre \cdot vingt $\cdot h u i t$ quatre \cdot vingt \cdot neuf quatre \cdot vingt \cdot dix

neuf dix	90	quatre \cdot vingt \cdot dix
neuf•dix \& un	91	quatre vingt et onze
neuf.dix \& deux	92	quatre \cdot vingt douze
neuf.dix \& trois	93	quatre vingt 'treize
neuf.dix \& quatre	94	quatre $\mathbf{v i n g t}$ quatorze
neuf.dix \& cinq	95	quatre vingt quize
neuf.dix \& six	96	quatre \cdot vingt seize
neuf.dix \& sept	97	quatre $\cdot \mathrm{ving} \mathrm{t} \cdot \mathrm{dix}$-sept
neuf.dix \& huit	98	quatre \cdot vingt $\cdot \mathrm{dix}$ •huit
neuf.dix \& neuf	99	quatre $\cdot \mathrm{vingt} \cdot \mathrm{dix} \cdot \mathrm{neuf}$
dix•dix, cent	100	cent

The numbers of dix

Français-M
dix 10
deux•dix 20
trois•dix
quatre dix
30
quindix
cinq•dix
40
six•dix
sept•dix 60
huit-dix neuf•dix 90 70
dix•dix

Français aujourd'hui
dix
vingt
trente
quarante
cinquante
soixante
soixante-dix
quatre vingts
quatre \cdot vingt \cdot dix
cent

Ten to million: keep using the current language

		Français aujourd'hui	
$10^{\wedge} 1$	dix	10	dix
$10^{\wedge} 2$	dix•dix	100	cent
$10^{\wedge} 3$	dix $\cdot d i x \cdot d i x$	1,000	mille
$10^{\wedge} 4$	dix $\cdot d i x \cdot d i x \cdot d i x$	10,000	dix \cdot mille
$10^{\wedge} 5$	dix $\cdot d i x \cdot d i x \cdot d i x \cdot d i x$	100,000	cent \cdot mille
$10^{\wedge} 6$	dix•dix•dix•dix•dix•dix	$1,000,000$	million

Dutch

The choice of tig instead of tien cannot be avoided because of the confusion between negentien (tig \& negen) and negentig (negen-tig) if tien were used. It remains an option to use English ten, but this seems unnecessary and unlikely. " $\&$ "= "en".

Ordinals use -de: een•de, twee•de, drie•de, ..., tig•de,

nul	0
een	1
twee	2
drie	3
vier	4
vijf	5
zes	6
zeven	7
acht	8
negen	9
tig, tien	10

From ten to fifty

Nederlands-M
tig 10
tig \& een $\quad 11$
tig \& twee $\quad 12$
tig \& drie $\quad 13$
tig \& vier $\quad 14$
tig \& vijf 15
tig \& zes 16
tig \& zeven $\quad 17$
tig \& acht 18
tig \& negen 19
twee•tig 20
Nederlands-M
twee•tig 20
twee•tig \& een 21
twee•tig \& twee 22
twee•tig \& drie 23
twee•tig \& vier 24
twee•tig \& vijf 25
twee•tig \& zes 26
twee•tig \& zeven 27
twee•tig \& acht 28
twee•tig \& negen 29
drie•tig 30

Huidig Nederlands
tien
elf
twaalf
dertien
veertien
vijftien
zestien
zeventien
achttien
negentien
twintig

Huidig Nederlands

twintig
een \cdot en $\cdot t w i n t i g$
twee \cdot en \cdot twintig
drie \cdot en \cdot twintig
vier•en twintig
vijf•en twintig
zes•en twintig zeven \cdot en \cdot twintig acht•en \cdot twintig negen \cdot en \cdot twintig dertig

Nederlands-M		Huidig Nederlands
drie \cdot tig	30	dertig
drie tig \& een	31	een $\cdot \mathrm{en} \cdot \mathrm{dertig}$
drie -tig \& twee	32	twee $e n \cdot d e r t i g$
drie tig \& drie	33	drie•en \cdot dertig
drie-tig \& vier	34	vier $\cdot \mathrm{en}$-dertig
drie \cdot tig \& vijf	35	vijf•en•dertig
drie tig \& zes	36	zes $\cdot \mathrm{en}$-dertig
drie -tig \& zeven	37	zeven \cdot en dertig
drie•tig \& acht	38	acht $\cdot \mathrm{en}$ •dertig
drie \cdot tig \& negen	39	negen \cdot en \cdot dertig
vier \cdot tig	40	veertig
Nederlands-M		Huidig Nederlands
vier \cdot tig	40	veertig
vier \cdot tig \& een	41	een \cdot en $\cdot v e e r t i g$
vier \cdot tig \& twee	42	twee•en veertig
vier tig \& drie	43	drie \cdot en veertig
vier tig \& vier	44	vier $\cdot \mathrm{en}$-veertig
vier \cdot tig \& vijf	45	vijf.en veertig
vier tig \& zes	46	zes $\cdot \mathrm{en}$-veertig
vier \cdot tig \& zeven	47	zeven $\cdot \mathrm{en}$-veertig
vier \cdot tig \& acht	48	acht $\cdot \mathrm{en}$-veertig
vier tig \& negen	49	negen $\cdot \mathrm{en} \cdot \mathrm{veertig}$
vijf•tig	50	vijftig

The numbers of tig

Nederlands-M

tig 10
twee•tig 20
drie•tig 30
vier•tig 40
vijf•tig 50
zes•tig 60
zeven•tig 70
acht•tig 80
negen \cdot tig 90
tig•tig, honderd 100

Huidig Nederlands
tien
twintig
dertig
veertig
vijftig
zestig
zeventig
tachtig negentig honderd

Ten to million: keep using the current language above tig
Huidig Nederlands

$10^{\wedge 1}$	tig
$10^{\wedge} 2$	tig•tig
$10^{\wedge} 3$	tig•tig \cdot tig
$10^{\wedge} 4$	tig \cdot tig \cdot tig \cdot tig
$10^{\wedge} 5$	tig \cdot tig \cdot tig \cdot tig \cdot tig
$10^{\wedge} 6$	tig \cdot tig \cdot tig \cdot tig \cdot tig \cdot tig

10 tien
100 honderd
1,000 duizend
10,000 tig•duizend
100,000 honderd•duizend
1,000,000 miljoen

Danish

Danish can use current $t i$ as below, but also has the option to use English ten.
" $\& "=$ "og". For the ordinals a suggestion would be to use -de like English -th.

nul	0
en	1
to	2
tre	3
fire	4
fem	5
seks	6
syv	7
otte	8
ni	9
ti	10

From ten to fifty

Dansk-M		Dansk i dag
ti	10	ti
ti \& en	11	elleve
ti \& to	12	tolv
ti \& tre	13	tretten
ti \& fire	14	forten
ti \& fem	15	femten
ti \& seks	16	seksten
ti \& syv	17	sytten
ti \& otte	18	atten
ti \& ni	19	nitten
to ti	20	tyve

Dansk-M
to•ti 20
to \cdot ti \& en 21
to•ti\& to 22
to•ti \& tre 23
to•ti \& fire 24
to•ti \& fem 25
to•ti \& seks 26
to.ti \& syv 27
to•ti \& otte 28
to•ti \& ni 29
tre•ti 30
Danskidag
tyve
en og \cdot tyve
to.og.tyve
tre.og•tyve
fire-og tyve
fem.og•tyve seks-og•tyve syv-og tyve otte•og•tyve ni.og•tyve tredive

Dansk-M

tre•ti 30
tre•ti \& en 31
tre $\cdot \mathrm{ti} \&$ to 32
tre $\cdot \mathrm{ti} \&$ tre 33
tre $\cdot \mathrm{ti}$ \& fire 34
tre ti \& fem 35
tre•ti \& seks 36
tre•ti \& syv 37
tre•ti \& otte 38
tre•ti \& ni 39
fire•ti 40
Dansk-M

Dansk idag
fire-ti 40
fire•ti \& en 41
fire ti \& to 42
fire \cdot ti \& tre 43
fire•ti \& fire 44
fire ti \& fem 45
fire ti \& seks 46
fire•ti \& syv 47
fire ti \& otte 48
fire•ti \& ni 49
fem•ti 50

Dansk i dag tredive en og \cdot tredive to.og-tredive tre og \cdot tredive fire-og•tredive fem•og•tredive seks-og•tredive syv-og•tredive otte•og•tredive ni-og tredive fyrre
fyrre
en og fyrre
to og fyrre tre•og'fyrre fire.og•fyrre fem $\cdot \mathrm{og} \cdot \mathrm{fy}$.re seks og•fyrre syv.og•fyrre otte og fyrre ni•og•fyrre halvtreds

The numbers of $\boldsymbol{t i}$

Dansk-M
$\mathrm{ti} \quad 10$
to. ti
tre ti
fire-ti
fem•ti
seks-ti
syv•ti
otte•ti
20
30
40
50
60
80
ni-ti 90
ti•ti, hundrede 100

Dansk i dag
ti
tyve
tredive
fyrre
halvtreds
tres
halvfjerds
firs
halvfems
hundrede

Ten to million: keep using the current language

$10^{\wedge} 1$	ti
$10^{\wedge} 2$	$\mathrm{ti} \cdot \mathrm{ti}$
$10^{\wedge} 3$	$\mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti}$
$10^{\wedge} 4$	$\mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti}$
$10^{\wedge} 5$	$\mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti}$
$10^{\wedge} 6$	$\mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti} \cdot \mathrm{ti}$

Dansk idag

10	ti
100	hundrede
1,000	tusind
10,000	ti•tusind
100,000	hundrede \cdot tusind
$1,000,000$	million

References

PM 1. Colignatus is the name of Thomas Cool in science.
PM 2. References in footnotes need not be repeated here.

Colignatus, Th. (2015a), "A child wants nice and no mean numbers", ISBN 978-946318970-5, http://thomascool.eu/Papers/NiceNumbers/Index.html, or https://zenodo.org/record/291979

Colignatus, Th. (2015b), "Elegance with Substance", http://thomascool.eu/Papers/Math/Index.html or https://zenodo.org/record/291974
Colignatus, Th. (2018), "Pronunciation of the integers with full use of the place value system", https://zenodo.org/record/1244063 and software https://doi.org/10.5281/zenodo. 1244008

Dowker, A., M. Roberts (2015), "Does the transparency of the counting system affect children's numerical abilities?", Front. Pschol., 6:945, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493320/
Ejersbo, L. R., M. Misfeldt (2015), "The relationship between number names and number concepts", Paper presented at ICMI Sudy-23, Macau SAR, China. In press

Friso - Van den Bos, I. (2014), "Making sense of numbers : early mathematics achievement and working memory in primary school children", Thesis University of Utrecht, http://dspace.library.uu.nl/handle/1874/297856
Klein, E., J. Bahnmueller, A. Mann, S. Pixner, L. Kaufmann, H.-C. Nuerk, and K. Moeller (2013), "Language influences on numerical development-Inversion effects on multi-digit number processing", Front. Psychol 4:480, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733006/

Mark, W., A. Dowker (2015), "Linguistic influence on mathematical development is specific rather than pervasive: revisiting the Chinese Number Advantage in Chinese and English children", Front Psychol., 6:203, http://www.ncbi.nlm.nih.gov/pubmed/25767456

Moeller, K., S. Pixner, J. Zuber, L. Kaufmann, H.-C. Nuerk (2011), "Early place-value understanding as a precursor for later arithmetic performance--a longitudinal study on numerical development", Res Dev Disabil. 2011 Sep-Oct;32(5):1837-51, http://www.ncbi.nlm.nih.gov/pubmed/21498043

Pixner, S., J. Zuber, V. Heřmanová, L. Kaufmann, H.-C. Nuerk, K. Moeller (2011), "One language, two number-word systems and many problems: numerical cognition in the Czech language", Res Dev Disabil. 2011 Nov-Dec;32(6):2683-9, http://www.ncbi.nlm.nih.gov/pubmed/21763104
Schuh, F. (1949), "De macht van het Getal", Segboer uitgevers-maatschappij, The Hague
Shellenbarger, S. (2014), "The Best Language for Math. Confusing English Number Words Are Linked to Weaker Skills", Wall St. Journal, September 15, http://www.wsj.com/articles/the-best-language-for-math-1410304008
Stoffels, E.J. (1952), "Spreek getallen uit zoals we ze schrijven!", De Telegraaf (newspaper), March 29, page 3
Zuber, J., S. Pixner, K. Moeller, H.-C.Nuerk (2009), "On the language specificity of basic number processing: transcoding in a language with inversion and its relation to working memory capacity", J Exp Child Psychol. 2009 Jan; 102(1):60-77, http://www.ncbi.nlm.nih.gov/pubmed/18499120
Xenidou-Dervou, I. (2015), "Setting the Foundations for Match Achievement:: Working Memory, Nonsymbolic and Symbolic Numerosity Processing", Thesis University of Amsterdam, http://dare.ubvu.vu.nl/handle/1871/52176
Xenidou-Dervou, I., C. Gilmore, M. van der Schoot, E.C. van Lieshout (2015), "The developmental onset of symbolic approximation: beyond nonsymbolic representations, the language of numbers matters", Front Psychol. 2015 Apr 29;6:487, http://www.ncbi.nlm.nih.gov/pubmed/25972822

[^0]: ${ }^{1}$ http://blogs.transparent.com/norwegian/learning-norwegian-numbers/
 ${ }^{2}$ I have asked this question at http://www.matematikksenteret.no/

[^1]: ${ }^{3}$ See also my weblog text https://boycottholland.wordpress.com/2015/08/29/research-on-number-sense-tends-to-be-invalid/

[^2]: ${ }^{4}$ See the use of the minus-sign in the place value system (a chapter in Colignatus (2015a)): https://boycottholland.wordpress.com/2014/08/30/taking-a-loss/

[^3]: ${ }^{5}$ See the importance of the ordinals for developing number sense (a chapter in Colignatus (2015a)): https://boycottholland.wordpress.com/2014/08/01/is-zero-an-ordinal-or-cardinal-number-q/

