
1

Expediting assessments of database performance for
streams of respiratory parameters

Charles J Gillan1, Aleksandar Novakovic2, Murali Shyamsundar3, Adele H Marshall2 and Dimitrios S
Nikolopoulos4

1The Institute for Electronics Communications and Information Technology,
School of Electrical and Electronic Engineering and Computer Science

Queen’s University Belfast
Queen’s Road, Queen’s Island, Belfast,

Northern Ireland BT9 3DT, United Kingdom
2School of Mathematics and Physics

Queen’s University Belfast, University Road, Belfast
Northern Ireland BT7 1NN, United Kingdom

3The Centre for Experimental Medicine School of Medicine, Dentistry and Biological Sciences
Queen’s University Belfast 97 Lisburn Road, Belfast

Northern Ireland BT9 7BL, United Kingdom
4Department of Computer Science,

School of Electrical and Electronic Engineering and Computer Science Queen’s University Belfast
18 Malone Road Belfast, Northern Ireland BT9 5BN, United Kingdom

Abstract—A new methodology is proposed to com-
pare database performance for streams of patient respi-
ratory data from patients in an intensive care unit. New
metrics are proposed through which databases may be
compared both for this and similar streaming applica-
tions in the domain of the Internet of Things. Studies
are reported using simulated patient data for four freely
available databases. The statistical technique of non-
parametric bootstrapping is used to minimise the total
running time of the tests. We report mean values and
bias corrected and accelerated confidence intervals for
each metric and use these to compare the databases. We
find that, among the four databases tested, ScaleDB
is an optimum database technology when handling
between 200 and 800 patients in this application, while
PostgreSQL performs best outside of this range. Com-
paring the non-parametric bootstrapping method to a
complete set of tests shows that the two approaches
give results differing by a few percent.

I. Introduction
In previous work in the FP7 NanoStreams project [1],

[2] we studied the performance and energy efficiency of
servers consuming a financial data feed and computing
option contract prices in real-time from the stock prices
contained in the data feed. In this present paper we apply
and extend the methodology to the case of streams of
patient respiratory data. We have developed a novel real-
time computer-based screening system that we deploy in

an intensive care unit (ICU) in a hospital in Belfast. Our
system monitors parameters associated with lung physiol-
ogy in order to alert clinicians about possible ventilator
induced lung injury (VILI) [3]. For this reason we have
named our system VILI Alert. Ventilator induced lung
injury is a common phenomenon in critical care units.
This is a preventable condition where protective lung
ventilation not only prevents further lung injury but also
prevents the de novo development of lung injury in healthy
lungs [4]. Inappropriate use of excessive tidal volumes and
other settings of the mechanical ventilator such as the
positive end expiratory pressure could result in initiating
and propagating VILI. Various phenomena such as volu-
trauma, barotrauma, atelectotrauma and biotrauma lead
to VILI. Despite this robust evidence, the translation of
protective lung ventilation is still inadequate as demon-
strated in observational clinical studies and highlights the
urgent need for a system such as the VILIAlert system to
support clinical decision making and improve compliance
with best evidence based practice [5]. Development of
smart intuitive clinical decision support systems such as
VILI Alert therefore have the potential to improve clinical
practice and save lives [4]. Our VILI Alert system monitors
patients in real-time by continuously computing a set of
metrics from the received streams of ventilation data.
Mathematical kernels process the data streams to allow
patients to be monitored against set thresholds. When a
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threshold is violated consistently, an alarm is immediately
raised and sent by SMS message to clinical staff.

One difference between our current and previous work
lies in the amount of fixed and variable data that has to be
handled. For financial options there are only a few fixed pa-
rameters such as date of expiry and interest rate, and only
one continuously changing value, the stock price. When
computing clinical metrics multiple parameters associated
with the patient need to be considered, some fixed or very
slowly changing such as age or weight, and some changing
with every breath, such as tidal volume. In the case of
financial options the stock price is the only value that
changes regularly. Moreover we are only concerned about
the current price at any point in time. In regard to human
lung physiology in an ICU, we are interested in averaged
values over fifteen minute time bins and also trends over
twelve hours. A fundamental component of our ventilator
monitoring system is therefore a database whereas in
the case of our market data application this is absent,
with prices being consumed off the wire. Furthermore the
nature of the mathematical kernels is different. There is
a considerable amount of logic code that needs to be
exercised before time series of tidal volume and airway
pressure data can be processed to compute various clinical
metrics.

A further distinction with the process of pricing finan-
cial options lies in the way that the data is gathered.
Human physiology is a continuous process measured by
sensors which can be set to take recordings at predefined
time intervals before forwarding to a central database.
These data points are subject to noise generated, for
example, by a patient moving in their bed. Data even may
be filtered so that only every third or fourth reading is
transmitted to the database. In part, this can be due to
network latency and/or the total storage available for the
database. By comparison, stock market price changes are
discrete events in time, generally taken to follow a Poisson
distribution over a trading day. In this paper we repeat
experiments with patient data arriving at different fixed
intervals. This mirrors the real-life setting where sensor
recordings are taken at different intervals. In addition
we vary the number of patients and push this to very
large numbers, well beyond the actual numbers that one
encounters in a hospital setting today. This is in order to
stress test the database to the maximum extent possible.

Benchmark testing often involves repeating the same
experiment for several iterative rounds (usually five or ten
iterations) in order to obtain more reliable estimations
of workload metrics. There is no universal rule on how
many repetitions of the same experiment that one needs
to perform, but obviously more repetitions lead toward
better conclusions. By repeating the experiments multiple
times, one covers the situation where there is underlying
unknown variability.

In some cases completing a single experiment may be
very expensive and time consuming. For example, in our
use case, completing all simulations (on all databases
against all scenarios) would take close to thirty hours

elapsed time. This means that if we have had to repeat
these simulations at least ten times we would have ex-
ecuted for almost twelve days continuously, which is a
prohibitively long time.

In order to capture the unknown variability of the
collected measurements with minimal repetitions of the
same experiment, we used the non-parametric bootstrap
re-sampling technique pioneered by Efron and co-workers
[6], [7], [8]. This means that we estimate our performance
metrics by sampling from the empirical distribution func-
tion of the experimental results. We are also able to
extract a correlation between metrics from the data. The
question automatically follows as to whether, or not, the
non-parametric bootstrap re-sampling technique gives a
good approximation to actually repeating the experiment
many times. We address this by actually performing the
experiments and comparing results. We find that the re-
sampling technique generally gives answers within a few
percent of those obtained by very many repetitions of the
experiments. This is one of the key contributions of our
paper, extending beyond the work that we have previously
reported for financial options [1], [2].

Our paper is composed of several sections. Section II,
which follows next, briefly defines the physiological moni-
toring that lies at the core of this work and also presents
our VILI Alert system. Section III explains the test-
ing strategy that we developed using the non-parametric
bootstrapping technique to measure performance of the
databases in our study. In section IV we present and anal-
yse the results that we obtained. We discuss related work
in section V and provide some further details on how this
work fits into the wider context of the FP7 NanoStreams
project that explores micro-server technologies for real-
time data analytics. Section VI discussed the accuracy of
the non-parametric bootstrapping technique as opposed
to massive numbers of repetitions of the same experiment.
We finish the paper with summarising conclusions drawing
from our present work in VII.

II. Physiological monitoring of respiratory
parameters

Inflation of the alveoli during mechanically assisted lung
ventilation generates stress forces which in turn create
strain on the cells which may lead to damage. The stress
forces created by the inflation process are proportional
to the tidal volume (TV), a parameter that is defined
at the mechanical ventilator. TV also depends on gender
and on ideal body weight [9]. From the perspective of an
IT system, the ventilator is a data source which outputs
information, meaning that it is in an abstract sense similar
to other sensors. Many medical sensors, including ventila-
tors, are engineered to produce their application layer data
in the Health Level Seven protocol (HL7) [10]. The HL7
data is typically carried over an IP network, using TCP at
the transport layer, to a medical electronic medical record
system where it can be processed and stored for inspection.

We developed a system to monitor TV and other airway
pressure parameters associated with the respiratory phys-
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iology of patients and deployed this at the Royal Victoria
Hospital Belfast in the Regional ICU which is located
there. Our system intercepts the data feed from the ven-
tilators and runs along side the electronic medical record
system deployed there. This design avoids any impact on
the record system. All patients receiving ventilation in the
ICU were monitored continuously by the computer system.
We operated this without interruption for ten calendar
months starting in November 2015, tuning the software
as we gained operational experience. Data streams from
patients can begin, or end, at any time of the day or night,
an aspect that requires careful handling of the calculations
based on time windows.

In this paper we focus on the performance of the
database, a component which is at the heart of the system.
We create experiments to examine the performance of the
database for many more patients and much more data
than we have available in the hospital environment. In
practical terms this means that we created an instance of
the VILI system in our lab and used only simulated data,
an advantageous consequence of which was the fact that
we did not need to address ethical or governance issues
using this data.

III. Methodology

The primary aim of this study is to push the alert
database, into which patient readings are streamed con-
tinuously, well beyond its current operational range and so
identify appropriate scalability characteristics. While the
system deployed in the live hospital environment is only
required to cope with twenty patients, and has further
constraints imposed on it in order to inter-operate with
existing hospital equipment and IT systems, we seek in this
work to scale the VILI system along two axes: the number
of patients and the rate of data collection per patient.
As such this looks forward to the situation in which all
patients within a large hospital may have physiological
sensors routinely attached during their stay or indeed after
they are discharged into the community.

A. Database Selection
We conducted our academic study using the databases

described below. All of these were used as freely
downloaded versions, without commercial support. We
should also note that all selected databases can
be installed to all major operating systems (Win-
dows/MacOS/Linux/Unix/BSD). It is expressly not the
purpose of this paper to make any comment of any kind
whatsoever on fitness for purpose of any commercial offer-
ing.

• PostgreSQL is an object-relational database, ACID-
compliant and transactional by design, and which is
very popular in web hosting applications.

• MariaDB is a fork from the MySQL database avail-
able under GPLv2 license, committed to open de-
velopment and transparency, and offering improved

performance, and better security and availability in
comparison to MySQL [11], [12].

• ScaleDB is a closed source, but freely available,
proprietary storage engine produced by ScaleDB Inc.,
which is pluggable and compatible with MariaDB and
MySQL databases [13]. It is based on a Shared-disk
Database Storage Architecture [14] and is designed
to offer high performance, scalability and availability
for applications with many concurrent users and large
datasets.

• MonetDB is a column-oriented database manage-
ment system which aims to deliver high performance
on complex queries against large tables. It was de-
signed to be suited to on-line analytical processing,
and data mining applications[15]. This database pio-
neered the technique of incremental partial indexing
and sorting of the data, method which shifts the
cost of index maintenance from updates to query
processing.

Although there is a wide variety of open source database
management systems that could be used in our study,
we have decided to use those mentioned above because
they are all of the relational type with full SQL support,
offering a high level of security, scalability and perfor-
mance. Another significant factor in our selection of these
databases is that they are used in many applications. As
the measure of popularity of databases, we have used DB-
Engines Ranking - a monthly updated comprehensive list,
containing more than 300 commercial and open-source
DBMS which are ranked by their popularity [16]. The
DB-Engines Ranking criteria [17] are based on the robust
scores that are calculated using various metrics such as:
the number of web citations i.e. the number of results in
search engine queries in which the system appeared, the
number of available job opportunities which require the
knowledge of the particular system, general interest in the
system, expressed as the frequency of searches over time
obtained from Google Trends, etc.

According to DB-Engines Rating, the PostgreSQL was
chosen as the DBMS of the year 2017 as it had the
highest popularity score growth measured in the period
between January 2017 - January 2018, while the MariaDB,
popularity score of which almost tripled in the last three
years, came up as the third [18], [19]. It is worth adding
that the second place belonged to a database management
system (DBMS) which is mainly used as a search engine,
and hence it was automatically ruled out of our study.

The version numbers for each downloaded database,
as used in our experiments, are shown in table I. We

TABLE I
Details of the databases studied and their corresponding

drivers

Database Version JDBC driver
MonetDB 1.7.Jun 2016-SP1 monetdb-jdbc-2.17
MariaDB 10.1.13 mariadb-java-client-1.5.0-RC1
ScaleDB 16.04 mariadb-java-client-1.5.0-RC1
PostgreSQL 9.5.3 postgresql-9.4.1208
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followed the standard installation documentation supplied
with each database making no specific configuration ad-
justments other than setting unique TCP port numbers
for each. In our experimental setup we dedicated one

Fig. 1. The layers of variability which multiply to give a large volume
of tests. Working from the top down, the selection of test options
available at a layer is multiplied by the number of tests at the next
lower layer.

server, which we label Server B in figure 1, to execute
the database instance. It has the following physical con-
figuration: AMD Opteron(TM) Processor 6272, 2.1 GHz,
8 Cores, 2MB Cache Memory, 63 GB RAM. The operating
system executing on the server is CentOS 6.8. During each
experiment, one and only one of the databases in table I
executed on the server.

B. Definition of Metrics
Our previous work presented three metrics: Seconds per

Option (S/Opt), Joules per Option (J/Opt) and Quality of
Service (QoS) [1], [2]. Replacing an execution of an option
pricing kernel with the execution of an SQL INSERT,
these metrics can be extended directly to milliseconds
per Insert (MS.INS) and Joules per Insert (J.INS) with
the QoS similarly redefined in terms of successful insert
operations.

In this work we measure S/Insert in milliseconds. We
set up our tests so that they marked an insert request
as a failure if the required processing time exceeded a
threshold, in the region of seconds. We investigated the
QoS metric by performing SQL INSERT operations at the
various fixed time intervals, so that the QoS metric is the

ratio of successful to total SQL INSERT requests for the
full duration of a test.

We found that analysis of the database performance
requires the following additional metrics:

• AVG.INS.S: Average number of successfully com-
mitted SQL INSERT operations per second.

• AVG.RAM: Average RAM consumption in giga-
bytes per test.

• AVG.INST.P.CONS: Average instantaneous power
consumption in Watts.

• AVG.CPU: Average percentage CPU usage.
Several of the charts in our results section refer to these
new metrics as well as to the extended metrics above.

C. Performance Test Tools
We performed a series of extensive simulations using the

Apache JMeter application. It is an open source, Java-
based, benchmarking tool and is designed for performance
testing on both static and dynamic resources. We used
JMeter to simulate heavy loads on our databases and
to collect overall performance metrics including response
time and standard system parameters CPU, memory and
disk usage, etc. [20]. JMeter uses JDBC drivers to com-
municate with the database and table I presents the exact
version of each driver used in our simulations.

We created multiple JMeter scripts each correspond-
ing to a different type of test and, in order to remove
interference effects, executed these scripts on a different
server than the one on which the databases executed.
The server on which JMeter executed is labeled as Server
A as shown in figure 1. On the one hand tests covered
different numbers of patients and on the other different
rates for gathering patient data. All tests centre on an SQL
INSERT operation placing patient readings into one table
in the database. The INSERT operation looks typically as
follows:

INSERT INTO readings_bench
(
PatientGender, PatientID,
PatientHeight, PatientWeight,
ControlID, ObservationDateTime,
Unit, BedID,
TidalVolume

)
VALUES

{
’M’, ’PatientZA’,
142.0, 95.0,
’ControlID123’, now,
’RH_RICU,’RICU20’,
123

}

To measure AC power usage at the wall socket of the
Server B during execution of the JMeter scripts, we used a
Watts Up Pro power meter [21]. This logged measurements
at its maximum rate of one per second with an accuracy
of 1%.
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Fig. 2. QoS Metrics for MonetDB as a function of number of patients and data insert rate. The high number of fails shown indicated at an
early stage, as discussed in the text, that MonetDb was not going to be suitable for our ICU application.

TABLE II
Performance data for each database.

Database Test Number of Overall
Duration (s) Successes QoS (%)

MariaDB 60 1,756,864 100
MonetDB 60 950,169 58
PostgreSQL 60 1,770,740 100
ScaleDB 60 1,775,044 100
MariaDB 600 18,630,832 100
PostgreSQL 600 18,603,867 100
ScaleSQL 600 19,338,968 100

D. Two stage test approach

Our series of extensive simulations required the creation
of multiple tests and then the execution of each test
multiple times. We developed a strategy that had two
distinct steps:

1. In the first step each test script lasted for only sixty
seconds, that is for one execution of the test. In order
to cover all of the possible combinations of number
of patients and database software, we created a total
of 220 test scripts. The purpose was to identify if
there were any databases performing significantly
worse than the others. The basis for comparison
was the set of metrics which are described in the

following section. Clearly, any databases performing
badly could be eliminated at this step saving time
in step two.

2. In the second step each test lasted for six hundred
seconds for one execution thereby probing how the
different databases perform under very high, con-
stant load.

An overview of the work flow for each test script is
presented schematically in figure 1. The options presented
at each layer multiply together from top to bottom of the
figure to define the test. Each time that a test executes
we report the values of the metrics observed, therefore
creating a set of samples for the metrics. Finally we
compute the metrics for that test by analysing the mean
and variance of the samples.

E. Non-parametric bootstrapping method
We observed that the second step in our experiments

required very long run times, sometimes up to nine hours
elapsed time, in order to execute very one of the available
test scripts. This was not ultimately feasible and we sought
a statistical method instead. We found that the non-
parametric bootstrapping procedure [6], [8] was an efficient
way to extract results requiring fewer executions of each
test script. This statistical method [22], [23], [24] is well
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suited to our case because it does not place restrictive
assumptions on the statistical properties of the collected
data. It is used in analysis of medical data [25] because
the method is widely applicable and offers a solution to
situations where conventional methods may be difficult or
impossible to apply, such as finding the confidence interval
of the median.

Let the set of n values for one metric produced by
independent tests be a vector yobs. The general algorithm
for a non-parametric bootstrap is then defined by the
following steps, in which bold face type denotes a vector:

• Sample n values randomly with replacement from
yobs in order to obtain a bootstrap data set, which
we denote Y∗.

• Calculate the bootstrap version of the metric of in-
terest, θ̂∗ = θ̂(Y∗)

• Repeat steps 1 and 2 a large number of times, which
we denote by B, to obtain an estimate of the boot-
strap distribution.

The distribution of values, θ̂∗, computed above can then
be used to compute a mean value and a confidence interval
(CI) for the metric. In our work we use the bias corrected
and accelerated method (BCa) for derivation of the CI
from the distribution [7], [25]. BCa allows for skewness in
the distribution θ̂∗.

The main idea behind bootstrapping is that the popu-
lation and empirical distribution functions converge as B
increases to infinity. Following recently reported work [23]
we used B = 10000 bootstrap samples.

IV. Results
We begin by discussing the outcome from the first step

in our test strategy and continue with a comprehensive
analysis of the data collected from the second step.

A. Outcome from step one
Table II reports the observations from the initial step in

which we ran short sixty second jobs. The most obvious
result is that MonetDB had the worst QoS performance.
The tests recorded 698, 807 failures in total leading to an
overall QoS of 58%. On further investigation, we noted
that the logs contained the following message for the failed
SQL INSERT operations with MonetDB

COMMIT: transaction is aborted because of
concurrency conflicts, will ROLLBACK instead

These failures occurred in all tests using MonetDB along
both scalability axes, the number of simulated patients
and the data collection rate was set. Figure 2 presents a
more detailed analysis of the behaviour of MonetDB over
both axes. It shows that if MonetDB were used in the
live hospital environment, that is with twenty connected
patients, a QoS of in the range [79%, 90%] would be
obtained depending on the data insert rate. Increasing the
number of patients to 100, or more, leads to a decreasing
QoS.

The reason for this poor performance of INSERT queries
lies in the fact that MonetDB is primarily designed as an
analytical (OLAP) database, where most operations are
expected to be be SELECT-FROM-WHERE-GROUPBY
queries. Its transaction management scheme is optimized
for reading large chunks of data, instead of writing small
data chunks at the high speed concurrently. Therefore, we
concluded that MonetDB would not be a good choice in
this study and decided to drop it from stage two tests.

B. Outcome from Step Two
Step two testing proceeded using MariaDB, PostgreSQL

and ScaleDB, all of which can be seen in table II to have
similar performance figures. Removing MonetDB from
the test set reduced the number of test scripts to 165
simulations in total with a single run of each test executing
for 600 seconds in step two.

1) Correlation coefficients: Figure 3 is a visual pre-
sentation of the correlation matrix between our metrics.
The figure presents only statistically significant Pearson’s
correlation coefficients, at the 95% level and 163 degrees
of freedom. We believe that this visual style gives a clear
overview of linear relationships between workload metrics.

Each metric is a node in the graph and the proximity of
the metrics to each other represents the overall magnitude
of their correlations. Thus clustering of the metrics is
easily seen in this presentation. Each path represents a
correlation between the two variables at either end. Blue
and red paths represent positive and negative correlations
respectively, while the transparency and the width of the
path represent the strength of the correlation. Thinner and
more transparent paths mean weaker correlation.

In figure 3 we can see that Patients Count,
AVG.RAM, AVG.INS.S and J.INS form one cluster,
while AVG.INST.P.CONS, AVG.CPU and MS.INS form
another distinct cluster. This means that increasing the
number of patients has more impact on RAM usage than
on CPU usage. This also means that databases that rely
more on CPU than on RAM to handle the increased
number of patients tend to have higher instantaneous
power consumption than the databases that rely more on
RAM.

Apart from that, increased CPU usage implies an in-
crement in the MS.INS metric. The best examples for
this are ScaleDB and PostgreSQL, both of which had
similar performance regarding to AVG.INS.S metric in
table II. ScaleDB handles an increased number of pa-
tients by using more CPU power and thus having the
highest INST.P.CONS metric, while on the other hand
PostgreSQL relies more on RAM and therefore have the
lowest INST.P.CONS metric. Similarly ScaleDB had the
highest, while the PostgreSQL had the lowest MS.INS
metric. It is interesting to note that the data insert rate
(time offset) does not have much impact on calculated
workload metrics. As we can see in the correlation plot,
the data insert rate only affects how fast the maximum
values of AVG.INS.S metric can be met.
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Fig. 3. Visual presentation of the Pearson correlation coefficients from step two tests. Each metric is a vertex in a graph, while each edge
represents the statistically significant correlation coefficient between the two metrics at either vertex. The transparency and the width of
each edge depends on the strength, while their colour depends on the direction of the correlation coefficient (A thinner and more transparent
edge - weaker correlation; blue colour - A positive correlation; red colour - A negative correlation)

2) Workload metrics: Using the bootstrap procedure we
computed values for all metrics as a function of eleven
different values for the number of patients and five differ-
ent data insert rate scenarios, presenting these in figure 4
using a data shading approach. The grey colour denotes
the calculated workload metrics for all five data rates, the
shape of each grey box distinguishes the database used.
This means that working upwards on a vertical line from
each number of patients on the x-axis, we can see one
instance of each shape on that line.

The restricted data rate of 1 insert per second is the
one that is used in the hospital setting. For this reason we
present coloured shapes for this data rate to distinguish it
from all other data rates. These are as follows: MariaDB
- red circles, ScaleDB - blue squares, PostgreSQL - green
triangles Using this data shading technique we managed
to identify patterns for our workload metrics presented in
the figure.

The AVG.INS.S metric shown in figure 4(a) increases as
the number of patients grows, until it reaches a maximum
value and thereafter remains almost constant. The rate of
increase depends on the data insert rate and the database
technology in use. For instance, in the case of MariaDB
and ScaleDB, maximum values were reached between 200
and 800 patients, depending on the data insert rate, with a
faster data insert rate implying faster convergence toward
the maximum value obtained. On the other hand, in the
case of PostgreSQL this maximum value was reached

between 700 and 800 patients again depending on the
data insert rate. The fact that PostgreSQL reaches its
maximum value much slower than the other databases
explains why it had the lowest total number of successful
inserts in table II.

Similar conclusions can be applied in the case of the
AVG.INST.P.CONS and AVG.CPU metrics in figures 4
(c) and 4 (d). For different data insert rates, the maximum
values of these metrics occur at the same number of
patients, as in the case of AVG.INS.S metric. ScaleDB
seems to be the most resource hungry database, consuming
the most CPU and power resources, and it is followed by
MariaDB and PostgreSQL in that order.

As the J.INS metric depends on AVG.INS.S and
AVG.INST.P.CONS, the same rules can be applied as for
previous metrics. However, instead of increasing, in the
case of J.INS metrics we have a decreasing trend as the
number of patients grow, until it reaches its minimum
and remains almost constant afterwards. Again, a faster
data insert rate implies a faster convergence towards a
minimum value (Fig. 4 (e)).

Speaking of the AVG.RAM metric, the average RAM
usage linearly increases with the increased number of
patients. PostgreSQL consumes the most RAM resources,
and it is followed by the ScaleDB and MariaDB. As seen
by the shaded data points, there does not seem to be much
variation in RAM consumption between data insert rate
scenarios (Fig. 4 (b)).
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No matter what number of patients and time offset
settings were used in our simulations, each database had
almost constant average MS.INS metric. Best performance
was recorded in the case of PostgreSQL, followed by
MariaDB and ScaleDB (Fig. 4 (f)).

3) Achieving maximum performance: Table III lists the
minimal number of patients required for each database
to reach its maximum value for the AVG.INS.S metric.
Achieving this maximum for that metric also implies that
the maximum values of metrics AVG.INST.P.CONS and
AVG.CPU are met as well. In fact there are very small
variations between different numbers of patients and data
insert rates. Most importantly, increasing the number of
patients above values presented in table III will mean only
increased RAM usage without loss of performance.

TABLE III
The number of patients for a database required to meet its

maximum performance

Insert MariaDB ScaleDB PostgreDB
time (ms)

200 200 200 700
250 200 200 700
444 300 300 700
500 400 400 700

1000 700 800 800

A refinement on table III is to consider the confidence
intervals for each metric that we calculated. Table IV
reports the mean value for the metrics as well as the upper
and lower limits of the calculated 95% BCa confidence
intervals for each metric. From table IV, we can propose
that if a system were required to support between 700 and
1000 patients, PostgreSQL would be the best choice. It has
a slightly lower average number of inserts than ScaleDB
and consumes slightly more RAM but has the best energy
efficiency (i.e. the lowest AVG.CPU, AVG.INST.P.CONS
and J.INS metrics) and the lowest MS.INS metrics of all
three candidates.

For the cases between 200 and 700 patients, independent
of data insert rate, either ScaleDB or MariaDB are the
better performers. Although it consumes more resources
and has a higher MS.INS metric, ScaleDB has the highest
AVG.INS.S metric and lower J.INS metric making it a
more attractive choice. Below 200 patients all databases
performed similarly in a terms of the AVG.INS.S metric,
making PostgreSQL the better choice as it consumes less
resources then the other databases

V. Related Work
While there are many investigations of database per-

formance in the literature, in so far as we are aware, no
other papers have analysed database performance in an
ICU application with either a similar methodology or to
the same level of depth as we have presented in this paper.
In the following paragraphs we mention related from the
literature on database performance.

Schmid and co-workers [26] used JMeter to investigate
the performance of a relational-database (PostgreSQL)

TABLE IV
Workload metrics when each database operates at maximum

performance

Database Mean 95% BCa CI limits
value lower upper

AVG.INS.S
MariaDB 693.916 692.884 694.888
PostgreSQL 724.341 722.497 725.566
ScaleDB 727.324 725.446 728.391
MS.INS in milliseconds
MariaDB 0.737 0.734 0.740
PostgreSQL 0.595 0.592 0.598
ScaleDB 0.982 0.953 1.051
AVG.INST.P.CONS in Watts
MariaDB 176.294 176.127 176.443
PostgreSQL 173.756 173.666 173.847
ScaleDB 182.969 182.779 183.128
J.INS in Joules
MariaDB 0.254 0.254 0.254
PostgreSQL 0.240 0.240 0.240
ScaleDB 0.252 0.251 0.252
AVG.CPU in %
MariaDB 0.577 0.570 0.584
PostgreSQL 0.397 0.390 0.403
ScaleDB 1.548 1.535 1.561
AVG.RAM in GB
MariaDB 2.338 2.319 2.356
PostgreSQL 2.528 2.514 2.541
ScaleDB 2.393 2.382 2.403

and a NoSQL-database (MongoDB). They performed geo-
calculations on the database level as well as a creating
a backend for web mapping services (WMS) provided
by GeoServer. They were focused on analysing response
times of three geo-queries (geo-function within on points,
lines and polygons) against three different dataset sizes
(small (38.9 Mb), medium (501 MB) and large (2.1 GB)),
three different data query time offsets (random, 0.5 an 1
seconds) and three different user categories with varying
number of users depending whether they tested WMS
performance (10, 25 and 50 users) or performance on
database level (100, 250 and 500 users). They conducted
all performance tests using Apache JMeter.

Results of the WMS tests showed that MongoDB had a
little faster average response time only in the case when
geo-function “within” was performed on points, while for
all the other cases PostgreSQL had better performance.
The response time for PostgreSQL/GeoServer tend to
increase just a little with an increasing number of users,
while the response time of MongoDB/GeoServer is sig-
nificantly growing with an increasing number of users.
On the other hand, when the performance were measured
purely on database level, PostgreSQL’s response time
rapidly increases with the size of dataset and therefore it
performed better for small datasets and complex geometry
types like lines and polygons. For MongoDB the size of
the dataset does not play a big role, and it had a high
performance even on large datasets, which seems to be
related to the way how MongoDB handles geohash-index.

Wang and co-workers [27] reported a survey of the
performance of in-memory databases related to high fre-
quency trading of financial securities. They report that
relying solely on memory to enhance the processing speed



10

is not sufficient to meet the needs of processing financial
transactions online at high speed.

Difallah and co-workers [28] developed an open source,
multi-threaded benchmarking framework called OLTP-
Bench, which can be used to test the performances of any
JDBC-enabled relational database. The framework sup-
ports over fifteen domain specific benchmarks consisting
of standard Transactional benchmarks such as TPC-C,
as well as the modern Web-Oriented and Feature Testing
benchmarks such as LinkBench [29] and YCSB [30].

On-line transaction processing systems (OLTP) were
one of the first widespread uses on relational databases
when such databases became common in the Eighties.
OLTP applications typically have a large number of
users but each of which conducts only short transactions.
Among the business use cases are: entry of new prod-
uct orders, conduct of retail sales and holding data on
customer relationship management (CRM). The OLTP-
Bench is an extensible framework with the capabilities
that enable researchers to dynamically control throughput
rates, transaction workload mixture and workload skew
during the execution of experiments in order to recre-
ate real system loads. By extending it, Gobel [31] cre-
ated the MuTeBench framework, which combines dynamic
and flexible control features of the underlying OLTP-
Bench, and allows creation of OLTP benchmarks for multi-
tenant databases. Aken and co-workers [32] demonstrated
dynamic and flexible control features of the framework
through BenchPress, a graphical user interface that allows
users to control the OLTP-Bench’s behaviour in real time.
OLTP applications and applications streaming data from
Internet of Things use-cases represent two quite differ-
ent sets of operational characteristics for the underlying
databases that act as a permanent store for the data. With
streaming IoT applications the data flows continuously
into the system, several times per minute basis in our
case. Analysis kernels, on the other hand, run at much
less frequent intervals in our system but may extract large
amounts of data on which to perform computations.

VI. Assessing the accuracy of the
non-parametric bootstrapping method

In order to test the accuracy of our non-parametric
bootstrapping approach in comparison to traditional
benchmarking approaches, we conducted a series of com-
plex for hunderds of times. The workflow of the experiment
is as follows:

• We used our framework built on top of Apache JMeter
and ScaleDB database to simulate patients’ behaviour
in intensive care unit of a hospital in Belfast. We
simulated the behaviour of 20 patients with data in-
sertion rate of one insert per second (current hospital
settings).

• We were interested in the accuracy of four work-
load metrics introduced above: AVG.INS.S, MS.INS,
AVG.RAM and AVG.CPU.

• To obtain as good as possible estimations of these
workload metrics, instead of 5 or 10 repetitions of the

TABLE V
Non-parametric bootstrapping accuracy assessment

Workload MAPE 95% CI limits
AVG.INS.S 0.08% 0.076% 0.084%
MS.INS 5.50% 5.179% 5.818%
AVG.RAM 1.67% 1.572% 1.762%
AVG.CPU 12.37% 11.634% 13.111%

same experiment (as it is usually done in traditional
benchmark analytics), we performed 500 repetitions
which resulted in a total running time of almost 84
hours.

• As it is done in traditional benchmarking analysis, we
estimated values of our workload metrics using the
following formula:

Metric = 1
500

500∑
i=1

Metrici (1)

where Metrici stands for one of the defined metrics
above.

• Using the non-parametric bootstrapping procedure
based on collected measurements for each simulation
(out of 500) we created B = 500 artificial datasets.
The purpose of this step was to compare how the
computed values of workload metrics derived from the
artificial datasets differ from the values obtained from
the traditional approach.

To assess accuracy level we used the mean absolute
percentage error (MAPE) described with the following
formula [33]:

MetricMAPE = 1
5

500∑
i=1
| Metric−MetricB

i

Metric | (2)

An overview of mean absolute percentage errors for each
metric, as well as the overview of 95% confidence intervals
of these errors is shown in table V. As can be seen,
estimations of workload metrics using the non-parametric
bootstrapping approach represents a powerful alternative
to the traditional approach.

VII. Conclusions and Future Directions
In this paper we have presented a methodology for com-

paring performance of various databases for streams of pa-
tient respiratory parameters in an ICU. Our methodology
considers the impact of scaling both data insert rates and
patients numbers, on the performance, energy-efficiency,
system resources usage of four different freely available
databases. Our methodology uses the statistical method
of non-parametric bootstrapping in order to minimise the
time taken to execute experiments.

It is expected that hospitals will increasingly deploy
more sensor based monitoring outside the ICU, that is
to a wider population of patients[34], something which
invariably requires higher performance from the databases
used. More generally, sensor based applications within the
emerging Internet-of-Things (IoT) will stream data in a
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fashion similar to that which we find in the ICU today,
making results in this paper of wider interest therefore.
Our results show that MonetDB would not be a good
database engine for sensor applications as its transaction
management scheme is optimised for reading large chunks
of data instead of concurrent writing of small data chunks
at the high speed [35]. Independently of the data insert
rate, if the application needs to support more than 700
sensors, PostgreSQL has the best performance, the lowest
energy consumption and the least use of system resources.
For all the other cases, the choice of the database depends
on the data collection parameters of the use case.

Our paper has focused on analysing database perfor-
mance for SQL INSERT operations. In future work we
will apply our methodology to investigate performance of
these databases for SQL SELECT operations. Database
technology can be divided into four categories: embedded,
RDBMS, NoSQL and NewSQL, of which RDBMS is ar-
guably the most widely used. The architecture of RDBMS
offerings is rooted in the IBM System R database [36],
which adopted a disk-centric design. NewSQL database
systems, such as SAP HANA, have a variety of new inter-
nal architectures yet retain support for online transaction
processing (OLTP) read-write workloads and maintain the
ACID guarantees of a traditional database system. Our
methodology can be employed to evaluate any RDBMS or
NewSQL database. We aim to do this in future studies.
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