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Executive summary 
We have identified two projects for prototyping which are useful in the structural biology domain and  also 
acts as a prototype for future work, demonstrating a particular Big Data technology and providing some 
initial useful functionality. 

The first uses Natural Language Processing (NLP) methods applied to the structural biology literature to 
identify some information that is not currently incorporated into databases: structural annotations on 
specific residues within proteins. The software created by this pilot project is an open source software 
package, pyresid, written in the Python programming language. Using it, annotations will be made to all 
past papers with known links to entries in the Protein Data Bank. These annotations are available in 
EuropePMC. 

For the second prototype, we looked at the use of Convolutional Neural Networks for distinguishing 
between protein and noise in cryoEM maps. Python scripts for generating input data from structural 
biology data for the machine learning, and for creating and training a model, are made available. While 
this serves as a useful prototype, further cleaning of the input data and better training of the model are 
still required. 
 

Project objectives 
With this deliverable, the project has reached or the deliverable has contributed to the following 

objectives: 

No. Objective Yes No 

1 Provide analysis solutions for the different Structural Biology 
approaches 

 x 

2 Provide automated pipelines to handle multi-technique 
datasets in an integrative manner 

x  

3 Provide integrated data management for single and multi-
technique projects, based on existing e-infrastructure 

 x 

4 Foster best practices, collaboration and training of end users x  
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 Detailed report on the deliverable 

 3.1 Background 

Work Package 7 of West-Life is a Joint Research Activity aimed at exploring new ways to use existing or 
close to existing services so that broader user communities will be reached. One of its objectives is 
“Studying large sets of output data using Big Data approaches”. 

We first consulted partners about the most useful projects to undertake. The selected projects were then 
executed by partners STFC and EMBL-EBI.  

3.2 Selection of projects 

Milestone 30 "Big Data software introduced” described a number of Big Data technologies that could be 
applied to structural biology data. Subsequent discussions among partners identified the following 
potential projects: 

• particle picking and/or conformational classification for cryoEM 
• tomograph matching, with applications to EM and combined methods 
• protein structure prediction, in particular torsion angle prediction 
• binding site identification 
• use of Natural Language Processing (NLP) methods to increase the accessibility structural 

publications to researchers. 

These potential projects were then assessed. The criteria were: 

• The selected project should add value to existing structural services 
• The project should be a pilot, that tests the potential for future advances 
• The project should be able to demonstrate a proof of concept using the limited resources in 

WP7 
• The project should be novel, rather than on a topic where there is existing work 
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Text Mining 
In the light of this, the NLP focus was selected for the first prototype. An NLP challenge is defined by the 
corpus of texts to be processed and the question to be answered.  

The corpus was defined as all papers which are linked in EuropePMC to PDB entries, and for which full 
text is available through EuropePMC. It consists of 76,120 papers at the time of writing 
[http://europepmc.org/search?query=%28IN_EPMC:y%29+AND+%28ACCESSION_TYPE:pdb%29&pag
e=1]. 

The question was defined as the identification of mentions of specific protein residues (amino acids), and 
linking them to the relevant protein record in UniProt. This question was specified by West-Life partner 
Sameer Velankar, Team Leader, Protein Data Bank in Europe (PDBe). Previously, such residue-level 
information has not been available in the Protein Data Bank.  

The goal was defined as extracting information from all 76,120 papers in the corpus and pushing it to the 
EuropePMC annotation repository, and establishing a pipeline that will automatically annotate future 
papers. 

Image processing with Neural Nets 
A second prototype was selected, using machine learning to recognise features in cryoEM maps. While 
machine learning has been applied several times for the particle picking problem, it has not been used for 
identifying features of single particle reconstructions. Applications include distinguishing protein vs nucleic 
acid maps, identifying missing components in noisy maps, or automatic recognition of side chains as 
input to model building. 

For the prototype, we focussed on the simple question as to whether a 2D slice from a cryoEM map 
contains protein or not. Although a very simple use case, it demonstrates several important features: 
preparation of the training dataset, effect of map blurring, choice of machine learning model architecture, 
and initialisation and refining of weights. 
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3.3 Implementation of text mining tool 

3.3.1 Outcome 
Figure 1 shows an example of the information that has been retrieved. This information will be uploaded 
to the PDB to provide annotations about specific residues. It will also be supplied to EuropePMC as 
annotations to all past publications that are linked to specific PDB entries. 
 

 

 
Figure 1 – Example of the contextual information that can be returned by pyresid , in this example for 
mentions of Glutamate at position 61 (Glu61) in Gentry et al. 2017 (PMC5552742). Precise matches are 
highlighted.  

In order to meet the key aim of associating the identified residues with the relevant UniProt protein record, 
proteins structure mentions must be identified within the text. There are two ways in which this is done 
within pyresid. One is to use the existing annotations provided by EuropePMC through their API. The 
second is to perform a rule-based search for Protein Data Bank identifiers (PDB IDs) within the full text. 
As with the search for the residue location, this is performed using regular expressions. Because the 
format of the PDB ID (a four character code of letters and numbers) is somewhat simpler than that of a 
residue, there is a greater number of false positives when searching for PDB IDs. Therefore we perform a 
second operation, which is to query the PDB API for a list of approved and pending IDs. Spurious 
matches are ruled out if they do not appear in this list. 
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3.3.2 – Design Rationale 

Given the well-defined goals of the project, namely the size of the proposed corpus and the drive for 
usability for researchers, the choice of both basic approach and language choice were both key 
considerations. As a result, the project was written in Python, using regular expressions as its initial 
extraction layer.  

The well constrained encoding of protein residues, with the combination of an amino acid identifier and a 
positional integer, lends itself to pattern matching and in particular Regular Expressions (RegEx). Pattern 
matching has been used in the process of text mining similar corpora (notably with MuteX – Horn et al. 
2004, and Nagel et al. 2009, Ravikumar et al. 2012). Though these text mining frameworks include 
protein structure extraction, they are either hard to access and implement in a pipeline (not being open 
source), or fundamentally overall too slow to reasonably annotate the existing corpus, and to keep up with 
the growing volume. Faster Natural Language Processing (NLP) pipelines are now available, and can 
provide processing speeds orders of magnitude above those quoted in the aforementioned literature. 

In addition to the rapid evolution of techniques in NLP, the field has moved on considerably and there is 
currently no bridge between the latest APIs of resources such as the EuropePMC and the PDB, and 
amino acid residue annotation, meaning the volume of data is difficult to leverage. The text mining tool 
that has been built as a result of this work provides a bridge between the various data sources, a 
sophisticated information extraction algorithm, and a link to cutting edge NLP pipelines. This opens up 
opportunities for further work. 

3.3.3 – pyresid 

The production service created by this pilot project is a software package, pyresid, written in the Python 
programming language (Python 3). Python is widely used, easily learned, and has a wealth of existing 
libraries and packages for NLP. Crucially, Python bindings exist for the APIs that provide the data 
necessary for the project. The pyresid package can be installed using the pip package manager, and 
the source code and documentation is available to download under a BSD 3-Clause License on the PyPi 
package index1,2. API calls to the EuropePMC are handled for the end user by the code, so all that is 
needed is a PMC identifier. However, if specific queries are desired, the module also contains a suite of 
functions to send custom queries to the portal.  

With the PMC identifier in hand, the module requests a copy of the full-text article in XML format, and 
parses it using the BeautifulSoup Python library3 which is used to extract the text, section titles and other 
metadata from the XML. These attributes are collected together into a Source object that is used to group 
together the downloaded, parsed and mined data in one place. The full text of the manuscript then 
undergoes the initial rule-based NLP using regular expressions, extended from a set of rules from Nagel 
et al. 2009 (c.f. Table 1 of that work), which also provides an annotated set of Structural Biology Abstracts 
(the “Nagel Gold Corpus”) for algorithm evaluation. These rule extensions include a more complete 
treatment of residue mentions that are mentioned in complexes, separated by dashes or slashes, for 
example from Vigouroux et al. 2017  “Members of the OccJ subgroup sharing >69% sequence identity 

                                                      
1 https://pypi.python.org/pypi/pyresid 
2 additional documentation can be found here: http://robfirth.github.io/pyresid/pyresid.pdf 
3 https://www.crummy.com/software/BeautifulSoup/  

https://pypi.python.org/pypi/pyresid
http://robfirth.github.io/pyresid/pyresid.pdf
https://www.crummy.com/software/BeautifulSoup/


8 | 18 
 
 

West-Life Deliverable D 

possess the octopine binding signature Glu30-Tyr33-Trp71-Ser91-Arg96-Gln159-Asn111-Thr163-Ala164-
Asn202.”. Comparisons between the Nagel Annotations and those produced by pyresid show a 
superior recall for our approach – for example, the Nagel patterns would identify the above complex 
mention, as a single residue. 

 The matches, both simple and complex, are initially converted into a pyresid Match Class instance, 
which includes the precise string that triggered the match and the indices of the start and end of the sub-
string (in characters relative to the start of the full text document). A simple match, such as “Tyr99” is 
matched as: 

{'start': 0, 'end': 5, 'string': 'Tyr99'}. 

Whereas a more complex mention – “Glu30-Tyr33-Trp71” - is initially matched as 

{'start': 0, 'end': 17, 'string': 'Glu30-Tyr33-Trp71'}. 

A further decomposition step is performed on the complex matches to extract individual residues from the 
parent match. When this has been done, the parent match is discarded, but the parent string is inherited 
into the decomposed MatchClass. The next step is a dictionary lookup, that isolates the Amino Acid name 
and positional information from the match. For example, the residue mention “Tyr99” becomes a Match 
with the following attributes: 

{'start': 0, 'end': 5, 'string': 'Tyr99', 'position': ['99'], 
'aminoacid': 'Tyrosine', 'threeletter': 'Tyr'}. 

 
While “a serine at position 97” similarly gets matched as: 
 

{'start': 2, 'end': 24, 'string': 'serine at position 97', 'position': 
['97'], 'aminoacid': 'Serine', 'threeletter': 'Ser'}. 

The three-residue dashed mention above gets decomposed into three separate matches: 

{'start': 0, 'end': 17, 'string': 'Glu30-Tyr33-Trp71', 'aminoacid': 
'Glutamic acid (Glutamate)', 'threeletter': 'Glu', 'position': '30', 
'residue': 'Glu30'} 

{'start': 0, 'end': 18, 'string': ' Glu30-Tyr33-Trp71', 'aminoacid': 
'Tyrosine', 'threeletter': 'Tyr', 'position': '33', 'residue': 'Tyr33'} 

{'start': 0, 'end': 18, 'string': ' Glu30-Tyr33-Trp71', 'aminoacid': 
'Tryptophan', 'threeletter': 'Trp', 'position': '71', 'residue': 
'Trp71'} 

Next, the largest NLP step is undertaken – lexical analysis, commonly known as tokenization. The 
tokenization is performed by using spaCy, a publicly available off-the-shelf python/cython stack, that 
claims to provide the fastest syntactic parser in the world4 and has seen widespread adoption within the 
NLP community, including on a number of projects within life sciences5. By operating in an object-

                                                      
4 Choi et al. 2015, Honnibal et al. 2015 
5 see https://spacy.io/usage/resources#libraries  

https://spacy.io/usage/resources#libraries
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oriented manner with a Source Class, we are able to maintain spaCy’s token-sentence-document internal 
structure, a feature that will be crucial for further, more sophisticated NLP. 

The tokenization splits the text into sentences as well as word and punctuation tokens, based on a pre-
defined language model. Each of these tokens, as well as being parsed, undergoes Part-of-Speech 
(POS) tagging, becoming tagged with information about its word shape and syntactic dependency. The 
model that is used in the current implementation of pyresid is an English Language model 
‘en_core_web_lg 2.0.0’, which is based on a Convolutional Neural Network (CNN) trained using the 
OntoNotes 5.0 data release (Weischedel et al. 2013). The model includes amongst its data sources 
broadcast news, telephone and broadcast conversation transcripts and web blogs. One of the motivations 
in using spaCy as the NLP engine of the project was the ability to retrain and extend existing models, as it 
is likely that the EuropePMC literature corpus contains language that is sufficiently different to everyday 
usage. Errors could therefore occur in the parsing and tokenization, for example with domain-specific 
contractions such as species names. At present, this does not appear to be a dominant source of errors, 
though further work including a more comprehensive set of quantitative evaluation would illuminate the 
issue. 

The output of the tokenisation is a spaCy document. At present, the principal use of this tokenization is to 
extract parent sentences, and thus extract context for the residue mentions. With a sufficiently annotated 
training set of sentences, it would be possible to build a specific Structural Biology model (within a spaCy 
pipeline) based upon the corpus. This could include a named entity recogniser that can identify residue 
mentions, or to formulate a classifier externally that uses vectorised context as a feature set for 
discrimination between relevant and irrelevant sections of text. 

 
Once the tokenisation is complete, the previously identified matches are decorated with their associated 
tokens and sentence context. At the same time, the sections from the initial XML input are themselves 
matched into an object. As the EuropePMC uses a strict whitelist of section names for its hosted 
annotations, the scraped sections are matched to this whitelist using FuzzyWuzzy6, a fuzzy matching 
Python module. These sections provide broader context to the discussion of residues within the 
manuscript, aiding end users in the performance of their research, a visualisation of the location of 
specific residue mentions within a manuscript can be seen in Figure 2.  

                                                      
6 https://github.com/seatgeek/fuzzywuzzy  

https://github.com/seatgeek/fuzzywuzzy
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Figure 2 – A graphical representation of the locations of the 5 most common residues within 
Vigouroux et al. 2017 extracted by pyresid, and the position of the located sections within the 
manuscript.  

As well as displaying the position within the text, and highlighting the relative position of mentions of 
certain residues, accurate location means that operations such as word clustering can be performed, as 
shown in the dendrogram in Figure 3. Functionality has been built into pyresid to generate all three of 
these visualisations; an example of a web-app using these outputs can be found here - https://pyresid-
dash.herokuapp.com/. 

In order to associate residues with a PDB entry, the RCSB PDB API is queried by pyresid, and if there 
is not a local copy, a .mmCIF file is downloaded. This contains the structural information for the entry, and 
for each residue, the structure is checked to see whether a residue of the given amino acid exists at the 
relevant position. If it does, the mention is annotated with the PDB ID. The individual mentions of each 
valid PDB ID within the text is also added to the Source object as a Match, enabling the same location 
plotting as for the residues (Figure 4). This location information within the text could be used to place 
priors on, or even replace, the structural checking with a graph-based approach (c.f. Ravikumar et al. 
2012). Further work could focus on location of the protein structure by name, giving a greater number of 
edges to a graph-based association approach. 

The number of PDB entries found by both methods is generally comparable to the number of unique 
residue mentions in a given manuscript. However, a common finding is that the number of unique UniProt 
identifiers for the protein structures is considerably smaller than the number of unique PDB entries – it 
being the case that the PDB entries are for substructures of a parent protein, with its own UniProt URI. As 
a result, mismatches between residues and protein structures occur less frequently than would be naively 
expected. At this point, the Match object for each mention is updated with the UniProt URI corresponding 

https://pyresid-dash.herokuapp.com/
https://pyresid-dash.herokuapp.com/
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to the PDB entry that it was formerly matched with. 

  
Figure 3 - A graphical representation of clusters of mentions of a Serine Residue at position 97 
within Vigouroux et al. 2017 (PMC5740067).  

In order for the Matches to be used as annotations, and for the maximum interoperability with other tools, 
at the end of processing each document, a data file in JavaScript Object Notation (JSON) file is produced, 
containing the annotations. Python Pickle files can also be chosen as an output, and the pyresid tools 
can be used in interactive mode in order for end users to interact more easily with the processed data.  
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Figure 4 - A graphical representation of the locations of the Protein Structures within Vigouroux et 
al. 2017 (PMC5740067) extracted by pyresid, and the position of the located sections within the 
manuscript. 

The annotations are now available in the development version of EuropePMC. The figure shows 

annotations for Vigouroux et al, “Structural basis for high specificity of octopine binding in the 

plant pathogen Agrobacterium tumefaciens.” This is a screenshot of the page 

http://dev.europepmc.org/articles/.  

http://dev.europepmc.org/articles/PMC5740067
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Figure 5 : Annotations for Vigouroux et al. 2017 (PMC5740067) 

3.3.4 Collaborations 
This work has been discussed with the International Union of Crystallography, a learned society which is 
the major publisher of crystallographic journals. A large majority of their publications are open access. 
They are considering running the West-Life annotation tool to push information about residues to 
EuropePMC, which would make mined information available from the non-open-access papers. 
We corresponded with the OpeMinTed project about this work. They offer tools for corpus extraction and 
processing. Unfortunately, we needed a specialized criterion for corpus definition, as described above, 
namely papers linked to PDB-e entries. This selector is provided only by the Advanced Search facility of 
EuropePMC. A lesson from this is the value of being able to import a list of DOIs from a domain-specific 
search service (e.g. PDBe query system for all macromolecular structures in the PDB) as a corpus 
definition to a text processing service to take advantage of existing text mining facilities. 

3.3.5 Future work 
One challenge for this work is that NLP tools devised for standard English text work less well with 
scientific papers. For example life sciences papers contain many species names, e.g. “E. coli”. The tool 
chain we were using interprets the abbreviation sign ‘.’ as the end of a sentence. The Europe PMC text 
mining pipeline uses as number of specialist vocabularies for entity recognition such as species names 
(NCBI Taxonomy) and gene/protein names (UniProt Names and Synonyms) list. These vocabularies are 
further processed to remove highly ambiguous terms, before they are used in the daily text mining 
workflow, which operates on all incoming content to Europe PMC. Using such vocabularies alongside 
machine learning techniques that operate specifically on research papers would likely give better results. 
Integrating such approaches into the tokenizer would mitigate this problem. More generally, better results 
would be obtained by retraining the language model with an appropriate corpus. 
Partners STFC and EMBL-EBI will seek to define and gain funding for a future project that addresses 
such challenges. Enabling such follow on work was one of the aims of this work package.  
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3.4 Implementation of Convolutional Neural Network for structural 
biology maps 

3.4.1 Input data 
We chose as an example dataset, the 2.2Å single particle reconstruction of beta-galactosidase, deposited 
in EMDB as EMD-2984. This is relatively high resolution for cryoEM, and should give clear features that 
could potentially be recognised by a CNN. An atomic model has been built into the map (PDB 5a1a) 
which serves to indicate which parts of the map are really protein and which are noise (i.e. the ground 
truth). 
The cryoEM map consists of a regular 3D grid of values, representing the electrostatic potential at each 
grid point. A survey of medical image analysis (Geert Litjens et al. (2017)) reveals a variety of approaches 
to analysing 3D datasets. Machine learning techniques are more mature for 2D images, and so many 
approaches consider 2D slices through a 3D dataset, or 2D projections. Nevertheless, some groups have 
attempted to train a model directly on 3D volumes or subvolumes. 
For this project, we started with the simplest approach of extracting 2D slices from the cryoEM map. Each 
slice is 48 x 48 pixels. Given the pixel size of 0.637Å this corresponds to a slice of 30.6Å x 30.6Å, 
containing a few 10s of atoms. Smaller slices could be used to identify side chains, or larger slices to 
identify domains. The 48 x 48 slice is windowed across the full size of a section of the cryoEM map, using 
a step size of 10 pixels. Sections were selected in two ways: either every 3rd section or every 10th section. 
The process is repeated 3 times, taking slices perpendicular to the 3 axes.  
We considered both the cryoEM as deposited in EMDB, and a blurred map (obtained using Gaussian 
blurring in Chimera with sd 1.0). Values in all images are normalised to the range -0.10 to 0.14 or -0.02 to 
0.05 respectively, corresponding roughly to the range of values in the cryoEM maps. 
 

A:   B:  C:  
Figure 6: Example 2D slices taken from EMD-2984. Images A and B are classified as protein, 
whereas C is non-protein. 
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We also generated a map from the fitted model 5a1a. For each slice of the experimental map, the model 
map is searched for significant density. If 5% of the grid points of model density were larger than 0.1 then 
we considered that this is a modelled part of the map and that it corresponds to protein. In this way, we 
could automatically classify all slices as protein or non-protein, giving us data suitable for supervised 
learning. There is clearly scope to improve the annotation of training images. 

3.4.2 Model training 
There are many possible architectures of CNNs. To simplify things for this prototype, we decided to adopt 
a model which had performed well in the ImageNet Challenge, namely VGG16 from Visual Geometry 
Group in Oxford. The default VGG16 model is shown in Fig 7, and consists of multiple convolutional 
layers interspersed with max pooling layers. The final layers are fully connected, with the final layer using 
softmax to make the binary classification. We use a simplified version of this model, namely an input of 48 
x 48 images, rather than the default 224 x 224; one convolutional layer, one pooling layer, one fully-
connected layer and a softmax-based prediction layer.  

 
Figure 7: The VGG16 model. 
In fact, early attempts to train this model failed, and we moved to a simplified version consisting of layers 
block1_conv1, block1_pool, flatten, fc1, predictions. Future work will look at re-introducing additional 
layers from VGG16, in the expectation that this will give a more robust and transferable model. 
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Model creation, training and testing is done in Python using the Keras package. We have used the 
Theano backend, although TensorFlow can also be used. The VGG16 model is available in Keras, and 
can be imported with: 
vgg_model = vgg16_mdw.VGG16(weights=None, 
                            input_shape=input_shape, 
                            include_top=True, 
                            classes=1) 
As explained above, we have used a subset of layers from VGG16, which are added individually to the 
model with the appropriate model.add() command in Keras. We have not tried to use the available pre-
trained weights, but have attempted to train the model using our structural biology derived images.  

3.4.3 Results 
The first dataset used for training consisted of slices taken from every 3rd section on a single axis of the 
blurred cryoEM map. There are more slices classed as non-protein, and so these were trimmed to give a 
balanced dataset of 15,696 protein images and 17,452 non-protein images (47% protein: 53% non-
protein images). This set was shuffled, and split into 80% training and 20% test images. 

Attempts to train the reduced 5-layer model with all images failed. Several weight initialization schemes 
were tried. However, training on just 2 images and slowly adding in more images worked, allowing the 
weights to refine sensibly. The final model had a reported loss of 0.099 and an accuracy of 0.978.  

We next considered a dataset from the original (unblurred) cryoEM map. Taking slices from every 10th 
section on a single axis yielded 4,736 protein images and 14,014 non-protein images. Using the 
previously obtained model, and not refining the weights, gave a loss of 11.842 and an accuracy of 0.252. 
In other words, a model trained on blurred images is not predictive for images taken from an unblurred, 
noisy map. 

 

No. images Protein Non-protein Loss Accuracy 

Model trained and tested on images from blurred map 

33,148 15,696 17,452 0.099 0.978 

Model trained on blurred map, tested on images from unblurred map 

18,750 4,736 14,014 11.842 0.252 

Model trained and tested on images from unblurred map 

18,750 4,736 14,014 0.176 0.938 

Model trained on unblurred map, tested on images from blurred map 

33,148 15,696 17,452 1.631 0.587 

Table 1: Summary of testing of machine learning model 

Training the model on images from the unblurred map, starting from the previously obtained weights, led 
to a much improved accuracy of 0.938. Using these weights to make predictions for the original blurred 
map again gave poor results (loss of 1.631 and accuracy of 0.587).  

In conclusion, we are able to train a 5-layer model to make good predictions for either the original cryoEM 
map, or for a blurred map. However, cross predictions are poor. 
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3.4.4 Future work 
Further work is needed to refine the network, both in terms of architecture and preparation of input data. 
The aim of course is to have a single model which is predictive for a range of cryoEM maps, with different 
levels of blurring or sharpening. This will likely require going to a more complex model, for example the 
full VGG16 network. Although our original attempt at VGG16 failed, it should be possible to bootstrap up 
from our 5-layer model, adding additional layers in a gradual process. 
The example chosen is very simple – identifying regions of a map which can contain protein. A more 
challenging, but more useful, problem would be to distinguish protein-like density from nucleic acid-like 
density. The same approach can be taken, using e.g. a modelled ribosome structure to provide training 
data. 

3.4.5 Availability 
The python scripts used to extract 2D images from cryoEM maps, and to train the model using Keras, will 
be made available via https://github.com/martynwinn/map-recognition. Manipulation of cryoEM maps is 
performed using the CCPEM library mrcfile (https://pypi.org/project/mrcfile/), which reads maps 
downloaded e.g. from EMDB and converts the data into numpy arrays.  The site will also contain model 
architectures as JSON and YAML files, and trained weights in HDF5 format. These are all suitable for 
loading into Keras.   
 
 

  

https://github.com/martynwinn/map-recognition
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